1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
|
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import binascii
import collections
import math
import re
from contextlib import contextmanager
import pytest
import six
from cryptography.exceptions import UnsupportedAlgorithm
import cryptography_vectors
HashVector = collections.namedtuple("HashVector", ["message", "digest"])
KeyedHashVector = collections.namedtuple(
"KeyedHashVector", ["message", "digest", "key"]
)
def check_backend_support(backend, item):
supported = item.keywords.get("supported")
if supported:
for mark in supported:
if not mark.kwargs["only_if"](backend):
pytest.skip("{0} ({1})".format(
mark.kwargs["skip_message"], backend
))
@contextmanager
def raises_unsupported_algorithm(reason):
with pytest.raises(UnsupportedAlgorithm) as exc_info:
yield exc_info
assert exc_info.value._reason is reason
def load_vectors_from_file(filename, loader, mode="r"):
with cryptography_vectors.open_vector_file(filename, mode) as vector_file:
return loader(vector_file)
def load_nist_vectors(vector_data):
test_data = None
data = []
for line in vector_data:
line = line.strip()
# Blank lines, comments, and section headers are ignored
if not line or line.startswith("#") or (line.startswith("[") and
line.endswith("]")):
continue
if line.strip() == "FAIL":
test_data["fail"] = True
continue
# Build our data using a simple Key = Value format
name, value = [c.strip() for c in line.split("=")]
# Some tests (PBKDF2) contain \0, which should be interpreted as a
# null character rather than literal.
value = value.replace("\\0", "\0")
# COUNT is a special token that indicates a new block of data
if name.upper() == "COUNT":
test_data = {}
data.append(test_data)
continue
# For all other tokens we simply want the name, value stored in
# the dictionary
else:
test_data[name.lower()] = value.encode("ascii")
return data
def load_cryptrec_vectors(vector_data):
cryptrec_list = []
for line in vector_data:
line = line.strip()
# Blank lines and comments are ignored
if not line or line.startswith("#"):
continue
if line.startswith("K"):
key = line.split(" : ")[1].replace(" ", "").encode("ascii")
elif line.startswith("P"):
pt = line.split(" : ")[1].replace(" ", "").encode("ascii")
elif line.startswith("C"):
ct = line.split(" : ")[1].replace(" ", "").encode("ascii")
# after a C is found the K+P+C tuple is complete
# there are many P+C pairs for each K
cryptrec_list.append({
"key": key,
"plaintext": pt,
"ciphertext": ct
})
else:
raise ValueError("Invalid line in file '{}'".format(line))
return cryptrec_list
def load_hash_vectors(vector_data):
vectors = []
key = None
msg = None
md = None
for line in vector_data:
line = line.strip()
if not line or line.startswith("#") or line.startswith("["):
continue
if line.startswith("Len"):
length = int(line.split(" = ")[1])
elif line.startswith("Key"):
# HMAC vectors contain a key attribute. Hash vectors do not.
key = line.split(" = ")[1].encode("ascii")
elif line.startswith("Msg"):
# In the NIST vectors they have chosen to represent an empty
# string as hex 00, which is of course not actually an empty
# string. So we parse the provided length and catch this edge case.
msg = line.split(" = ")[1].encode("ascii") if length > 0 else b""
elif line.startswith("MD"):
md = line.split(" = ")[1]
# after MD is found the Msg+MD (+ potential key) tuple is complete
if key is not None:
vectors.append(KeyedHashVector(msg, md, key))
key = None
msg = None
md = None
else:
vectors.append(HashVector(msg, md))
msg = None
md = None
else:
raise ValueError("Unknown line in hash vector")
return vectors
def load_pkcs1_vectors(vector_data):
"""
Loads data out of RSA PKCS #1 vector files.
"""
private_key_vector = None
public_key_vector = None
attr = None
key = None
example_vector = None
examples = []
vectors = []
for line in vector_data:
if (
line.startswith("# PSS Example") or
line.startswith("# OAEP Example") or
line.startswith("# PKCS#1 v1.5")
):
if example_vector:
for key, value in six.iteritems(example_vector):
hex_str = "".join(value).replace(" ", "").encode("ascii")
example_vector[key] = hex_str
examples.append(example_vector)
attr = None
example_vector = collections.defaultdict(list)
if line.startswith("# Message"):
attr = "message"
continue
elif line.startswith("# Salt"):
attr = "salt"
continue
elif line.startswith("# Seed"):
attr = "seed"
continue
elif line.startswith("# Signature"):
attr = "signature"
continue
elif line.startswith("# Encryption"):
attr = "encryption"
continue
elif (
example_vector and
line.startswith("# =============================================")
):
for key, value in six.iteritems(example_vector):
hex_str = "".join(value).replace(" ", "").encode("ascii")
example_vector[key] = hex_str
examples.append(example_vector)
example_vector = None
attr = None
elif example_vector and line.startswith("#"):
continue
else:
if attr is not None and example_vector is not None:
example_vector[attr].append(line.strip())
continue
if (
line.startswith("# Example") or
line.startswith("# =============================================")
):
if key:
assert private_key_vector
assert public_key_vector
for key, value in six.iteritems(public_key_vector):
hex_str = "".join(value).replace(" ", "")
public_key_vector[key] = int(hex_str, 16)
for key, value in six.iteritems(private_key_vector):
hex_str = "".join(value).replace(" ", "")
private_key_vector[key] = int(hex_str, 16)
private_key_vector["examples"] = examples
examples = []
assert (
private_key_vector['public_exponent'] ==
public_key_vector['public_exponent']
)
assert (
private_key_vector['modulus'] ==
public_key_vector['modulus']
)
vectors.append(
(private_key_vector, public_key_vector)
)
public_key_vector = collections.defaultdict(list)
private_key_vector = collections.defaultdict(list)
key = None
attr = None
if private_key_vector is None or public_key_vector is None:
continue
if line.startswith("# Private key"):
key = private_key_vector
elif line.startswith("# Public key"):
key = public_key_vector
elif line.startswith("# Modulus:"):
attr = "modulus"
elif line.startswith("# Public exponent:"):
attr = "public_exponent"
elif line.startswith("# Exponent:"):
if key is public_key_vector:
attr = "public_exponent"
else:
assert key is private_key_vector
attr = "private_exponent"
elif line.startswith("# Prime 1:"):
attr = "p"
elif line.startswith("# Prime 2:"):
attr = "q"
elif line.startswith("# Prime exponent 1:"):
attr = "dmp1"
elif line.startswith("# Prime exponent 2:"):
attr = "dmq1"
elif line.startswith("# Coefficient:"):
attr = "iqmp"
elif line.startswith("#"):
attr = None
else:
if key is not None and attr is not None:
key[attr].append(line.strip())
return vectors
def load_rsa_nist_vectors(vector_data):
test_data = None
p = None
salt_length = None
data = []
for line in vector_data:
line = line.strip()
# Blank lines and section headers are ignored
if not line or line.startswith("["):
continue
if line.startswith("# Salt len:"):
salt_length = int(line.split(":")[1].strip())
continue
elif line.startswith("#"):
continue
# Build our data using a simple Key = Value format
name, value = [c.strip() for c in line.split("=")]
if name == "n":
n = int(value, 16)
elif name == "e" and p is None:
e = int(value, 16)
elif name == "p":
p = int(value, 16)
elif name == "q":
q = int(value, 16)
elif name == "SHAAlg":
if p is None:
test_data = {
"modulus": n,
"public_exponent": e,
"salt_length": salt_length,
"algorithm": value,
"fail": False
}
else:
test_data = {
"modulus": n,
"p": p,
"q": q,
"algorithm": value
}
if salt_length is not None:
test_data["salt_length"] = salt_length
data.append(test_data)
elif name == "e" and p is not None:
test_data["public_exponent"] = int(value, 16)
elif name == "d":
test_data["private_exponent"] = int(value, 16)
elif name == "Result":
test_data["fail"] = value.startswith("F")
# For all other tokens we simply want the name, value stored in
# the dictionary
else:
test_data[name.lower()] = value.encode("ascii")
return data
def load_fips_dsa_key_pair_vectors(vector_data):
"""
Loads data out of the FIPS DSA KeyPair vector files.
"""
vectors = []
# When reading_key_data is set to True it tells the loader to continue
# constructing dictionaries. We set reading_key_data to False during the
# blocks of the vectors of N=224 because we don't support it.
reading_key_data = True
for line in vector_data:
line = line.strip()
if not line or line.startswith("#"):
continue
elif line.startswith("[mod = L=1024"):
continue
elif line.startswith("[mod = L=2048, N=224"):
reading_key_data = False
continue
elif line.startswith("[mod = L=2048, N=256"):
reading_key_data = True
continue
elif line.startswith("[mod = L=3072"):
continue
if reading_key_data:
if line.startswith("P"):
vectors.append({'p': int(line.split("=")[1], 16)})
elif line.startswith("Q"):
vectors[-1]['q'] = int(line.split("=")[1], 16)
elif line.startswith("G"):
vectors[-1]['g'] = int(line.split("=")[1], 16)
elif line.startswith("X") and 'x' not in vectors[-1]:
vectors[-1]['x'] = int(line.split("=")[1], 16)
elif line.startswith("X") and 'x' in vectors[-1]:
vectors.append({'p': vectors[-1]['p'],
'q': vectors[-1]['q'],
'g': vectors[-1]['g'],
'x': int(line.split("=")[1], 16)
})
elif line.startswith("Y"):
vectors[-1]['y'] = int(line.split("=")[1], 16)
return vectors
def load_fips_dsa_sig_vectors(vector_data):
"""
Loads data out of the FIPS DSA SigVer vector files.
"""
vectors = []
sha_regex = re.compile(
r"\[mod = L=...., N=..., SHA-(?P<sha>1|224|256|384|512)\]"
)
# When reading_key_data is set to True it tells the loader to continue
# constructing dictionaries. We set reading_key_data to False during the
# blocks of the vectors of N=224 because we don't support it.
reading_key_data = True
for line in vector_data:
line = line.strip()
if not line or line.startswith("#"):
continue
sha_match = sha_regex.match(line)
if sha_match:
digest_algorithm = "SHA-{0}".format(sha_match.group("sha"))
if line.startswith("[mod = L=2048, N=224"):
reading_key_data = False
continue
elif line.startswith("[mod = L=2048, N=256"):
reading_key_data = True
continue
if not reading_key_data or line.startswith("[mod"):
continue
name, value = [c.strip() for c in line.split("=")]
if name == "P":
vectors.append({'p': int(value, 16),
'digest_algorithm': digest_algorithm})
elif name == "Q":
vectors[-1]['q'] = int(value, 16)
elif name == "G":
vectors[-1]['g'] = int(value, 16)
elif name == "Msg" and 'msg' not in vectors[-1]:
hexmsg = value.strip().encode("ascii")
vectors[-1]['msg'] = binascii.unhexlify(hexmsg)
elif name == "Msg" and 'msg' in vectors[-1]:
hexmsg = value.strip().encode("ascii")
vectors.append({'p': vectors[-1]['p'],
'q': vectors[-1]['q'],
'g': vectors[-1]['g'],
'digest_algorithm':
vectors[-1]['digest_algorithm'],
'msg': binascii.unhexlify(hexmsg)})
elif name == "X":
vectors[-1]['x'] = int(value, 16)
elif name == "Y":
vectors[-1]['y'] = int(value, 16)
elif name == "R":
vectors[-1]['r'] = int(value, 16)
elif name == "S":
vectors[-1]['s'] = int(value, 16)
elif name == "Result":
vectors[-1]['result'] = value.split("(")[0].strip()
return vectors
# http://tools.ietf.org/html/rfc4492#appendix-A
_ECDSA_CURVE_NAMES = {
"P-192": "secp192r1",
"P-224": "secp224r1",
"P-256": "secp256r1",
"P-384": "secp384r1",
"P-521": "secp521r1",
"K-163": "sect163k1",
"K-233": "sect233k1",
"K-256": "secp256k1",
"K-283": "sect283k1",
"K-409": "sect409k1",
"K-571": "sect571k1",
"B-163": "sect163r2",
"B-233": "sect233r1",
"B-283": "sect283r1",
"B-409": "sect409r1",
"B-571": "sect571r1",
}
def load_fips_ecdsa_key_pair_vectors(vector_data):
"""
Loads data out of the FIPS ECDSA KeyPair vector files.
"""
vectors = []
key_data = None
for line in vector_data:
line = line.strip()
if not line or line.startswith("#"):
continue
if line[1:-1] in _ECDSA_CURVE_NAMES:
curve_name = _ECDSA_CURVE_NAMES[line[1:-1]]
elif line.startswith("d = "):
if key_data is not None:
vectors.append(key_data)
key_data = {
"curve": curve_name,
"d": int(line.split("=")[1], 16)
}
elif key_data is not None:
if line.startswith("Qx = "):
key_data["x"] = int(line.split("=")[1], 16)
elif line.startswith("Qy = "):
key_data["y"] = int(line.split("=")[1], 16)
assert key_data is not None
vectors.append(key_data)
return vectors
def load_fips_ecdsa_signing_vectors(vector_data):
"""
Loads data out of the FIPS ECDSA SigGen vector files.
"""
vectors = []
curve_rx = re.compile(
r"\[(?P<curve>[PKB]-[0-9]{3}),SHA-(?P<sha>1|224|256|384|512)\]"
)
data = None
for line in vector_data:
line = line.strip()
curve_match = curve_rx.match(line)
if curve_match:
curve_name = _ECDSA_CURVE_NAMES[curve_match.group("curve")]
digest_name = "SHA-{0}".format(curve_match.group("sha"))
elif line.startswith("Msg = "):
if data is not None:
vectors.append(data)
hexmsg = line.split("=")[1].strip().encode("ascii")
data = {
"curve": curve_name,
"digest_algorithm": digest_name,
"message": binascii.unhexlify(hexmsg)
}
elif data is not None:
if line.startswith("Qx = "):
data["x"] = int(line.split("=")[1], 16)
elif line.startswith("Qy = "):
data["y"] = int(line.split("=")[1], 16)
elif line.startswith("R = "):
data["r"] = int(line.split("=")[1], 16)
elif line.startswith("S = "):
data["s"] = int(line.split("=")[1], 16)
elif line.startswith("d = "):
data["d"] = int(line.split("=")[1], 16)
elif line.startswith("Result = "):
data["fail"] = line.split("=")[1].strip()[0] == "F"
assert data is not None
vectors.append(data)
return vectors
def load_kasvs_dh_vectors(vector_data):
"""
Loads data out of the KASVS key exchange vector data
"""
result_rx = re.compile(r"([FP]) \(([0-9]+) -")
vectors = []
data = {
"fail_z": False,
"fail_agree": False
}
for line in vector_data:
line = line.strip()
if not line or line.startswith("#"):
continue
if line.startswith("P = "):
data["p"] = int(line.split("=")[1], 16)
elif line.startswith("Q = "):
data["q"] = int(line.split("=")[1], 16)
elif line.startswith("G = "):
data["g"] = int(line.split("=")[1], 16)
elif line.startswith("Z = "):
z_hex = line.split("=")[1].strip().encode("ascii")
data["z"] = binascii.unhexlify(z_hex)
elif line.startswith("XstatCAVS = "):
data["x1"] = int(line.split("=")[1], 16)
elif line.startswith("YstatCAVS = "):
data["y1"] = int(line.split("=")[1], 16)
elif line.startswith("XstatIUT = "):
data["x2"] = int(line.split("=")[1], 16)
elif line.startswith("YstatIUT = "):
data["y2"] = int(line.split("=")[1], 16)
elif line.startswith("Result = "):
result_str = line.split("=")[1].strip()
match = result_rx.match(result_str)
if match.group(1) == "F":
if int(match.group(2)) in (5, 10):
data["fail_z"] = True
else:
data["fail_agree"] = True
vectors.append(data)
data = {
"p": data["p"],
"q": data["q"],
"g": data["g"],
"fail_z": False,
"fail_agree": False
}
return vectors
def load_kasvs_ecdh_vectors(vector_data):
"""
Loads data out of the KASVS key exchange vector data
"""
curve_name_map = {
"P-192": "secp192r1",
"P-224": "secp224r1",
"P-256": "secp256r1",
"P-384": "secp384r1",
"P-521": "secp521r1",
}
result_rx = re.compile(r"([FP]) \(([0-9]+) -")
tags = []
sets = {}
vectors = []
# find info in header
for line in vector_data:
line = line.strip()
if line.startswith("#"):
parm = line.split("Parameter set(s) supported:")
if len(parm) == 2:
names = parm[1].strip().split()
for n in names:
tags.append("[%s]" % n)
break
# Sets Metadata
tag = None
curve = None
for line in vector_data:
line = line.strip()
if not line or line.startswith("#"):
continue
if line in tags:
tag = line
curve = None
elif line.startswith("[Curve selected:"):
curve = curve_name_map[line.split(':')[1].strip()[:-1]]
if tag is not None and curve is not None:
sets[tag.strip("[]")] = curve
tag = None
if len(tags) == len(sets):
break
# Data
data = {
"CAVS": {},
"IUT": {},
}
tag = None
for line in vector_data:
line = line.strip()
if not line or line.startswith("#"):
continue
if line.startswith("["):
tag = line.split()[0][1:]
elif line.startswith("COUNT = "):
data["COUNT"] = int(line.split("=")[1])
elif line.startswith("dsCAVS = "):
data["CAVS"]["d"] = int(line.split("=")[1], 16)
elif line.startswith("QsCAVSx = "):
data["CAVS"]["x"] = int(line.split("=")[1], 16)
elif line.startswith("QsCAVSy = "):
data["CAVS"]["y"] = int(line.split("=")[1], 16)
elif line.startswith("dsIUT = "):
data["IUT"]["d"] = int(line.split("=")[1], 16)
elif line.startswith("QsIUTx = "):
data["IUT"]["x"] = int(line.split("=")[1], 16)
elif line.startswith("QsIUTy = "):
data["IUT"]["y"] = int(line.split("=")[1], 16)
elif line.startswith("OI = "):
data["OI"] = int(line.split("=")[1], 16)
elif line.startswith("Z = "):
data["Z"] = int(line.split("=")[1], 16)
elif line.startswith("DKM = "):
data["DKM"] = int(line.split("=")[1], 16)
elif line.startswith("Result = "):
result_str = line.split("=")[1].strip()
match = result_rx.match(result_str)
if match.group(1) == "F":
data["fail"] = True
else:
data["fail"] = False
data["errno"] = int(match.group(2))
data["curve"] = sets[tag]
vectors.append(data)
data = {
"CAVS": {},
"IUT": {},
}
return vectors
def load_x963_vectors(vector_data):
"""
Loads data out of the X9.63 vector data
"""
vectors = []
# Sets Metadata
hashname = None
vector = {}
for line in vector_data:
line = line.strip()
if line.startswith("[SHA"):
hashname = line[1:-1]
shared_secret_len = 0
shared_info_len = 0
key_data_len = 0
elif line.startswith("[shared secret length"):
shared_secret_len = int(line[1:-1].split("=")[1].strip())
elif line.startswith("[SharedInfo length"):
shared_info_len = int(line[1:-1].split("=")[1].strip())
elif line.startswith("[key data length"):
key_data_len = int(line[1:-1].split("=")[1].strip())
elif line.startswith("COUNT"):
count = int(line.split("=")[1].strip())
vector["hash"] = hashname
vector["count"] = count
vector["shared_secret_length"] = shared_secret_len
vector["sharedinfo_length"] = shared_info_len
vector["key_data_length"] = key_data_len
elif line.startswith("Z"):
vector["Z"] = line.split("=")[1].strip()
assert math.ceil(shared_secret_len / 8) * 2 == len(vector["Z"])
elif line.startswith("SharedInfo"):
if shared_info_len != 0:
vector["sharedinfo"] = line.split("=")[1].strip()
silen = len(vector["sharedinfo"])
assert math.ceil(shared_info_len / 8) * 2 == silen
elif line.startswith("key_data"):
vector["key_data"] = line.split("=")[1].strip()
assert math.ceil(key_data_len / 8) * 2 == len(vector["key_data"])
vectors.append(vector)
vector = {}
return vectors
def load_nist_kbkdf_vectors(vector_data):
"""
Load NIST SP 800-108 KDF Vectors
"""
vectors = []
test_data = None
tag = {}
for line in vector_data:
line = line.strip()
if not line or line.startswith("#"):
continue
if line.startswith("[") and line.endswith("]"):
tag_data = line[1:-1]
name, value = [c.strip() for c in tag_data.split("=")]
if value.endswith('_BITS'):
value = int(value.split('_')[0])
tag.update({name.lower(): value})
continue
tag.update({name.lower(): value.lower()})
elif line.startswith("COUNT="):
test_data = dict()
test_data.update(tag)
vectors.append(test_data)
elif line.startswith("L"):
name, value = [c.strip() for c in line.split("=")]
test_data[name.lower()] = int(value)
else:
name, value = [c.strip() for c in line.split("=")]
test_data[name.lower()] = value.encode("ascii")
return vectors
def load_ed25519_vectors(vector_data):
data = []
for line in vector_data:
secret_key, public_key, message, signature, _ = line.split(':')
# In the vectors the first element is secret key + public key
secret_key = secret_key[0:64]
# In the vectors the signature section is signature + message
signature = signature[0:128]
data.append({
"secret_key": secret_key,
"public_key": public_key,
"message": message,
"signature": signature
})
return data
def load_nist_ccm_vectors(vector_data):
test_data = None
section_data = None
global_data = {}
new_section = False
data = []
for line in vector_data:
line = line.strip()
# Blank lines and comments should be ignored
if not line or line.startswith("#"):
continue
# Some of the CCM vectors have global values for this. They are always
# at the top before the first section header (see: VADT, VNT, VPT)
if line.startswith(("Alen", "Plen", "Nlen", "Tlen")):
name, value = [c.strip() for c in line.split("=")]
global_data[name.lower()] = int(value)
continue
# section headers contain length data we might care about
if line.startswith("["):
new_section = True
section_data = {}
section = line[1:-1]
items = [c.strip() for c in section.split(",")]
for item in items:
name, value = [c.strip() for c in item.split("=")]
section_data[name.lower()] = int(value)
continue
name, value = [c.strip() for c in line.split("=")]
if name.lower() in ("key", "nonce") and new_section:
section_data[name.lower()] = value.encode("ascii")
continue
new_section = False
# Payload is sometimes special because these vectors are absurd. Each
# example may or may not have a payload. If it does not then the
# previous example's payload should be used. We accomplish this by
# writing it into the section_data. Because we update each example
# with the section data it will be overwritten if a new payload value
# is present. NIST should be ashamed of their vector creation.
if name.lower() == "payload":
section_data[name.lower()] = value.encode("ascii")
# Result is a special token telling us if the test should pass/fail.
# This is only present in the DVPT CCM tests
if name.lower() == "result":
if value.lower() == "pass":
test_data["fail"] = False
else:
test_data["fail"] = True
continue
# COUNT is a special token that indicates a new block of data
if name.lower() == "count":
test_data = {}
test_data.update(global_data)
test_data.update(section_data)
data.append(test_data)
continue
# For all other tokens we simply want the name, value stored in
# the dictionary
else:
test_data[name.lower()] = value.encode("ascii")
return data
|