aboutsummaryrefslogtreecommitdiffstats
path: root/src/cryptography/hazmat/backends/openssl/rsa.py
blob: 7da42292f7c6e2fef627e54250776d9fba0bf8c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
generated by cgit v1.2.3 (git 2.25.1) at 2024-06-28 10:39:47 +0000
 


20
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

from __future__ import absolute_import, division, print_function

import math

from cryptography import utils
from cryptography.exceptions import (
    AlreadyFinalized, InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import (
    AsymmetricSignatureContext, AsymmetricVerificationContext, rsa
)
from cryptography.hazmat.primitives.asymmetric.padding import (
    AsymmetricPadding, MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.asymmetric.rsa import (
    RSAPrivateKeyWithSerialization, RSAPublicKeyWithSerialization
)


def _get_rsa_pss_salt_length(pss, key_size, digest_size):
    salt = pss._salt_length

    if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
        # bit length - 1 per RFC 3447
        emlen = int(math.ceil((key_size - 1) / 8.0))
        salt_length = emlen - digest_size - 2
        assert salt_length >= 0
        return salt_length
    else:
        return salt


def _enc_dec_rsa(backend, key, data, padding):
    if not isinstance(padding, AsymmetricPadding):
        raise TypeError("Padding must be an instance of AsymmetricPadding.")

    if isinstance(padding, PKCS1v15):
        padding_enum = backend._lib.RSA_PKCS1_PADDING
    elif isinstance(padding, OAEP):
        padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
        if not isinstance(padding._mgf, MGF1):
            raise UnsupportedAlgorithm(
                "Only MGF1 is supported by this backend.",
                _Reasons.UNSUPPORTED_MGF
            )

        if not isinstance(padding._mgf._algorithm, hashes.SHA1):
            raise UnsupportedAlgorithm(
                "This backend supports only SHA1 inside MGF1 when "
                "using OAEP.",
                _Reasons.UNSUPPORTED_HASH
            )

        if padding._label is not None and padding._label != b"":
            raise ValueError("This backend does not support OAEP labels.")

        if not isinstance(padding._algorithm, hashes.SHA1):
            raise UnsupportedAlgorithm(
                "This backend only supports SHA1 when using OAEP.",
                _Reasons.UNSUPPORTED_HASH
            )
    else:
        raise UnsupportedAlgorithm(
            "{0} is not supported by this backend.".format(
                padding.name
            ),
            _Reasons.UNSUPPORTED_PADDING
        )

    if backend._lib.Cryptography_HAS_PKEY_CTX:
        return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum)
    else:
        return _enc_dec_rsa_098(backend, key, data, padding_enum)


def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum):
    if isinstance(key, _RSAPublicKey):
        init = backend._lib.EVP_PKEY_encrypt_init
        crypt = backend._lib.Cryptography_EVP_PKEY_encrypt
    else:
        init = backend._lib.EVP_PKEY_decrypt_init
        crypt = backend._lib.Cryptography_EVP_PKEY_decrypt

    pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
        key._evp_pkey, backend._ffi.NULL
    )
    assert pkey_ctx != backend._ffi.NULL
    pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
    res = init(pkey_ctx)
    assert res == 1
    res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
        pkey_ctx, padding_enum)
    assert res > 0
    buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
    assert buf_size > 0
    outlen = backend._ffi.new("size_t *", buf_size)
    buf = backend._ffi.new("char[]", buf_size)
    res = crypt(pkey_ctx, buf, outlen, data, len(data))
    if res <= 0:
        _handle_rsa_enc_dec_error(backend, key)

    return backend._ffi.buffer(buf)[:outlen[0]]


def _enc_dec_rsa_098(backend, key, data, padding_enum):
    if isinstance(key, _RSAPublicKey):
        crypt = backend._lib.RSA_public_encrypt
    else:
        crypt = backend._lib.RSA_private_decrypt

    key_size = backend._lib.RSA_size(key._rsa_cdata)
    assert key_size > 0
    buf = backend._ffi.new("unsigned char[]", key_size)
    res = crypt(len(data), data, buf, key._rsa_cdata, padding_enum)
    if res < 0:
        _handle_rsa_enc_dec_error(backend, key)

    return backend._ffi.buffer(buf)[:res]


def _handle_rsa_enc_dec_error(backend, key):
    errors = backend._consume_errors()
    assert errors
    assert errors[0].lib == backend._lib.ERR_LIB_RSA
    if isinstance(key, _RSAPublicKey):
        assert (errors[0].reason ==
                backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
        raise ValueError(
            "Data too long for key size. Encrypt less data or use a "
            "larger key size."
        )
    else:
        decoding_errors = [
            backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_01,
            backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_02,
        ]
        if backend._lib.Cryptography_HAS_RSA_R_PKCS_DECODING_ERROR:
            decoding_errors.append(backend._lib.RSA_R_PKCS_DECODING_ERROR)

        assert errors[0].reason in decoding_errors
        raise ValueError("Decryption failed.")


@utils.register_interface(AsymmetricSignatureContext)
class _RSASignatureContext(object):
    def __init__(self, backend, private_key, padding, algorithm):
        self._backend = backend
        self._private_key = private_key

        if not isinstance(padding, AsymmetricPadding):
            raise TypeError("Expected provider of AsymmetricPadding.")

        self._pkey_size = self._backend._lib.EVP_PKEY_size(
            self._private_key._evp_pkey
        )

        if isinstance(padding, PKCS1v15):
            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._finalize_method = self._finalize_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
            else:
                self._finalize_method = self._finalize_pkcs1
        elif isinstance(padding, PSS):
            if not isinstance(padding._mgf, MGF1):
                raise UnsupportedAlgorithm(
                    "Only MGF1 is supported by this backend.",
                    _Reasons.UNSUPPORTED_MGF
                )

            # Size of key in bytes - 2 is the maximum
            # PSS signature length (salt length is checked later)
            assert self._pkey_size > 0
            if self._pkey_size - algorithm.digest_size - 2 < 0:
                raise ValueError("Digest too large for key size. Use a larger "
                                 "key.")

            if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
                raise UnsupportedAlgorithm(
                    "When OpenSSL is older than 1.0.1 then only SHA1 is "
                    "supported with MGF1.",
                    _Reasons.UNSUPPORTED_HASH
                )

            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._finalize_method = self._finalize_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
            else:
                self._finalize_method = self._finalize_pss
        else:
            raise UnsupportedAlgorithm(
                "{0} is not supported by this backend.".format(padding.name),
                _Reasons.UNSUPPORTED_PADDING
            )

        self._padding = padding
        self._algorithm = algorithm
        self._hash_ctx = hashes.Hash(self._algorithm, self._backend)

    def update(self, data):
        self._hash_ctx.update(data)

    def finalize(self):
        evp_md = self._backend._lib.EVP_get_digestbyname(
            self._algorithm.name.encode("ascii"))
        assert evp_md != self._backend._ffi.NULL

        return self._finalize_method(evp_md)

    def _finalize_pkey_ctx(self, evp_md):
        pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
            self._private_key._evp_pkey, self._backend._ffi.NULL
        )
        assert pkey_ctx != self._backend._ffi.NULL
        pkey_ctx = self._backend._ffi.gc(pkey_ctx,
                                         self._backend._lib.EVP_PKEY_CTX_free)
        res = self._backend._lib.EVP_PKEY_sign_init(pkey_ctx)
        assert res == 1
        res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
            pkey_ctx, evp_md)
        assert res > 0

        res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
            pkey_ctx, self._padding_enum)
        assert res > 0
        if isinstance(self._padding, PSS):
            res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
                pkey_ctx,
                _get_rsa_pss_salt_length(
                    self._padding,
                    self._private_key.key_size,
                    self._hash_ctx.algorithm.digest_size
                )
            )
            assert res > 0

            if self._backend._lib.Cryptography_HAS_MGF1_MD:
                # MGF1 MD is configurable in OpenSSL 1.0.1+
                mgf1_md = self._backend._lib.EVP_get_digestbyname(
                    self._padding._mgf._algorithm.name.encode("ascii"))
                assert mgf1_md != self._backend._ffi.NULL
                res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
                    pkey_ctx, mgf1_md
                )
                assert res > 0
        data_to_sign = self._hash_ctx.finalize()
        buflen = self._backend._ffi.new("size_t *")
        res = self._backend._lib.EVP_PKEY_sign(
            pkey_ctx,
            self._backend._ffi.NULL,
            buflen,
            data_to_sign,
            len(data_to_sign)
        )
        assert res == 1
        buf = self._backend._ffi.new("unsigned char[]", buflen[0])
        res = self._backend._lib.EVP_PKEY_sign(
            pkey_ctx, buf, buflen, data_to_sign, len(data_to_sign))
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            reason = None
            if (errors[0].reason ==
                    self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
                reason = ("Salt length too long for key size. Try using "
                          "MAX_LENGTH instead.")
            else:
                assert (errors[0].reason ==
                        self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
                reason = "Digest too large for key size. Use a larger key."
            assert reason is not None
            raise ValueError(reason)

        return self._backend._ffi.buffer(buf)[:]

    def _finalize_pkcs1(self, evp_md):
        if self._hash_ctx._ctx is None:
            raise AlreadyFinalized("Context has already been finalized.")

        sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
        sig_len = self._backend._ffi.new("unsigned int *")
        res = self._backend._lib.EVP_SignFinal(
            self._hash_ctx._ctx._ctx,
            sig_buf,
            sig_len,
            self._private_key._evp_pkey
        )
        self._hash_ctx.finalize()
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            assert (errors[0].reason ==
                    self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
            raise ValueError("Digest too large for key size. Use a larger "
                             "key.")

        return self._backend._ffi.buffer(sig_buf)[:sig_len[0]]

    def _finalize_pss(self, evp_md):
        data_to_sign = self._hash_ctx.finalize()
        padded = self._backend._ffi.new("unsigned char[]", self._pkey_size)
        res = self._backend._lib.RSA_padding_add_PKCS1_PSS(
            self._private_key._rsa_cdata,
            padded,
            data_to_sign,
            evp_md,
            _get_rsa_pss_salt_length(
                self._padding,
                self._private_key.key_size,
                len(data_to_sign)
            )
        )
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            assert (errors[0].reason ==
                    self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
            raise ValueError("Salt length too long for key size. Try using "
                             "MAX_LENGTH instead.")

        sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
        sig_len = self._backend._lib.RSA_private_encrypt(
            self._pkey_size,
            padded,
            sig_buf,
            self._private_key._rsa_cdata,
            self._backend._lib.RSA_NO_PADDING
        )
        assert sig_len != -1
        return self._backend._ffi.buffer(sig_buf)[:sig_len]


@utils.register_interface(AsymmetricVerificationContext)
class _RSAVerificationContext(object):
    def __init__(self, backend, public_key, signature, padding, algorithm):
        self._backend = backend
        self._public_key = public_key
        self._signature = signature

        if not isinstance(padding, AsymmetricPadding):
            raise TypeError("Expected provider of AsymmetricPadding.")

        self._pkey_size = self._backend._lib.EVP_PKEY_size(
            self._public_key._evp_pkey
        )

        if isinstance(padding, PKCS1v15):
            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._verify_method = self._verify_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
            else:
                self._verify_method = self._verify_pkcs1
        elif isinstance(padding, PSS):
            if not isinstance(padding._mgf, MGF1):
                raise UnsupportedAlgorithm(
                    "Only MGF1 is supported by this backend.",
                    _Reasons.UNSUPPORTED_MGF
                )

            # Size of key in bytes - 2 is the maximum
            # PSS signature length (salt length is checked later)
            assert self._pkey_size > 0
            if self._pkey_size - algorithm.digest_size - 2 < 0:
                raise ValueError(
                    "Digest too large for key size. Check that you have the "
                    "correct key and digest algorithm."
                )

            if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
                raise UnsupportedAlgorithm(
                    "When OpenSSL is older than 1.0.1 then only SHA1 is "
                    "supported with MGF1.",
                    _Reasons.UNSUPPORTED_HASH
                )

            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._verify_method = self._verify_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
            else:
                self._verify_method = self._verify_pss
        else:
            raise UnsupportedAlgorithm(
                "{0} is not supported by this backend.".format(padding.name),
                _Reasons.UNSUPPORTED_PADDING
            )

        self._padding = padding
        self._algorithm = algorithm
        self._hash_ctx = hashes.Hash(self._algorithm, self._backend)

    def update(self, data):
        self._hash_ctx.update(data)

    def verify(self):
        evp_md = self._backend._lib.EVP_get_digestbyname(
            self._algorithm.name.encode("ascii"))
        assert evp_md != self._backend._ffi.NULL

        self._verify_method(evp_md)

    def _verify_pkey_ctx(self, evp_md):
        pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
            self._public_key._evp_pkey, self._backend._ffi.NULL
        )
        assert pkey_ctx != self._backend._ffi.NULL
        pkey_ctx = self._backend._ffi.gc(pkey_ctx,
                                         self._backend._lib.EVP_PKEY_CTX_free)
        res = self._backend._lib.EVP_PKEY_verify_init(pkey_ctx)
        assert res == 1
        res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
            pkey_ctx, evp_md)
        assert res > 0

        res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
            pkey_ctx, self._padding_enum)
        assert res > 0
        if isinstance(self._padding, PSS):
            res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
                pkey_ctx,
                _get_rsa_pss_salt_length(
                    self._padding,
                    self._public_key.key_size,
                    self._hash_ctx.algorithm.digest_size
                )
            )
            assert res > 0
            if self._backend._lib.Cryptography_HAS_MGF1_MD:
                # MGF1 MD is configurable in OpenSSL 1.0.1+
                mgf1_md = self._backend._lib.EVP_get_digestbyname(
                    self._padding._mgf._algorithm.name.encode("ascii"))
                assert mgf1_md != self._backend._ffi.NULL
                res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
                    pkey_ctx, mgf1_md
                )
                assert res > 0

        data_to_verify = self._hash_ctx.finalize()
        res = self._backend._lib.EVP_PKEY_verify(
            pkey_ctx,
            self._signature,
            len(self._signature),
            data_to_verify,
            len(data_to_verify)
        )
        # The previous call can return negative numbers in the event of an
        # error. This is not a signature failure but we need to fail if it
        # occurs.
        assert res >= 0
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

    def _verify_pkcs1(self, evp_md):
        if self._hash_ctx._ctx is None:
            raise AlreadyFinalized("Context has already been finalized.")

        res = self._backend._lib.EVP_VerifyFinal(
            self._hash_ctx._ctx._ctx,
            self._signature,
            len(self._signature),
            self._public_key._evp_pkey
        )
        self._hash_ctx.finalize()
        # The previous call can return negative numbers in the event of an
        # error. This is not a signature failure but we need to fail if it
        # occurs.
        assert res >= 0
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

    def _verify_pss(self, evp_md):
        buf = self._backend._ffi.new("unsigned char[]", self._pkey_size)
        res = self._backend._lib.RSA_public_decrypt(
            len(self._signature),
            self._signature,
            buf,
            self._public_key._rsa_cdata,
            self._backend._lib.RSA_NO_PADDING
        )
        if res != self._pkey_size:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

        data_to_verify = self._hash_ctx.finalize()
        res = self._backend._lib.RSA_verify_PKCS1_PSS(
            self._public_key._rsa_cdata,
            data_to_verify,
            evp_md,
            buf,
            _get_rsa_pss_salt_length(
                self._padding,
                self._public_key.key_size,
                len(data_to_verify)
            )
        )
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature


@utils.register_interface(RSAPrivateKeyWithSerialization)
class _RSAPrivateKey(object):
    def __init__(self, backend, rsa_cdata, evp_pkey):
        self._backend = backend
        self._rsa_cdata = rsa_cdata
        self._evp_pkey = evp_pkey

        self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)

    key_size = utils.read_only_property("_key_size")

    def signer(self, padding, algorithm):
        return _RSASignatureContext(self._backend, self, padding, algorithm)

    def decrypt(self, ciphertext, padding):
        key_size_bytes = int(math.ceil(self.key_size / 8.0))
        if key_size_bytes != len(ciphertext):
            raise ValueError("Ciphertext length must be equal to key size.")

        return _enc_dec_rsa(self._backend, self, ciphertext, padding)

    def public_key(self):
        ctx = self._backend._lib.RSA_new()
        assert ctx != self._backend._ffi.NULL
        ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
        ctx.e = self._backend._lib.BN_dup(self._rsa_cdata.e)
        ctx.n = self._backend._lib.BN_dup(self._rsa_cdata.n)
        res = self._backend._lib.RSA_blinding_on(ctx, self._backend._ffi.NULL)
        assert res == 1
        evp_pkey = self._backend._rsa_cdata_to_evp_pkey(ctx)
        return _RSAPublicKey(self._backend, ctx, evp_pkey)

    def private_numbers(self):
        return rsa.RSAPrivateNumbers(
            p=self._backend._bn_to_int(self._rsa_cdata.p),
            q=self._backend._bn_to_int(self._rsa_cdata.q),
            d=self._backend._bn_to_int(self._rsa_cdata.d),
            dmp1=self._backend._bn_to_int(self._rsa_cdata.dmp1),
            dmq1=self._backend._bn_to_int(self._rsa_cdata.dmq1),
            iqmp=self._backend._bn_to_int(self._rsa_cdata.iqmp),
            public_numbers=rsa.RSAPublicNumbers(
                e=self._backend._bn_to_int(self._rsa_cdata.e),
                n=self._backend._bn_to_int(self._rsa_cdata.n),
            )
        )

    def private_bytes(self, encoding, format, encryption_algorithm):
        return self._backend._private_key_bytes(
            encoding,
            format,
            encryption_algorithm,
            self._evp_pkey,
            self._rsa_cdata
        )


@utils.register_interface(RSAPublicKeyWithSerialization)
class _RSAPublicKey(object):
    def __init__(self, backend, rsa_cdata, evp_pkey):
        self._backend = backend
        self._rsa_cdata = rsa_cdata
        self._evp_pkey = evp_pkey

        self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)

    key_size = utils.read_only_property("_key_size")

    def verifier(self, signature, padding, algorithm):
        if not isinstance(signature, bytes):
            raise TypeError("signature must be bytes.")

        return _RSAVerificationContext(
            self._backend, self, signature, padding, algorithm
        )

    def encrypt(self, plaintext, padding):
        return _enc_dec_rsa(self._backend, self, plaintext, padding)

    def public_numbers(self):
        return rsa.RSAPublicNumbers(
            e=self._backend._bn_to_int(self._rsa_cdata.e),
            n=self._backend._bn_to_int(self._rsa_cdata.n),
        )

    def public_bytes(self, encoding, format):
        return self._backend._public_key_bytes(
            encoding,
            format,
            self._evp_pkey,
            self._rsa_cdata
        )