aboutsummaryrefslogtreecommitdiffstats
path: root/src/_cffi_src/openssl/cmac.py
blob: f4a368666937079fb4eef96b23888c8b6226320d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

from __future__ import absolute_import, division, print_function

INCLUDES = """
#if OPENSSL_VERSION_NUMBER >= 0x10001000L
#include <openssl/cmac.h>
#endif
"""

TYPES = """
static const int Cryptography_HAS_CMAC;
typedef ... CMAC_CTX;
"""

FUNCTIONS = """
"""

MACROS = """
CMAC_CTX *CMAC_CTX_new(void);
int CMAC_Init(CMAC_CTX *, const void *, size_t, const EVP_CIPHER *, ENGINE *);
int CMAC_Update(CMAC_CTX *, const void *, size_t);
int CMAC_Final(CMAC_CTX *, unsigned char *, size_t *);
int CMAC_CTX_copy(CMAC_CTX *, const CMAC_CTX *);
void CMAC_CTX_free(CMAC_CTX *);
"""

CUSTOMIZATIONS = """
#if OPENSSL_VERSION_NUMBER < 0x10001000L

static const long Cryptography_HAS_CMAC = 0;
typedef void CMAC_CTX;
CMAC_CTX *(*CMAC_CTX_new)(void) = NULL;
int (*CMAC_Init)(CMAC_CTX *, const void *, size_t, const EVP_CIPHER *,
    ENGINE *) = NULL;
int (*CMAC_Update)(CMAC_CTX *, const void *, size_t) = NULL;
int (*CMAC_Final)(CMAC_CTX *, unsigned char *, size_t *) = NULL;
int (*CMAC_CTX_copy)(CMAC_CTX *, const CMAC_CTX *) = NULL;
void (*CMAC_CTX_free)(CMAC_CTX *) = NULL;
#else
static const long Cryptography_HAS_CMAC = 1;
#endif
"""
8' href='#n298'>298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
/**CFile***********************************************************************

  FileName    [cuddSat.c]

  PackageName [cudd]

  Synopsis    [Functions for the solution of satisfiability related
  problems.]

  Description [External procedures included in this file:
        <ul>
        <li> Cudd_Eval()
        <li> Cudd_ShortestPath()
        <li> Cudd_LargestCube()
        <li> Cudd_ShortestLength()
        <li> Cudd_Decreasing()
        <li> Cudd_Increasing()
        <li> Cudd_EquivDC()
        <li> Cudd_bddLeqUnless()
        <li> Cudd_EqualSupNorm()
        <li> Cudd_bddMakePrime()
        </ul>
    Internal procedures included in this module:
            <ul>
        <li> cuddBddMakePrime()
        </ul>
    Static procedures included in this module:
        <ul>
        <li> freePathPair()
        <li> getShortest()
        <li> getPath()
        <li> getLargest()
        <li> getCube()
        </ul>]

  Author      [Seh-Woong Jeong, Fabio Somenzi]

  Copyright   [This file was created at the University of Colorado at
  Boulder.  The University of Colorado at Boulder makes no warranty
  about the suitability of this software for any purpose.  It is
  presented on an AS IS basis.]

******************************************************************************/

#include "util.h"
#include "cuddInt.h"

/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

#define    DD_BIGGY    1000000

/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

typedef struct cuddPathPair {
    int    pos;
    int    neg;
} cuddPathPair;

/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddSat.c,v 1.1.1.1 2003/02/24 22:23:53 wjiang Exp $";
#endif

static    DdNode    *one, *zero;

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

#define WEIGHT(weight, col)    ((weight) == NULL ? 1 : weight[col])

/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static enum st_retval freePathPair ARGS((char *key, char *value, char *arg));
static cuddPathPair getShortest ARGS((DdNode *root, int *cost, int *support, st_table *visited));
static DdNode * getPath ARGS((DdManager *manager, st_table *visited, DdNode *f, int *weight, int cost));
static cuddPathPair getLargest ARGS((DdNode *root, st_table *visited));
static DdNode * getCube ARGS((DdManager *manager, st_table *visited, DdNode *f, int cost));

/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Returns the value of a DD for a given variable assignment.]

  Description [Finds the value of a DD for a given variable
  assignment. The variable assignment is passed in an array of int's,
  that should specify a zero or a one for each variable in the support
  of the function. Returns a pointer to a constant node. No new nodes
  are produced.]

  SideEffects [None]

  SeeAlso     [Cudd_bddLeq Cudd_addEvalConst]

******************************************************************************/
DdNode *
Cudd_Eval(
  DdManager * dd,
  DdNode * f,
  int * inputs)
{
    int comple;
    DdNode *ptr;

    comple = Cudd_IsComplement(f);
    ptr = Cudd_Regular(f);

    while (!cuddIsConstant(ptr)) {
    if (inputs[ptr->index] == 1) {
        ptr = cuddT(ptr);
    } else {
        comple ^= Cudd_IsComplement(cuddE(ptr));
        ptr = Cudd_Regular(cuddE(ptr));
    }
    }
    return(Cudd_NotCond(ptr,comple));

} /* end of Cudd_Eval */


/**Function********************************************************************

  Synopsis    [Finds a shortest path in a DD.]

  Description [Finds a shortest path in a DD. f is the DD we want to
  get the shortest path for; weight\[i\] is the weight of the THEN arc
  coming from the node whose index is i. If weight is NULL, then unit
  weights are assumed for all THEN arcs. All ELSE arcs have 0 weight.
  If non-NULL, both weight and support should point to arrays with at
  least as many entries as there are variables in the manager.
  Returns the shortest path as the BDD of a cube.]

  SideEffects [support contains on return the true support of f.
  If support is NULL on entry, then Cudd_ShortestPath does not compute
  the true support info. length contains the length of the path.]

  SeeAlso     [Cudd_ShortestLength Cudd_LargestCube]

******************************************************************************/
DdNode *
Cudd_ShortestPath(
  DdManager * manager,
  DdNode * f,
  int * weight,
  int * support,
  int * length)
{
    register     DdNode    *F;
    st_table    *visited;
    DdNode    *sol;
    cuddPathPair *rootPair;
    int        complement, cost;
    int        i;

    one = DD_ONE(manager);
    zero = DD_ZERO(manager);

    /* Initialize support. */
    if (support) {
    for (i = 0; i < manager->size; i++) {
        support[i] = 0;
    }
    }

    if (f == Cudd_Not(one) || f == zero) {
    *length = DD_BIGGY;
    return(Cudd_Not(one));
    }
    /* From this point on, a path exists. */

    /* Initialize visited table. */
    visited = st_init_table(st_ptrcmp, st_ptrhash);

    /* Now get the length of the shortest path(s) from f to 1. */
    (void) getShortest(f, weight, support, visited);

    complement = Cudd_IsComplement(f);

    F = Cudd_Regular(f);

    st_lookup(visited, (char *)F, (char **)&rootPair);
    
    if (complement) {
    cost = rootPair->neg;
    } else {
    cost = rootPair->pos;
    }

    /* Recover an actual shortest path. */
    do {
    manager->reordered = 0;
    sol = getPath(manager,visited,f,weight,cost);
    } while (manager->reordered == 1);

    st_foreach(visited, freePathPair, NULL);
    st_free_table(visited);

    *length = cost;
    return(sol);

} /* end of Cudd_ShortestPath */


/**Function********************************************************************

  Synopsis    [Finds a largest cube in a DD.]

  Description [Finds a largest cube in a DD. f is the DD we want to
  get the largest cube for. The problem is translated into the one of
  finding a shortest path in f, when both THEN and ELSE arcs are assumed to
  have unit length. This yields a largest cube in the disjoint cover
  corresponding to the DD. Therefore, it is not necessarily the largest
  implicant of f.  Returns the largest cube as a BDD.]

  SideEffects [The number of literals of the cube is returned in length.]

  SeeAlso     [Cudd_ShortestPath]

******************************************************************************/
DdNode *
Cudd_LargestCube(
  DdManager * manager,
  DdNode * f,
  int * length)
{
    register     DdNode    *F;
    st_table    *visited;
    DdNode    *sol;
    cuddPathPair *rootPair;
    int        complement, cost;

    one = DD_ONE(manager);
    zero = DD_ZERO(manager);

    if (f == Cudd_Not(one) || f == zero) {
    *length = DD_BIGGY;
    return(Cudd_Not(one));
    }
    /* From this point on, a path exists. */

    /* Initialize visited table. */
    visited = st_init_table(st_ptrcmp, st_ptrhash);

    /* Now get the length of the shortest path(s) from f to 1. */
    (void) getLargest(f, visited);

    complement = Cudd_IsComplement(f);

    F = Cudd_Regular(f);

    st_lookup(visited, (char *)F, (char **)&rootPair);
    
    if (complement) {
    cost = rootPair->neg;
    } else {
    cost = rootPair->pos;
    }

    /* Recover an actual shortest path. */
    do {
    manager->reordered = 0;
    sol = getCube(manager,visited,f,cost);
    } while (manager->reordered == 1);

    st_foreach(visited, freePathPair, NULL);
    st_free_table(visited);

    *length = cost;
    return(sol);

} /* end of Cudd_LargestCube */


/**Function********************************************************************

  Synopsis    [Find the length of the shortest path(s) in a DD.]

  Description [Find the length of the shortest path(s) in a DD. f is
  the DD we want to get the shortest path for; weight\[i\] is the
  weight of the THEN edge coming from the node whose index is i. All
  ELSE edges have 0 weight. Returns the length of the shortest
  path(s) if successful; CUDD_OUT_OF_MEM otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_ShortestPath]

******************************************************************************/
int
Cudd_ShortestLength(
  DdManager * manager,
  DdNode * f,
  int * weight)
{
    register     DdNode    *F;
    st_table    *visited;
    cuddPathPair *my_pair;
    int        complement, cost;

    one = DD_ONE(manager);
    zero = DD_ZERO(manager);

    if (f == Cudd_Not(one) || f == zero) {
    return(DD_BIGGY);
    }

    /* From this point on, a path exists. */
    /* Initialize visited table and support. */
    visited = st_init_table(st_ptrcmp, st_ptrhash);

    /* Now get the length of the shortest path(s) from f to 1. */
    (void) getShortest(f, weight, NULL, visited);

    complement = Cudd_IsComplement(f);

    F = Cudd_Regular(f);

    st_lookup(visited, (char *)F, (char **)&my_pair);
    
    if (complement) {
    cost = my_pair->neg;
    } else {
    cost = my_pair->pos;
    }

    st_foreach(visited, freePathPair, NULL);
    st_free_table(visited);

    return(cost);

} /* end of Cudd_ShortestLength */


/**Function********************************************************************

  Synopsis    [Determines whether a BDD is negative unate in a
  variable.]

  Description [Determines whether the function represented by BDD f is
  negative unate (monotonic decreasing) in variable i. Returns the
  constant one is f is unate and the (logical) constant zero if it is not.
  This function does not generate any new nodes.]

  SideEffects [None]

  SeeAlso     [Cudd_Increasing]

******************************************************************************/
DdNode *
Cudd_Decreasing(
  DdManager * dd,
  DdNode * f,
  int  i)
{
    unsigned int topf, level;
    DdNode *F, *fv, *fvn, *res;
    DdNode *(*cacheOp)(DdManager *, DdNode *, DdNode *);

    statLine(dd);
#ifdef DD_DEBUG
    assert(0 <= i && i < dd->size);
#endif

    F = Cudd_Regular(f);
    topf = cuddI(dd,F->index);

    /* Check terminal case. If topf > i, f does not depend on var.
    ** Therefore, f is unate in i.
    */
    level = (unsigned) dd->perm[i];
    if (topf > level) {
    return(DD_ONE(dd));
    }

    /* From now on, f is not constant. */

    /* Check cache. */
    cacheOp = (DdNode *(*)(DdManager *, DdNode *, DdNode *)) Cudd_Decreasing;
    res = cuddCacheLookup2(dd,cacheOp,f,dd->vars[i]);
    if (res != NULL) {
    return(res);
    }

    /* Compute cofactors. */
    fv = cuddT(F); fvn = cuddE(F);
    if (F != f) {
    fv = Cudd_Not(fv);
    fvn = Cudd_Not(fvn);
    }

    if (topf == (unsigned) level) {
    /* Special case: if fv is regular, fv(1,...,1) = 1;
    ** If in addition fvn is complemented, fvn(1,...,1) = 0.
    ** But then f(1,1,...,1) > f(0,1,...,1). Hence f is not
    ** monotonic decreasing in i.
    */
    if (!Cudd_IsComplement(fv) && Cudd_IsComplement(fvn)) {
        return(Cudd_Not(DD_ONE(dd)));
    }
    res = Cudd_bddLeq(dd,fv,fvn) ? DD_ONE(dd) : Cudd_Not(DD_ONE(dd));
    } else {
    res = Cudd_Decreasing(dd,fv,i);
    if (res == DD_ONE(dd)) {
        res = Cudd_Decreasing(dd,fvn,i);
    }
    }

    cuddCacheInsert2(dd,cacheOp,f,dd->vars[i],res);
    return(res);

} /* end of Cudd_Decreasing */


/**Function********************************************************************

  Synopsis    [Determines whether a BDD is positive unate in a
  variable.]

  Description [Determines whether the function represented by BDD f is
  positive unate (monotonic decreasing) in variable i. It is based on
  Cudd_Decreasing and the fact that f is monotonic increasing in i if
  and only if its complement is monotonic decreasing in i.]

  SideEffects [None]

  SeeAlso     [Cudd_Decreasing]

******************************************************************************/
DdNode *
Cudd_Increasing(
  DdManager * dd,
  DdNode * f,
  int  i)
{
    return(Cudd_Decreasing(dd,Cudd_Not(f),i));

} /* end of Cudd_Increasing */


/**Function********************************************************************

  Synopsis    [Tells whether F and G are identical wherever D is 0.]

  Description [Tells whether F and G are identical wherever D is 0.  F
  and G are either two ADDs or two BDDs.  D is either a 0-1 ADD or a
  BDD.  The function returns 1 if F and G are equivalent, and 0
  otherwise.  No new nodes are created.]

  SideEffects [None]

  SeeAlso     [Cudd_bddLeqUnless]

******************************************************************************/
int
Cudd_EquivDC(
  DdManager * dd,
  DdNode * F,
  DdNode * G,
  DdNode * D)
{
    DdNode *tmp, *One, *Gr, *Dr;
    DdNode *Fv, *Fvn, *Gv, *Gvn, *Dv, *Dvn;
    int res;
    unsigned int flevel, glevel, dlevel, top;

    One = DD_ONE(dd);

    statLine(dd);
    /* Check terminal cases. */
    if (D == One || F == G) return(1);
    if (D == Cudd_Not(One) || D == DD_ZERO(dd) || F == Cudd_Not(G)) return(0);

    /* From now on, D is non-constant. */

    /* Normalize call to increase cache efficiency. */
    if (F > G) {
    tmp = F;
    F = G;
    G = tmp;
    }
    if (Cudd_IsComplement(F)) {
    F = Cudd_Not(F);
    G = Cudd_Not(G);
    }

    /* From now on, F is regular. */

    /* Check cache. */
    tmp = cuddCacheLookup(dd,DD_EQUIV_DC_TAG,F,G,D);
    if (tmp != NULL) return(tmp == One);

    /* Find splitting variable. */
    flevel = cuddI(dd,F->index);
    Gr = Cudd_Regular(G);
    glevel = cuddI(dd,Gr->index);
    top = ddMin(flevel,glevel);
    Dr = Cudd_Regular(D);
    dlevel = dd->perm[Dr->index];
    top = ddMin(top,dlevel);

    /* Compute cofactors. */
    if (top == flevel) {
    Fv = cuddT(F);
    Fvn = cuddE(F);
    } else {
    Fv = Fvn = F;
    }
    if (top == glevel) {
    Gv = cuddT(Gr);
    Gvn = cuddE(Gr);
    if (G != Gr) {
        Gv = Cudd_Not(Gv);
        Gvn = Cudd_Not(Gvn);
    }
    } else {
    Gv = Gvn = G;
    }
    if (top == dlevel) {
    Dv = cuddT(Dr);
    Dvn = cuddE(Dr);
    if (D != Dr) {
        Dv = Cudd_Not(Dv);
        Dvn = Cudd_Not(Dvn);
    }
    } else {
    Dv = Dvn = D;
    }

    /* Solve recursively. */
    res = Cudd_EquivDC(dd,Fv,Gv,Dv);
    if (res != 0) {
    res = Cudd_EquivDC(dd,Fvn,Gvn,Dvn);
    }
    cuddCacheInsert(dd,DD_EQUIV_DC_TAG,F,G,D,(res) ? One : Cudd_Not(One));

    return(res);

} /* end of Cudd_EquivDC */


/**Function********************************************************************

  Synopsis    [Tells whether f is less than of equal to G unless D is 1.]

  Description [Tells whether f is less than of equal to G unless D is
  1.  f, g, and D are BDDs.  The function returns 1 if f is less than
  of equal to G, and 0 otherwise.  No new nodes are created.]

  SideEffects [None]

  SeeAlso     [Cudd_EquivDC Cudd_bddLeq Cudd_bddIteConstant]

******************************************************************************/
int
Cudd_bddLeqUnless(
  DdManager *dd,
  DdNode *f,
  DdNode *g,
  DdNode *D)
{
    DdNode *tmp, *One, *F, *G;
    DdNode *Ft, *Fe, *Gt, *Ge, *Dt, *De;
    int res;
    unsigned int flevel, glevel, dlevel, top;

    statLine(dd);

    One = DD_ONE(dd);

    /* Check terminal cases. */
    if (f == g || g == One || f == Cudd_Not(One) || D == One ||
    D == f || D == Cudd_Not(g)) return(1);
    /* Check for two-operand cases. */
    if (D == Cudd_Not(One) || D == g || D == Cudd_Not(f))
    return(Cudd_bddLeq(dd,f,g));
    if (g == Cudd_Not(One) || g == Cudd_Not(f)) return(Cudd_bddLeq(dd,f,D));
    if (f == One) return(Cudd_bddLeq(dd,Cudd_Not(g),D));

    /* From now on, f, g, and D are non-constant, distinct, and
    ** non-complementary. */

    /* Normalize call to increase cache efficiency.  We rely on the
    ** fact that f <= g unless D is equivalent to not(g) <= not(f)
    ** unless D and to f <= D unless g.  We make sure that D is
    ** regular, and that at most one of f and g is complemented.  We also
    ** ensure that when two operands can be swapped, the one with the
    ** lowest address comes first. */

    if (Cudd_IsComplement(D)) {
    if (Cudd_IsComplement(g)) {
        /* Special case: if f is regular and g is complemented,
        ** f(1,...,1) = 1 > 0 = g(1,...,1).  If D(1,...,1) = 0, return 0.
        */
        if (!Cudd_IsComplement(f)) return(0);
        /* !g <= D unless !f  or  !D <= g unless !f */
        tmp = D;
        D = Cudd_Not(f);
        if (g < tmp) {
        f = Cudd_Not(g);
        g = tmp;
        } else {
        f = Cudd_Not(tmp);
        }
    } else {
        if (Cudd_IsComplement(f)) {
        /* !D <= !f unless g  or  !D <= g unless !f */
        tmp = f;
        f = Cudd_Not(D);
        if (tmp < g) {
            D = g;
            g = Cudd_Not(tmp);
        } else {
            D = Cudd_Not(tmp);
        }
        } else {
        /* f <= D unless g  or  !D <= !f unless g */
        tmp = D;
        D = g;
        if (tmp < f) {
            g = Cudd_Not(f);
            f = Cudd_Not(tmp);
        } else {
            g = tmp;
        }
        }
    }
    } else {
    if (Cudd_IsComplement(g)) {
        if (Cudd_IsComplement(f)) {
        /* !g <= !f unless D  or  !g <= D unless !f */
        tmp = f;
        f = Cudd_Not(g);
        if (D < tmp) {
            g = D;
            D = Cudd_Not(tmp);
        } else {
            g = Cudd_Not(tmp);
        }
        } else {
        /* f <= g unless D  or  !g <= !f unless D */
        if (g < f) {
            tmp = g;
            g = Cudd_Not(f);
            f = Cudd_Not(tmp);
        }
        }
    } else {
        /* f <= g unless D  or  f <= D unless g */
        if (D < g) {
        tmp = D;
        D = g;
        g = tmp;
        }
    }
    }

    /* From now on, D is regular. */

    /* Check cache. */
    tmp = cuddCacheLookup(dd,DD_BDD_LEQ_UNLESS_TAG,f,g,D);
    if (tmp != NULL) return(tmp == One);

    /* Find splitting variable. */
    F = Cudd_Regular(f);
    flevel = dd->perm[F->index];
    G = Cudd_Regular(g);
    glevel = dd->perm[G->index];
    top = ddMin(flevel,glevel);
    dlevel = dd->perm[D->index];
    top = ddMin(top,dlevel);

    /* Compute cofactors. */
    if (top == flevel) {
    Ft = cuddT(F);
    Fe = cuddE(F);
    if (F != f) {
        Ft = Cudd_Not(Ft);
        Fe = Cudd_Not(Fe);
    }
    } else {
    Ft = Fe = f;
    }
    if (top == glevel) {
    Gt = cuddT(G);
    Ge = cuddE(G);
    if (G != g) {
        Gt = Cudd_Not(Gt);
        Ge = Cudd_Not(Ge);
    }
    } else {
    Gt = Ge = g;
    }
    if (top == dlevel) {
    Dt = cuddT(D);
    De = cuddE(D);
    } else {
    Dt = De = D;
    }

    /* Solve recursively. */
    res = Cudd_bddLeqUnless(dd,Ft,Gt,Dt);
    if (res != 0) {
    res = Cudd_bddLeqUnless(dd,Fe,Ge,De);
    }
    cuddCacheInsert(dd,DD_BDD_LEQ_UNLESS_TAG,f,g,D,Cudd_NotCond(One,!res));

    return(res);

} /* end of Cudd_bddLeqUnless */


/**Function********************************************************************

  Synopsis    [Compares two ADDs for equality within tolerance.]

  Description [Compares two ADDs for equality within tolerance. Two
  ADDs are reported to be equal if the maximum difference between them
  (the sup norm of their difference) is less than or equal to the
  tolerance parameter. Returns 1 if the two ADDs are equal (within
  tolerance); 0 otherwise. If parameter <code>pr</code> is positive
  the first failure is reported to the standard output.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
int
Cudd_EqualSupNorm(
  DdManager * dd /* manager */,
  DdNode * f /* first ADD */,
  DdNode * g /* second ADD */,
  CUDD_VALUE_TYPE  tolerance /* maximum allowed difference */,
  int  pr /* verbosity level */)
{
    DdNode *fv, *fvn, *gv, *gvn, *r;
    unsigned int topf, topg;

    statLine(dd);
    /* Check terminal cases. */
    if (f == g) return(1);
    if (Cudd_IsConstant(f) && Cudd_IsConstant(g)) {
    if (ddEqualVal(cuddV(f),cuddV(g),tolerance)) {
        return(1);
    } else {
        if (pr>0) {
        (void) fprintf(dd->out,"Offending nodes:\n");
#if SIZEOF_VOID_P == 8
        (void) fprintf(dd->out,
                   "f: address = %lx\t value = %40.30f\n",
                   (unsigned long) f, cuddV(f));
        (void) fprintf(dd->out,
                   "g: address = %lx\t value = %40.30f\n",
                   (unsigned long) g, cuddV(g));
#else
        (void) fprintf(dd->out,
                   "f: address = %x\t value = %40.30f\n",
                   (unsigned) f, cuddV(f));
        (void) fprintf(dd->out,
                   "g: address = %x\t value = %40.30f\n",
                   (unsigned) g, cuddV(g));
#endif
        }
        return(0);
    }
    }

    /* We only insert the result in the cache if the comparison is
    ** successful. Therefore, if we hit we return 1. */
    r = cuddCacheLookup2(dd,(DdNode * (*)(DdManager *, DdNode *, DdNode *))Cudd_EqualSupNorm,f,g);
    if (r != NULL) {
    return(1);
    }

    /* Compute the cofactors and solve the recursive subproblems. */
    topf = cuddI(dd,f->index);
    topg = cuddI(dd,g->index);

    if (topf <= topg) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;}
    if (topg <= topf) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;}

    if (!Cudd_EqualSupNorm(dd,fv,gv,tolerance,pr)) return(0);
    if (!Cudd_EqualSupNorm(dd,fvn,gvn,tolerance,pr)) return(0);

    cuddCacheInsert2(dd,(DdNode * (*)(DdManager *, DdNode *, DdNode *))Cudd_EqualSupNorm,f,g,DD_ONE(dd));

    return(1);

} /* end of Cudd_EqualSupNorm */


/**Function********************************************************************

  Synopsis    [Expands cube to a prime implicant of f.]

  Description [Expands cube to a prime implicant of f. Returns the prime
  if successful; NULL otherwise.  In particular, NULL is returned if cube
  is not a real cube or is not an implicant of f.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
Cudd_bddMakePrime(
  DdManager *dd /* manager */,
  DdNode *cube /* cube to be expanded */,
  DdNode *f /* function of which the cube is to be made a prime */)
{
    DdNode *res;

    if (!Cudd_bddLeq(dd,cube,f)) return(NULL);

    do {
    dd->reordered = 0;
    res = cuddBddMakePrime(dd,cube,f);
    } while (dd->reordered == 1);
    return(res);

} /* end of Cudd_bddMakePrime */


/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_bddMakePrime.]

  Description [Performs the recursive step of Cudd_bddMakePrime.
  Returns the prime if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
cuddBddMakePrime(
  DdManager *dd /* manager */,
  DdNode *cube /* cube to be expanded */,
  DdNode *f /* function of which the cube is to be made a prime */)
{
    DdNode *scan;
    DdNode *t, *e;
    DdNode *res = cube;
    DdNode *zero = Cudd_Not(DD_ONE(dd));

    Cudd_Ref(res);
    scan = cube;
    while (!Cudd_IsConstant(scan)) {
    DdNode *reg = Cudd_Regular(scan);
    DdNode *var = dd->vars[reg->index];
    DdNode *expanded = Cudd_bddExistAbstract(dd,res,var);
    if (expanded == NULL) {
        return(NULL);
    }
    Cudd_Ref(expanded);
    if (Cudd_bddLeq(dd,expanded,f)) {
        Cudd_RecursiveDeref(dd,res);
        res = expanded;
    } else {
        Cudd_RecursiveDeref(dd,expanded);
    }
    cuddGetBranches(scan,&t,&e);
    if (t == zero) {
        scan = e;
    } else if (e == zero) {
        scan = t;
    } else {
        Cudd_RecursiveDeref(dd,res);
        return(NULL);    /* cube is not a cube */
    }
    }

    if (scan == DD_ONE(dd)) {
    Cudd_Deref(res);
    return(res);
    } else {
    Cudd_RecursiveDeref(dd,res);
    return(NULL);
    }

} /* end of cuddBddMakePrime */


/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Frees the entries of the visited symbol table.]

  Description [Frees the entries of the visited symbol table. Returns
  ST_CONTINUE.]

  SideEffects [None]

******************************************************************************/
static enum st_retval
freePathPair(
  char * key,
  char * value,
  char * arg)
{
    cuddPathPair *pair;

    pair = (cuddPathPair *) value;
    FREE(pair);
    return(ST_CONTINUE);

} /* end of freePathPair */


/**Function********************************************************************

  Synopsis    [Finds the length of the shortest path(s) in a DD.]

  Description [Finds the length of the shortest path(s) in a DD.
  Uses a local symbol table to store the lengths for each
  node. Only the lengths for the regular nodes are entered in the table,
  because those for the complement nodes are simply obtained by swapping
  the two lenghts.
  Returns a pair of lengths: the length of the shortest path to 1;
  and the length of the shortest path to 0. This is done so as to take
  complement arcs into account.]

  SideEffects [Accumulates the support of the DD in support.]

  SeeAlso     []

******************************************************************************/
static cuddPathPair
getShortest(
  DdNode * root,
  int * cost,
  int * support,
  st_table * visited)
{
    cuddPathPair *my_pair, res_pair, pair_T, pair_E;
    DdNode    *my_root, *T, *E;
    int        weight;

    my_root = Cudd_Regular(root);

    if (st_lookup(visited, (char *)my_root, (char **)&my_pair)) {
    if (Cudd_IsComplement(root)) {
        res_pair.pos = my_pair->neg;
        res_pair.neg = my_pair->pos;
    } else {
        res_pair.pos = my_pair->pos;
        res_pair.neg = my_pair->neg;
    }
    return(res_pair);
    }

    /* In the case of a BDD the following test is equivalent to
    ** testing whether the BDD is the constant 1. This formulation,
    ** however, works for ADDs as well, by assuming the usual
    ** dichotomy of 0 and != 0.
    */
    if (cuddIsConstant(my_root)) {
    if (my_root != zero) {
        res_pair.pos = 0;
        res_pair.neg = DD_BIGGY;
    } else {
        res_pair.pos = DD_BIGGY;
        res_pair.neg = 0;
    }
    } else {
    T = cuddT(my_root);
    E = cuddE(my_root);

    pair_T = getShortest(T, cost, support, visited);
    pair_E = getShortest(E, cost, support, visited);
    weight = WEIGHT(cost, my_root->index);
    res_pair.pos = ddMin(pair_T.pos+weight, pair_E.pos);
    res_pair.neg = ddMin(pair_T.neg+weight, pair_E.neg);

    /* Update support. */
    if (support != NULL) {
        support[my_root->index] = 1;
    }
    }

    my_pair = ALLOC(cuddPathPair, 1);
    if (my_pair == NULL) {
    if (Cudd_IsComplement(root)) {
        int tmp = res_pair.pos;
        res_pair.pos = res_pair.neg;
        res_pair.neg = tmp;
    }
    return(res_pair);
    }
    my_pair->pos = res_pair.pos;
    my_pair->neg = res_pair.neg;

    st_insert(visited, (char *)my_root, (char *)my_pair);
    if (Cudd_IsComplement(root)) {
    res_pair.pos = my_pair->neg;
    res_pair.neg = my_pair->pos;
    } else {
    res_pair.pos = my_pair->pos;
    res_pair.neg = my_pair->neg;
    }
    return(res_pair);

} /* end of getShortest */


/**Function********************************************************************

  Synopsis    [Build a BDD for a shortest path of f.]

  Description [Build a BDD for a shortest path of f.
  Given the minimum length from the root, and the minimum
  lengths for each node (in visited), apply triangulation at each node.
  Of the two children of each node on a shortest path, at least one is
  on a shortest path. In case of ties the procedure chooses the THEN
  children.
  Returns a pointer to the cube BDD representing the path if
  successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
getPath(
  DdManager * manager,
  st_table * visited,
  DdNode * f,
  int * weight,
  int  cost)
{
    DdNode    *sol, *tmp;
    DdNode    *my_dd, *T, *E;
    cuddPathPair *T_pair, *E_pair;
    int        Tcost, Ecost;
    int        complement;

    my_dd = Cudd_Regular(f);
    complement = Cudd_IsComplement(f);

    sol = one;
    cuddRef(sol);

    while (!cuddIsConstant(my_dd)) {
    Tcost = cost - WEIGHT(weight, my_dd->index);
    Ecost = cost;

    T = cuddT(my_dd);
    E = cuddE(my_dd);

    if (complement) {T = Cudd_Not(T); E = Cudd_Not(E);}

    st_lookup(visited, (char *)Cudd_Regular(T), (char **)&T_pair);
    if ((Cudd_IsComplement(T) && T_pair->neg == Tcost) ||
    (!Cudd_IsComplement(T) && T_pair->pos == Tcost)) {
        tmp = cuddBddAndRecur(manager,manager->vars[my_dd->index],sol);
        if (tmp == NULL) {
        Cudd_RecursiveDeref(manager,sol);
        return(NULL);
        }
        cuddRef(tmp);
        Cudd_RecursiveDeref(manager,sol);
        sol = tmp;

        complement =  Cudd_IsComplement(T);
        my_dd = Cudd_Regular(T);
        cost = Tcost;
        continue;
    }
    st_lookup(visited, (char *)Cudd_Regular(E), (char **)&E_pair);
    if ((Cudd_IsComplement(E) && E_pair->neg == Ecost) ||
    (!Cudd_IsComplement(E) && E_pair->pos == Ecost)) {
        tmp = cuddBddAndRecur(manager,Cudd_Not(manager->vars[my_dd->index]),sol);
        if (tmp == NULL) {
        Cudd_RecursiveDeref(manager,sol);
        return(NULL);
        }
        cuddRef(tmp);
        Cudd_RecursiveDeref(manager,sol);
        sol = tmp;
        complement = Cudd_IsComplement(E);
        my_dd = Cudd_Regular(E);
        cost = Ecost;
        continue;
    }
    (void) fprintf(manager->err,"We shouldn't be here!!\n");
    manager->errorCode = CUDD_INTERNAL_ERROR;
    return(NULL);
    }

    cuddDeref(sol);
    return(sol);

} /* end of getPath */


/**Function********************************************************************

  Synopsis    [Finds the size of the largest cube(s) in a DD.]

  Description [Finds the size of the largest cube(s) in a DD.
  This problem is translated into finding the shortest paths from a node
  when both THEN and ELSE arcs have unit lengths.
  Uses a local symbol table to store the lengths for each
  node. Only the lengths for the regular nodes are entered in the table,
  because those for the complement nodes are simply obtained by swapping
  the two lenghts.
  Returns a pair of lengths: the length of the shortest path to 1;
  and the length of the shortest path to 0. This is done so as to take
  complement arcs into account.]

  SideEffects [none]

  SeeAlso     []

******************************************************************************/
static cuddPathPair
getLargest(
  DdNode * root,
  st_table * visited)
{
    cuddPathPair *my_pair, res_pair, pair_T, pair_E;
    DdNode    *my_root, *T, *E;

    my_root = Cudd_Regular(root);

    if (st_lookup(visited, (char *)my_root, (char **)&my_pair)) {
    if (Cudd_IsComplement(root)) {
        res_pair.pos = my_pair->neg;
        res_pair.neg = my_pair->pos;
    } else {
        res_pair.pos = my_pair->pos;
        res_pair.neg = my_pair->neg;
    }
    return(res_pair);
    }

    /* In the case of a BDD the following test is equivalent to
    ** testing whether the BDD is the constant 1. This formulation,
    ** however, works for ADDs as well, by assuming the usual
    ** dichotomy of 0 and != 0.
    */
    if (cuddIsConstant(my_root)) {
    if (my_root != zero) {
        res_pair.pos = 0;
        res_pair.neg = DD_BIGGY;
    } else {
        res_pair.pos = DD_BIGGY;
        res_pair.neg = 0;
    }
    } else {
    T = cuddT(my_root);
    E = cuddE(my_root);

    pair_T = getLargest(T, visited);
    pair_E = getLargest(E, visited);
    res_pair.pos = ddMin(pair_T.pos, pair_E.pos) + 1;
    res_pair.neg = ddMin(pair_T.neg, pair_E.neg) + 1;
    }

    my_pair = ALLOC(cuddPathPair, 1);
    if (my_pair == NULL) {    /* simlpy do not cache this result */
    if (Cudd_IsComplement(root)) {
        int tmp = res_pair.pos;
        res_pair.pos = res_pair.neg;
        res_pair.neg = tmp;
    }
    return(res_pair);
    }
    my_pair->pos = res_pair.pos;
    my_pair->neg = res_pair.neg;

    st_insert(visited, (char *)my_root, (char *)my_pair);
    if (Cudd_IsComplement(root)) {
    res_pair.pos = my_pair->neg;
    res_pair.neg = my_pair->pos;
    } else {
    res_pair.pos = my_pair->pos;
    res_pair.neg = my_pair->neg;
    }
    return(res_pair);

} /* end of getLargest */


/**Function********************************************************************

  Synopsis    [Build a BDD for a largest cube of f.]

  Description [Build a BDD for a largest cube of f.
  Given the minimum length from the root, and the minimum
  lengths for each node (in visited), apply triangulation at each node.
  Of the two children of each node on a shortest path, at least one is
  on a shortest path. In case of ties the procedure chooses the THEN
  children.
  Returns a pointer to the cube BDD representing the path if
  successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
getCube(
  DdManager * manager,
  st_table * visited,
  DdNode * f,
  int  cost)
{
    DdNode    *sol, *tmp;
    DdNode    *my_dd, *T, *E;
    cuddPathPair *T_pair, *E_pair;
    int        Tcost, Ecost;
    int        complement;

    my_dd = Cudd_Regular(f);
    complement = Cudd_IsComplement(f);

    sol = one;
    cuddRef(sol);

    while (!cuddIsConstant(my_dd)) {
    Tcost = cost - 1;
    Ecost = cost - 1;

    T = cuddT(my_dd);
    E = cuddE(my_dd);

    if (complement) {T = Cudd_Not(T); E = Cudd_Not(E);}

    st_lookup(visited, (char *)Cudd_Regular(T), (char **)&T_pair);
    if ((Cudd_IsComplement(T) && T_pair->neg == Tcost) ||
    (!Cudd_IsComplement(T) && T_pair->pos == Tcost)) {
        tmp = cuddBddAndRecur(manager,manager->vars[my_dd->index],sol);
        if (tmp == NULL) {
        Cudd_RecursiveDeref(manager,sol);
        return(NULL);
        }
        cuddRef(tmp);
        Cudd_RecursiveDeref(manager,sol);
        sol = tmp;

        complement =  Cudd_IsComplement(T);
        my_dd = Cudd_Regular(T);
        cost = Tcost;
        continue;
    }
    st_lookup(visited, (char *)Cudd_Regular(E), (char **)&E_pair);
    if ((Cudd_IsComplement(E) && E_pair->neg == Ecost) ||
    (!Cudd_IsComplement(E) && E_pair->pos == Ecost)) {
        tmp = cuddBddAndRecur(manager,Cudd_Not(manager->vars[my_dd->index]),sol);
        if (tmp == NULL) {
        Cudd_RecursiveDeref(manager,sol);
        return(NULL);
        }
        cuddRef(tmp);
        Cudd_RecursiveDeref(manager,sol);
        sol = tmp;
        complement = Cudd_IsComplement(E);
        my_dd = Cudd_Regular(E);
        cost = Ecost;
        continue;
    }
    (void) fprintf(manager->err,"We shouldn't be here!\n");
    manager->errorCode = CUDD_INTERNAL_ERROR;
    return(NULL);
    }

    cuddDeref(sol);
    return(sol);

} /* end of getCube */