aboutsummaryrefslogtreecommitdiffstats
path: root/src/_cffi_src/hazmat_src/padding.c
blob: 570bad9fbc2869552d84f2951c410aab47ebe2fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// This file is dual licensed under the terms of the Apache License, Version
// 2.0, and the BSD License. See the LICENSE file in the root of this
// repository for complete details.

/* Returns the value of the input with the most-significant-bit copied to all
   of the bits. */
static uint8_t Cryptography_DUPLICATE_MSB_TO_ALL(uint8_t a) {
    return (1 - (a >> (sizeof(uint8_t) * 8 - 1))) - 1;
}

/* This returns 0xFF if a < b else 0x00, but does so in a constant time
   fashion */
static uint8_t Cryptography_constant_time_lt(uint8_t a, uint8_t b) {
    a -= b;
    return Cryptography_DUPLICATE_MSB_TO_ALL(a);
}

uint8_t Cryptography_check_pkcs7_padding(const uint8_t *data,
                                         uint8_t block_len) {
    uint8_t i;
    uint8_t pad_size = data[block_len - 1];
    uint8_t mismatch = 0;
    for (i = 0; i < block_len; i++) {
        unsigned int mask = Cryptography_constant_time_lt(i, pad_size);
        uint8_t b = data[block_len - 1 - i];
        mismatch |= (mask & (pad_size ^ b));
    }

    /* Check to make sure the pad_size was within the valid range. */
    mismatch |= ~Cryptography_constant_time_lt(0, pad_size);
    mismatch |= Cryptography_constant_time_lt(block_len, pad_size);

    /* Make sure any bits set are copied to the lowest bit */
    mismatch |= mismatch >> 4;
    mismatch |= mismatch >> 2;
    mismatch |= mismatch >> 1;
    /* Now check the low bit to see if it's set */
    return (mismatch & 1) == 0;
}
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
% Generated using the yosys 'help -write-tex-command-reference-manual' command.

\section{abc -- use ABC for technology mapping}
\label{cmd:abc}
\begin{lstlisting}[numbers=left,frame=single]
    abc [options] [selection]

This pass uses the ABC tool [1] for technology mapping of yosys's internal gate
library to a target architecture.

    -exe <command>
        use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
        This can e.g. be used to call a specific version of ABC or a wrapper.

    -script <file>
        use the specified ABC script file instead of the default script.

        if <file> starts with a plus sign (+), then the rest of the filename
        string is interpreted as the command string to be passed to ABC. The
        leading plus sign is removed and all commas (,) in the string are
        replaced with blanks before the string is passed to ABC.

        if no -script parameter is given, the following scripts are used:

        for -liberty without -constr:
          strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
               &nf {D}; &put

        for -liberty with -constr:
          strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
               &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p

        for -lut/-luts (only one LUT size):
          strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2;
               lutpack {S}

        for -lut/-luts (different LUT sizes):
          strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2

        for -sop:
          strash; ifraig; scorr; dc2; dretime; strash; dch -f;
               cover {I} {P}

        otherwise:
          strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
               &nf {D}; &put

    -fast
        use different default scripts that are slightly faster (at the cost
        of output quality):

        for -liberty without -constr:
          strash; dretime; map {D}

        for -liberty with -constr:
          strash; dretime; map {D}; buffer; upsize {D}; dnsize {D};
               stime -p

        for -lut/-luts:
          strash; dretime; if

        for -sop:
          strash; dretime; cover -I {I} -P {P}

        otherwise:
          strash; dretime; map

    -liberty <file>
        generate netlists for the specified cell library (using the liberty
        file format).

    -constr <file>
        pass this file with timing constraints to ABC. use with -liberty.

        a constr file contains two lines:
            set_driving_cell <cell_name>
            set_load <floating_point_number>

        the set_driving_cell statement defines which cell type is assumed to
        drive the primary inputs and the set_load statement sets the load in
        femtofarads for each primary output.

    -D <picoseconds>
        set delay target. the string {D} in the default scripts above is
        replaced by this option when used, and an empty string otherwise.
        this also replaces 'dretime' with 'dretime; retime -o {D}' in the
        default scripts above.

    -I <num>
        maximum number of SOP inputs.
        (replaces {I} in the default scripts above)

    -P <num>
        maximum number of SOP products.
        (replaces {P} in the default scripts above)

    -S <num>
        maximum number of LUT inputs shared.
        (replaces {S} in the default scripts above, default: -S 1)

    -lut <width>
        generate netlist using luts of (max) the specified width.

    -lut <w1>:<w2>
        generate netlist using luts of (max) the specified width <w2>. All
        luts with width <= <w1> have constant cost. for luts larger than <w1>
        the area cost doubles with each additional input bit. the delay cost
        is still constant for all lut widths.

    -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
        generate netlist using luts. Use the specified costs for luts with 1,
        2, 3, .. inputs.

    -sop
        map to sum-of-product cells and inverters

    -g type1,type2,...
        Map to the specified list of gate types. Supported gates types are:
        AND, NAND, OR, NOR, XOR, XNOR, ANDNOT, ORNOT, MUX, AOI3, OAI3, AOI4, OAI4.
        (The NOT gate is always added to this list automatically.)

        The following aliases can be used to reference common sets of gate types:
          simple: AND OR XOR MUX
          cmos2: NAND NOR
          cmos3: NAND NOR AOI3 OAI3
          cmos4: NAND NOR AOI3 OAI3 AOI4 OAI4
          gates: AND NAND OR NOR XOR XNOR ANDNOT ORNOT
          aig: AND NAND OR NOR ANDNOT ORNOT

        Prefix a gate type with a '-' to remove it from the list. For example
        the arguments 'AND,OR,XOR' and 'simple,-MUX' are equivalent.

    -dff
        also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many
        clock domains are automatically partitioned in clock domains and each
        domain is passed through ABC independently.

    -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]
        use only the specified clock domain. this is like -dff, but only FF
        cells that belong to the specified clock domain are used.

    -keepff
        set the "keep" attribute on flip-flop output wires. (and thus preserve
        them, for example for equivalence checking.)

    -nocleanup
        when this option is used, the temporary files created by this pass
        are not removed. this is useful for debugging.

    -showtmp
        print the temp dir name in log. usually this is suppressed so that the
        command output is identical across runs.

    -markgroups
        set a 'abcgroup' attribute on all objects created by ABC. The value of
        this attribute is a unique integer for each ABC process started. This
        is useful for debugging the partitioning of clock domains.

When neither -liberty nor -lut is used, the Yosys standard cell library is
loaded into ABC before the ABC script is executed.

Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as BLIF file with write_blif and the load that into ABC externally if
you want to use ABC to convert your design into another format.

[1] http://www.eecs.berkeley.edu/~alanmi/abc/
\end{lstlisting}

\section{add -- add objects to the design}
\label{cmd:add}
\begin{lstlisting}[numbers=left,frame=single]
    add <command> [selection]

This command adds objects to the design. It operates on all fully selected
modules. So e.g. 'add -wire foo' will add a wire foo to all selected modules.


    add {-wire|-input|-inout|-output} <name> <width> [selection]

Add a wire (input, inout, output port) with the given name and width. The
command will fail if the object exists already and has different properties
than the object to be created.


    add -global_input <name> <width> [selection]

Like 'add -input', but also connect the signal between instances of the
selected modules.
\end{lstlisting}

\section{aigmap -- map logic to and-inverter-graph circuit}
\label{cmd:aigmap}
\begin{lstlisting}[numbers=left,frame=single]
    aigmap [options] [selection]

Replace all logic cells with circuits made of only $_AND_ and
$_NOT_ cells.

    -nand
        Enable creation of $_NAND_ cells
\end{lstlisting}

\section{alumacc -- extract ALU and MACC cells}
\label{cmd:alumacc}
\begin{lstlisting}[numbers=left,frame=single]
    alumacc [selection]

This pass translates arithmetic operations like $add, $mul, $lt, etc. to $alu
and $macc cells.
\end{lstlisting}

\section{assertpmux -- convert internal signals to module ports}
\label{cmd:assertpmux}
\begin{lstlisting}[numbers=left,frame=single]
    assertpmux [options] [selection]

This command adds asserts to the design that assert that all parallel muxes
($pmux cells) have a maximum of one of their inputs enable at any time.

    -noinit
        do not enforce the pmux condition during the init state

    -always
        usually the $pmux condition is only checked when the $pmux output
        is used be the mux tree it drives. this option will deactivate this
        additional constrained and check the $pmux condition always.
\end{lstlisting}

\section{async2sync -- convert async FF inputs to sync circuits}
\label{cmd:async2sync}
\begin{lstlisting}[numbers=left,frame=single]
    async2sync [options] [selection]

This command replaces async FF inputs with sync circuits emulating the same
behavior for when the async signals are actually synchronized to the clock.

This pass assumes negative hold time for the async FF inputs. For example when
a reset deasserts with the clock edge, then the FF output will still drive the
reset value in the next cycle regardless of the data-in value at the time of
the clock edge.

Currently only $adff cells are supported by this pass.
\end{lstlisting}

\section{attrmap -- renaming attributes}
\label{cmd:attrmap}
\begin{lstlisting}[numbers=left,frame=single]
    attrmap [options] [selection]

This command renames attributes and/or mapps key/value pairs to
other key/value pairs.

    -tocase <name>
        Match attribute names case-insensitively and set it to the specified
        name.

    -rename <old_name> <new_name>
        Rename attributes as specified

    -map <old_name>=<old_value> <new_name>=<new_value>
        Map key/value pairs as indicated.

    -imap <old_name>=<old_value> <new_name>=<new_value>
        Like -map, but use case-insensitive match for <old_value> when
        it is a string value.

    -remove <name>=<value>
        Remove attributes matching this pattern.

    -modattr
        Operate on module attributes instead of attributes on wires and cells.

For example, mapping Xilinx-style "keep" attributes to Yosys-style:

    attrmap -tocase keep -imap keep="true" keep=1 \
            -imap keep="false" keep=0 -remove keep=0
\end{lstlisting}

\section{attrmvcp -- move or copy attributes from wires to driving cells}
\label{cmd:attrmvcp}
\begin{lstlisting}[numbers=left,frame=single]
    attrmvcp [options] [selection]

Move or copy attributes on wires to the cells driving them.

    -copy
        By default, attributes are moved. This will only add
        the attribute to the cell, without removing it from
        the wire.

    -purge
        If no selected cell consumes the attribute, then it is
        left on the wire by default. This option will cause the
        attribute to be removed from the wire, even if no selected
        cell takes it.

    -driven
        By default, attriburtes are moved to the cell driving the
        wire. With this option set it will be moved to the cell
        driven by the wire instead.

    -attr <attrname>
        Move or copy this attribute. This option can be used
        multiple times.
\end{lstlisting}

\section{blackbox -- change type of cells in the design}
\label{cmd:blackbox}
\begin{lstlisting}[numbers=left,frame=single]
    blackbox [options] [selection]

Convert modules into blackbox modules (remove contents and set the blackbox
module attribute).
\end{lstlisting}

\section{cd -- a shortcut for 'select -module <name>'}
\label{cmd:cd}
\begin{lstlisting}[numbers=left,frame=single]
    cd <modname>

This is just a shortcut for 'select -module <modname>'.


    cd <cellname>

When no module with the specified name is found, but there is a cell
with the specified name in the current module, then this is equivalent
to 'cd <celltype>'.

    cd ..

Remove trailing substrings that start with '.' in current module name until
the name of a module in the current design is generated, then switch to that
module. Otherwise clear the current selection.

    cd

This is just a shortcut for 'select -clear'.
\end{lstlisting}

\section{check -- check for obvious problems in the design}
\label{cmd:check}
\begin{lstlisting}[numbers=left,frame=single]
    check [options] [selection]

This pass identifies the following problems in the current design:

 - combinatorial loops

 - two or more conflicting drivers for one wire

 - used wires that do not have a driver

When called with -noinit then this command also checks for wires which have
the 'init' attribute set.

When called with -initdrv then this command also checks for wires which have
the 'init' attribute set and aren't driven by a FF cell type.

When called with -assert then the command will produce an error if any
problems are found in the current design.
\end{lstlisting}

\section{chformal -- change formal constraints of the design}
\label{cmd:chformal}
\begin{lstlisting}[numbers=left,frame=single]
    chformal [types] [mode] [options] [selection]

Make changes to the formal constraints of the design. The [types] options
the type of constraint to operate on. If none of the folling options is given,
the command will operate on all constraint types:

    -assert       $assert cells, representing assert(...) constraints
    -assume       $assume cells, representing assume(...) constraints
    -live         $live cells, representing assert(s_eventually ...)
    -fair         $fair cells, representing assume(s_eventually ...)
    -cover        $cover cells, representing cover() statements

Exactly one of the following modes must be specified:

    -remove
        remove the cells and thus constraints from the design

    -early
        bypass FFs that only delay the activation of a constraint

    -delay <N>
        delay activation of the constraint by <N> clock cycles

    -skip <N>
        ignore activation of the constraint in the first <N> clock cycles

    -assert2assume
    -assume2assert
    -live2fair
    -fair2live
        change the roles of cells as indicated. this options can be combined
\end{lstlisting}

\section{chparam -- re-evaluate modules with new parameters}
\label{cmd:chparam}
\begin{lstlisting}[numbers=left,frame=single]
    chparam [ -set name value ]... [selection]

Re-evaluate the selected modules with new parameters. String values must be
passed in double quotes (").


    chparam -list [selection]

List the available parameters of the selected modules.
\end{lstlisting}

\section{chtype -- change type of cells in the design}
\label{cmd:chtype}
\begin{lstlisting}[numbers=left,frame=single]
    chtype [options] [selection]

Change the types of cells in the design.

    -set <type>
        set the cell type to the given type

    -map <old_type> <new_type>
        change cells types that match <old_type> to <new_type>
\end{lstlisting}

\section{clean -- remove unused cells and wires}
\label{cmd:clean}
\begin{lstlisting}[numbers=left,frame=single]
    clean [options] [selection]

This is identical to 'opt_clean', but less verbose.

When commands are separated using the ';;' token, this command will be executed
between the commands.

When commands are separated using the ';;;' token, this command will be executed
in -purge mode between the commands.
\end{lstlisting}

\section{clk2fflogic -- convert clocked FFs to generic \$ff cells}
\label{cmd:clk2fflogic}
\begin{lstlisting}[numbers=left,frame=single]
    clk2fflogic [options] [selection]

This command replaces clocked flip-flops with generic $ff cells that use the
implicit global clock. This is useful for formal verification of designs with
multiple clocks.
\end{lstlisting}

\section{connect -- create or remove connections}
\label{cmd:connect}
\begin{lstlisting}[numbers=left,frame=single]
    connect [-nomap] [-nounset] -set <lhs-expr> <rhs-expr>

Create a connection. This is equivalent to adding the statement 'assign
<lhs-expr> = <rhs-expr>;' to the Verilog input. Per default, all existing
drivers for <lhs-expr> are unconnected. This can be overwritten by using
the -nounset option.


    connect [-nomap] -unset <expr>

Unconnect all existing drivers for the specified expression.


    connect [-nomap] -port <cell> <port> <expr>

Connect the specified cell port to the specified cell port.


Per default signal alias names are resolved and all signal names are mapped
the the signal name of the primary driver. Using the -nomap option deactivates
this behavior.

The connect command operates in one module only. Either only one module must
be selected or an active module must be set using the 'cd' command.

This command does not operate on module with processes.
\end{lstlisting}

\section{connwrappers -- match width of input-output port pairs}
\label{cmd:connwrappers}
\begin{lstlisting}[numbers=left,frame=single]
    connwrappers [options] [selection]

Wrappers are used in coarse-grain synthesis to wrap cells with smaller ports
in wrapper cells with a (larger) constant port size. I.e. the upper bits
of the wrapper output are signed/unsigned bit extended. This command uses this
knowledge to rewire the inputs of the driven cells to match the output of
the driving cell.

    -signed <cell_type> <port_name> <width_param>
    -unsigned <cell_type> <port_name> <width_param>
        consider the specified signed/unsigned wrapper output

    -port <cell_type> <port_name> <width_param> <sign_param>
        use the specified parameter to decide if signed or unsigned

The options -signed, -unsigned, and -port can be specified multiple times.
\end{lstlisting}

\section{coolrunner2\_sop -- break \$sop cells into ANDTERM/ORTERM cells}
\label{cmd:coolrunner2_sop}
\begin{lstlisting}[numbers=left,frame=single]
    coolrunner2_sop [options] [selection]

Break $sop cells into ANDTERM/ORTERM cells.
\end{lstlisting}

\section{copy -- copy modules in the design}
\label{cmd:copy}
\begin{lstlisting}[numbers=left,frame=single]
    copy old_name new_name

Copy the specified module. Note that selection patterns are not supported
by this command.
\end{lstlisting}

\section{cover -- print code coverage counters}
\label{cmd:cover}
\begin{lstlisting}[numbers=left,frame=single]
    cover [options] [pattern]

Print the code coverage counters collected using the cover() macro in the Yosys
C++ code. This is useful to figure out what parts of Yosys are utilized by a
test bench.

    -q
        Do not print output to the normal destination (console and/or log file)

    -o file
        Write output to this file, truncate if exists.

    -a file
        Write output to this file, append if exists.

    -d dir
        Write output to a newly created file in the specified directory.

When one or more pattern (shell wildcards) are specified, then only counters
matching at least one pattern are printed.


It is also possible to instruct Yosys to print the coverage counters on program
exit to a file using environment variables:

    YOSYS_COVER_DIR="{dir-name}" yosys {args}

        This will create a file (with an auto-generated name) in this
        directory and write the coverage counters to it.

    YOSYS_COVER_FILE="{file-name}" yosys {args}

        This will append the coverage counters to the specified file.


Hint: Use the following AWK command to consolidate Yosys coverage files:

    gawk '{ p[$3] = $1; c[$3] += $2; } END { for (i in p)
      printf "%-60s %10d %s\n", p[i], c[i], i; }' {files} | sort -k3


Coverage counters are only available in Yosys for Linux.
\end{lstlisting}

\section{delete -- delete objects in the design}
\label{cmd:delete}
\begin{lstlisting}[numbers=left,frame=single]
    delete [selection]

Deletes the selected objects. This will also remove entire modules, if the
whole module is selected.


    delete {-input|-output|-port} [selection]

Does not delete any object but removes the input and/or output flag on the
selected wires, thus 'deleting' module ports.
\end{lstlisting}

\section{deminout -- demote inout ports to input or output}
\label{cmd:deminout}
\begin{lstlisting}[numbers=left,frame=single]
    deminout [options] [selection]

"Demote" inout ports to input or output ports, if possible.
\end{lstlisting}

\section{design -- save, restore and reset current design}
\label{cmd:design}
\begin{lstlisting}[numbers=left,frame=single]
    design -reset

Clear the current design.


    design -save <name>

Save the current design under the given name.


    design -stash <name>

Save the current design under the given name and then clear the current design.


    design -push

Push the current design to the stack and then clear the current design.


    design -pop

Reset the current design and pop the last design from the stack.


    design -load <name>

Reset the current design and load the design previously saved under the given
name.


    design -copy-from <name> [-as <new_mod_name>] <selection>

Copy modules from the specified design into the current one. The selection is
evaluated in the other design.


    design -copy-to <name> [-as <new_mod_name>] [selection]

Copy modules from the current design into the specified one.


    design -import <name> [-as <new_top_name>] [selection]

Import the specified design into the current design. The source design must
either have a selected top module or the selection must contain exactly one
module that is then used as top module for this command.


    design -reset-vlog

The Verilog front-end remembers defined macros and top-level declarations
between calls to 'read_verilog'. This command resets this memory.
\end{lstlisting}

\section{dff2dffe -- transform \$dff cells to \$dffe cells}
\label{cmd:dff2dffe}
\begin{lstlisting}[numbers=left,frame=single]
    dff2dffe [options] [selection]

This pass transforms $dff cells driven by a tree of multiplexers with one or
more feedback paths to $dffe cells. It also works on gate-level cells such as
$_DFF_P_, $_DFF_N_ and $_MUX_.

    -unmap
        operate in the opposite direction: replace $dffe cells with combinations
        of $dff and $mux cells. the options below are ignore in unmap mode.

    -direct <internal_gate_type> <external_gate_type>
        map directly to external gate type. <internal_gate_type> can
        be any internal gate-level FF cell (except $_DFFE_??_). the
        <external_gate_type> is the cell type name for a cell with an
        identical interface to the <internal_gate_type>, except it
        also has an high-active enable port 'E'.
          Usually <external_gate_type> is an intermediate cell type
        that is then translated to the final type using 'techmap'.

    -direct-match <pattern>
        like -direct for all DFF cell types matching the expression.
        this will use $__DFFE_* as <external_gate_type> matching the
        internal gate type $_DFF_*_, and $__DFFSE_* for those matching
        $_DFFS_*_, except for $_DFF_[NP]_, which is converted to 
        $_DFFE_[NP]_.
\end{lstlisting}

\section{dff2dffs -- process sync set/reset with SR over CE priority}
\label{cmd:dff2dffs}
\begin{lstlisting}[numbers=left,frame=single]
    dff2dffs [options] [selection]

Merge synchronous set/reset $_MUX_ cells to create $__DFFS_[NP][NP][01], to be run before
dff2dffe for SR over CE priority.
\end{lstlisting}

\section{dffinit -- set INIT param on FF cells}
\label{cmd:dffinit}
\begin{lstlisting}[numbers=left,frame=single]
    dffinit [options] [selection]

This pass sets an FF cell parameter to the the initial value of the net it
drives. (This is primarily used in FPGA flows.)

    -ff <cell_name> <output_port> <init_param>
        operate on the specified cell type. this option can be used
        multiple times.

    -highlow
        use the string values "high" and "low" to represent a single-bit
        initial value of 1 or 0. (multi-bit values are not supported in this
        mode.)
\end{lstlisting}

\section{dfflibmap -- technology mapping of flip-flops}
\label{cmd:dfflibmap}
\begin{lstlisting}[numbers=left,frame=single]
    dfflibmap [-prepare] -liberty <file> [selection]

Map internal flip-flop cells to the flip-flop cells in the technology
library specified in the given liberty file.

This pass may add inverters as needed. Therefore it is recommended to
first run this pass and then map the logic paths to the target technology.

When called with -prepare, this command will convert the internal FF cells
to the internal cell types that best match the cells found in the given
liberty file.
\end{lstlisting}

\section{dffsr2dff -- convert DFFSR cells to simpler FF cell types}
\label{cmd:dffsr2dff}
\begin{lstlisting}[numbers=left,frame=single]
    dffsr2dff [options] [selection]

This pass converts DFFSR cells ($dffsr, $_DFFSR_???_) and ADFF cells ($adff,
$_DFF_???_) to simpler FF cell types when any of the set/reset inputs is unused.
\end{lstlisting}

\section{dump -- print parts of the design in ilang format}
\label{cmd:dump}
\begin{lstlisting}[numbers=left,frame=single]
    dump [options] [selection]

Write the selected parts of the design to the console or specified file in
ilang format.

    -m
        also dump the module headers, even if only parts of a single
        module is selected

    -n
        only dump the module headers if the entire module is selected

    -o <filename>
        write to the specified file.

    -a <filename>
        like -outfile but append instead of overwrite
\end{lstlisting}

\section{echo -- turning echoing back of commands on and off}
\label{cmd:echo}
\begin{lstlisting}[numbers=left,frame=single]
    echo on

Print all commands to log before executing them.


    echo off

Do not print all commands to log before executing them. (default)
\end{lstlisting}

\section{edgetypes -- list all types of edges in selection}
\label{cmd:edgetypes}
\begin{lstlisting}[numbers=left,frame=single]
    edgetypes [options] [selection]

This command lists all unique types of 'edges' found in the selection. An 'edge'
is a 4-tuple of source and sink cell type and port name.
\end{lstlisting}

\section{equiv\_add -- add a \$equiv cell}
\label{cmd:equiv_add}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_add [-try] gold_sig gate_sig

This command adds an $equiv cell for the specified signals.


    equiv_add [-try] -cell gold_cell gate_cell

This command adds $equiv cells for the ports of the specified cells.
\end{lstlisting}

\section{equiv\_induct -- proving \$equiv cells using temporal induction}
\label{cmd:equiv_induct}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_induct [options] [selection]

Uses a version of temporal induction to prove $equiv cells.

Only selected $equiv cells are proven and only selected cells are used to
perform the proof.

    -undef
        enable modelling of undef states

    -seq <N>
        the max. number of time steps to be considered (default = 4)

This command is very effective in proving complex sequential circuits, when
the internal state of the circuit quickly propagates to $equiv cells.

However, this command uses a weak definition of 'equivalence': This command
proves that the two circuits will not diverge after they produce equal
outputs (observable points via $equiv) for at least <N> cycles (the <N>
specified via -seq).

Combined with simulation this is very powerful because simulation can give
you confidence that the circuits start out synced for at least <N> cycles
after reset.
\end{lstlisting}

\section{equiv\_make -- prepare a circuit for equivalence checking}
\label{cmd:equiv_make}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_make [options] gold_module gate_module equiv_module

This creates a module annotated with $equiv cells from two presumably
equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'
to work with the created equivalent checking module.

    -inames
        Also match cells and wires with $... names.

    -blacklist <file>
        Do not match cells or signals that match the names in the file.

    -encfile <file>
        Match FSM encodings using the description from the file.
        See 'help fsm_recode' for details.

Note: The circuit created by this command is not a miter (with something like
a trigger output), but instead uses $equiv cells to encode the equivalence
checking problem. Use 'miter -equiv' if you want to create a miter circuit.
\end{lstlisting}

\section{equiv\_mark -- mark equivalence checking regions}
\label{cmd:equiv_mark}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_mark [options] [selection]

This command marks the regions in an equivalence checking module. Region 0 is
the proven part of the circuit. Regions with higher numbers are connected
unproven subcricuits. The integer attribute 'equiv_region' is set on all
wires and cells.
\end{lstlisting}

\section{equiv\_miter -- extract miter from equiv circuit}
\label{cmd:equiv_miter}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_miter [options] miter_module [selection]

This creates a miter module for further analysis of the selected $equiv cells.

    -trigger
        Create a trigger output

    -cmp
        Create cmp_* outputs for individual unproven $equiv cells

    -assert
        Create a $assert cell for each unproven $equiv cell

    -undef
        Create compare logic that handles undefs correctly
\end{lstlisting}

\section{equiv\_purge -- purge equivalence checking module}
\label{cmd:equiv_purge}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_purge [options] [selection]

This command removes the proven part of an equivalence checking module, leaving
only the unproven segments in the design. This will also remove and add module
ports as needed.
\end{lstlisting}

\section{equiv\_remove -- remove \$equiv cells}
\label{cmd:equiv_remove}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_remove [options] [selection]

This command removes the selected $equiv cells. If neither -gold nor -gate is
used then only proven cells are removed.

    -gold
        keep gold circuit

    -gate
        keep gate circuit
\end{lstlisting}

\section{equiv\_simple -- try proving simple \$equiv instances}
\label{cmd:equiv_simple}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_simple [options] [selection]

This command tries to prove $equiv cells using a simple direct SAT approach.

    -v
        verbose output

    -undef
        enable modelling of undef states

    -short
        create shorter input cones that stop at shared nodes. This yields
        simpler SAT problems but sometimes fails to prove equivalence.

    -nogroup
        disabling grouping of $equiv cells by output wire

    -seq <N>
        the max. number of time steps to be considered (default = 1)
\end{lstlisting}

\section{equiv\_status -- print status of equivalent checking module}
\label{cmd:equiv_status}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_status [options] [selection]

This command prints status information for all selected $equiv cells.

    -assert
        produce an error if any unproven $equiv cell is found
\end{lstlisting}

\section{equiv\_struct -- structural equivalence checking}
\label{cmd:equiv_struct}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_struct [options] [selection]

This command adds additional $equiv cells based on the assumption that the
gold and gate circuit are structurally equivalent. Note that this can introduce
bad $equiv cells in cases where the netlists are not structurally equivalent,
for example when analyzing circuits with cells with commutative inputs. This
command will also de-duplicate gates.

    -fwd
        by default this command performans forward sweeps until nothing can
        be merged by forwards sweeps, then backward sweeps until forward
        sweeps are effective again. with this option set only forward sweeps
        are performed.

    -fwonly <cell_type>
        add the specified cell type to the list of cell types that are only
        merged in forward sweeps and never in backward sweeps. $equiv is in
        this list automatically.

    -icells
        by default, the internal RTL and gate cell types are ignored. add
        this option to also process those cell types with this command.

    -maxiter <N>
        maximum number of iterations to run before aborting
\end{lstlisting}

\section{eval -- evaluate the circuit given an input}
\label{cmd:eval}
\begin{lstlisting}[numbers=left,frame=single]
    eval [options] [selection]

This command evaluates the value of a signal given the value of all required
inputs.

    -set <signal> <value>
        set the specified signal to the specified value.

    -set-undef
        set all unspecified source signals to undef (x)

    -table <signal>
        create a truth table using the specified input signals

    -show <signal>
        show the value for the specified signal. if no -show option is passed
        then all output ports of the current module are used.
\end{lstlisting}

\section{expose -- convert internal signals to module ports}
\label{cmd:expose}
\begin{lstlisting}[numbers=left,frame=single]
    expose [options] [selection]

This command exposes all selected internal signals of a module as additional
outputs.

    -dff
        only consider wires that are directly driven by register cell.

    -cut
        when exposing a wire, create an input/output pair and cut the internal
        signal path at that wire.

    -input
        when exposing a wire, create an input port and disconnect the internal
        driver.

    -shared
        only expose those signals that are shared among the selected modules.
        this is useful for preparing modules for equivalence checking.

    -evert
        also turn connections to instances of other modules to additional
        inputs and outputs and remove the module instances.

    -evert-dff
        turn flip-flops to sets of inputs and outputs.

    -sep <separator>
        when creating new wire/port names, the original object name is suffixed
        with this separator (default: '.') and the port name or a type
        designator for the exposed signal.
\end{lstlisting}

\section{extract -- find subcircuits and replace them with cells}
\label{cmd:extract}
\begin{lstlisting}[numbers=left,frame=single]
    extract -map <map_file> [options] [selection]
    extract -mine <out_file> [options] [selection]

This pass looks for subcircuits that are isomorphic to any of the modules
in the given map file and replaces them with instances of this modules. The
map file can be a Verilog source file (*.v) or an ilang file (*.il).

    -map <map_file>
        use the modules in this file as reference. This option can be used
        multiple times.

    -map %<design-name>
        use the modules in this in-memory design as reference. This option can
        be used multiple times.

    -verbose
        print debug output while analyzing

    -constports
        also find instances with constant drivers. this may be much
        slower than the normal operation.

    -nodefaultswaps
        normally builtin port swapping rules for internal cells are used per
        default. This turns that off, so e.g. 'a^b' does not match 'b^a'
        when this option is used.

    -compat <needle_type> <haystack_type>
        Per default, the cells in the map file (needle) must have the
        type as the cells in the active design (haystack). This option
        can be used to register additional pairs of types that should
        match. This option can be used multiple times.

    -swap <needle_type> <port1>,<port2>[,...]
        Register a set of swappable ports for a needle cell type.
        This option can be used multiple times.

    -perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]
        Register a valid permutation of swappable ports for a needle
        cell type. This option can be used multiple times.

    -cell_attr <attribute_name>
        Attributes on cells with the given name must match.

    -wire_attr <attribute_name>
        Attributes on wires with the given name must match.

    -ignore_parameters
        Do not use parameters when matching cells.

    -ignore_param <cell_type> <parameter_name>
        Do not use this parameter when matching cells.

This pass does not operate on modules with unprocessed processes in it.
(I.e. the 'proc' pass should be used first to convert processes to netlists.)

This pass can also be used for mining for frequent subcircuits. In this mode
the following options are to be used instead of the -map option.

    -mine <out_file>
        mine for frequent subcircuits and write them to the given ilang file

    -mine_cells_span <min> <max>
        only mine for subcircuits with the specified number of cells
        default value: 3 5

    -mine_min_freq <num>
        only mine for subcircuits with at least the specified number of matches
        default value: 10

    -mine_limit_matches_per_module <num>
        when calculating the number of matches for a subcircuit, don't count
        more than the specified number of matches per module

    -mine_max_fanout <num>
        don't consider internal signals with more than <num> connections

The modules in the map file may have the attribute 'extract_order' set to an
integer value. Then this value is used to determine the order in which the pass
tries to map the modules to the design (ascending, default value is 0).

See 'help techmap' for a pass that does the opposite thing.
\end{lstlisting}

\section{extract\_counter -- Extract GreenPak4 counter cells}
\label{cmd:extract_counter}
\begin{lstlisting}[numbers=left,frame=single]
    extract_counter [options] [selection]

This pass converts non-resettable or async resettable down counters to
counter cells. Use a target-specific 'techmap' map file to convert those cells
to the actual target cells.

    -maxwidth N
        Only extract counters up to N bits wide

    -pout X,Y,...
        Only allow parallel output from the counter to the listed cell types
        (if not specified, parallel outputs are not restricted)
\end{lstlisting}

\section{extract\_fa -- find and extract full/half adders}
\label{cmd:extract_fa}
\begin{lstlisting}[numbers=left,frame=single]
    extract_fa [options] [selection]

This pass extracts full/half adders from a gate-level design.

    -fa, -ha
        Enable cell types (fa=full adder, ha=half adder)
        All types are enabled if none of this options is used

    -d <int>
        Set maximum depth for extracted logic cones (default=20)

    -b <int>
        Set maximum breadth for extracted logic cones (default=6)

    -v
        Verbose output
\end{lstlisting}

\section{extract\_reduce -- converts gate chains into \$reduce\_* cells}
\label{cmd:extract_reduce}
\begin{lstlisting}[numbers=left,frame=single]
    extract_reduce [options] [selection]

converts gate chains into $reduce_* cells

This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them
with their corresponding $reduce_* cells. Because this command only operates on
these cell types, it is recommended to map the design to only these cell types
using the `abc -g` command. Note that, in some cases, it may be more effective
to map the design to only $_AND_ cells, run extract_reduce, map the remaining
parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.

    -allow-off-chain
        Allows matching of cells that have loads outside the chain. These cells
        will be replicated and folded into the $reduce_* cell, but the original
        cell will remain, driving its original loads.
\end{lstlisting}

\section{flatten -- flatten design}
\label{cmd:flatten}
\begin{lstlisting}[numbers=left,frame=single]
    flatten [selection]

This pass flattens the design by replacing cells by their implementation. This
pass is very similar to the 'techmap' pass. The only difference is that this
pass is using the current design as mapping library.

Cells and/or modules with the 'keep_hierarchy' attribute set will not be
flattened by this command.
\end{lstlisting}

\section{freduce -- perform functional reduction}
\label{cmd:freduce}
\begin{lstlisting}[numbers=left,frame=single]
    freduce [options] [selection]

This pass performs functional reduction in the circuit. I.e. if two nodes are
equivalent, they are merged to one node and one of the redundant drivers is
disconnected. A subsequent call to 'clean' will remove the redundant drivers.

    -v, -vv
        enable verbose or very verbose output

    -inv
        enable explicit handling of inverted signals

    -stop <n>
        stop after <n> reduction operations. this is mostly used for
        debugging the freduce command itself.

    -dump <prefix>
        dump the design to <prefix>_<module>_<num>.il after each reduction
        operation. this is mostly used for debugging the freduce command.

This pass is undef-aware, i.e. it considers don't-care values for detecting
equivalent nodes.

All selected wires are considered for rewiring. The selected cells cover the
circuit that is analyzed.
\end{lstlisting}

\section{fsm -- extract and optimize finite state machines}
\label{cmd:fsm}
\begin{lstlisting}[numbers=left,frame=single]
    fsm [options] [selection]

This pass calls all the other fsm_* passes in a useful order. This performs
FSM extraction and optimization. It also calls opt_clean as needed:

    fsm_detect          unless got option -nodetect
    fsm_extract

    fsm_opt
    opt_clean
    fsm_opt

    fsm_expand          if got option -expand
    opt_clean           if got option -expand
    fsm_opt             if got option -expand

    fsm_recode          unless got option -norecode

    fsm_info

    fsm_export          if got option -export
    fsm_map             unless got option -nomap

Options:

    -expand, -norecode, -export, -nomap
        enable or disable passes as indicated above

    -fullexpand
        call expand with -full option

    -encoding type
    -fm_set_fsm_file file
    -encfile file
        passed through to fsm_recode pass
\end{lstlisting}

\section{fsm\_detect -- finding FSMs in design}
\label{cmd:fsm_detect}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_detect [selection]

This pass detects finite state machines by identifying the state signal.
The state signal is then marked by setting the attribute 'fsm_encoding'
on the state signal to "auto".

Existing 'fsm_encoding' attributes are not changed by this pass.

Signals can be protected from being detected by this pass by setting the
'fsm_encoding' attribute to "none".
\end{lstlisting}

\section{fsm\_expand -- expand FSM cells by merging logic into it}
\label{cmd:fsm_expand}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_expand [-full] [selection]

The fsm_extract pass is conservative about the cells that belong to a finite
state machine. This pass can be used to merge additional auxiliary gates into
the finite state machine.

By default, fsm_expand is still a bit conservative regarding merging larger
word-wide cells. Call with -full to consider all cells for merging.
\end{lstlisting}

\section{fsm\_export -- exporting FSMs to KISS2 files}
\label{cmd:fsm_export}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_export [-noauto] [-o filename] [-origenc] [selection]

This pass creates a KISS2 file for every selected FSM. For FSMs with the
'fsm_export' attribute set, the attribute value is used as filename, otherwise
the module and cell name is used as filename. If the parameter '-o' is given,
the first exported FSM is written to the specified filename. This overwrites
the setting as specified with the 'fsm_export' attribute. All other FSMs are
exported to the default name as mentioned above.

    -noauto
        only export FSMs that have the 'fsm_export' attribute set

    -o filename
        filename of the first exported FSM

    -origenc
        use binary state encoding as state names instead of s0, s1, ...
\end{lstlisting}

\section{fsm\_extract -- extracting FSMs in design}
\label{cmd:fsm_extract}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_extract [selection]

This pass operates on all signals marked as FSM state signals using the
'fsm_encoding' attribute. It consumes the logic that creates the state signal
and uses the state signal to generate control signal and replaces it with an
FSM cell.

The generated FSM cell still generates the original state signal with its
original encoding. The 'fsm_opt' pass can be used in combination with the
'opt_clean' pass to eliminate this signal.
\end{lstlisting}

\section{fsm\_info -- print information on finite state machines}
\label{cmd:fsm_info}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_info [selection]

This pass dumps all internal information on FSM cells. It can be useful for
analyzing the synthesis process and is called automatically by the 'fsm'
pass so that this information is included in the synthesis log file.
\end{lstlisting}

\section{fsm\_map -- mapping FSMs to basic logic}
\label{cmd:fsm_map}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_map [selection]

This pass translates FSM cells to flip-flops and logic.
\end{lstlisting}

\section{fsm\_opt -- optimize finite state machines}
\label{cmd:fsm_opt}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_opt [selection]

This pass optimizes FSM cells. It detects which output signals are actually
not used and removes them from the FSM. This pass is usually used in
combination with the 'opt_clean' pass (see also 'help fsm').
\end{lstlisting}

\section{fsm\_recode -- recoding finite state machines}
\label{cmd:fsm_recode}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_recode [options] [selection]

This pass reassign the state encodings for FSM cells. At the moment only
one-hot encoding and binary encoding is supported.
    -encoding <type>
        specify the encoding scheme used for FSMs without the
        'fsm_encoding' attribute or with the attribute set to `auto'.

    -fm_set_fsm_file <file>
        generate a file containing the mapping from old to new FSM encoding
        in form of Synopsys Formality set_fsm_* commands.

    -encfile <file>
        write the mappings from old to new FSM encoding to a file in the
        following format:

            .fsm <module_name> <state_signal>
            .map <old_bitpattern> <new_bitpattern>
\end{lstlisting}

\section{greenpak4\_dffinv -- merge greenpak4 inverters and DFF/latches}
\label{cmd:greenpak4_dffinv}
\begin{lstlisting}[numbers=left,frame=single]
    greenpak4_dffinv [options] [selection]

Merge GP_INV cells with GP_DFF* and GP_DLATCH* cells.
\end{lstlisting}

\section{help -- display help messages}
\label{cmd:help}
\begin{lstlisting}[numbers=left,frame=single]
    help  ................  list all commands
    help <command>  ......  print help message for given command
    help -all  ...........  print complete command reference

    help -cells ..........  list all cell types
    help <celltype>  .....  print help message for given cell type
    help <celltype>+  ....  print verilog code for given cell type
\end{lstlisting}

\section{hierarchy -- check, expand and clean up design hierarchy}
\label{cmd:hierarchy}
\begin{lstlisting}[numbers=left,frame=single]
    hierarchy [-check] [-top <module>]
    hierarchy -generate <cell-types> <port-decls>

In parametric designs, a module might exists in several variations with
different parameter values. This pass looks at all modules in the current
design an re-runs the language frontends for the parametric modules as
needed.

    -check
        also check the design hierarchy. this generates an error when
        an unknown module is used as cell type.

    -simcheck
        like -check, but also thow an error if blackbox modules are
        instantiated, and throw an error if the design has no top module

    -purge_lib
        by default the hierarchy command will not remove library (blackbox)
        modules. use this option to also remove unused blackbox modules.

    -libdir <directory>
        search for files named <module_name>.v in the specified directory
        for unknown modules and automatically run read_verilog for each
        unknown module.

    -keep_positionals
        per default this pass also converts positional arguments in cells
        to arguments using port names. this option disables this behavior.

    -keep_portwidths
        per default this pass adjusts the port width on cells that are
        module instances when the width does not match the module port. this
        option disables this behavior.

    -nokeep_asserts
        per default this pass sets the "keep" attribute on all modules
        that directly or indirectly contain one or more $assert cells. this
        option disables this behavior.

    -top <module>
        use the specified top module to built a design hierarchy. modules
        outside this tree (unused modules) are removed.

        when the -top option is used, the 'top' attribute will be set on the
        specified top module. otherwise a module with the 'top' attribute set
        will implicitly be used as top module, if such a module exists.

    -auto-top
        automatically determine the top of the design hierarchy and mark it.

In -generate mode this pass generates blackbox modules for the given cell
types (wildcards supported). For this the design is searched for cells that
match the given types and then the given port declarations are used to
determine the direction of the ports. The syntax for a port declaration is:

    {i|o|io}[@<num>]:<portname>

Input ports are specified with the 'i' prefix, output ports with the 'o'
prefix and inout ports with the 'io' prefix. The optional <num> specifies
the position of the port in the parameter list (needed when instantiated
using positional arguments). When <num> is not specified, the <portname> can
also contain wildcard characters.

This pass ignores the current selection and always operates on all modules
in the current design.
\end{lstlisting}

\section{hilomap -- technology mapping of constant hi- and/or lo-drivers}
\label{cmd:hilomap}
\begin{lstlisting}[numbers=left,frame=single]
    hilomap [options] [selection]

Map constants to 'tielo' and 'tiehi' driver cells.

    -hicell <celltype> <portname>
        Replace constant hi bits with this cell.

    -locell <celltype> <portname>
        Replace constant lo bits with this cell.

    -singleton
        Create only one hi/lo cell and connect all constant bits
        to that cell. Per default a separate cell is created for
        each constant bit.
\end{lstlisting}

\section{history -- show last interactive commands}
\label{cmd:history}
\begin{lstlisting}[numbers=left,frame=single]
    history

This command prints all commands in the shell history buffer. This are
all commands executed in an interactive session, but not the commands
from executed scripts.
\end{lstlisting}

\section{ice40\_ffinit -- iCE40: handle FF init values}
\label{cmd:ice40_ffinit}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_ffinit [options] [selection]

Remove zero init values for FF output signals. Add inverters to implement
nonzero init values.
\end{lstlisting}

\section{ice40\_ffssr -- iCE40: merge synchronous set/reset into FF cells}
\label{cmd:ice40_ffssr}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_ffssr [options] [selection]

Merge synchronous set/reset $_MUX_ cells into iCE40 FFs.
\end{lstlisting}

\section{ice40\_opt -- iCE40: perform simple optimizations}
\label{cmd:ice40_opt}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_opt [options] [selection]

This command executes the following script:

    do
        <ice40 specific optimizations>
        opt_expr -mux_undef -undriven [-full]
        opt_merge
        opt_rmdff
        opt_clean
    while <changed design>

When called with the option -unlut, this command will transform all already
mapped SB_LUT4 cells back to logic.
\end{lstlisting}

\section{insbuf -- insert buffer cells for connected wires}
\label{cmd:insbuf}
\begin{lstlisting}[numbers=left,frame=single]
    insbuf [options] [selection]

Insert buffer cells into the design for directly connected wires.

    -buf <celltype> <in-portname> <out-portname>
        Use the given cell type instead of $_BUF_. (Notice that the next
        call to "clean" will remove all $_BUF_ in the design.)
\end{lstlisting}

\section{iopadmap -- technology mapping of i/o pads (or buffers)}
\label{cmd:iopadmap}
\begin{lstlisting}[numbers=left,frame=single]
    iopadmap [options] [selection]

Map module inputs/outputs to PAD cells from a library. This pass
can only map to very simple PAD cells. Use 'techmap' to further map
the resulting cells to more sophisticated PAD cells.

    -inpad <celltype> <portname>[:<portname>]
        Map module input ports to the given cell type with the
        given output port name. if a 2nd portname is given, the
        signal is passed through the pad call, using the 2nd
        portname as the port facing the module port.

    -outpad <celltype> <portname>[:<portname>]
    -inoutpad <celltype> <portname>[:<portname>]
        Similar to -inpad, but for output and inout ports.

    -toutpad <celltype> <portname>:<portname>[:<portname>]
        Merges $_TBUF_ cells into the output pad cell. This takes precedence
        over the other -outpad cell. The first portname is the enable input
        of the tristate driver.

    -tinoutpad <celltype> <portname>:<portname>:<portname>[:<portname>]
        Merges $_TBUF_ cells into the inout pad cell. This takes precedence
        over the other -inoutpad cell. The first portname is the enable input
        of the tristate driver and the 2nd portname is the internal output
        buffering the external signal.

    -widthparam <param_name>
        Use the specified parameter name to set the port width.

    -nameparam <param_name>
        Use the specified parameter to set the port name.

    -bits
        create individual bit-wide buffers even for ports that
        are wider. (the default behavior is to create word-wide
        buffers using -widthparam to set the word size on the cell.)

Tristate PADS (-toutpad, -tinoutpad) always operate in -bits mode.
\end{lstlisting}

\section{json -- write design in JSON format}
\label{cmd:json}
\begin{lstlisting}[numbers=left,frame=single]
    json [options] [selection]

Write a JSON netlist of all selected objects.

    -o <filename>
        write to the specified file.

    -aig
        also include AIG models for the different gate types

See 'help write_json' for a description of the JSON format used.
\end{lstlisting}

\section{log -- print text and log files}
\label{cmd:log}
\begin{lstlisting}[numbers=left,frame=single]
    log string

Print the given string to the screen and/or the log file. This is useful for TCL
scripts, because the TCL command "puts" only goes to stdout but not to
logfiles.

    -stdout
        Print the output to stdout too. This is useful when all Yosys is executed
        with a script and the -q (quiet operation) argument to notify the user.

    -stderr
        Print the output to stderr too.

    -nolog
        Don't use the internal log() command. Use either -stdout or -stderr,
        otherwise no output will be generated at all.

    -n
        do not append a newline
\end{lstlisting}

\section{ls -- list modules or objects in modules}
\label{cmd:ls}
\begin{lstlisting}[numbers=left,frame=single]
    ls [selection]

When no active module is selected, this prints a list of modules.

When an active module is selected, this prints a list of objects in the module.
\end{lstlisting}

\section{ltp -- print longest topological path}
\label{cmd:ltp}
\begin{lstlisting}[numbers=left,frame=single]
    ltp [options] [selection]

This command prints the longest topological path in the design. (Only considers
paths within a single module, so the design must be flattened.)

    -noff
        automatically exclude FF cell types
\end{lstlisting}

\section{lut2mux -- convert \$lut to \$\_MUX\_}
\label{cmd:lut2mux}
\begin{lstlisting}[numbers=left,frame=single]
    lut2mux [options] [selection]

This pass converts $lut cells to $_MUX_ gates.
\end{lstlisting}

\section{maccmap -- mapping macc cells}
\label{cmd:maccmap}
\begin{lstlisting}[numbers=left,frame=single]
    maccmap [-unmap] [selection]

This pass maps $macc cells to yosys $fa and $alu cells. When the -unmap option
is used then the $macc cell is mapped to $add, $sub, etc. cells instead.
\end{lstlisting}

\section{memory -- translate memories to basic cells}
\label{cmd:memory}
\begin{lstlisting}[numbers=left,frame=single]
    memory [-nomap] [-nordff] [-memx] [-bram <bram_rules>] [selection]

This pass calls all the other memory_* passes in a useful order:

    memory_dff [-nordff]                (-memx implies -nordff)
    opt_clean
    memory_share
    opt_clean
    memory_memx                         (when called with -memx)
    memory_collect
    memory_bram -rules <bram_rules>     (when called with -bram)
    memory_map                          (skipped if called with -nomap)

This converts memories to word-wide DFFs and address decoders
or multiport memory blocks if called with the -nomap option.
\end{lstlisting}

\section{memory\_bram -- map memories to block rams}
\label{cmd:memory_bram}
\begin{lstlisting}[numbers=left,frame=single]
    memory_bram -rules <rule_file> [selection]

This pass converts the multi-port $mem memory cells into block ram instances.
The given rules file describes the available resources and how they should be
used.

The rules file contains a set of block ram description and a sequence of match
rules. A block ram description looks like this:

    bram RAMB1024X32     # name of BRAM cell
      init 1             # set to '1' if BRAM can be initialized
      abits 10           # number of address bits
      dbits 32           # number of data bits
      groups 2           # number of port groups
      ports  1 1         # number of ports in each group
      wrmode 1 0         # set to '1' if this groups is write ports
      enable 4 1         # number of enable bits
      transp 0 2         # transparent (for read ports)
      clocks 1 2         # clock configuration
      clkpol 2 2         # clock polarity configuration
    endbram

For the option 'transp' the value 0 means non-transparent, 1 means transparent
and a value greater than 1 means configurable. All groups with the same
value greater than 1 share the same configuration bit.

For the option 'clocks' the value 0 means non-clocked, and a value greater
than 0 means clocked. All groups with the same value share the same clock
signal.

For the option 'clkpol' the value 0 means negative edge, 1 means positive edge
and a value greater than 1 means configurable. All groups with the same value
greater than 1 share the same configuration bit.

Using the same bram name in different bram blocks will create different variants
of the bram. Verilog configuration parameters for the bram are created as needed.

It is also possible to create variants by repeating statements in the bram block
and appending '@<label>' to the individual statements.

A match rule looks like this:

    match RAMB1024X32
      max waste 16384    # only use this bram if <= 16k ram bits are unused
      min efficiency 80  # only use this bram if efficiency is at least 80%
    endmatch

It is possible to match against the following values with min/max rules:

    words  ........  number of words in memory in design
    abits  ........  number of address bits on memory in design
    dbits  ........  number of data bits on memory in design
    wports  .......  number of write ports on memory in design
    rports  .......  number of read ports on memory in design
    ports  ........  number of ports on memory in design
    bits  .........  number of bits in memory in design
    dups ..........  number of duplications for more read ports

    awaste  .......  number of unused address slots for this match
    dwaste  .......  number of unused data bits for this match
    bwaste  .......  number of unused bram bits for this match
    waste  ........  total number of unused bram bits (bwaste*dups)
    efficiency  ...  total percentage of used and non-duplicated bits

    acells  .......  number of cells in 'address-direction'
    dcells  .......  number of cells in 'data-direction'
    cells  ........  total number of cells (acells*dcells*dups)

The interface for the created bram instances is derived from the bram
description. Use 'techmap' to convert the created bram instances into
instances of the actual bram cells of your target architecture.

A match containing the command 'or_next_if_better' is only used if it
has a higher efficiency than the next match (and the one after that if
the next also has 'or_next_if_better' set, and so forth).

A match containing the command 'make_transp' will add external circuitry
to simulate 'transparent read', if necessary.

A match containing the command 'make_outreg' will add external flip-flops
to implement synchronous read ports, if necessary.

A match containing the command 'shuffle_enable A' will re-organize
the data bits to accommodate the enable pattern of port A.
\end{lstlisting}

\section{memory\_collect -- creating multi-port memory cells}
\label{cmd:memory_collect}
\begin{lstlisting}[numbers=left,frame=single]
    memory_collect [selection]

This pass collects memories and memory ports and creates generic multiport
memory cells.
\end{lstlisting}

\section{memory\_dff -- merge input/output DFFs into memories}
\label{cmd:memory_dff}
\begin{lstlisting}[numbers=left,frame=single]
    memory_dff [options] [selection]

This pass detects DFFs at memory ports and merges them into the memory port.
I.e. it consumes an asynchronous memory port and the flip-flops at its
interface and yields a synchronous memory port.

    -nordfff
        do not merge registers on read ports
\end{lstlisting}

\section{memory\_map -- translate multiport memories to basic cells}
\label{cmd:memory_map}
\begin{lstlisting}[numbers=left,frame=single]
    memory_map [selection]

This pass converts multiport memory cells as generated by the memory_collect
pass to word-wide DFFs and address decoders.
\end{lstlisting}

\section{memory\_memx -- emulate vlog sim behavior for mem ports}
\label{cmd:memory_memx}
\begin{lstlisting}[numbers=left,frame=single]
    memory_memx [selection]

This pass adds additional circuitry that emulates the Verilog simulation
behavior for out-of-bounds memory reads and writes.
\end{lstlisting}

\section{memory\_nordff -- extract read port FFs from memories}
\label{cmd:memory_nordff}
\begin{lstlisting}[numbers=left,frame=single]
    memory_nordff [options] [selection]

This pass extracts FFs from memory read ports. This results in a netlist
similar to what one would get from calling memory_dff with -nordff.
\end{lstlisting}

\section{memory\_share -- consolidate memory ports}
\label{cmd:memory_share}
\begin{lstlisting}[numbers=left,frame=single]
    memory_share [selection]

This pass merges share-able memory ports into single memory ports.

The following methods are used to consolidate the number of memory ports:

  - When write ports are connected to async read ports accessing the same
    address, then this feedback path is converted to a write port with
    byte/part enable signals.

  - When multiple write ports access the same address then this is converted
    to a single write port with a more complex data and/or enable logic path.

  - When multiple write ports are never accessed at the same time (a SAT
    solver is used to determine this), then the ports are merged into a single
    write port.

Note that in addition to the algorithms implemented in this pass, the $memrd
and $memwr cells are also subject to generic resource sharing passes (and other
optimizations) such as "share" and "opt_merge".
\end{lstlisting}

\section{memory\_unpack -- unpack multi-port memory cells}
\label{cmd:memory_unpack}
\begin{lstlisting}[numbers=left,frame=single]
    memory_unpack [selection]

This pass converts the multi-port $mem memory cells into individual $memrd and
$memwr cells. It is the counterpart to the memory_collect pass.
\end{lstlisting}

\section{miter -- automatically create a miter circuit}
\label{cmd:miter}
\begin{lstlisting}[numbers=left,frame=single]
    miter -equiv [options] gold_name gate_name miter_name

Creates a miter circuit for equivalence checking. The gold- and gate- modules
must have the same interfaces. The miter circuit will have all inputs of the
two source modules, prefixed with 'in_'. The miter circuit has a 'trigger'
output that goes high if an output mismatch between the two source modules is
detected.

    -ignore_gold_x
        a undef (x) bit in the gold module output will match any value in
        the gate module output.

    -make_outputs
        also route the gold- and gate-outputs to 'gold_*' and 'gate_*' outputs
        on the miter circuit.

    -make_outcmp
        also create a cmp_* output for each gold/gate output pair.

    -make_assert
        also create an 'assert' cell that checks if trigger is always low.

    -flatten
        call 'flatten; opt_expr -keepdc -undriven;;' on the miter circuit.


    miter -assert [options] module [miter_name]

Creates a miter circuit for property checking. All input ports are kept,
output ports are discarded. An additional output 'trigger' is created that
goes high when an assert is violated. Without a miter_name, the existing
module is modified.

    -make_outputs
        keep module output ports.

    -flatten
        call 'flatten; opt_expr -keepdc -undriven;;' on the miter circuit.
\end{lstlisting}

\section{muxcover -- cover trees of MUX cells with wider MUXes}
\label{cmd:muxcover}
\begin{lstlisting}[numbers=left,frame=single]
    muxcover [options] [selection]

Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells

    -mux4, -mux8, -mux16
        Use the specified types of MUXes. If none of those options are used,
        the effect is the same as if all of them where used.

    -nodecode
        Do not insert decoder logic. This reduces the number of possible
        substitutions, but guarantees that the resulting circuit is not
        less efficient than the original circuit.
\end{lstlisting}

\section{nlutmap -- map to LUTs of different sizes}
\label{cmd:nlutmap}
\begin{lstlisting}[numbers=left,frame=single]
    nlutmap [options] [selection]

This pass uses successive calls to 'abc' to map to an architecture. That
provides a small number of differently sized LUTs.

    -luts N_1,N_2,N_3,...
        The number of LUTs with 1, 2, 3, ... inputs that are
        available in the target architecture.

    -assert
        Create an error if not all logic can be mapped

Excess logic that does not fit into the specified LUTs is mapped back
to generic logic gates ($_AND_, etc.).
\end{lstlisting}

\section{opt -- perform simple optimizations}
\label{cmd:opt}
\begin{lstlisting}[numbers=left,frame=single]
    opt [options] [selection]

This pass calls all the other opt_* passes in a useful order. This performs
a series of trivial optimizations and cleanups. This pass executes the other
passes in the following order:

    opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
    opt_merge [-share_all] -nomux

    do
        opt_muxtree
        opt_reduce [-fine] [-full]
        opt_merge [-share_all]
        opt_rmdff [-keepdc]
        opt_clean [-purge]
        opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
    while <changed design>

When called with -fast the following script is used instead:

    do
        opt_expr [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
        opt_merge [-share_all]
        opt_rmdff [-keepdc]
        opt_clean [-purge]
    while <changed design in opt_rmdff>

Note: Options in square brackets (such as [-keepdc]) are passed through to
the opt_* commands when given to 'opt'.
\end{lstlisting}

\section{opt\_clean -- remove unused cells and wires}
\label{cmd:opt_clean}
\begin{lstlisting}[numbers=left,frame=single]
    opt_clean [options] [selection]

This pass identifies wires and cells that are unused and removes them. Other
passes often remove cells but leave the wires in the design or reconnect the
wires but leave the old cells in the design. This pass can be used to clean up
after the passes that do the actual work.

This pass only operates on completely selected modules without processes.

    -purge
        also remove internal nets if they have a public name
\end{lstlisting}

\section{opt\_demorgan -- Optimize reductions with DeMorgan equivalents}
\label{cmd:opt_demorgan}
\begin{lstlisting}[numbers=left,frame=single]
    opt_demorgan [selection]

This pass pushes inverters through $reduce_* cells if this will reduce the
overall gate count of the circuit
\end{lstlisting}

\section{opt\_expr -- perform const folding and simple expression rewriting}
\label{cmd:opt_expr}
\begin{lstlisting}[numbers=left,frame=single]
    opt_expr [options] [selection]

This pass performs const folding on internal cell types with constant inputs.
It also performs some simple expression rewritring.

    -mux_undef
        remove 'undef' inputs from $mux, $pmux and $_MUX_ cells

    -mux_bool
        replace $mux cells with inverters or buffers when possible

    -undriven
        replace undriven nets with undef (x) constants

    -clkinv
        optimize clock inverters by changing FF types

    -fine
        perform fine-grain optimizations

    -full
        alias for -mux_undef -mux_bool -undriven -fine

    -keepdc
        some optimizations change the behavior of the circuit with respect to
        don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
        all result bits to be set to x. this behavior changes when 'a+0' is
        replaced by 'a'. the -keepdc option disables all such optimizations.
\end{lstlisting}

\section{opt\_merge -- consolidate identical cells}
\label{cmd:opt_merge}
\begin{lstlisting}[numbers=left,frame=single]
    opt_merge [options] [selection]

This pass identifies cells with identical type and input signals. Such cells
are then merged to one cell.

    -nomux
        Do not merge MUX cells.

    -share_all
        Operate on all cell types, not just built-in types.
\end{lstlisting}

\section{opt\_muxtree -- eliminate dead trees in multiplexer trees}
\label{cmd:opt_muxtree}
\begin{lstlisting}[numbers=left,frame=single]
    opt_muxtree [selection]

This pass analyzes the control signals for the multiplexer trees in the design
and identifies inputs that can never be active. It then removes this dead
branches from the multiplexer trees.

This pass only operates on completely selected modules without processes.
\end{lstlisting}

\section{opt\_reduce -- simplify large MUXes and AND/OR gates}
\label{cmd:opt_reduce}
\begin{lstlisting}[numbers=left,frame=single]
    opt_reduce [options] [selection]

This pass performs two interlinked optimizations:

1. it consolidates trees of large AND gates or OR gates and eliminates
duplicated inputs.

2. it identifies duplicated inputs to MUXes and replaces them with a single
input with the original control signals OR'ed together.

    -fine
      perform fine-grain optimizations

    -full
      alias for -fine
\end{lstlisting}

\section{opt\_rmdff -- remove DFFs with constant inputs}
\label{cmd:opt_rmdff}
\begin{lstlisting}[numbers=left,frame=single]
    opt_rmdff [-keepdc] [selection]

This pass identifies flip-flops with constant inputs and replaces them with
a constant driver.
\end{lstlisting}

\section{plugin -- load and list loaded plugins}
\label{cmd:plugin}
\begin{lstlisting}[numbers=left,frame=single]
    plugin [options]

Load and list loaded plugins.

    -i <plugin_filename>
        Load (install) the specified plugin.

    -a <alias_name>
        Register the specified alias name for the loaded plugin

    -l
        List loaded plugins
\end{lstlisting}

\section{pmuxtree -- transform \$pmux cells to trees of \$mux cells}
\label{cmd:pmuxtree}
\begin{lstlisting}[numbers=left,frame=single]
    pmuxtree [options] [selection]

This pass transforms $pmux cells to a trees of $mux cells.
\end{lstlisting}

\section{prep -- generic synthesis script}
\label{cmd:prep}
\begin{lstlisting}[numbers=left,frame=single]
    prep [options]

This command runs a conservative RTL synthesis. A typical application for this
is the preparation stage of a verification flow. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -auto-top
        automatically determine the top of the design hierarchy

    -flatten
        flatten the design before synthesis. this will pass '-auto-top' to
        'hierarchy' if no top module is specified.

    -ifx
        passed to 'proc'. uses verilog simulation behavior for verilog if/case
        undef handling. this also prevents 'wreduce' from being run.

    -memx
        simulate verilog simulation behavior for out-of-bounds memory accesses
        using the 'memory_memx' pass.

    -nomem
        do not run any of the memory_* passes

    -rdff
        do not pass -nordff to 'memory_dff'. This enables merging of FFs into
        memory read ports.

    -nokeepdc
        do not call opt_* with -keepdc

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top> | -auto-top]

    coarse:
        proc [-ifx]
        flatten    (if -flatten)
        opt_expr -keepdc
        opt_clean
        check
        opt -keepdc
        wreduce [-memx]
        memory_dff [-nordff]
        memory_memx    (if -memx)
        opt_clean
        memory_collect
        opt -keepdc -fast

    check:
        stat
        check
\end{lstlisting}

\section{proc -- translate processes to netlists}
\label{cmd:proc}
\begin{lstlisting}[numbers=left,frame=single]
    proc [options] [selection]

This pass calls all the other proc_* passes in the most common order.

    proc_clean
    proc_rmdead
    proc_init
    proc_arst
    proc_mux
    proc_dlatch
    proc_dff
    proc_clean

This replaces the processes in the design with multiplexers,
flip-flops and latches.

The following options are supported:

    -global_arst [!]<netname>
        This option is passed through to proc_arst.

    -ifx
        This option is passed through to proc_mux. proc_rmdead is not
        executed in -ifx mode.
\end{lstlisting}

\section{proc\_arst -- detect asynchronous resets}
\label{cmd:proc_arst}
\begin{lstlisting}[numbers=left,frame=single]
    proc_arst [-global_arst [!]<netname>] [selection]

This pass identifies asynchronous resets in the processes and converts them
to a different internal representation that is suitable for generating
flip-flop cells with asynchronous resets.

    -global_arst [!]<netname>
        In modules that have a net with the given name, use this net as async
        reset for registers that have been assign initial values in their
        declaration ('reg foobar = constant_value;'). Use the '!' modifier for
        active low reset signals. Note: the frontend stores the default value
        in the 'init' attribute on the net.
\end{lstlisting}

\section{proc\_clean -- remove empty parts of processes}
\label{cmd:proc_clean}
\begin{lstlisting}[numbers=left,frame=single]
    proc_clean [selection]

This pass removes empty parts of processes and ultimately removes a process
if it contains only empty structures.
\end{lstlisting}

\section{proc\_dff -- extract flip-flops from processes}
\label{cmd:proc_dff}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dff [selection]

This pass identifies flip-flops in the processes and converts them to
d-type flip-flop cells.
\end{lstlisting}

\section{proc\_dlatch -- extract latches from processes}
\label{cmd:proc_dlatch}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dlatch [selection]

This pass identifies latches in the processes and converts them to
d-type latches.
\end{lstlisting}

\section{proc\_init -- convert initial block to init attributes}
\label{cmd:proc_init}
\begin{lstlisting}[numbers=left,frame=single]
    proc_init [selection]

This pass extracts the 'init' actions from processes (generated from Verilog
'initial' blocks) and sets the initial value to the 'init' attribute on the
respective wire.
\end{lstlisting}

\section{proc\_mux -- convert decision trees to multiplexers}
\label{cmd:proc_mux}
\begin{lstlisting}[numbers=left,frame=single]
    proc_mux [options] [selection]

This pass converts the decision trees in processes (originating from if-else
and case statements) to trees of multiplexer cells.

    -ifx
        Use Verilog simulation behavior with respect to undef values in
        'case' expressions and 'if' conditions.
\end{lstlisting}

\section{proc\_rmdead -- eliminate dead trees in decision trees}
\label{cmd:proc_rmdead}
\begin{lstlisting}[numbers=left,frame=single]
    proc_rmdead [selection]

This pass identifies unreachable branches in decision trees and removes them.
\end{lstlisting}

\section{qwp -- quadratic wirelength placer}
\label{cmd:qwp}
\begin{lstlisting}[numbers=left,frame=single]
    qwp [options] [selection]

This command runs quadratic wirelength placement on the selected modules and
annotates the cells in the design with 'qwp_position' attributes.

    -ltr
        Add left-to-right constraints: constrain all inputs on the left border
        outputs to the right border.

    -alpha
        Add constraints for inputs/outputs to be placed in alphanumerical
        order along the y-axis (top-to-bottom).

    -grid N
        Number of grid divisions in x- and y-direction. (default=16)

    -dump <html_file_name>
        Dump a protocol of the placement algorithm to the html file.

    -v
        Verbose solver output for profiling or debugging

Note: This implementation of a quadratic wirelength placer uses exact
dense matrix operations. It is only a toy-placer for small circuits.
\end{lstlisting}

\section{read -- load HDL designs}
\label{cmd:read}
\begin{lstlisting}[numbers=left,frame=single]
    read {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv|-formal} <verilog-file>..

Load the specified Verilog/SystemVerilog files. (Full SystemVerilog support
is only available via Verific.)

Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.


    read {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008|-vhdl} <vhdl-file>..

Load the specified VHDL files. (Requires Verific.)


    read -define <macro>[=<value>]..

Set global Verilog/SystemVerilog defines.


    read -undef <macro>..

Unset global Verilog/SystemVerilog defines.


    read -incdir <directory>

Add directory to global Verilog/SystemVerilog include directories.
\end{lstlisting}

\section{read\_blif -- read BLIF file}
\label{cmd:read_blif}
\begin{lstlisting}[numbers=left,frame=single]
    read_blif [filename]

Load modules from a BLIF file into the current design.

    -sop
        Create $sop cells instead of $lut cells

    -wideports
        Merge ports that match the pattern 'name[int]' into a single
        multi-bit port 'name'.
\end{lstlisting}

\section{read\_ilang -- read modules from ilang file}
\label{cmd:read_ilang}
\begin{lstlisting}[numbers=left,frame=single]
    read_ilang [filename]

Load modules from an ilang file to the current design. (ilang is a text
representation of a design in yosys's internal format.)
\end{lstlisting}

\section{read\_json -- read JSON file}
\label{cmd:read_json}
\begin{lstlisting}[numbers=left,frame=single]
    read_json [filename]

Load modules from a JSON file into the current design See "help write_json"
for a description of the file format.
\end{lstlisting}

\section{read\_liberty -- read cells from liberty file}
\label{cmd:read_liberty}
\begin{lstlisting}[numbers=left,frame=single]
    read_liberty [filename]

Read cells from liberty file as modules into current design.

    -lib
        only create empty blackbox modules

    -nooverwrite
        ignore re-definitions of modules. (the default behavior is to
        create an error message if the existing module is not a blackbox
        module, and overwrite the existing module if it is  a blackbox module.)

    -overwrite
        overwrite existing modules with the same name

    -ignore_miss_func
        ignore cells with missing function specification of outputs

    -ignore_miss_dir
        ignore cells with a missing or invalid direction
        specification on a pin

    -ignore_miss_data_latch
        ignore latches with missing data and/or enable pins

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules
\end{lstlisting}

\section{read\_verilog -- read modules from Verilog file}
\label{cmd:read_verilog}
\begin{lstlisting}[numbers=left,frame=single]
    read_verilog [options] [filename]

Load modules from a Verilog file to the current design. A large subset of
Verilog-2005 is supported.

    -sv
        enable support for SystemVerilog features. (only a small subset
        of SystemVerilog is supported)

    -formal
        enable support for SystemVerilog assertions and some Yosys extensions
        replace the implicit -D SYNTHESIS with -D FORMAL

    -norestrict
        ignore restrict() assertions

    -assume-asserts
        treat all assert() statements like assume() statements

    -dump_ast1
        dump abstract syntax tree (before simplification)

    -dump_ast2
        dump abstract syntax tree (after simplification)

    -no_dump_ptr
        do not include hex memory addresses in dump (easier to diff dumps)

    -dump_vlog
        dump ast as Verilog code (after simplification)

    -dump_rtlil
        dump generated RTLIL netlist

    -yydebug
        enable parser debug output

    -nolatches
        usually latches are synthesized into logic loops
        this option prohibits this and sets the output to 'x'
        in what would be the latches hold condition

        this behavior can also be achieved by setting the
        'nolatches' attribute on the respective module or
        always block.

    -nomem2reg
        under certain conditions memories are converted to registers
        early during simplification to ensure correct handling of
        complex corner cases. this option disables this behavior.

        this can also be achieved by setting the 'nomem2reg'
        attribute on the respective module or register.

        This is potentially dangerous. Usually the front-end has good
        reasons for converting an array to a list of registers.
        Prohibiting this step will likely result in incorrect synthesis
        results.

    -mem2reg
        always convert memories to registers. this can also be
        achieved by setting the 'mem2reg' attribute on the respective
        module or register.

    -nomeminit
        do not infer $meminit cells and instead convert initialized
        memories to registers directly in the front-end.

    -ppdump
        dump Verilog code after pre-processor

    -nopp
        do not run the pre-processor

    -nodpi
        disable DPI-C support

    -lib
        only create empty blackbox modules. This implies -DBLACKBOX.

    -noopt
        don't perform basic optimizations (such as const folding) in the
        high-level front-end.

    -icells
        interpret cell types starting with '$' as internal cell types

    -nooverwrite
        ignore re-definitions of modules. (the default behavior is to
        create an error message if the existing module is not a black box
        module, and overwrite the existing module otherwise.)

    -overwrite
        overwrite existing modules with the same name

    -defer
        only read the abstract syntax tree and defer actual compilation
        to a later 'hierarchy' command. Useful in cases where the default
        parameters of modules yield invalid or not synthesizable code.

    -noautowire
        make the default of `default_nettype be "none" instead of "wire".

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules

    -Dname[=definition]
        define the preprocessor symbol 'name' and set its optional value
        'definition'

    -Idir
        add 'dir' to the directories which are used when searching include
        files

The command 'verilog_defaults' can be used to register default options for
subsequent calls to 'read_verilog'.

Note that the Verilog frontend does a pretty good job of processing valid
verilog input, but has not very good error reporting. It generally is
recommended to use a simulator (for example Icarus Verilog) for checking
the syntax of the code, rather than to rely on read_verilog for that.

Depending on if read_verilog is run in -formal mode, either the macro
SYNTHESIS or FORMAL is defined automatically. In addition, read_verilog
always defines the macro YOSYS.

See the Yosys README file for a list of non-standard Verilog features
supported by the Yosys Verilog front-end.
\end{lstlisting}

\section{rename -- rename object in the design}
\label{cmd:rename}
\begin{lstlisting}[numbers=left,frame=single]
    rename old_name new_name

Rename the specified object. Note that selection patterns are not supported
by this command.


    rename -enumerate [-pattern <pattern>] [selection]

Assign short auto-generated names to all selected wires and cells with private
names. The -pattern option can be used to set the pattern for the new names.
The character % in the pattern is replaced with a integer number. The default
pattern is '_%_'.

    rename -hide [selection]

Assign private names (the ones with $-prefix) to all selected wires and cells
with public names. This ignores all selected ports.

    rename -top new_name

Rename top module.
\end{lstlisting}

\section{rmports -- remove module ports with no connections}
\label{cmd:rmports}
\begin{lstlisting}[numbers=left,frame=single]
    rmports [selection]

This pass identifies ports in the selected modules which are not used or
driven and removes them.
\end{lstlisting}

\section{sat -- solve a SAT problem in the circuit}
\label{cmd:sat}
\begin{lstlisting}[numbers=left,frame=single]
    sat [options] [selection]

This command solves a SAT problem defined over the currently selected circuit
and additional constraints passed as parameters.

    -all
        show all solutions to the problem (this can grow exponentially, use
        -max <N> instead to get <N> solutions)

    -max <N>
        like -all, but limit number of solutions to <N>

    -enable_undef
        enable modeling of undef value (aka 'x-bits')
        this option is implied by -set-def, -set-undef et. cetera

    -max_undef
        maximize the number of undef bits in solutions, giving a better
        picture of which input bits are actually vital to the solution.

    -set <signal> <value>
        set the specified signal to the specified value.

    -set-def <signal>
        add a constraint that all bits of the given signal must be defined

    -set-any-undef <signal>
        add a constraint that at least one bit of the given signal is undefined

    -set-all-undef <signal>
        add a constraint that all bits of the given signal are undefined

    -set-def-inputs
        add -set-def constraints for all module inputs

    -show <signal>
        show the model for the specified signal. if no -show option is
        passed then a set of signals to be shown is automatically selected.

    -show-inputs, -show-outputs, -show-ports
        add all module (input/output) ports to the list of shown signals

    -show-regs, -show-public, -show-all
        show all registers, show signals with 'public' names, show all signals

    -ignore_div_by_zero
        ignore all solutions that involve a division by zero

    -ignore_unknown_cells
        ignore all cells that can not be matched to a SAT model

The following options can be used to set up a sequential problem:

    -seq <N>
        set up a sequential problem with <N> time steps. The steps will
        be numbered from 1 to N.

        note: for large <N> it can be significantly faster to use
        -tempinduct-baseonly -maxsteps <N> instead of -seq <N>.

    -set-at <N> <signal> <value>
    -unset-at <N> <signal>
        set or unset the specified signal to the specified value in the
        given timestep. this has priority over a -set for the same signal.

    -set-assumes
        set all assumptions provided via $assume cells

    -set-def-at <N> <signal>
    -set-any-undef-at <N> <signal>
    -set-all-undef-at <N> <signal>
        add undef constraints in the given timestep.

    -set-init <signal> <value>
        set the initial value for the register driving the signal to the value

    -set-init-undef
        set all initial states (not set using -set-init) to undef

    -set-init-def
        do not force a value for the initial state but do not allow undef

    -set-init-zero
        set all initial states (not set using -set-init) to zero

    -dump_vcd <vcd-file-name>
        dump SAT model (counter example in proof) to VCD file

    -dump_json <json-file-name>
        dump SAT model (counter example in proof) to a WaveJSON file.

    -dump_cnf <cnf-file-name>
        dump CNF of SAT problem (in DIMACS format). in temporal induction
        proofs this is the CNF of the first induction step.

The following additional options can be used to set up a proof. If also -seq
is passed, a temporal induction proof is performed.

    -tempinduct
        Perform a temporal induction proof. In a temporal induction proof it is
        proven that the condition holds forever after the number of time steps
        specified using -seq.

    -tempinduct-def
        Perform a temporal induction proof. Assume an initial state with all
        registers set to defined values for the induction step.

    -tempinduct-baseonly
        Run only the basecase half of temporal induction (requires -maxsteps)

    -tempinduct-inductonly
        Run only the induction half of temporal induction

    -tempinduct-skip <N>
        Skip the first <N> steps of the induction proof.

        note: this will assume that the base case holds for <N> steps.
        this must be proven independently with "-tempinduct-baseonly
        -maxsteps <N>". Use -initsteps if you just want to set a
        minimal induction length.

    -prove <signal> <value>
        Attempt to proof that <signal> is always <value>.

    -prove-x <signal> <value>
        Like -prove, but an undef (x) bit in the lhs matches any value on
        the right hand side. Useful for equivalence checking.

    -prove-asserts
        Prove that all asserts in the design hold.

    -prove-skip <N>
        Do not enforce the prove-condition for the first <N> time steps.

    -maxsteps <N>
        Set a maximum length for the induction.

    -initsteps <N>
        Set initial length for the induction.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -stepsize <N>
        Increase the size of the induction proof in steps of <N>.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -timeout <N>
        Maximum number of seconds a single SAT instance may take.

    -verify
        Return an error and stop the synthesis script if the proof fails.

    -verify-no-timeout
        Like -verify but do not return an error for timeouts.

    -falsify
        Return an error and stop the synthesis script if the proof succeeds.

    -falsify-no-timeout
        Like -falsify but do not return an error for timeouts.
\end{lstlisting}

\section{scatter -- add additional intermediate nets}
\label{cmd:scatter}
\begin{lstlisting}[numbers=left,frame=single]
    scatter [selection]

This command adds additional intermediate nets on all cell ports. This is used
for testing the correct use of the SigMap helper in passes. If you don't know
what this means: don't worry -- you only need this pass when testing your own
extensions to Yosys.

Use the opt_clean command to get rid of the additional nets.
\end{lstlisting}

\section{scc -- detect strongly connected components (logic loops)}
\label{cmd:scc}
\begin{lstlisting}[numbers=left,frame=single]
    scc [options] [selection]

This command identifies strongly connected components (aka logic loops) in the
design.

    -expect <num>
        expect to find exactly <num> SSCs. A different number of SSCs will
        produce an error.

    -max_depth <num>
        limit to loops not longer than the specified number of cells. This
        can e.g. be useful in identifying small local loops in a module that
        implements one large SCC.

    -nofeedback
        do not count cells that have their output fed back into one of their
        inputs as single-cell scc.

    -all_cell_types
        Usually this command only considers internal non-memory cells. With
        this option set, all cells are considered. For unknown cells all ports
        are assumed to be bidirectional 'inout' ports.

    -set_attr <name> <value>
        set the specified attribute on all cells that are part of a logic
        loop. the special token {} in the value is replaced with a unique
        identifier for the logic loop.

    -select
        replace the current selection with a selection of all cells and wires
        that are part of a found logic loop
\end{lstlisting}

\section{script -- execute commands from script file}
\label{cmd:script}
\begin{lstlisting}[numbers=left,frame=single]
    script <filename> [<from_label>:<to_label>]

This command executes the yosys commands in the specified file.

The 2nd argument can be used to only execute the section of the
file between the specified labels. An empty from label is synonymous
for the beginning of the file and an empty to label is synonymous
for the end of the file.

If only one label is specified (without ':') then only the block
marked with that label (until the next label) is executed.
\end{lstlisting}

\section{select -- modify and view the list of selected objects}
\label{cmd:select}
\begin{lstlisting}[numbers=left,frame=single]
    select [ -add | -del | -set <name> ] {-read <filename> | <selection>}
    select [ <assert_option> ] {-read <filename> | <selection>}
    select [ -list | -write <filename> | -count | -clear ]
    select -module <modname>

Most commands use the list of currently selected objects to determine which part
of the design to operate on. This command can be used to modify and view this
list of selected objects.

Note that many commands support an optional [selection] argument that can be
used to YS_OVERRIDE the global selection for the command. The syntax of this
optional argument is identical to the syntax of the <selection> argument
described here.

    -add, -del
        add or remove the given objects to the current selection.
        without this options the current selection is replaced.

    -set <name>
        do not modify the current selection. instead save the new selection
        under the given name (see @<name> below). to save the current selection,
        use "select -set <name> %"

    -assert-none
        do not modify the current selection. instead assert that the given
        selection is empty. i.e. produce an error if any object matching the
        selection is found.

    -assert-any
        do not modify the current selection. instead assert that the given
        selection is non-empty. i.e. produce an error if no object matching
        the selection is found.

    -assert-count N
        do not modify the current selection. instead assert that the given
        selection contains exactly N objects.

    -assert-max N
        do not modify the current selection. instead assert that the given
        selection contains less than or exactly N objects.

    -assert-min N
        do not modify the current selection. instead assert that the given
        selection contains at least N objects.

    -list
        list all objects in the current selection

    -write <filename>
        like -list but write the output to the specified file

    -read <filename>
        read the specified file (written by -write)

    -count
        count all objects in the current selection

    -clear
        clear the current selection. this effectively selects the whole
        design. it also resets the selected module (see -module). use the
        command 'select *' to select everything but stay in the current module.

    -none
        create an empty selection. the current module is unchanged.

    -module <modname>
        limit the current scope to the specified module.
        the difference between this and simply selecting the module
        is that all object names are interpreted relative to this
        module after this command until the selection is cleared again.

When this command is called without an argument, the current selection
is displayed in a compact form (i.e. only the module name when a whole module
is selected).

The <selection> argument itself is a series of commands for a simple stack
machine. Each element on the stack represents a set of selected objects.
After this commands have been executed, the union of all remaining sets
on the stack is computed and used as selection for the command.

Pushing (selecting) object when not in -module mode:

    <mod_pattern>
        select the specified module(s)

    <mod_pattern>/<obj_pattern>
        select the specified object(s) from the module(s)

Pushing (selecting) object when in -module mode:

    <obj_pattern>
        select the specified object(s) from the current module

A <mod_pattern> can be a module name, wildcard expression (*, ?, [..])
matching module names, or one of the following:

    A:<pattern>, A:<pattern>=<pattern>
        all modules with an attribute matching the given pattern
        in addition to = also <, <=, >=, and > are supported

An <obj_pattern> can be an object name, wildcard expression, or one of
the following:

    w:<pattern>
        all wires with a name matching the given wildcard pattern

    i:<pattern>, o:<pattern>, x:<pattern>
        all inputs (i:), outputs (o:) or any ports (x:) with matching names

    s:<size>, s:<min>:<max>
        all wires with a matching width

    m:<pattern>
        all memories with a name matching the given pattern

    c:<pattern>
        all cells with a name matching the given pattern

    t:<pattern>
        all cells with a type matching the given pattern

    p:<pattern>
        all processes with a name matching the given pattern

    a:<pattern>
        all objects with an attribute name matching the given pattern

    a:<pattern>=<pattern>
        all objects with a matching attribute name-value-pair.
        in addition to = also <, <=, >=, and > are supported

    r:<pattern>, r:<pattern>=<pattern>
        cells with matching parameters. also with <, <=, >= and >.

    n:<pattern>
        all objects with a name matching the given pattern
        (i.e. 'n:' is optional as it is the default matching rule)

    @<name>
        push the selection saved prior with 'select -set <name> ...'

The following actions can be performed on the top sets on the stack:

    %
        push a copy of the current selection to the stack

    %%
        replace the stack with a union of all elements on it

    %n
        replace top set with its invert

    %u
        replace the two top sets on the stack with their union

    %i
        replace the two top sets on the stack with their intersection

    %d
        pop the top set from the stack and subtract it from the new top

    %D
        like %d but swap the roles of two top sets on the stack

    %c
        create a copy of the top set from the stack and push it

    %x[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        expand top set <num1> num times according to the specified rules.
        (i.e. select all cells connected to selected wires and select all
        wires connected to selected cells) The rules specify which cell
        ports to use for this. the syntax for a rule is a '-' for exclusion
        and a '+' for inclusion, followed by an optional comma separated
        list of cell types followed by an optional comma separated list of
        cell ports in square brackets. a rule can also be just a cell or wire
        name that limits the expansion (is included but does not go beyond).
        select at most <num2> objects. a warning message is printed when this
        limit is reached. When '*' is used instead of <num1> then the process
        is repeated until no further object are selected.

    %ci[<num1>|*][.<num2>][:<rule>[:<rule>..]]
    %co[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        similar to %x, but only select input (%ci) or output cones (%co)

    %xe[...] %cie[...] %coe
        like %x, %ci, and %co but only consider combinatorial cells

    %a
        expand top set by selecting all wires that are (at least in part)
        aliases for selected wires.

    %s
        expand top set by adding all modules that implement cells in selected
        modules

    %m
        expand top set by selecting all modules that contain selected objects

    %M
        select modules that implement selected cells

    %C
        select cells that implement selected modules

    %R[<num>]
        select <num> random objects from top selection (default 1)

Example: the following command selects all wires that are connected to a
'GATE' input of a 'SWITCH' cell:

    select */t:SWITCH %x:+[GATE] */t:SWITCH %d
\end{lstlisting}

\section{setattr -- set/unset attributes on objects}
\label{cmd:setattr}
\begin{lstlisting}[numbers=left,frame=single]
    setattr [ -mod ] [ -set name value | -unset name ]... [selection]

Set/unset the given attributes on the selected objects. String values must be
passed in double quotes (").

When called with -mod, this command will set and unset attributes on modules
instead of objects within modules.
\end{lstlisting}

\section{setparam -- set/unset parameters on objects}
\label{cmd:setparam}
\begin{lstlisting}[numbers=left,frame=single]
    setparam [ -type cell_type ] [ -set name value | -unset name ]... [selection]

Set/unset the given parameters on the selected cells. String values must be
passed in double quotes (").

The -type option can be used to change the cell type of the selected cells.
\end{lstlisting}

\section{setundef -- replace undef values with defined constants}
\label{cmd:setundef}
\begin{lstlisting}[numbers=left,frame=single]
    setundef [options] [selection]

This command replaces undef (x) constants with defined (0/1) constants.

    -undriven
        also set undriven nets to constant values

    -expose
        also expose undriven nets as inputs (use with -undriven)

    -zero
        replace with bits cleared (0)

    -one
        replace with bits set (1)

    -undef
        replace with undef (x) bits, may be used with -undriven

    -anyseq
        replace with $anyseq drivers (for formal)

    -anyconst
        replace with $anyconst drivers (for formal)

    -random <seed>
        replace with random bits using the specified integer als seed
        value for the random number generator.

    -init
        also create/update init values for flip-flops
\end{lstlisting}

\section{share -- perform sat-based resource sharing}
\label{cmd:share}
\begin{lstlisting}[numbers=left,frame=single]
    share [options] [selection]

This pass merges shareable resources into a single resource. A SAT solver
is used to determine if two resources are share-able.

  -force
    Per default the selection of cells that is considered for sharing is
    narrowed using a list of cell types. With this option all selected
    cells are considered for resource sharing.

    IMPORTANT NOTE: If the -all option is used then no cells with internal
    state must be selected!

  -aggressive
    Per default some heuristics are used to reduce the number of cells
    considered for resource sharing to only large resources. This options
    turns this heuristics off, resulting in much more cells being considered
    for resource sharing.

  -fast
    Only consider the simple part of the control logic in SAT solving, resulting
    in much easier SAT problems at the cost of maybe missing some opportunities
    for resource sharing.

  -limit N
    Only perform the first N merges, then stop. This is useful for debugging.
\end{lstlisting}

\section{shell -- enter interactive command mode}
\label{cmd:shell}
\begin{lstlisting}[numbers=left,frame=single]
    shell

This command enters the interactive command mode. This can be useful
in a script to interrupt the script at a certain point and allow for
interactive inspection or manual synthesis of the design at this point.

The command prompt of the interactive shell indicates the current
selection (see 'help select'):

    yosys>
        the entire design is selected

    yosys*>
        only part of the design is selected

    yosys [modname]>
        the entire module 'modname' is selected using 'select -module modname'

    yosys [modname]*>
        only part of current module 'modname' is selected

When in interactive shell, some errors (e.g. invalid command arguments)
do not terminate yosys but return to the command prompt.

This command is the default action if nothing else has been specified
on the command line.

Press Ctrl-D or type 'exit' to leave the interactive shell.
\end{lstlisting}

\section{show -- generate schematics using graphviz}
\label{cmd:show}
\begin{lstlisting}[numbers=left,frame=single]
    show [options] [selection]

Create a graphviz DOT file for the selected part of the design and compile it
to a graphics file (usually SVG or PostScript).

    -viewer <viewer>
        Run the specified command with the graphics file as parameter.
        On Windows, this pauses yosys until the viewer exits.

    -format <format>
        Generate a graphics file in the specified format. Use 'dot' to just
        generate a .dot file, or other <format> strings such as 'svg' or 'ps'
        to generate files in other formats (this calls the 'dot' command).

    -lib <verilog_or_ilang_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

        note: in most cases it is better to load the library before calling
        show with 'read_verilog -lib <filename>'. it is also possible to
        load liberty files with 'read_liberty -lib <filename>'.

    -prefix <prefix>
        generate <prefix>.* instead of ~/.yosys_show.*

    -color <color> <object>
        assign the specified color to the specified object. The object can be
        a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -label <text> <object>
        assign the specified label text to the specified object. The object can
        be a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -colors <seed>
        Randomly assign colors to the wires. The integer argument is the seed
        for the random number generator. Change the seed value if the colored
        graph still is ambiguous. A seed of zero deactivates the coloring.

    -colorattr <attribute_name>
        Use the specified attribute to assign colors. A unique color is
        assigned to each unique value of this attribute.

    -width
        annotate busses with a label indicating the width of the bus.

    -signed
        mark ports (A, B) that are declared as signed (using the [AB]_SIGNED
        cell parameter) with an asterisk next to the port name.

    -stretch
        stretch the graph so all inputs are on the left side and all outputs
        (including inout ports) are on the right side.

    -pause
        wait for the use to press enter to before returning

    -enum
        enumerate objects with internal ($-prefixed) names

    -long
        do not abbreviate objects with internal ($-prefixed) names

    -notitle
        do not add the module name as graph title to the dot file

When no <format> is specified, 'dot' is used. When no <format> and <viewer> is
specified, 'xdot' is used to display the schematic (POSIX systems only).

The generated output files are '~/.yosys_show.dot' and '~/.yosys_show.<format>',
unless another prefix is specified using -prefix <prefix>.

Yosys on Windows and YosysJS use different defaults: The output is written
to 'show.dot' in the current directory and new viewer is launched each time
the 'show' command is executed.
\end{lstlisting}

\section{shregmap -- map shift registers}
\label{cmd:shregmap}
\begin{lstlisting}[numbers=left,frame=single]
    shregmap [options] [selection]

This pass converts chains of $_DFF_[NP]_ gates to target specific shift register
primitives. The generated shift register will be of type $__SHREG_DFF_[NP]_ and
will use the same interface as the original $_DFF_*_ cells. The cell parameter
'DEPTH' will contain the depth of the shift register. Use a target-specific
'techmap' map file to convert those cells to the actual target cells.

    -minlen N
        minimum length of shift register (default = 2)
        (this is the length after -keep_before and -keep_after)

    -maxlen N
        maximum length of shift register (default = no limit)
        larger chains will be mapped to multiple shift register instances

    -keep_before N
        number of DFFs to keep before the shift register (default = 0)

    -keep_after N
        number of DFFs to keep after the shift register (default = 0)

    -clkpol pos|neg|any
        limit match to only positive or negative edge clocks. (default = any)

    -enpol pos|neg|none|any_or_none|any
        limit match to FFs with the specified enable polarity. (default = none)

    -match <cell_type>[:<d_port_name>:<q_port_name>]
        match the specified cells instead of $_DFF_N_ and $_DFF_P_. If
        ':<d_port_name>:<q_port_name>' is omitted then 'D' and 'Q' is used
        by default. E.g. the option '-clkpol pos' is just an alias for
        '-match $_DFF_P_', which is an alias for '-match $_DFF_P_:D:Q'.

    -params
        instead of encoding the clock and enable polarity in the cell name by
        deriving from the original cell name, simply name all generated cells
        $__SHREG_ and use CLKPOL and ENPOL parameters. An ENPOL value of 2 is
        used to denote cells without enable input. The ENPOL parameter is
        omitted when '-enpol none' (or no -enpol option) is passed.

    -zinit
        assume the shift register is automatically zero-initialized, so it
        becomes legal to merge zero initialized FFs into the shift register.

    -init
        map initialized registers to the shift reg, add an INIT parameter to
        generated cells with the initialization value. (first bit to shift out
        in LSB position)

    -tech greenpak4
        map to greenpak4 shift registers.
\end{lstlisting}

\section{sim -- simulate the circuit}
\label{cmd:sim}
\begin{lstlisting}[numbers=left,frame=single]
    sim [options] [top-level]

This command simulates the circuit using the given top-level module.

    -vcd <filename>
        write the simulation results to the given VCD file

    -clock <portname>
        name of top-level clock input

    -clockn <portname>
        name of top-level clock input (inverse polarity)

    -reset <portname>
        name of top-level reset input (active high)

    -resetn <portname>
        name of top-level inverted reset input (active low)

    -rstlen <integer>
        number of cycles reset should stay active (default: 1)

    -zinit
        zero-initialize all uninitialized regs and memories

    -n <integer>
        number of cycles to simulate (default: 20)

    -a
        include all nets in VCD output, not just those with public names

    -w
        writeback mode: use final simulation state as new init state

    -d
        enable debug output
\end{lstlisting}

\section{simplemap -- mapping simple coarse-grain cells}
\label{cmd:simplemap}
\begin{lstlisting}[numbers=left,frame=single]
    simplemap [selection]

This pass maps a small selection of simple coarse-grain cells to yosys gate
primitives. The following internal cell types are mapped by this pass:

  $not, $pos, $and, $or, $xor, $xnor
  $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor, $reduce_bool
  $logic_not, $logic_and, $logic_or, $mux, $tribuf
  $sr, $ff, $dff, $dffsr, $adff, $dlatch
\end{lstlisting}

\section{splice -- create explicit splicing cells}
\label{cmd:splice}
\begin{lstlisting}[numbers=left,frame=single]
    splice [options] [selection]

This command adds $slice and $concat cells to the design to make the splicing
of multi-bit signals explicit. This for example is useful for coarse grain
synthesis, where dedicated hardware is needed to splice signals.

    -sel_by_cell
        only select the cell ports to rewire by the cell. if the selection
        contains a cell, than all cell inputs are rewired, if necessary.

    -sel_by_wire
        only select the cell ports to rewire by the wire. if the selection
        contains a wire, than all cell ports driven by this wire are wired,
        if necessary.

    -sel_any_bit
        it is sufficient if the driver of any bit of a cell port is selected.
        by default all bits must be selected.

    -wires
        also add $slice and $concat cells to drive otherwise unused wires.

    -no_outputs
        do not rewire selected module outputs.

    -port <name>
        only rewire cell ports with the specified name. can be used multiple
        times. implies -no_output.

    -no_port <name>
        do not rewire cell ports with the specified name. can be used multiple
        times. can not be combined with -port <name>.

By default selected output wires and all cell ports of selected cells driven
by selected wires are rewired.
\end{lstlisting}

\section{splitnets -- split up multi-bit nets}
\label{cmd:splitnets}
\begin{lstlisting}[numbers=left,frame=single]
    splitnets [options] [selection]

This command splits multi-bit nets into single-bit nets.

    -format char1[char2[char3]]
        the first char is inserted between the net name and the bit index, the
        second char is appended to the netname. e.g. -format () creates net
        names like 'mysignal(42)'. the 3rd character is the range separation
        character when creating multi-bit wires. the default is '[]:'.

    -ports
        also split module ports. per default only internal signals are split.

    -driver
        don't blindly split nets in individual bits. instead look at the driver
        and split nets so that no driver drives only part of a net.
\end{lstlisting}

\section{stat -- print some statistics}
\label{cmd:stat}
\begin{lstlisting}[numbers=left,frame=single]
    stat [options] [selection]

Print some statistics (number of objects) on the selected portion of the
design.

    -top <module>
        print design hierarchy with this module as top. if the design is fully
        selected and a module has the 'top' attribute set, this module is used
        default value for this option.

    -liberty <liberty_file>
        use cell area information from the provided liberty file

    -width
        annotate internal cell types with their word width.
        e.g. $add_8 for an 8 bit wide $add cell.
\end{lstlisting}

\section{submod -- moving part of a module to a new submodule}
\label{cmd:submod}
\begin{lstlisting}[numbers=left,frame=single]
    submod [-copy] [selection]

This pass identifies all cells with the 'submod' attribute and moves them to
a newly created module. The value of the attribute is used as name for the
cell that replaces the group of cells with the same attribute value.

This pass can be used to create a design hierarchy in flat design. This can
be useful for analyzing or reverse-engineering a design.

This pass only operates on completely selected modules with no processes
or memories.


    submod -name <name> [-copy] [selection]

As above, but don't use the 'submod' attribute but instead use the selection.
Only objects from one module might be selected. The value of the -name option
is used as the value of the 'submod' attribute above.

By default the cells are 'moved' from the source module and the source module
will use an instance of the new module after this command is finished. Call
with -copy to not modify the source module.
\end{lstlisting}

\section{synth -- generic synthesis script}
\label{cmd:synth}
\begin{lstlisting}[numbers=left,frame=single]
    synth [options]

This command runs the default synthesis script. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -auto-top
        automatically determine the top of the design hierarchy

    -flatten
        flatten the design before synthesis. this will pass '-auto-top' to
        'hierarchy' if no top module is specified.

    -encfile <file>
        passed to 'fsm_recode' via 'fsm'

    -nofsm
        do not run FSM optimization

    -noabc
        do not run abc (as if yosys was compiled without ABC support)

    -noalumacc
        do not run 'alumacc' pass. i.e. keep arithmetic operators in
        their direct form ($add, $sub, etc.).

    -nordff
        passed to 'memory'. prohibits merging of FFs into memory read ports

    -noshare
        do not run SAT-based resource sharing

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top> | -auto-top]

    coarse:
        proc
        flatten    (if -flatten)
        opt_expr
        opt_clean
        check
        opt
        wreduce
        alumacc
        share
        opt
        fsm
        opt -fast
        memory -nomap
        opt_clean

    fine:
        opt -fast -full
        memory_map
        opt -full
        techmap
        opt -fast
        abc -fast
        opt -fast

    check:
        hierarchy -check
        stat
        check
\end{lstlisting}

\section{synth\_achronix -- synthesis for Acrhonix Speedster22i FPGAs.}
\label{cmd:synth_achronix}
\begin{lstlisting}[numbers=left,frame=single]
    synth_achronix [options]

This command runs synthesis for Achronix Speedster eFPGAs. This work is still experimental.

    -top <module>
        use the specified module as top module (default='top')

    -vout <file>
        write the design to the specified Verilog netlist file. writing of an
        output file is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -sv -lib +/achronix/speedster22i/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine -full
        memory_map
        opt -undriven -fine
        dffsr2dff
        dff2dffe -direct-match $_DFF_*
        opt -fine
        techmap -map +/techmap.v
        opt -full
        clean -purge
        setundef -undriven -zero
        abc -markgroups -dff    (only if -retime)

    map_luts:
        abc -lut 4
        clean

    map_cells:
        iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I
        techmap -map +/achronix/speedster22i/cells_map.v
        clean -purge

    check:
        hierarchy -check
        stat
        check -noinit

    vout:
        write_verilog -nodec -attr2comment -defparam -renameprefix syn_ <file-name>
\end{lstlisting}

\section{synth\_coolrunner2 -- synthesis for Xilinx Coolrunner-II CPLDs}
\label{cmd:synth_coolrunner2}
\begin{lstlisting}[numbers=left,frame=single]
    synth_coolrunner2 [options]

This command runs synthesis for Coolrunner-II CPLDs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.

    -top <module>
        use the specified module as top module (default='top')

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/coolrunner2/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic

    coarse:
        synth -run coarse

    fine:
        opt -fast -full
        techmap
        techmap -map +/coolrunner2/cells_latch.v
        dfflibmap -prepare -liberty +/coolrunner2/xc2_dff.lib

    map_tff:
        abc -g AND,XOR
        clean
        extract -map +/coolrunner2/tff_extract.v

    map_pla:
        abc -sop -I 40 -P 56
        clean

    map_cells:
        dfflibmap -liberty +/coolrunner2/xc2_dff.lib
        dffinit -ff FDCP Q INIT
        dffinit -ff FDCP_N Q INIT
        dffinit -ff FTCP Q INIT
        dffinit -ff FTCP_N Q INIT
        dffinit -ff LDCP Q INIT
        dffinit -ff LDCP_N Q INIT
        coolrunner2_sop
        iopadmap -bits -inpad IBUF O:I -outpad IOBUFE I:IO -inoutpad IOBUFE O:IO -toutpad IOBUFE E:I:IO -tinoutpad IOBUFE E:O:I:IO
        attrmvcp -attr src -attr LOC t:IOBUFE n:*
        attrmvcp -attr src -attr LOC -driven t:IBUF n:*
        splitnets
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_easic -- synthesis for eASIC platform}
\label{cmd:synth_easic}
\begin{lstlisting}[numbers=left,frame=single]
    synth_easic [options]

This command runs synthesis for eASIC platform.

    -top <module>
        use the specified module as top module

    -vlog <file>
        write the design to the specified structural Verilog file. writing of
        an output file is omitted if this parameter is not specified.

    -etools <path>
        set path to the eTools installation. (default=/opt/eTools)

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_liberty -lib <etools_phys_clk_lib>
        read_liberty -lib <etools_logic_lut_lib>
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap
        opt -fast
        abc -dff     (only if -retime)
        opt_clean    (only if -retime)

    map:
        dfflibmap -liberty <etools_phys_clk_lib>
        abc -liberty <etools_logic_lut_lib>
        opt_clean

    check:
        hierarchy -check
        stat
        check -noinit

    vlog:
        write_verilog -noexpr -attr2comment <file-name>
\end{lstlisting}

\section{synth\_ecp5 -- synthesis for ECP5 FPGAs}
\label{cmd:synth_ecp5}
\begin{lstlisting}[numbers=left,frame=single]
    synth_ecp5 [options]

This command runs synthesis for ECP5 FPGAs.

    -top <module>
        use the specified module as top module

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option

    -noccu2
        do not use CCU2 cells in output netlist

    -nodffe
        do not use flipflops with CE in output netlist

    -nobram
        do not use BRAM cells in output netlist

    -nodram
        do not use distributed RAM cells in output netlist

    -nomux
        do not use PFU muxes to implement LUTs larger than LUT4s

    -abc2
        run two passes of 'abc' for slightly improved logic density

    -vpr
        generate an output netlist (and BLIF file) suitable for VPR
        (this feature is experimental and incomplete)


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/ecp5/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    bram:    (skip if -nobram)

    dram:    (skip if -nodram)
        memory_bram -rules +/ecp5/dram.txt
        techmap -map +/ecp5/drams_map.v

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap -map +/techmap.v -map +/ecp5/arith_map.v
        abc -dff    (only if -retime)

    map_ffs:
        dffsr2dff
        dff2dffs
        opt_clean
        dff2dffe -direct-match $_DFF_* -direct-match $__DFFS_*
        techmap -D NO_LUT -map +/ecp5/cells_map.v
        opt_expr -mux_undef
        simplemap

    map_luts:
        abc          (only if -abc2)
        abc -lut 4:7
        clean

    map_cells:
        techmap -map +/ecp5/cells_map.v    (with -D NO_LUT in vpr mode)
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    blif:
        opt_clean -purge                                     (vpr mode)
        write_blif -attr -cname -conn -param <file-name>     (vpr mode)
        write_blif -gates -attr -param <file-name>           (non-vpr mode)

    edif:
        write_edif <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_gowin -- synthesis for Gowin FPGAs}
\label{cmd:synth_gowin}
\begin{lstlisting}[numbers=left,frame=single]
    synth_gowin [options]

This command runs synthesis for Gowin FPGAs. This work is experimental.

    -top <module>
        use the specified module as top module (default='top')

    -vout <file>
        write the design to the specified Verilog netlist file. writing of an
        output file is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/gowin/cells_sim.v
        hierarchy -check -top <top>

    flatten:
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap
        clean -purge
        splitnets -ports
        setundef -undriven -zero
        abc -dff    (only if -retime)

    map_luts:
        abc -lut 4
        clean

    map_cells:
        techmap -map +/gowin/cells_map.v
        hilomap -hicell VCC V -locell GND G
        iopadmap -inpad IBUF O:I -outpad OBUF I:O
        clean -purge

    check:
        hierarchy -check
        stat
        check -noinit

    vout:
        write_verilog -nodec -attr2comment -defparam -renameprefix gen <file-name>
\end{lstlisting}

\section{synth\_greenpak4 -- synthesis for GreenPAK4 FPGAs}
\label{cmd:synth_greenpak4}
\begin{lstlisting}[numbers=left,frame=single]
    synth_greenpak4 [options]

This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.

    -top <module>
        use the specified module as top module (default='top')

    -part <part>
        synthesize for the specified part. Valid values are SLG46140V,
        SLG46620V, and SLG46621V (default).

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/greenpak4/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic

    coarse:
        synth -run coarse

    fine:
        extract_counter -pout GP_DCMP,GP_DAC -maxwidth 14
        clean
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap
        techmap -map +/greenpak4/cells_latch.v
        dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib
        opt -fast
        abc -dff    (only if -retime)

    map_luts:
        nlutmap -assert -luts 0,6,8,2     (for -part SLG46140V)
        nlutmap -assert -luts 2,8,16,2    (for -part SLG46620V)
        nlutmap -assert -luts 2,8,16,2    (for -part SLG46621V)
        clean

    map_cells:
        shregmap -tech greenpak4
        dfflibmap -liberty +/greenpak4/gp_dff.lib
        dffinit -ff GP_DFF Q INIT
        dffinit -ff GP_DFFR Q INIT
        dffinit -ff GP_DFFS Q INIT
        dffinit -ff GP_DFFSR Q INIT
        iopadmap -bits -inpad GP_IBUF OUT:IN -outpad GP_OBUF IN:OUT -inoutpad GP_OBUF OUT:IN -toutpad GP_OBUFT OE:IN:OUT -tinoutpad GP_IOBUF OE:OUT:IN:IO
        attrmvcp -attr src -attr LOC t:GP_OBUF t:GP_OBUFT t:GP_IOBUF n:*
        attrmvcp -attr src -attr LOC -driven t:GP_IBUF n:*
        techmap -map +/greenpak4/cells_map.v
        greenpak4_dffinv
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_ice40 -- synthesis for iCE40 FPGAs}
\label{cmd:synth_ice40}
\begin{lstlisting}[numbers=left,frame=single]
    synth_ice40 [options]

This command runs synthesis for iCE40 FPGAs.

    -top <module>
        use the specified module as top module

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option

    -nocarry
        do not use SB_CARRY cells in output netlist

    -nodffe
        do not use SB_DFFE* cells in output netlist

    -nobram
        do not use SB_RAM40_4K* cells in output netlist

    -abc2
        run two passes of 'abc' for slightly improved logic density

    -vpr
        generate an output netlist (and BLIF file) suitable for VPR
        (this feature is experimental and incomplete)


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/ice40/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    bram:    (skip if -nobram)
        memory_bram -rules +/ice40/brams.txt
        techmap -map +/ice40/brams_map.v

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap -map +/techmap.v -map +/ice40/arith_map.v
        abc -dff    (only if -retime)
        ice40_opt

    map_ffs:
        dffsr2dff
        dff2dffe -direct-match $_DFF_*
        techmap -D NO_LUT -map +/ice40/cells_map.v
        opt_expr -mux_undef
        simplemap
        ice40_ffinit
        ice40_ffssr
        ice40_opt -full

    map_luts:
        abc          (only if -abc2)
        ice40_opt    (only if -abc2)
        techmap -map +/ice40/latches_map.v
        abc -lut 4
        clean

    map_cells:
        techmap -map +/ice40/cells_map.v    (with -D NO_LUT in vpr mode)
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    blif:
        opt_clean -purge                                     (vpr mode)
        write_blif -attr -cname -conn -param <file-name>     (vpr mode)
        write_blif -gates -attr -param <file-name>           (non-vpr mode)

    edif:
        write_edif <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_intel -- synthesis for Intel (Altera) FPGAs.}
\label{cmd:synth_intel}
\begin{lstlisting}[numbers=left,frame=single]
    synth_intel [options]

This command runs synthesis for Intel FPGAs.

    -family < max10 | a10gx | cyclone10 | cyclonev | cycloneiv | cycloneive>
        generate the synthesis netlist for the specified family.
        MAX10 is the default target if not family argument specified.
        For Cyclone GX devices, use cycloneiv argument; For Cyclone E, use cycloneive.
        Cyclone V and Arria 10 GX devices are experimental, use it with a10gx argument.

    -top <module>
        use the specified module as top module (default='top')

    -vqm <file>
        write the design to the specified Verilog Quartus Mapping File. Writing of an
        output file is omitted if this parameter is not specified.

    -vpr <file>
        write BLIF files for VPR flow experiments. The synthesized BLIF output file is not
        compatible with the Quartus flow. Writing of an
        output file is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noiopads
        do not use altsyncram cells in output netlist

    -nobram
        do not use altsyncram cells in output netlist

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option

The following commands are executed by this synthesis command:

    begin:

    family:
        read_verilog -sv -lib +/intel/max10/cells_sim.v
        read_verilog -sv -lib +/intel/common/m9k_bb.v
        read_verilog -sv -lib +/intel/common/altpll_bb.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    bram:    (skip if -nobram)
        memory_bram -rules +/intel/common/brams.txt
        techmap -map +/intel/common/brams_map.v

    fine:
        opt -fast -mux_undef -undriven -fine -full
        memory_map
        opt -undriven -fine
        dffsr2dff
        dff2dffe -direct-match $_DFF_*
        opt -fine
        techmap -map +/techmap.v
        opt -full
        clean -purge
        setundef -undriven -zero
        abc -markgroups -dff    (only if -retime)

    map_luts:
        abc -lut 4
        clean

    map_cells:
        iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I    (unless -noiopads)
        techmap -map +/intel/max10/cells_map.v
        dffinit -highlow -ff dffeas q power_up
        clean -purge

    check:
        hierarchy -check
        stat
        check -noinit

    vqm:
        write_verilog -attr2comment -defparam -nohex -decimal -renameprefix syn_ <file-name>

    vpr:
        opt_clean -purge
        write_blif <file-name>
\end{lstlisting}

\section{synth\_xilinx -- synthesis for Xilinx FPGAs}
\label{cmd:synth_xilinx}
\begin{lstlisting}[numbers=left,frame=single]
    synth_xilinx [options]

This command runs synthesis for Xilinx FPGAs. This command does not operate on
partly selected designs. At the moment this command creates netlists that are
compatible with 7-Series Xilinx devices.

    -top <module>
        use the specified module as top module

    -edif <file>
        write the design to the specified edif file. writing of an output file
        is omitted if this parameter is not specified.

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -vpr
        generate an output netlist (and BLIF file) suitable for VPR
        (this feature is experimental and incomplete)

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -flatten
        flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/xilinx/cells_sim.v
        read_verilog -lib +/xilinx/cells_xtra.v
        read_verilog -lib +/xilinx/brams_bb.v
        hierarchy -check -top <top>

    flatten:     (only if -flatten)
        proc
        flatten

    coarse:
        synth -run coarse

    bram:
        memory_bram -rules +/xilinx/brams.txt
        techmap -map +/xilinx/brams_map.v

    dram:
        memory_bram -rules +/xilinx/drams.txt
        techmap -map +/xilinx/drams_map.v

    fine:
        opt -fast -full
        memory_map
        dffsr2dff
        dff2dffe
        opt -full
        techmap -map +/techmap.v -map +/xilinx/arith_map.v
        opt -fast

    map_luts:
        abc -luts 2:2,3,6:5,10,20 [-dff]
        clean

    map_cells:
        techmap -map +/xilinx/cells_map.v (with -D NO_LUT in vpr mode)
        dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    edif:     (only if -edif)
        write_edif <file-name>

    blif:     (only if -blif)
        write_blif <file-name>
\end{lstlisting}

\section{tcl -- execute a TCL script file}
\label{cmd:tcl}
\begin{lstlisting}[numbers=left,frame=single]
    tcl <filename>

This command executes the tcl commands in the specified file.
Use 'yosys cmd' to run the yosys command 'cmd' from tcl.

The tcl command 'yosys -import' can be used to import all yosys
commands directly as tcl commands to the tcl shell. Yosys commands
'proc' and 'rename' are wrapped to tcl commands 'procs' and 'renames'
in order to avoid a name collision with the built in commands.
\end{lstlisting}

\section{techmap -- generic technology mapper}
\label{cmd:techmap}
\begin{lstlisting}[numbers=left,frame=single]
    techmap [-map filename] [selection]

This pass implements a very simple technology mapper that replaces cells in
the design with implementations given in form of a Verilog or ilang source
file.

    -map filename
        the library of cell implementations to be used.
        without this parameter a builtin library is used that
        transforms the internal RTL cells to the internal gate
        library.

    -map %<design-name>
        like -map above, but with an in-memory design instead of a file.

    -extern
        load the cell implementations as separate modules into the design
        instead of inlining them.

    -max_iter <number>
        only run the specified number of iterations.

    -recursive
        instead of the iterative breadth-first algorithm use a recursive
        depth-first algorithm. both methods should yield equivalent results,
        but may differ in performance.

    -autoproc
        Automatically call "proc" on implementations that contain processes.

    -assert
        this option will cause techmap to exit with an error if it can't map
        a selected cell. only cell types that end on an underscore are accepted
        as final cell types by this mode.

    -D <define>, -I <incdir>
        this options are passed as-is to the Verilog frontend for loading the
        map file. Note that the Verilog frontend is also called with the
        '-nooverwrite' option set.

When a module in the map file has the 'techmap_celltype' attribute set, it will
match cells with a type that match the text value of this attribute. Otherwise
the module name will be used to match the cell.

When a module in the map file has the 'techmap_simplemap' attribute set, techmap
will use 'simplemap' (see 'help simplemap') to map cells matching the module.

When a module in the map file has the 'techmap_maccmap' attribute set, techmap
will use 'maccmap' (see 'help maccmap') to map cells matching the module.

When a module in the map file has the 'techmap_wrap' attribute set, techmap
will create a wrapper for the cell and then run the command string that the
attribute is set to on the wrapper module.

All wires in the modules from the map file matching the pattern _TECHMAP_*
or *._TECHMAP_* are special wires that are used to pass instructions from
the mapping module to the techmap command. At the moment the following special
wires are supported:

    _TECHMAP_FAIL_
        When this wire is set to a non-zero constant value, techmap will not
        use this module and instead try the next module with a matching
        'techmap_celltype' attribute.

        When such a wire exists but does not have a constant value after all
        _TECHMAP_DO_* commands have been executed, an error is generated.

    _TECHMAP_DO_*
        This wires are evaluated in alphabetical order. The constant text value
        of this wire is a yosys command (or sequence of commands) that is run
        by techmap on the module. A common use case is to run 'proc' on modules
        that are written using always-statements.

        When such a wire has a non-constant value at the time it is to be
        evaluated, an error is produced. That means it is possible for such a
        wire to start out as non-constant and evaluate to a constant value
        during processing of other _TECHMAP_DO_* commands.

        A _TECHMAP_DO_* command may start with the special token 'CONSTMAP; '.
        in this case techmap will create a copy for each distinct configuration
        of constant inputs and shorted inputs at this point and import the
        constant and connected bits into the map module. All further commands
        are executed in this copy. This is a very convenient way of creating
        optimized specializations of techmap modules without using the special
        parameters described below.

        A _TECHMAP_DO_* command may start with the special token 'RECURSION; '.
        then techmap will recursively replace the cells in the module with their
        implementation. This is not affected by the -max_iter option.

        It is possible to combine both prefixes to 'RECURSION; CONSTMAP; '.

In addition to this special wires, techmap also supports special parameters in
modules in the map file:

    _TECHMAP_CELLTYPE_
        When a parameter with this name exists, it will be set to the type name
        of the cell that matches the module.

    _TECHMAP_CONSTMSK_<port-name>_
    _TECHMAP_CONSTVAL_<port-name>_
        When this pair of parameters is available in a module for a port, then
        former has a 1-bit for each constant input bit and the latter has the
        value for this bit. The unused bits of the latter are set to undef (x).

    _TECHMAP_BITS_CONNMAP_
    _TECHMAP_CONNMAP_<port-name>_
        For an N-bit port, the _TECHMAP_CONNMAP_<port-name>_ parameter, if it
        exists, will be set to an N*_TECHMAP_BITS_CONNMAP_ bit vector containing
        N words (of _TECHMAP_BITS_CONNMAP_ bits each) that assign each single
        bit driver a unique id. The values 0-3 are reserved for 0, 1, x, and z.
        This can be used to detect shorted inputs.

When a module in the map file has a parameter where the according cell in the
design has a port, the module from the map file is only used if the port in
the design is connected to a constant value. The parameter is then set to the
constant value.

A cell with the name _TECHMAP_REPLACE_ in the map file will inherit the name
and attributes of the cell that is being replaced.

See 'help extract' for a pass that does the opposite thing.

See 'help flatten' for a pass that does flatten the design (which is
essentially techmap but using the design itself as map library).
\end{lstlisting}

\section{tee -- redirect command output to file}
\label{cmd:tee}
\begin{lstlisting}[numbers=left,frame=single]
    tee [-q] [-o logfile|-a logfile] cmd

Execute the specified command, optionally writing the commands output to the
specified logfile(s).

    -q
        Do not print output to the normal destination (console and/or log file)

    -o logfile
        Write output to this file, truncate if exists.

    -a logfile
        Write output to this file, append if exists.

    +INT, -INT
        Add/subract INT from the -v setting for this command.
\end{lstlisting}

\section{test\_abcloop -- automatically test handling of loops in abc command}
\label{cmd:test_abcloop}
\begin{lstlisting}[numbers=left,frame=single]
    test_abcloop [options]

Test handling of logic loops in ABC.

    -n {integer}
        create this number of circuits and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).
\end{lstlisting}

\section{test\_autotb -- generate simple test benches}
\label{cmd:test_autotb}
\begin{lstlisting}[numbers=left,frame=single]
    test_autotb [options] [filename]

Automatically create primitive Verilog test benches for all modules in the
design. The generated testbenches toggle the input pins of the module in
a semi-random manner and dumps the resulting output signals.

This can be used to check the synthesis results for simple circuits by
comparing the testbench output for the input files and the synthesis results.

The backend automatically detects clock signals. Additionally a signal can
be forced to be interpreted as clock signal by setting the attribute
'gentb_clock' on the signal.

The attribute 'gentb_constant' can be used to force a signal to a constant
value after initialization. This can e.g. be used to force a reset signal
low in order to explore more inner states in a state machine.

    -n <int>
        number of iterations the test bench should run (default = 1000)
\end{lstlisting}

\section{test\_cell -- automatically test the implementation of a cell type}
\label{cmd:test_cell}
\begin{lstlisting}[numbers=left,frame=single]
    test_cell [options] {cell-types}

Tests the internal implementation of the given cell type (for example '$add')
by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..

Run with 'all' instead of a cell type to run the test on all supported
cell types. Use for example 'all /$add' for all cell types except $add.

    -n {integer}
        create this number of cell instances and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).

    -f {ilang_file}
        don't generate circuits. instead load the specified ilang file.

    -w {filename_prefix}
        don't test anything. just generate the circuits and write them
        to ilang files with the specified prefix

    -map {filename}
        pass this option to techmap.

    -simlib
        use "techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc"

    -aigmap
        instead of calling "techmap", call "aigmap"

    -muxdiv
        when creating test benches with dividers, create an additional mux
        to mask out the division-by-zero case

    -script {script_file}
        instead of calling "techmap", call "script {script_file}".

    -const
        set some input bits to random constant values

    -nosat
        do not check SAT model or run SAT equivalence checking

    -noeval
        do not check const-eval models

    -edges
        test cell edges db creator against sat-based implementation

    -v
        print additional debug information to the console

    -vlog {filename}
        create a Verilog test bench to test simlib and write_verilog
\end{lstlisting}

\section{torder -- print cells in topological order}
\label{cmd:torder}
\begin{lstlisting}[numbers=left,frame=single]
    torder [options] [selection]

This command prints the selected cells in topological order.

    -stop <cell_type> <cell_port>
        do not use the specified cell port in topological sorting

    -noautostop
        by default Q outputs of internal FF cells and memory read port outputs
        are not used in topological sorting. this option deactivates that.
\end{lstlisting}

\section{trace -- redirect command output to file}
\label{cmd:trace}
\begin{lstlisting}[numbers=left,frame=single]
    trace cmd

Execute the specified command, logging all changes the command performs on
the design in real time.
\end{lstlisting}

\section{tribuf -- infer tri-state buffers}
\label{cmd:tribuf}
\begin{lstlisting}[numbers=left,frame=single]
    tribuf [options] [selection]

This pass transforms $mux cells with 'z' inputs to tristate buffers.

    -merge
        merge multiple tri-state buffers driving the same net
        into a single buffer.

    -logic
        convert tri-state buffers that do not drive output ports
        to non-tristate logic. this option implies -merge.
\end{lstlisting}

\section{uniquify -- create unique copies of modules}
\label{cmd:uniquify}
\begin{lstlisting}[numbers=left,frame=single]
    uniquify [selection]

By default, a module that is instantiated by several other modules is only
kept once in the design. This preserves the original modularity of the design
and reduces the overall size of the design in memory. But it prevents certain
optimizations and other operations on the design. This pass creates unique
modules for all selected cells. The created modules are marked with the
'unique' attribute.

This commands only operates on modules that by themself have the 'unique'
attribute set (the 'top' module is unique implicitly).
\end{lstlisting}

\section{verific -- load Verilog and VHDL designs using Verific}
\label{cmd:verific}
\begin{lstlisting}[numbers=left,frame=single]
    verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv} <verilog-file>..

Load the specified Verilog/SystemVerilog files into Verific.

All files specified in one call to this command are one compilation unit.
Files passed to different calls to this command are treated as belonging to
different compilation units.

Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.
The macros SYNTHESIS and VERIFIC are defined implicitly.


    verific -formal <verilog-file>..

Like -sv, but define FORMAL instead of SYNTHESIS.


    verific {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008|-vhdl} <vhdl-file>..

Load the specified VHDL files into Verific.


    verific -work <libname> {-sv|-vhdl|...} <hdl-file>

Load the specified Verilog/SystemVerilog/VHDL file into the specified library.
(default library when -work is not present: "work")


    verific -vlog-incdir <directory>..

Add Verilog include directories.


    verific -vlog-libdir <directory>..

Add Verilog library directories. Verific will search in this directories to
find undefined modules.


    verific -vlog-define <macro>[=<value>]..

Add Verilog defines.


    verific -vlog-undef <macro>..

Remove Verilog defines previously set with -vlog-define.


    verific -set-error <msg_id>..
    verific -set-warning <msg_id>..
    verific -set-info <msg_id>..
    verific -set-ignore <msg_id>..

Set message severity. <msg_id> is the string in square brackets when a message
is printed, such as VERI-1209.


    verific -import [options] <top-module>..

Elaborate the design for the specified top modules, import to Yosys and
reset the internal state of Verific.

Import options:

  -all
    Elaborate all modules, not just the hierarchy below the given top
    modules. With this option the list of modules to import is optional.

  -gates
    Create a gate-level netlist.

  -flatten
    Flatten the design in Verific before importing.

  -extnets
    Resolve references to external nets by adding module ports as needed.

  -autocover
    Generate automatic cover statements for all asserts

  -v, -vv
    Verbose log messages. (-vv is even more verbose than -v.)

The following additional import options are useful for debugging the Verific
bindings (for Yosys and/or Verific developers):

  -k
    Keep going after an unsupported verific primitive is found. The
    unsupported primitive is added as blockbox module to the design.
    This will also add all SVA related cells to the design parallel to
    the checker logic inferred by it.

  -V
    Import Verific netlist as-is without translating to Yosys cell types. 

  -nosva
    Ignore SVA properties, do not infer checker logic.

  -L <int>
    Maximum number of ctrl bits for SVA checker FSMs (default=16).

  -n
    Keep all Verific names on instances and nets. By default only
    user-declared names are preserved.

  -d <dump_file>
    Dump the Verific netlist as a verilog file.

Visit http://verific.com/ for more information on Verific.
\end{lstlisting}

\section{verilog\_defaults -- set default options for read\_verilog}
\label{cmd:verilog_defaults}
\begin{lstlisting}[numbers=left,frame=single]
    verilog_defaults -add [options]

Add the specified options to the list of default options to read_verilog.


    verilog_defaults -clear

Clear the list of Verilog default options.


    verilog_defaults -push
    verilog_defaults -pop

Push or pop the list of default options to a stack. Note that -push does
not imply -clear.
\end{lstlisting}

\section{verilog\_defines -- define and undefine verilog defines}
\label{cmd:verilog_defines}
\begin{lstlisting}[numbers=left,frame=single]
    verilog_defines [options]

Define and undefine verilog preprocessor macros.

    -Dname[=definition]
        define the preprocessor symbol 'name' and set its optional value
        'definition'

    -Uname[=definition]
        undefine the preprocessor symbol 'name'
\end{lstlisting}

\section{wreduce -- reduce the word size of operations if possible}
\label{cmd:wreduce}
\begin{lstlisting}[numbers=left,frame=single]
    wreduce [options] [selection]

This command reduces the word size of operations. For example it will replace
the 32 bit adders in the following code with adders of more appropriate widths:

    module test(input [3:0] a, b, c, output [7:0] y);
        assign y = a + b + c + 1;
    endmodule

Options:

    -memx
        Do not change the width of memory address ports. Use this options in
        flows that use the 'memory_memx' pass.
\end{lstlisting}

\section{write\_aiger -- write design to AIGER file}
\label{cmd:write_aiger}
\begin{lstlisting}[numbers=left,frame=single]
    write_aiger [options] [filename]

Write the current design to an AIGER file. The design must be flattened and
must not contain any cell types except $_AND_, $_NOT_, simple FF types,
$assert and $assume cells, and $initstate cells.

$assert and $assume cells are converted to AIGER bad state properties and
invariant constraints.

    -ascii
        write ASCII version of AGIER format

    -zinit
        convert FFs to zero-initialized FFs, adding additional inputs for
        uninitialized FFs.

    -miter
        design outputs are AIGER bad state properties

    -symbols
        include a symbol table in the generated AIGER file

    -map <filename>
        write an extra file with port and latch symbols

    -vmap <filename>
        like -map, but more verbose
\end{lstlisting}

\section{write\_blif -- write design to BLIF file}
\label{cmd:write_blif}
\begin{lstlisting}[numbers=left,frame=single]
    write_blif [options] [filename]

Write the current design to an BLIF file.

    -top top_module
        set the specified module as design top module

    -buf <cell-type> <in-port> <out-port>
        use cells of type <cell-type> with the specified port names for buffers

    -unbuf <cell-type> <in-port> <out-port>
        replace buffer cells with the specified name and port names with
        a .names statement that models a buffer

    -true <cell-type> <out-port>
    -false <cell-type> <out-port>
    -undef <cell-type> <out-port>
        use the specified cell types to drive nets that are constant 1, 0, or
        undefined. when '-' is used as <cell-type>, then <out-port> specifies
        the wire name to be used for the constant signal and no cell driving
        that wire is generated. when '+' is used as <cell-type>, then <out-port>
        specifies the wire name to be used for the constant signal and a .names
        statement is generated to drive the wire.

    -noalias
        if a net name is aliasing another net name, then by default a net
        without fanout is created that is driven by the other net. This option
        suppresses the generation of this nets without fanout.

The following options can be useful when the generated file is not going to be
read by a BLIF parser but a custom tool. It is recommended to not name the output
file *.blif when any of this options is used.

    -icells
        do not translate Yosys's internal gates to generic BLIF logic
        functions. Instead create .subckt or .gate lines for all cells.

    -gates
        print .gate instead of .subckt lines for all cells that are not
        instantiations of other modules from this design.

    -conn
        do not generate buffers for connected wires. instead use the
        non-standard .conn statement.

    -attr
        use the non-standard .attr statement to write cell attributes

    -param
        use the non-standard .param statement to write cell parameters

    -cname
        use the non-standard .cname statement to write cell names

    -iname, -iattr
        enable -cname and -attr functionality for .names statements
        (the .cname and .attr statements will be included in the BLIF
        output after the truth table for the .names statement)

    -blackbox
        write blackbox cells with .blackbox statement.

    -impltf
        do not write definitions for the $true, $false and $undef wires.
\end{lstlisting}

\section{write\_btor -- write design to BTOR file}
\label{cmd:write_btor}
\begin{lstlisting}[numbers=left,frame=single]
    write_btor [options] [filename]

Write a BTOR description of the current design.

  -v
    Add comments and indentation to BTOR output file

  -s
    Output only a single bad property for all asserts
\end{lstlisting}

\section{write\_edif -- write design to EDIF netlist file}
\label{cmd:write_edif}
\begin{lstlisting}[numbers=left,frame=single]
    write_edif [options] [filename]

Write the current design to an EDIF netlist file.

    -top top_module
        set the specified module as design top module

    -nogndvcc
        do not create "GND" and "VCC" cells. (this will produce an error
        if the design contains constant nets. use "hilomap" to map to custom
        constant drivers first)

    -pvector {par|bra|ang}
        sets the delimiting character for module port rename clauses to
        parentheses, square brackets, or angle brackets.

Unfortunately there are different "flavors" of the EDIF file format. This
command generates EDIF files for the Xilinx place&route tools. It might be
necessary to make small modifications to this command when a different tool
is targeted.
\end{lstlisting}

\section{write\_file -- write a text to a file}
\label{cmd:write_file}
\begin{lstlisting}[numbers=left,frame=single]
    write_file [options] output_file [input_file]

Write the text from the input file to the output file.

    -a
        Append to output file (instead of overwriting)


Inside a script the input file can also can a here-document:

    write_file hello.txt <<EOT
    Hello World!
    EOT
\end{lstlisting}

\section{write\_firrtl -- write design to a FIRRTL file}
\label{cmd:write_firrtl}
\begin{lstlisting}[numbers=left,frame=single]
    write_firrtl [options] [filename]

Write a FIRRTL netlist of the current design.
\end{lstlisting}

\section{write\_ilang -- write design to ilang file}
\label{cmd:write_ilang}
\begin{lstlisting}[numbers=left,frame=single]
    write_ilang [filename]

Write the current design to an 'ilang' file. (ilang is a text representation
of a design in yosys's internal format.)

    -selected
        only write selected parts of the design.
\end{lstlisting}

\section{write\_intersynth -- write design to InterSynth netlist file}
\label{cmd:write_intersynth}
\begin{lstlisting}[numbers=left,frame=single]
    write_intersynth [options] [filename]

Write the current design to an 'intersynth' netlist file. InterSynth is
a tool for Coarse-Grain Example-Driven Interconnect Synthesis.

    -notypes
        do not generate celltypes and conntypes commands. i.e. just output
        the netlists. this is used for postsilicon synthesis.

    -lib <verilog_or_ilang_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

    -selected
        only write selected modules. modules must be selected entirely or
        not at all.

http://www.clifford.at/intersynth/
\end{lstlisting}

\section{write\_json -- write design to a JSON file}
\label{cmd:write_json}
\begin{lstlisting}[numbers=left,frame=single]
    write_json [options] [filename]

Write a JSON netlist of the current design.

    -aig
        include AIG models for the different gate types


The general syntax of the JSON output created by this command is as follows:

    {
      "modules": {
        <module_name>: {
          "ports": {
            <port_name>: <port_details>,
            ...
          },
          "cells": {
            <cell_name>: <cell_details>,
            ...
          },
          "netnames": {
            <net_name>: <net_details>,
            ...
          }
        }
      },
      "models": {
        ...
      },
    }

Where <port_details> is:

    {
      "direction": <"input" | "output" | "inout">,
      "bits": <bit_vector>
    }

And <cell_details> is:

    {
      "hide_name": <1 | 0>,
      "type": <cell_type>,
      "parameters": {
        <parameter_name>: <parameter_value>,
        ...
      },
      "attributes": {
        <attribute_name>: <attribute_value>,
        ...
      },
      "port_directions": {
        <port_name>: <"input" | "output" | "inout">,
        ...
      },
      "connections": {
        <port_name>: <bit_vector>,
        ...
      },
    }

And <net_details> is:

    {
      "hide_name": <1 | 0>,
      "bits": <bit_vector>
    }

The "hide_name" fields are set to 1 when the name of this cell or net is
automatically created and is likely not of interest for a regular user.

The "port_directions" section is only included for cells for which the
interface is known.

Module and cell ports and nets can be single bit wide or vectors of multiple
bits. Each individual signal bit is assigned a unique integer. The <bit_vector>
values referenced above are vectors of this integers. Signal bits that are
connected to a constant driver are denoted as string "0" or "1" instead of
a number.

Numeric parameter and attribute values up to 32 bits are written as decimal
values. Numbers larger than that are written as string holding the binary
representation of the value.

For example the following Verilog code:

    module test(input x, y);
      (* keep *) foo #(.P(42), .Q(1337))
          foo_inst (.A({x, y}), .B({y, x}), .C({4'd10, {4{x}}}));
    endmodule

Translates to the following JSON output:

    {
      "modules": {
        "test": {
          "ports": {
            "x": {
              "direction": "input",
              "bits": [ 2 ]
            },
            "y": {
              "direction": "input",
              "bits": [ 3 ]
            }
          },
          "cells": {
            "foo_inst": {
              "hide_name": 0,
              "type": "foo",
              "parameters": {
                "Q": 1337,
                "P": 42
              },
              "attributes": {
                "keep": 1,
                "src": "test.v:2"
              },
              "connections": {
                "C": [ 2, 2, 2, 2, "0", "1", "0", "1" ],
                "B": [ 2, 3 ],
                "A": [ 3, 2 ]
              }
            }
          },
          "netnames": {
            "y": {
              "hide_name": 0,
              "bits": [ 3 ],
              "attributes": {
                "src": "test.v:1"
              }
            },
            "x": {
              "hide_name": 0,
              "bits": [ 2 ],
              "attributes": {
                "src": "test.v:1"
              }
            }
          }
        }
      }
    }

The models are given as And-Inverter-Graphs (AIGs) in the following form:

    "models": {
      <model_name>: [
        /*   0 */ [ <node-spec> ],
        /*   1 */ [ <node-spec> ],
        /*   2 */ [ <node-spec> ],
        ...
      ],
      ...
    },

The following node-types may be used:

    [ "port", <portname>, <bitindex>, <out-list> ]
      - the value of the specified input port bit

    [ "nport", <portname>, <bitindex>, <out-list> ]
      - the inverted value of the specified input port bit

    [ "and", <node-index>, <node-index>, <out-list> ]
      - the ANDed value of the specified nodes

    [ "nand", <node-index>, <node-index>, <out-list> ]
      - the inverted ANDed value of the specified nodes

    [ "true", <out-list> ]
      - the constant value 1

    [ "false", <out-list> ]
      - the constant value 0

All nodes appear in topological order. I.e. only nodes with smaller indices
are referenced by "and" and "nand" nodes.

The optional <out-list> at the end of a node specification is a list of
output portname and bitindex pairs, specifying the outputs driven by this node.

For example, the following is the model for a 3-input 3-output $reduce_and cell
inferred by the following code:

    module test(input [2:0] in, output [2:0] out);
      assign in = &out;
    endmodule

    "$reduce_and:3U:3": [
      /*   0 */ [ "port", "A", 0 ],
      /*   1 */ [ "port", "A", 1 ],
      /*   2 */ [ "and", 0, 1 ],
      /*   3 */ [ "port", "A", 2 ],
      /*   4 */ [ "and", 2, 3, "Y", 0 ],
      /*   5 */ [ "false", "Y", 1, "Y", 2 ]
    ]

Future version of Yosys might add support for additional fields in the JSON
format. A program processing this format must ignore all unknown fields.
\end{lstlisting}

\section{write\_simplec -- convert design to simple C code}
\label{cmd:write_simplec}
\begin{lstlisting}[numbers=left,frame=single]
    write_simplec [options] [filename]

Write simple C code for simulating the design. The C code writen can be used to
simulate the design in a C environment, but the purpose of this command is to
generate code that works well with C-based formal verification.

    -verbose
        this will print the recursive walk used to export the modules.

    -i8, -i16, -i32, -i64
        set the maximum integer bit width to use in the generated code.

THIS COMMAND IS UNDER CONSTRUCTION
\end{lstlisting}

\section{write\_smt2 -- write design to SMT-LIBv2 file}
\label{cmd:write_smt2}
\begin{lstlisting}[numbers=left,frame=single]
    write_smt2 [options] [filename]

Write a SMT-LIBv2 [1] description of the current design. For a module with name
'<mod>' this will declare the sort '<mod>_s' (state of the module) and will
define and declare functions operating on that state.

The following SMT2 functions are generated for a module with name '<mod>'.
Some declarations/definitions are printed with a special comment. A prover
using the SMT2 files can use those comments to collect all relevant metadata
about the design.

    ; yosys-smt2-module <mod>
    (declare-sort |<mod>_s| 0)
        The sort representing a state of module <mod>.

    (define-fun |<mod>_h| ((state |<mod>_s|)) Bool (...))
        This function must be asserted for each state to establish the
        design hierarchy.

    ; yosys-smt2-input <wirename> <width>
    ; yosys-smt2-output <wirename> <width>
    ; yosys-smt2-register <wirename> <width>
    ; yosys-smt2-wire <wirename> <width>
    (define-fun |<mod>_n <wirename>| (|<mod>_s|) (_ BitVec <width>))
    (define-fun |<mod>_n <wirename>| (|<mod>_s|) Bool)
        For each port, register, and wire with the 'keep' attribute set an
        accessor function is generated. Single-bit wires are returned as Bool,
        multi-bit wires as BitVec.

    ; yosys-smt2-cell <submod> <instancename>
    (declare-fun |<mod>_h <instancename>| (|<mod>_s|) |<submod>_s|)
        There is a function like that for each hierarchical instance. It
        returns the sort that represents the state of the sub-module that
        implements the instance.

    (declare-fun |<mod>_is| (|<mod>_s|) Bool)
        This function must be asserted 'true' for initial states, and 'false'
        otherwise.

    (define-fun |<mod>_i| ((state |<mod>_s|)) Bool (...))
        This function must be asserted 'true' for initial states. For
        non-initial states it must be left unconstrained.

    (define-fun |<mod>_t| ((state |<mod>_s|) (next_state |<mod>_s|)) Bool (...))
        This function evaluates to 'true' if the states 'state' and
        'next_state' form a valid state transition.

    (define-fun |<mod>_a| ((state |<mod>_s|)) Bool (...))
        This function evaluates to 'true' if all assertions hold in the state.

    (define-fun |<mod>_u| ((state |<mod>_s|)) Bool (...))
        This function evaluates to 'true' if all assumptions hold in the state.

    ; yosys-smt2-assert <id> <filename:linenum>
    (define-fun |<mod>_a <id>| ((state |<mod>_s|)) Bool (...))
        Each $assert cell is converted into one of this functions. The function
        evaluates to 'true' if the assert statement holds in the state.

    ; yosys-smt2-assume <id> <filename:linenum>
    (define-fun |<mod>_u <id>| ((state |<mod>_s|)) Bool (...))
        Each $assume cell is converted into one of this functions. The function
        evaluates to 'true' if the assume statement holds in the state.

    ; yosys-smt2-cover <id> <filename:linenum>
    (define-fun |<mod>_c <id>| ((state |<mod>_s|)) Bool (...))
        Each $cover cell is converted into one of this functions. The function
        evaluates to 'true' if the cover statement is activated in the state.

Options:

    -verbose
        this will print the recursive walk used to export the modules.

    -stbv
        Use a BitVec sort to represent a state instead of an uninterpreted
        sort. As a side-effect this will prevent use of arrays to model
        memories.

    -stdt
        Use SMT-LIB 2.6 style datatypes to represent a state instead of an
        uninterpreted sort.

    -nobv
        disable support for BitVec (FixedSizeBitVectors theory). without this
        option multi-bit wires are represented using the BitVec sort and
        support for coarse grain cells (incl. arithmetic) is enabled.

    -nomem
        disable support for memories (via ArraysEx theory). this option is
        implied by -nobv. only $mem cells without merged registers in
        read ports are supported. call "memory" with -nordff to make sure
        that no registers are merged into $mem read ports. '<mod>_m' functions
        will be generated for accessing the arrays that are used to represent
        memories.

    -wires
        create '<mod>_n' functions for all public wires. by default only ports,
        registers, and wires with the 'keep' attribute are exported.

    -tpl <template_file>
        use the given template file. the line containing only the token '%%'
        is replaced with the regular output of this command.

[1] For more information on SMT-LIBv2 visit http://smt-lib.org/ or read David
R. Cok's tutorial: http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

---------------------------------------------------------------------------

Example:

Consider the following module (test.v). We want to prove that the output can
never transition from a non-zero value to a zero value.

        module test(input clk, output reg [3:0] y);
          always @(posedge clk)
            y <= (y << 1) | ^y;
        endmodule

For this proof we create the following template (test.tpl).

        ; we need QF_UFBV for this poof
        (set-logic QF_UFBV)

        ; insert the auto-generated code here
        %%

        ; declare two state variables s1 and s2
        (declare-fun s1 () test_s)
        (declare-fun s2 () test_s)

        ; state s2 is the successor of state s1
        (assert (test_t s1 s2))

        ; we are looking for a model with y non-zero in s1
        (assert (distinct (|test_n y| s1) #b0000))

        ; we are looking for a model with y zero in s2
        (assert (= (|test_n y| s2) #b0000))

        ; is there such a model?
        (check-sat)

The following yosys script will create a 'test.smt2' file for our proof:

        read_verilog test.v
        hierarchy -check; proc; opt; check -assert
        write_smt2 -bv -tpl test.tpl test.smt2

Running 'cvc4 test.smt2' will print 'unsat' because y can never transition
from non-zero to zero in the test design.
\end{lstlisting}

\section{write\_smv -- write design to SMV file}
\label{cmd:write_smv}
\begin{lstlisting}[numbers=left,frame=single]
    write_smv [options] [filename]

Write an SMV description of the current design.

    -verbose
        this will print the recursive walk used to export the modules.

    -tpl <template_file>
        use the given template file. the line containing only the token '%%'
        is replaced with the regular output of this command.

THIS COMMAND IS UNDER CONSTRUCTION
\end{lstlisting}

\section{write\_spice -- write design to SPICE netlist file}
\label{cmd:write_spice}
\begin{lstlisting}[numbers=left,frame=single]
    write_spice [options] [filename]

Write the current design to an SPICE netlist file.

    -big_endian
        generate multi-bit ports in MSB first order
        (default is LSB first)

    -neg net_name
        set the net name for constant 0 (default: Vss)

    -pos net_name
        set the net name for constant 1 (default: Vdd)

    -nc_prefix
        prefix for not-connected nets (default: _NC)

    -inames
        include names of internal ($-prefixed) nets in outputs
        (default is to use net numbers instead)

    -top top_module
        set the specified module as design top module
\end{lstlisting}

\section{write\_table -- write design as connectivity table}
\label{cmd:write_table}
\begin{lstlisting}[numbers=left,frame=single]
    write_table [options] [filename]

Write the current design as connectivity table. The output is a tab-separated
ASCII table with the following columns:

  module name
  cell name
  cell type
  cell port
  direction
  signal

module inputs and outputs are output using cell type and port '-' and with
'pi' (primary input) or 'po' (primary output) or 'pio' as direction.
\end{lstlisting}

\section{write\_verilog -- write design to Verilog file}
\label{cmd:write_verilog}
\begin{lstlisting}[numbers=left,frame=single]
    write_verilog [options] [filename]

Write the current design to a Verilog file.

    -norename
        without this option all internal object names (the ones with a dollar
        instead of a backslash prefix) are changed to short names in the
        format '_<number>_'.

    -renameprefix <prefix>
        insert this prefix in front of auto-generated instance names

    -noattr
        with this option no attributes are included in the output

    -attr2comment
        with this option attributes are included as comments in the output

    -noexpr
        without this option all internal cells are converted to Verilog
        expressions.

    -nodec
        32-bit constant values are by default dumped as decimal numbers,
        not bit pattern. This option deactivates this feature and instead
        will write out all constants in binary.

    -decimal
        dump 32-bit constants in decimal and without size and radix

    -nohex
        constant values that are compatible with hex output are usually
        dumped as hex values. This option deactivates this feature and
        instead will write out all constants in binary.

    -nostr
        Parameters and attributes that are specified as strings in the
        original input will be output as strings by this back-end. This
        deactivates this feature and instead will write string constants
        as binary numbers.

    -defparam
        Use 'defparam' statements instead of the Verilog-2001 syntax for
        cell parameters.

    -blackboxes
        usually modules with the 'blackbox' attribute are ignored. with
        this option set only the modules with the 'blackbox' attribute
        are written to the output file.

    -selected
        only write selected modules. modules must be selected entirely or
        not at all.

    -v
        verbose output (print new names of all renamed wires and cells)

Note that RTLIL processes can't always be mapped directly to Verilog
always blocks. This frontend should only be used to export an RTLIL
netlist, i.e. after the "proc" pass has been used to convert all
processes to logic networks and registers. A warning is generated when
this command is called on a design with RTLIL processes.
\end{lstlisting}

\section{zinit -- add inverters so all FF are zero-initialized}
\label{cmd:zinit}
\begin{lstlisting}[numbers=left,frame=single]
    zinit [options] [selection]

Add inverters as needed to make all FFs zero-initialized.

    -all
        also add zero initialization to uninitialized FFs
\end{lstlisting}