aboutsummaryrefslogtreecommitdiffstats
path: root/docs/hazmat/primitives/asymmetric/rsa.rst
blob: 924696db35dd9121bac3612a80f24655209367bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
.. hazmat::

RSA
===

.. module:: cryptography.hazmat.primitives.asymmetric.rsa

`RSA`_ is a `public-key`_ algorithm for encrypting and signing messages.

Generation
~~~~~~~~~~

Unlike symmetric cryptography, where the key is typically just a random series
of bytes, RSA keys have a complex internal structure with `specific
mathematical properties`_.

.. function:: generate_private_key(public_exponent, key_size, backend)

    .. versionadded:: 0.5

    Generates a new RSA private key using the provided ``backend``.
    ``key_size`` describes how many bits long the key should be, larger keys
    provide more security, currently ``1024`` and below are considered
    breakable, and ``2048`` or ``4096`` are reasonable default key sizes for
    new keys. The ``public_exponent`` indicates what one mathematical property
    of the key generation will be, ``65537`` should almost always be used.

    .. doctest::

        >>> from cryptography.hazmat.backends import default_backend
        >>> from cryptography.hazmat.primitives.asymmetric import rsa
        >>> private_key = rsa.generate_private_key(
        ...     public_exponent=65537,
        ...     key_size=2048,
        ...     backend=default_backend()
        ... )

    :param int public_exponent: The public exponent of the new key.
        Usually one of the small Fermat primes 3, 5, 17, 257, 65537. If in
        doubt you should `use 65537`_.

    :param int key_size: The length of the modulus in bits. For keys
        generated in 2015 it is strongly recommended to be
        `at least 2048`_ (See page 41). It must not be less than 512.
        Some backends may have additional limitations.

    :param backend: A backend which provides
        :class:`~cryptography.hazmat.backends.interfaces.RSABackend`.

    :return: An instance of
        :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`.

    :raises cryptography.exceptions.UnsupportedAlgorithm: This is raised if
        the provided ``backend`` does not implement
        :class:`~cryptography.hazmat.backends.interfaces.RSABackend`

Key loading
~~~~~~~~~~~

If you already have an on-disk key in the PEM format (which are recognizable by
the distinctive ``-----BEGIN {format}-----`` and ``-----END {format}-----``
markers), you can load it:

.. code-block:: pycon

    >>> from cryptography.hazmat.primitives import serialization

    >>> with open("path/to/key.pem", "rb") as key_file:
...     private_key = serialization.load_pem_private_key(
...             key_file.read(),
...         password=None,
...             backend=default_backend    ()
...     )
        
Serialized keys may optionally be encrypted on disk using a password. In this
example we loaded an unencrypted key, and therefore we did not provide a
password. If the key is encrypted we can pass a ``bytes`` object as the
``password`` argument.

There is also support for :func:`loading public keys in the SSH format
<cryptography.hazmat.primitives.serialization.load_ssh_public_key>`.

Key serialization
~~~~~~~~~~~~~~~~~

If you have a key that you've loaded or generated which implements the
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization`
interface you can use
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization.private_bytes`
to serialize the key.

.. doctest::

    >>> from cryptography.hazmat.primitives import serialization
    >>> pem = private_key.private_bytes(
    ...    encoding=serialization.Encoding.PEM,
    ...    format=serialization.Format.PKCS8,
    ...    encryption_algorithm=serialization.BestAvailableEncryption(b'mypassword')
    ... )
    >>> pem.splitlines()[0]
    '-----BEGIN ENCRYPTED PRIVATE KEY-----'

It is also possible to serialize without encryption using
:class:`~cryptography.hazmat.primitives.serialization.NoEncryption`.

.. doctest::

    >>> pem = private_key.private_bytes(
    ...    encoding=serialization.Encoding.PEM,
    ...    format=serialization.Format.TraditionalOpenSSL,
    ...    encryption_algorithm=serialization.NoEncryption()
    ... )
    >>> pem.splitlines()[0]
    '-----BEGIN RSA PRIVATE KEY-----'

Signing
~~~~~~~

A private key can be used to sign a message. This allows anyone with the public
key to verify that the message was created by someone who possesses the
corresponding private key. RSA signatures require a specific hash function, and
padding to be used. Here is an example of signing ``message`` using RSA, with a
secure hash function and padding:

.. doctest::

    >>> from cryptography.hazmat.primitives import hashes
    >>> from cryptography.hazmat.primitives.asymmetric import padding

    >>> signer = private_key.signer(
    ...     padding.PSS(
    ...         mgf=padding.MGF1(hashes.SHA256()),
    ...         salt_length=padding.PSS.MAX_LENGTH
    ...     ),
    ...     hashes.SHA256()
    ... )
    >>> message = b"A message I want to sign"
    >>> signer.update(message)
    >>> signature = signer.finalize()

Valid paddings for signatures are
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PSS` and
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``PSS``
is the recommended choice for any new protocols or applications, ``PKCS1v15``
should only be used to support legacy protocols.

Verification
~~~~~~~~~~~~

The previous section describes what to do if you have a private key and want to
sign something. If you have a public key, a message, and a signature, you can
check that the public key genuinely was used to sign that specific message. You
also need to know which signing algorithm was used:

.. doctest::

    >>> public_key = private_key.public_key()
    >>> verifier = public_key.verifier(
    ...     signature,
    ...     padding.PSS(
    ...         mgf=padding.MGF1(hashes.SHA256()),
    ...         salt_length=padding.PSS.MAX_LENGTH
    ...     ),
    ...     hashes.SHA256()
    ... )
    >>> verifier.update(message)
    >>> verifier.verify()

If the signature does not match, ``verify()`` will raise an
:class:`~cryptography.exceptions.InvalidSignature` exception.

Encryption
~~~~~~~~~~

RSA encryption is interesting because encryption is performed using the
**public** key, meaning anyone can encrypt data. The data is then decrypted
using the **private** key.

Like signatures, RSA supports encryption with several different padding
options. Here's an example using a secure padding and hash function:

.. doctest::

    >>> message = b"encrypted data"
    >>> ciphertext = public_key.encrypt(
    ...     message,
    ...     padding.OAEP(
    ...         mgf=padding.MGF1(algorithm=hashes.SHA1()),
    ...         algorithm=hashes.SHA1(),
    ...         label=None
    ...     )
    ... )

Valid paddings for encryption are
:class:`~cryptography.hazmat.primitives.asymmetric.padding.OAEP` and
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``OAEP``
is the recommended choice for any new protocols or applications, ``PKCS1v15``
should only be used to support legacy protocols.


Decryption
~~~~~~~~~~

Once you have an encrypted message, it can be decrypted using the private key:

.. doctest::

    >>> plaintext = private_key.decrypt(
    ...     ciphertext,
    ...     padding.OAEP(
    ...         mgf=padding.MGF1(algorithm=hashes.SHA1()),
    ...         algorithm=hashes.SHA1(),
    ...         label=None
    ...     )
    ... )
    >>> plaintext == message
    True

Padding
~~~~~~~

.. module:: cryptography.hazmat.primitives.asymmetric.padding

.. class:: AsymmetricPadding

    .. versionadded:: 0.2

    .. attribute:: name

.. class:: PSS(mgf, salt_length)

    .. versionadded:: 0.3

    .. versionchanged:: 0.4
        Added ``salt_length`` parameter.

    PSS (Probabilistic Signature Scheme) is a signature scheme defined in
    :rfc:`3447`. It is more complex than PKCS1 but possesses a `security proof`_.
    This is the `recommended padding algorithm`_ for RSA signatures. It cannot
    be used with RSA encryption.

    :param mgf: A mask generation function object. At this time the only
        supported MGF is :class:`MGF1`.

    :param int salt_length: The length of the salt. It is recommended that this
        be set to ``PSS.MAX_LENGTH``.

    .. attribute:: MAX_LENGTH

        Pass this attribute to ``salt_length`` to get the maximum salt length
        available.

.. class:: OAEP(mgf, label)

    .. versionadded:: 0.4

    OAEP (Optimal Asymmetric Encryption Padding) is a padding scheme defined in
    :rfc:`3447`. It provides probabilistic encryption and is `proven secure`_
    against several attack types. This is the `recommended padding algorithm`_
    for RSA encryption. It cannot be used with RSA signing.

    :param mgf: A mask generation function object. At this time the only
        supported MGF is :class:`MGF1`.

    :param bytes label: A label to apply. This is a rarely used field and
        should typically be set to ``None`` or ``b""``, which are equivalent.

.. class:: PKCS1v15()

    .. versionadded:: 0.3

    PKCS1 v1.5 (also known as simply PKCS1) is a simple padding scheme
    developed for use with RSA keys. It is defined in :rfc:`3447`. This padding
    can be used for signing and encryption.

    It is not recommended that ``PKCS1v15`` be used for new applications,
    :class:`OAEP` should be preferred for encryption and :class:`PSS` should be
    preferred for signatures.

Mask generation functions
-------------------------

.. class:: MGF1(algorithm)

    .. versionadded:: 0.3

    .. versionchanged:: 0.6
        Removed the deprecated ``salt_length`` parameter.

    MGF1 (Mask Generation Function 1) is used as the mask generation function
    in :class:`PSS` padding. It takes a hash algorithm and a salt length.

    :param algorithm: An instance of a
        :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`
        provider.

Numbers
~~~~~~~

.. currentmodule:: cryptography.hazmat.primitives.asymmetric.rsa

These classes hold the constituent components of an RSA key. They are useful
only when more traditional :doc:`/hazmat/primitives/asymmetric/serialization`
is unavailable.

.. class:: RSAPublicNumbers(e, n)

    .. versionadded:: 0.5

    The collection of integers that make up an RSA public key.

    .. attribute:: n

        :type: int

        The public modulus.

    .. attribute:: e

        :type: int

        The public exponent.

    .. method:: public_key(backend)

        :param backend: A
            :class:`~cryptography.hazmat.backends.interfaces.RSABackend`
            provider.

        :returns: A new instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey`
            provider.

.. class:: RSAPrivateNumbers(p, q, d, dmp1, dmq1, iqmp, public_numbers)

    .. versionadded:: 0.5

    The collection of integers that make up an RSA private key.

    .. warning::

        With the exception of the integers contained in the
        :class:`RSAPublicNumbers` all attributes of this class must be kept
        secret. Revealing them will compromise the security of any
        cryptographic operations performed with a key loaded from them.

    .. attribute:: public_numbers

        :type: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`

        The :class:`RSAPublicNumbers` which makes up the RSA public key
        associated with this RSA private key.

    .. attribute:: p

        :type: int

        ``p``, one of the two primes composing ``n``.

    .. attribute:: q

        :type: int

        ``q``, one of the two primes composing ``n``.

    .. attribute:: d

        :type: int

        The private exponent.

    .. attribute:: dmp1

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: d mod (p-1)

    .. attribute:: dmq1

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: d mod (q-1)

    .. attribute:: iqmp

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: q\ :sup:`-1` mod p

    .. method:: private_key(backend)

        :param backend: A new instance of a
            :class:`~cryptography.hazmat.backends.interfaces.RSABackend`
            provider.

        :returns: A
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`
            provider.

Handling partial RSA private keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you are trying to load RSA private keys yourself you may find that not all
parameters required by ``RSAPrivateNumbers`` are available. In particular the
`Chinese Remainder Theorem`_ (CRT) values ``dmp1``, ``dmq1``, ``iqmp`` may be
missing or present in a different form. For example `OpenPGP`_ does not include
the ``iqmp``, ``dmp1`` or ``dmq1`` parameters.

The following functions are provided for users who want to work with keys like
this without having to do the math themselves.

.. function:: rsa_crt_iqmp(p, q)

    .. versionadded:: 0.4

    Computes the ``iqmp`` (also known as ``qInv``) parameter from the RSA
    primes ``p`` and ``q``.

.. function:: rsa_crt_dmp1(private_exponent, p)

    .. versionadded:: 0.4

    Computes the ``dmp1`` parameter from the RSA private exponent and prime
    ``p``.

.. function:: rsa_crt_dmq1(private_exponent, q)

    .. versionadded:: 0.4

    Computes the ``dmq1`` parameter from the RSA private exponent and prime
    ``q``.

.. function:: rsa_recover_prime_factors(n, e, d)

    .. versionadded:: 0.8

    Computes the prime factors ``(p, q)`` given the modulus, public exponent,
    and private exponent.

    .. note::

        When recovering prime factors this algorithm will always return ``p``
        and ``q`` such that ``p < q``.

    :return: A tuple ``(p, q)``


Key interfaces
~~~~~~~~~~~~~~

.. class:: RSAPrivateKey

    .. versionadded:: 0.2

    An `RSA`_ private key.

    .. method:: signer(padding, algorithm)

        .. versionadded:: 0.3

        Sign data which can be verified later by others using the public key.

        :param padding: An instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :param algorithm: An instance of a
            :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`
            provider.

        :returns:
            :class:`~cryptography.hazmat.primitives.asymmetric.AsymmetricSignatureContext`

    .. method:: decrypt(ciphertext, padding)

        .. versionadded:: 0.4

        Decrypt data that was encrypted with the public key.

        :param bytes ciphertext: The ciphertext to decrypt.

        :param padding: An instance of an
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :return bytes: Decrypted data.

    .. method:: public_key()

        :return: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey`

        An RSA public key object corresponding to the values of the private key.

    .. attribute:: key_size

        :type: int

        The bit length of the modulus.


.. class:: RSAPrivateKeyWithNumbers

    .. versionadded:: 0.5

    Extends :class:`RSAPrivateKey`.

    .. method:: private_numbers()

        Create a
        :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
        object.

        :returns: An
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
            instance.


.. class:: RSAPrivateKeyWithSerialization

    .. versionadded:: 0.8

    Extends :class:`RSAPrivateKey`.

    .. method:: private_numbers()

        Create a
        :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
        object.

        :returns: An
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
            instance.

    .. method:: private_bytes(encoding, format, encryption_algorithm)

        Allows serialization of the key to bytes. Encoding (
        :attr:`~cryptography.hazmat.primitives.serialization.Encoding.PEM` or
        :attr:`~cryptography.hazmat.primitives.serialization.Encoding.DER`),
        format (
        :attr:`~cryptography.hazmat.primitives.serialization.Format.TraditionalOpenSSL`
        or
        :attr:`~cryptography.hazmat.primitives.serialization.Format.PKCS8`) and
        encryption algorithm (such as
        :class:`~cryptography.hazmat.primitives.serialization.BestAvailableEncryption`
        or :class:`~cryptography.hazmat.primitives.serialization.NoEncryption`)
        are chosen to define the exact serialization.

        :param encoding: A value from the
            :class:`~cryptography.hazmat.primitives.serialization.Encoding` enum.

        :param format: A value from the
            :class:`~cryptography.hazmat.primitives.serialization.Format` enum.

        :param encryption_algorithm: An instance of an object conforming to the
            :class:`~cryptography.hazmat.primitives.serialization.KeySerializationEncryption`
            interface.

        :return bytes: Serialized key.


.. class:: RSAPublicKey

    .. versionadded:: 0.2

    An `RSA`_ public key.

    .. method:: verifier(signature, padding, algorithm)

        .. versionadded:: 0.3

        Verify data was signed by the private key associated with this public
        key.

        :param bytes signature: The signature to verify.

        :param padding: An instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :param algorithm: An instance of a
            :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`
            provider.

        :returns:
            :class:`~cryptography.hazmat.primitives.asymmetric.AsymmetricVerificationContext`

    .. method:: encrypt(plaintext, padding)

        .. versionadded:: 0.4

        Encrypt data with the public key.

        :param bytes plaintext: The plaintext to encrypt.

        :param padding: An instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :return bytes: Encrypted data.

    .. attribute:: key_size

        :type: int

        The bit length of the modulus.


.. class:: RSAPublicKeyWithNumbers

    .. versionadded:: 0.5

    Extends :class:`RSAPublicKey`.

    .. method:: public_numbers()

        Create a
        :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`
        object.

        :returns: An
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`
            instance.


.. _`RSA`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)
.. _`public-key`: https://en.wikipedia.org/wiki/Public-key_cryptography
.. _`specific mathematical properties`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation
.. _`use 65537`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
.. _`at least 2048`: http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
.. _`OpenPGP`: https://en.wikipedia.org/wiki/Pretty_Good_Privacy
.. _`Chinese Remainder Theorem`: https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm
.. _`security proof`: http://eprint.iacr.org/2001/062.pdf
.. _`recommended padding algorithm`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
.. _`proven secure`: http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf