aboutsummaryrefslogtreecommitdiffstats
path: root/cryptography/hazmat/backends/openssl/backend.py
blob: 37d1c35e60383b0f9958219a6354236309b6c4c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import collections
import itertools
import math

import six

from cryptography import utils
from cryptography.exceptions import (
    AlreadyFinalized, InternalError, InvalidSignature, InvalidTag,
    UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import (
    CMACBackend, CipherBackend, DSABackend, HMACBackend, HashBackend,
    PBKDF2HMACBackend, RSABackend
)
from cryptography.hazmat.bindings.openssl.binding import Binding
from cryptography.hazmat.primitives import hashes, interfaces
from cryptography.hazmat.primitives.asymmetric import dsa, rsa
from cryptography.hazmat.primitives.asymmetric.padding import (
    MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.ciphers.algorithms import (
    AES, ARC4, Blowfish, CAST5, Camellia, IDEA, SEED, TripleDES
)
from cryptography.hazmat.primitives.ciphers.modes import (
    CBC, CFB, CTR, ECB, GCM, OFB
)


_OpenSSLError = collections.namedtuple("_OpenSSLError",
                                       ["code", "lib", "func", "reason"])


@utils.register_interface(CipherBackend)
@utils.register_interface(CMACBackend)
@utils.register_interface(DSABackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
@utils.register_interface(RSABackend)
class Backend(object):
    """
    OpenSSL API binding interfaces.
    """
    name = "openssl"

    def __init__(self):
        self._binding = Binding()
        self._ffi = self._binding.ffi
        self._lib = self._binding.lib

        self._binding.init_static_locks()

        # adds all ciphers/digests for EVP
        self._lib.OpenSSL_add_all_algorithms()
        # registers available SSL/TLS ciphers and digests
        self._lib.SSL_library_init()
        # loads error strings for libcrypto and libssl functions
        self._lib.SSL_load_error_strings()

        self._cipher_registry = {}
        self._register_default_ciphers()
        self.activate_osrandom_engine()

    def activate_builtin_random(self):
        # Obtain a new structural reference.
        e = self._lib.ENGINE_get_default_RAND()
        if e != self._ffi.NULL:
            self._lib.ENGINE_unregister_RAND(e)
            # Reset the RNG to use the new engine.
            self._lib.RAND_cleanup()
            # decrement the structural reference from get_default_RAND
            res = self._lib.ENGINE_finish(e)
            assert res == 1

    def activate_osrandom_engine(self):
        # Unregister and free the current engine.
        self.activate_builtin_random()
        # Fetches an engine by id and returns it. This creates a structural
        # reference.
        e = self._lib.ENGINE_by_id(self._lib.Cryptography_osrandom_engine_id)
        assert e != self._ffi.NULL
        # Initialize the engine for use. This adds a functional reference.
        res = self._lib.ENGINE_init(e)
        assert res == 1
        # Set the engine as the default RAND provider.
        res = self._lib.ENGINE_set_default_RAND(e)
        assert res == 1
        # Decrement the structural ref incremented by ENGINE_by_id.
        res = self._lib.ENGINE_free(e)
        assert res == 1
        # Decrement the functional ref incremented by ENGINE_init.
        res = self._lib.ENGINE_finish(e)
        assert res == 1
        # Reset the RNG to use the new engine.
        self._lib.RAND_cleanup()

    def openssl_version_text(self):
        """
        Friendly string name of linked OpenSSL.

        Example: OpenSSL 1.0.1e 11 Feb 2013
        """
        return self._ffi.string(self._lib.OPENSSL_VERSION_TEXT).decode("ascii")

    def create_hmac_ctx(self, key, algorithm):
        return _HMACContext(self, key, algorithm)

    def hash_supported(self, algorithm):
        digest = self._lib.EVP_get_digestbyname(algorithm.name.encode("ascii"))
        return digest != self._ffi.NULL

    def hmac_supported(self, algorithm):
        return self.hash_supported(algorithm)

    def create_hash_ctx(self, algorithm):
        return _HashContext(self, algorithm)

    def cipher_supported(self, cipher, mode):
        try:
            adapter = self._cipher_registry[type(cipher), type(mode)]
        except KeyError:
            return False
        evp_cipher = adapter(self, cipher, mode)
        return self._ffi.NULL != evp_cipher

    def register_cipher_adapter(self, cipher_cls, mode_cls, adapter):
        if (cipher_cls, mode_cls) in self._cipher_registry:
            raise ValueError("Duplicate registration for: {0} {1}".format(
                cipher_cls, mode_cls)
            )
        self._cipher_registry[cipher_cls, mode_cls] = adapter

    def _register_default_ciphers(self):
        for cipher_cls, mode_cls in itertools.product(
            [AES, Camellia],
            [CBC, CTR, ECB, OFB, CFB],
        ):
            self.register_cipher_adapter(
                cipher_cls,
                mode_cls,
                GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
            )
        for mode_cls in [CBC, CFB, OFB]:
            self.register_cipher_adapter(
                TripleDES,
                mode_cls,
                GetCipherByName("des-ede3-{mode.name}")
            )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                Blowfish,
                mode_cls,
                GetCipherByName("bf-{mode.name}")
            )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                SEED,
                mode_cls,
                GetCipherByName("seed-{mode.name}")
            )
        for cipher_cls, mode_cls in itertools.product(
            [CAST5, IDEA],
            [CBC, OFB, CFB, ECB],
        ):
            self.register_cipher_adapter(
                cipher_cls,
                mode_cls,
                GetCipherByName("{cipher.name}-{mode.name}")
            )
        self.register_cipher_adapter(
            ARC4,
            type(None),
            GetCipherByName("rc4")
        )
        self.register_cipher_adapter(
            AES,
            GCM,
            GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
        )

    def create_symmetric_encryption_ctx(self, cipher, mode):
        return _CipherContext(self, cipher, mode, _CipherContext._ENCRYPT)

    def create_symmetric_decryption_ctx(self, cipher, mode):
        return _CipherContext(self, cipher, mode, _CipherContext._DECRYPT)

    def pbkdf2_hmac_supported(self, algorithm):
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            return self.hmac_supported(algorithm)
        else:
            # OpenSSL < 1.0.0 has an explicit PBKDF2-HMAC-SHA1 function,
            # so if the PBKDF2_HMAC function is missing we only support
            # SHA1 via PBKDF2_HMAC_SHA1.
            return isinstance(algorithm, hashes.SHA1)

    def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
                           key_material):
        buf = self._ffi.new("char[]", length)
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            evp_md = self._lib.EVP_get_digestbyname(
                algorithm.name.encode("ascii"))
            assert evp_md != self._ffi.NULL
            res = self._lib.PKCS5_PBKDF2_HMAC(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                evp_md,
                length,
                buf
            )
            assert res == 1
        else:
            if not isinstance(algorithm, hashes.SHA1):
                raise UnsupportedAlgorithm(
                    "This version of OpenSSL only supports PBKDF2HMAC with "
                    "SHA1",
                    _Reasons.UNSUPPORTED_HASH
                )
            res = self._lib.PKCS5_PBKDF2_HMAC_SHA1(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                length,
                buf
            )
            assert res == 1

        return self._ffi.buffer(buf)[:]

    def _err_string(self, code):
        err_buf = self._ffi.new("char[]", 256)
        self._lib.ERR_error_string_n(code, err_buf, 256)
        return self._ffi.string(err_buf, 256)[:]

    def _consume_errors(self):
        errors = []
        while True:
            code = self._lib.ERR_get_error()
            if code == 0:
                break

            lib = self._lib.ERR_GET_LIB(code)
            func = self._lib.ERR_GET_FUNC(code)
            reason = self._lib.ERR_GET_REASON(code)

            errors.append(_OpenSSLError(code, lib, func, reason))
        return errors

    def _unknown_error(self, error):
        return InternalError(
            "Unknown error code {0} from OpenSSL, "
            "you should probably file a bug. {1}".format(
                error.code, self._err_string(error.code)
            )
        )

    def _bn_to_int(self, bn):
        if six.PY3:
            # Python 3 has constant time from_bytes, so use that.

            bn_num_bytes = (self._lib.BN_num_bits(bn) + 7) // 8
            bin_ptr = self._ffi.new("unsigned char[]", bn_num_bytes)
            bin_len = self._lib.BN_bn2bin(bn, bin_ptr)
            assert bin_len > 0
            assert bin_ptr != self._ffi.NULL
            return int.from_bytes(self._ffi.buffer(bin_ptr)[:bin_len], "big")

        else:
            # Under Python 2 the best we can do is hex()

            hex_cdata = self._lib.BN_bn2hex(bn)
            assert hex_cdata != self._ffi.NULL
            hex_str = self._ffi.string(hex_cdata)
            self._lib.OPENSSL_free(hex_cdata)
            return int(hex_str, 16)

    def _int_to_bn(self, num, bn=None):
        """
        Converts a python integer to a BIGNUM. The returned BIGNUM will not
        be garbage collected (to support adding them to structs that take
        ownership of the object). Be sure to register it for GC if it will
        be discarded after use.
        """

        if bn is None:
            bn = self._ffi.NULL

        if six.PY3:
            # Python 3 has constant time to_bytes, so use that.

            binary = num.to_bytes(int(num.bit_length() / 8.0 + 1), "big")
            bn_ptr = self._lib.BN_bin2bn(binary, len(binary), bn)
            assert bn_ptr != self._ffi.NULL
            return bn_ptr

        else:
            # Under Python 2 the best we can do is hex()

            hex_num = hex(num).rstrip("L").lstrip("0x").encode("ascii") or b"0"
            bn_ptr = self._ffi.new("BIGNUM **")
            bn_ptr[0] = bn
            res = self._lib.BN_hex2bn(bn_ptr, hex_num)
            assert res != 0
            assert bn_ptr[0] != self._ffi.NULL
            return bn_ptr[0]

    def generate_rsa_private_key(self, public_exponent, key_size):
        if public_exponent < 3:
            raise ValueError("public_exponent must be >= 3")

        if public_exponent & 1 == 0:
            raise ValueError("public_exponent must be odd")

        if key_size < 512:
            raise ValueError("key_size must be at least 512-bits")

        ctx = self._lib.RSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.RSA_free)

        bn = self._int_to_bn(public_exponent)
        bn = self._ffi.gc(bn, self._lib.BN_free)

        res = self._lib.RSA_generate_key_ex(
            ctx, key_size, bn, self._ffi.NULL
        )
        assert res == 1

        return self._rsa_cdata_to_private_key(ctx)

    def _new_evp_pkey(self):
        evp_pkey = self._lib.EVP_PKEY_new()
        assert evp_pkey != self._ffi.NULL
        return self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)

    def _rsa_private_key_to_evp_pkey(self, private_key):
        evp_pkey = self._new_evp_pkey()
        rsa_cdata = self._rsa_cdata_from_private_key(private_key)

        res = self._lib.EVP_PKEY_assign_RSA(evp_pkey, rsa_cdata)
        assert res == 1

        return evp_pkey

    def _rsa_public_key_to_evp_pkey(self, public_key):
        evp_pkey = self._new_evp_pkey()
        rsa_cdata = self._rsa_cdata_from_public_key(public_key)

        res = self._lib.EVP_PKEY_assign_RSA(evp_pkey, rsa_cdata)
        assert res == 1

        return evp_pkey

    def _rsa_cdata_to_private_key(self, cdata):
        return rsa.RSAPrivateKey(
            p=self._bn_to_int(cdata.p),
            q=self._bn_to_int(cdata.q),
            dmp1=self._bn_to_int(cdata.dmp1),
            dmq1=self._bn_to_int(cdata.dmq1),
            iqmp=self._bn_to_int(cdata.iqmp),
            private_exponent=self._bn_to_int(cdata.d),
            public_exponent=self._bn_to_int(cdata.e),
            modulus=self._bn_to_int(cdata.n),
        )

    def _rsa_cdata_from_private_key(self, private_key):
        # Does not GC the RSA cdata. You *must* make sure it's freed
        # correctly yourself!
        ctx = self._lib.RSA_new()
        assert ctx != self._ffi.NULL
        ctx.p = self._int_to_bn(private_key.p)
        ctx.q = self._int_to_bn(private_key.q)
        ctx.d = self._int_to_bn(private_key.d)
        ctx.e = self._int_to_bn(private_key.e)
        ctx.n = self._int_to_bn(private_key.n)
        ctx.dmp1 = self._int_to_bn(private_key.dmp1)
        ctx.dmq1 = self._int_to_bn(private_key.dmq1)
        ctx.iqmp = self._int_to_bn(private_key.iqmp)
        res = self._lib.RSA_blinding_on(ctx, self._ffi.NULL)
        assert res == 1

        return ctx

    def _rsa_cdata_from_public_key(self, public_key):
        # Does not GC the RSA cdata. You *must* make sure it's freed
        # correctly yourself!

        ctx = self._lib.RSA_new()
        assert ctx != self._ffi.NULL
        ctx.e = self._int_to_bn(public_key.e)
        ctx.n = self._int_to_bn(public_key.n)
        res = self._lib.RSA_blinding_on(ctx, self._ffi.NULL)
        assert res == 1

        return ctx

    def create_rsa_signature_ctx(self, private_key, padding, algorithm):
        return _RSASignatureContext(self, private_key, padding, algorithm)

    def create_rsa_verification_ctx(self, public_key, signature, padding,
                                    algorithm):
        return _RSAVerificationContext(self, public_key, signature, padding,
                                       algorithm)

    def mgf1_hash_supported(self, algorithm):
        if self._lib.Cryptography_HAS_MGF1_MD:
            return self.hash_supported(algorithm)
        else:
            return isinstance(algorithm, hashes.SHA1)

    def generate_dsa_parameters(self, key_size):
        if key_size not in (1024, 2048, 3072):
            raise ValueError(
                "Key size must be 1024 or 2048 or 3072 bits")

        if (self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f and
                key_size > 1024):
            raise ValueError(
                "Key size must be 1024 because OpenSSL < 1.0.0 doesn't "
                "support larger key sizes")

        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)

        res = self._lib.DSA_generate_parameters_ex(
            ctx, key_size, self._ffi.NULL, 0,
            self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
        )

        assert res == 1

        return dsa.DSAParameters(
            modulus=self._bn_to_int(ctx.p),
            subgroup_order=self._bn_to_int(ctx.q),
            generator=self._bn_to_int(ctx.g)
        )

    def generate_dsa_private_key(self, parameters):
        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)
        ctx.p = self._int_to_bn(parameters.p)
        ctx.q = self._int_to_bn(parameters.q)
        ctx.g = self._int_to_bn(parameters.g)

        self._lib.DSA_generate_key(ctx)

        return dsa.DSAPrivateKey(
            modulus=self._bn_to_int(ctx.p),
            subgroup_order=self._bn_to_int(ctx.q),
            generator=self._bn_to_int(ctx.g),
            x=self._bn_to_int(ctx.priv_key),
            y=self._bn_to_int(ctx.pub_key)
        )

    def create_dsa_verification_ctx(self, public_key, signature,
                                    algorithm):
        return _DSAVerificationContext(self, public_key, signature,
                                       algorithm)

    def _dsa_cdata_from_public_key(self, public_key):
        # Does not GC the DSA cdata. You *must* make sure it's freed
        # correctly yourself!
        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        parameters = public_key.parameters()
        ctx.p = self._int_to_bn(parameters.p)
        ctx.q = self._int_to_bn(parameters.q)
        ctx.g = self._int_to_bn(parameters.g)
        ctx.pub_key = self._int_to_bn(public_key.y)
        return ctx

    def dsa_hash_supported(self, algorithm):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return isinstance(algorithm, hashes.SHA1)
        else:
            return self.hash_supported(algorithm)

    def dsa_parameters_supported(self, p, q, g):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return (utils.bit_length(p) <= 1024 and utils.bit_length(q) <= 160)
        else:
            return True

    def decrypt_rsa(self, private_key, ciphertext, padding):
        key_size_bytes = int(math.ceil(private_key.key_size / 8.0))
        if key_size_bytes != len(ciphertext):
            raise ValueError("Ciphertext length must be equal to key size.")

        return self._enc_dec_rsa(private_key, ciphertext, padding)

    def encrypt_rsa(self, public_key, plaintext, padding):
        return self._enc_dec_rsa(public_key, plaintext, padding)

    def _enc_dec_rsa(self, key, data, padding):
        if isinstance(padding, PKCS1v15):
            padding_enum = self._lib.RSA_PKCS1_PADDING
        elif isinstance(padding, OAEP):
            padding_enum = self._lib.RSA_PKCS1_OAEP_PADDING
            if not isinstance(padding._mgf, MGF1):
                raise UnsupportedAlgorithm(
                    "Only MGF1 is supported by this backend",
                    _Reasons.UNSUPPORTED_MGF
                )

            if not isinstance(padding._mgf._algorithm, hashes.SHA1):
                raise UnsupportedAlgorithm(
                    "This backend supports only SHA1 inside MGF1 when "
                    "using OAEP",
                    _Reasons.UNSUPPORTED_HASH
                )

            if padding._label is not None and padding._label != b"":
                raise ValueError("This backend does not support OAEP labels")

            if not isinstance(padding._algorithm, hashes.SHA1):
                raise UnsupportedAlgorithm(
                    "This backend only supports SHA1 when using OAEP",
                    _Reasons.UNSUPPORTED_HASH
                )
        else:
            raise UnsupportedAlgorithm(
                "{0} is not supported by this backend".format(
                    padding.name
                ),
                _Reasons.UNSUPPORTED_PADDING
            )

        if self._lib.Cryptography_HAS_PKEY_CTX:
            return self._enc_dec_rsa_pkey_ctx(key, data, padding_enum)
        else:
            return self._enc_dec_rsa_098(key, data, padding_enum)

    def _enc_dec_rsa_pkey_ctx(self, key, data, padding_enum):
        if isinstance(key, rsa.RSAPublicKey):
            init = self._lib.EVP_PKEY_encrypt_init
            crypt = self._lib.Cryptography_EVP_PKEY_encrypt
            evp_pkey = self._rsa_public_key_to_evp_pkey(key)
        else:
            init = self._lib.EVP_PKEY_decrypt_init
            crypt = self._lib.Cryptography_EVP_PKEY_decrypt
            evp_pkey = self._rsa_private_key_to_evp_pkey(key)

        pkey_ctx = self._lib.EVP_PKEY_CTX_new(
            evp_pkey, self._ffi.NULL
        )
        assert pkey_ctx != self._ffi.NULL
        pkey_ctx = self._ffi.gc(pkey_ctx, self._lib.EVP_PKEY_CTX_free)
        res = init(pkey_ctx)
        assert res == 1
        res = self._lib.EVP_PKEY_CTX_set_rsa_padding(
            pkey_ctx, padding_enum)
        assert res > 0
        buf_size = self._lib.EVP_PKEY_size(evp_pkey)
        assert buf_size > 0
        outlen = self._ffi.new("size_t *", buf_size)
        buf = self._ffi.new("char[]", buf_size)
        res = crypt(
            pkey_ctx,
            buf,
            outlen,
            data,
            len(data)
        )
        if res <= 0:
            self._handle_rsa_enc_dec_error(key)

        return self._ffi.buffer(buf)[:outlen[0]]

    def _enc_dec_rsa_098(self, key, data, padding_enum):
        if isinstance(key, rsa.RSAPublicKey):
            crypt = self._lib.RSA_public_encrypt
            rsa_cdata = self._rsa_cdata_from_public_key(key)
        else:
            crypt = self._lib.RSA_private_decrypt
            rsa_cdata = self._rsa_cdata_from_private_key(key)

        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
        key_size = self._lib.RSA_size(rsa_cdata)
        assert key_size > 0
        buf = self._ffi.new("unsigned char[]", key_size)
        res = crypt(
            len(data),
            data,
            buf,
            rsa_cdata,
            padding_enum
        )
        if res < 0:
            self._handle_rsa_enc_dec_error(key)

        return self._ffi.buffer(buf)[:res]

    def _handle_rsa_enc_dec_error(self, key):
        errors = self._consume_errors()
        assert errors
        assert errors[0].lib == self._lib.ERR_LIB_RSA
        if isinstance(key, rsa.RSAPublicKey):
            assert (errors[0].reason ==
                    self._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
            raise ValueError(
                "Data too long for key size. Encrypt less data or use a "
                "larger key size"
            )
        else:
            assert (
                errors[0].reason == self._lib.RSA_R_BLOCK_TYPE_IS_NOT_01 or
                errors[0].reason == self._lib.RSA_R_BLOCK_TYPE_IS_NOT_02
            )
            raise ValueError("Decryption failed")

    def cmac_algorithm_supported(self, algorithm):
        return (
            self._lib.Cryptography_HAS_CMAC == 1
            and self.cipher_supported(algorithm, CBC(
                b"\x00" * algorithm.block_size))
        )

    def create_cmac_ctx(self, algorithm):
        return _CMACContext(self, algorithm)


class GetCipherByName(object):
    def __init__(self, fmt):
        self._fmt = fmt

    def __call__(self, backend, cipher, mode):
        cipher_name = self._fmt.format(cipher=cipher, mode=mode).lower()
        return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii"))


@utils.register_interface(interfaces.CipherContext)
@utils.register_interface(interfaces.AEADCipherContext)
@utils.register_interface(interfaces.AEADEncryptionContext)
class _CipherContext(object):
    _ENCRYPT = 1
    _DECRYPT = 0

    def __init__(self, backend, cipher, mode, operation):
        self._backend = backend
        self._cipher = cipher
        self._mode = mode
        self._operation = operation
        self._tag = None

        if isinstance(self._cipher, interfaces.BlockCipherAlgorithm):
            self._block_size = self._cipher.block_size
        else:
            self._block_size = 1

        ctx = self._backend._lib.EVP_CIPHER_CTX_new()
        ctx = self._backend._ffi.gc(
            ctx, self._backend._lib.EVP_CIPHER_CTX_free
        )

        registry = self._backend._cipher_registry
        try:
            adapter = registry[type(cipher), type(mode)]
        except KeyError:
            raise UnsupportedAlgorithm(
                "cipher {0} in {1} mode is not supported "
                "by this backend".format(
                    cipher.name, mode.name if mode else mode),
                _Reasons.UNSUPPORTED_CIPHER
            )

        evp_cipher = adapter(self._backend, cipher, mode)
        if evp_cipher == self._backend._ffi.NULL:
            raise UnsupportedAlgorithm(
                "cipher {0} in {1} mode is not supported "
                "by this backend".format(
                    cipher.name, mode.name if mode else mode),
                _Reasons.UNSUPPORTED_CIPHER
            )

        if isinstance(mode, interfaces.ModeWithInitializationVector):
            iv_nonce = mode.initialization_vector
        elif isinstance(mode, interfaces.ModeWithNonce):
            iv_nonce = mode.nonce
        else:
            iv_nonce = self._backend._ffi.NULL
        # begin init with cipher and operation type
        res = self._backend._lib.EVP_CipherInit_ex(ctx, evp_cipher,
                                                   self._backend._ffi.NULL,
                                                   self._backend._ffi.NULL,
                                                   self._backend._ffi.NULL,
                                                   operation)
        assert res != 0
        # set the key length to handle variable key ciphers
        res = self._backend._lib.EVP_CIPHER_CTX_set_key_length(
            ctx, len(cipher.key)
        )
        assert res != 0
        if isinstance(mode, GCM):
            res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
                ctx, self._backend._lib.EVP_CTRL_GCM_SET_IVLEN,
                len(iv_nonce), self._backend._ffi.NULL
            )
            assert res != 0
            if operation == self._DECRYPT:
                res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
                    ctx, self._backend._lib.EVP_CTRL_GCM_SET_TAG,
                    len(mode.tag), mode.tag
                )
                assert res != 0

        # pass key/iv
        res = self._backend._lib.EVP_CipherInit_ex(
            ctx,
            self._backend._ffi.NULL,
            self._backend._ffi.NULL,
            cipher.key,
            iv_nonce,
            operation
        )
        assert res != 0
        # We purposely disable padding here as it's handled higher up in the
        # API.
        self._backend._lib.EVP_CIPHER_CTX_set_padding(ctx, 0)
        self._ctx = ctx

    def update(self, data):
        # OpenSSL 0.9.8e has an assertion in its EVP code that causes it
        # to SIGABRT if you call update with an empty byte string. This can be
        # removed when we drop support for 0.9.8e (CentOS/RHEL 5). This branch
        # should be taken only when length is zero and mode is not GCM because
        # AES GCM can return improper tag values if you don't call update
        # with empty plaintext when authenticating AAD for ...reasons.
        if len(data) == 0 and not isinstance(self._mode, GCM):
            return b""

        buf = self._backend._ffi.new("unsigned char[]",
                                     len(data) + self._block_size - 1)
        outlen = self._backend._ffi.new("int *")
        res = self._backend._lib.EVP_CipherUpdate(self._ctx, buf, outlen, data,
                                                  len(data))
        assert res != 0
        return self._backend._ffi.buffer(buf)[:outlen[0]]

    def finalize(self):
        buf = self._backend._ffi.new("unsigned char[]", self._block_size)
        outlen = self._backend._ffi.new("int *")
        res = self._backend._lib.EVP_CipherFinal_ex(self._ctx, buf, outlen)
        if res == 0:
            errors = self._backend._consume_errors()

            if not errors and isinstance(self._mode, GCM):
                raise InvalidTag

            assert errors

            if errors[0][1:] == (
                self._backend._lib.ERR_LIB_EVP,
                self._backend._lib.EVP_F_EVP_ENCRYPTFINAL_EX,
                self._backend._lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
            ) or errors[0][1:] == (
                self._backend._lib.ERR_LIB_EVP,
                self._backend._lib.EVP_F_EVP_DECRYPTFINAL_EX,
                self._backend._lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
            ):
                raise ValueError(
                    "The length of the provided data is not a multiple of "
                    "the block length."
                )
            else:
                raise self._backend._unknown_error(errors[0])

        if (isinstance(self._mode, GCM) and
           self._operation == self._ENCRYPT):
            block_byte_size = self._block_size // 8
            tag_buf = self._backend._ffi.new(
                "unsigned char[]", block_byte_size
            )
            res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
                self._ctx, self._backend._lib.EVP_CTRL_GCM_GET_TAG,
                block_byte_size, tag_buf
            )
            assert res != 0
            self._tag = self._backend._ffi.buffer(tag_buf)[:]

        res = self._backend._lib.EVP_CIPHER_CTX_cleanup(self._ctx)
        assert res == 1
        return self._backend._ffi.buffer(buf)[:outlen[0]]

    def authenticate_additional_data(self, data):
        outlen = self._backend._ffi.new("int *")
        res = self._backend._lib.EVP_CipherUpdate(
            self._ctx, self._backend._ffi.NULL, outlen, data, len(data)
        )
        assert res != 0

    @property
    def tag(self):
        return self._tag


@utils.register_interface(interfaces.HashContext)
class _HashContext(object):
    def __init__(self, backend, algorithm, ctx=None):
        self.algorithm = algorithm

        self._backend = backend

        if ctx is None:
            ctx = self._backend._lib.EVP_MD_CTX_create()
            ctx = self._backend._ffi.gc(ctx,
                                        self._backend._lib.EVP_MD_CTX_destroy)
            evp_md = self._backend._lib.EVP_get_digestbyname(
                algorithm.name.encode("ascii"))
            if evp_md == self._backend._ffi.NULL:
                raise UnsupportedAlgorithm(
                    "{0} is not a supported hash on this backend".format(
                        algorithm.name),
                    _Reasons.UNSUPPORTED_HASH
                )
            res = self._backend._lib.EVP_DigestInit_ex(ctx, evp_md,
                                                       self._backend._ffi.NULL)
            assert res != 0

        self._ctx = ctx

    def copy(self):
        copied_ctx = self._backend._lib.EVP_MD_CTX_create()
        copied_ctx = self._backend._ffi.gc(
            copied_ctx, self._backend._lib.EVP_MD_CTX_destroy
        )
        res = self._backend._lib.EVP_MD_CTX_copy_ex(copied_ctx, self._ctx)
        assert res != 0
        return _HashContext(self._backend, self.algorithm, ctx=copied_ctx)

    def update(self, data):
        res = self._backend._lib.EVP_DigestUpdate(self._ctx, data, len(data))
        assert res != 0

    def finalize(self):
        buf = self._backend._ffi.new("unsigned char[]",
                                     self._backend._lib.EVP_MAX_MD_SIZE)
        outlen = self._backend._ffi.new("unsigned int *")
        res = self._backend._lib.EVP_DigestFinal_ex(self._ctx, buf, outlen)
        assert res != 0
        assert outlen[0] == self.algorithm.digest_size
        res = self._backend._lib.EVP_MD_CTX_cleanup(self._ctx)
        assert res == 1
        return self._backend._ffi.buffer(buf)[:outlen[0]]


@utils.register_interface(interfaces.HashContext)
class _HMACContext(object):
    def __init__(self, backend, key, algorithm, ctx=None):
        self.algorithm = algorithm
        self._backend = backend

        if ctx is None:
            ctx = self._backend._ffi.new("HMAC_CTX *")
            self._backend._lib.HMAC_CTX_init(ctx)
            ctx = self._backend._ffi.gc(
                ctx, self._backend._lib.HMAC_CTX_cleanup
            )
            evp_md = self._backend._lib.EVP_get_digestbyname(
                algorithm.name.encode('ascii'))
            if evp_md == self._backend._ffi.NULL:
                raise UnsupportedAlgorithm(
                    "{0} is not a supported hash on this backend".format(
                        algorithm.name),
                    _Reasons.UNSUPPORTED_HASH
                )
            res = self._backend._lib.Cryptography_HMAC_Init_ex(
                ctx, key, len(key), evp_md, self._backend._ffi.NULL
            )
            assert res != 0

        self._ctx = ctx
        self._key = key

    def copy(self):
        copied_ctx = self._backend._ffi.new("HMAC_CTX *")
        self._backend._lib.HMAC_CTX_init(copied_ctx)
        copied_ctx = self._backend._ffi.gc(
            copied_ctx, self._backend._lib.HMAC_CTX_cleanup
        )
        res = self._backend._lib.Cryptography_HMAC_CTX_copy(
            copied_ctx, self._ctx
        )
        assert res != 0
        return _HMACContext(
            self._backend, self._key, self.algorithm, ctx=copied_ctx
        )

    def update(self, data):
        res = self._backend._lib.Cryptography_HMAC_Update(
            self._ctx, data, len(data)
        )
        assert res != 0

    def finalize(self):
        buf = self._backend._ffi.new("unsigned char[]",
                                     self._backend._lib.EVP_MAX_MD_SIZE)
        outlen = self._backend._ffi.new("unsigned int *")
        res = self._backend._lib.Cryptography_HMAC_Final(
            self._ctx, buf, outlen
        )
        assert res != 0
        assert outlen[0] == self.algorithm.digest_size
        self._backend._lib.HMAC_CTX_cleanup(self._ctx)
        return self._backend._ffi.buffer(buf)[:outlen[0]]


def _get_rsa_pss_salt_length(pss, key_size, digest_size):
    if pss._mgf._salt_length is not None:
        salt = pss._mgf._salt_length
    else:
        salt = pss._salt_length

    if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
        # bit length - 1 per RFC 3447
        emlen = int(math.ceil((key_size - 1) / 8.0))
        salt_length = emlen - digest_size - 2
        assert salt_length >= 0
        return salt_length
    else:
        return salt


@utils.register_interface(interfaces.AsymmetricSignatureContext)
class _RSASignatureContext(object):
    def __init__(self, backend, private_key, padding, algorithm):
        self._backend = backend
        self._private_key = private_key

        if not isinstance(padding, interfaces.AsymmetricPadding):
            raise TypeError(
                "Expected provider of interfaces.AsymmetricPadding")

        if isinstance(padding, PKCS1v15):
            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._finalize_method = self._finalize_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
            else:
                self._finalize_method = self._finalize_pkcs1
        elif isinstance(padding, PSS):
            if not isinstance(padding._mgf, MGF1):
                raise UnsupportedAlgorithm(
                    "Only MGF1 is supported by this backend",
                    _Reasons.UNSUPPORTED_MGF
                )

            # Size of key in bytes - 2 is the maximum
            # PSS signature length (salt length is checked later)
            key_size_bytes = int(math.ceil(private_key.key_size / 8.0))
            if key_size_bytes - algorithm.digest_size - 2 < 0:
                raise ValueError("Digest too large for key size. Use a larger "
                                 "key.")

            if not self._backend.mgf1_hash_supported(padding._mgf._algorithm):
                raise UnsupportedAlgorithm(
                    "When OpenSSL is older than 1.0.1 then only SHA1 is "
                    "supported with MGF1.",
                    _Reasons.UNSUPPORTED_HASH
                )

            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._finalize_method = self._finalize_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
            else:
                self._finalize_method = self._finalize_pss
        else:
            raise UnsupportedAlgorithm(
                "{0} is not supported by this backend".format(padding.name),
                _Reasons.UNSUPPORTED_PADDING
            )

        self._padding = padding
        self._algorithm = algorithm
        self._hash_ctx = _HashContext(backend, self._algorithm)

    def update(self, data):
        if self._hash_ctx is None:
            raise AlreadyFinalized("Context has already been finalized")

        self._hash_ctx.update(data)

    def finalize(self):
        if self._hash_ctx is None:
            raise AlreadyFinalized("Context has already been finalized")

        evp_pkey = self._backend._rsa_private_key_to_evp_pkey(
            self._private_key)

        evp_md = self._backend._lib.EVP_get_digestbyname(
            self._algorithm.name.encode("ascii"))
        assert evp_md != self._backend._ffi.NULL
        pkey_size = self._backend._lib.EVP_PKEY_size(evp_pkey)
        assert pkey_size > 0

        return self._finalize_method(evp_pkey, pkey_size, evp_md)

    def _finalize_pkey_ctx(self, evp_pkey, pkey_size, evp_md):
        pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
            evp_pkey, self._backend._ffi.NULL
        )
        assert pkey_ctx != self._backend._ffi.NULL
        pkey_ctx = self._backend._ffi.gc(pkey_ctx,
                                         self._backend._lib.EVP_PKEY_CTX_free)
        res = self._backend._lib.EVP_PKEY_sign_init(pkey_ctx)
        assert res == 1
        res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
            pkey_ctx, evp_md)
        assert res > 0

        res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
            pkey_ctx, self._padding_enum)
        assert res > 0
        if isinstance(self._padding, PSS):
            res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
                pkey_ctx,
                _get_rsa_pss_salt_length(
                    self._padding,
                    self._private_key.key_size,
                    self._hash_ctx.algorithm.digest_size
                )
            )
            assert res > 0

            if self._backend._lib.Cryptography_HAS_MGF1_MD:
                # MGF1 MD is configurable in OpenSSL 1.0.1+
                mgf1_md = self._backend._lib.EVP_get_digestbyname(
                    self._padding._mgf._algorithm.name.encode("ascii"))
                assert mgf1_md != self._backend._ffi.NULL
                res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
                    pkey_ctx, mgf1_md
                )
                assert res > 0
        data_to_sign = self._hash_ctx.finalize()
        self._hash_ctx = None
        buflen = self._backend._ffi.new("size_t *")
        res = self._backend._lib.EVP_PKEY_sign(
            pkey_ctx,
            self._backend._ffi.NULL,
            buflen,
            data_to_sign,
            len(data_to_sign)
        )
        assert res == 1
        buf = self._backend._ffi.new("unsigned char[]", buflen[0])
        res = self._backend._lib.EVP_PKEY_sign(
            pkey_ctx, buf, buflen, data_to_sign, len(data_to_sign))
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            reason = None
            if (errors[0].reason ==
                    self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
                reason = ("Salt length too long for key size. Try using "
                          "MAX_LENGTH instead.")
            elif (errors[0].reason ==
                    self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY):
                reason = "Digest too large for key size. Use a larger key."
            assert reason is not None
            raise ValueError(reason)

        return self._backend._ffi.buffer(buf)[:]

    def _finalize_pkcs1(self, evp_pkey, pkey_size, evp_md):
        sig_buf = self._backend._ffi.new("char[]", pkey_size)
        sig_len = self._backend._ffi.new("unsigned int *")
        res = self._backend._lib.EVP_SignFinal(
            self._hash_ctx._ctx,
            sig_buf,
            sig_len,
            evp_pkey
        )
        self._hash_ctx.finalize()
        self._hash_ctx = None
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            assert (errors[0].reason ==
                    self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
            raise ValueError("Digest too large for key size. Use a larger "
                             "key.")

        return self._backend._ffi.buffer(sig_buf)[:sig_len[0]]

    def _finalize_pss(self, evp_pkey, pkey_size, evp_md):
        data_to_sign = self._hash_ctx.finalize()
        self._hash_ctx = None
        padded = self._backend._ffi.new("unsigned char[]", pkey_size)
        rsa_cdata = self._backend._lib.EVP_PKEY_get1_RSA(evp_pkey)
        assert rsa_cdata != self._backend._ffi.NULL
        rsa_cdata = self._backend._ffi.gc(rsa_cdata,
                                          self._backend._lib.RSA_free)
        res = self._backend._lib.RSA_padding_add_PKCS1_PSS(
            rsa_cdata,
            padded,
            data_to_sign,
            evp_md,
            _get_rsa_pss_salt_length(
                self._padding,
                self._private_key.key_size,
                len(data_to_sign)
            )
        )
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            assert (errors[0].reason ==
                    self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
            raise ValueError("Salt length too long for key size. Try using "
                             "MAX_LENGTH instead.")

        sig_buf = self._backend._ffi.new("char[]", pkey_size)
        sig_len = self._backend._lib.RSA_private_encrypt(
            pkey_size,
            padded,
            sig_buf,
            rsa_cdata,
            self._backend._lib.RSA_NO_PADDING
        )
        assert sig_len != -1
        return self._backend._ffi.buffer(sig_buf)[:sig_len]


@utils.register_interface(interfaces.AsymmetricVerificationContext)
class _RSAVerificationContext(object):
    def __init__(self, backend, public_key, signature, padding, algorithm):
        self._backend = backend
        self._public_key = public_key
        self._signature = signature

        if not isinstance(padding, interfaces.AsymmetricPadding):
            raise TypeError(
                "Expected provider of interfaces.AsymmetricPadding")

        if isinstance(padding, PKCS1v15):
            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._verify_method = self._verify_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
            else:
                self._verify_method = self._verify_pkcs1
        elif isinstance(padding, PSS):
            if not isinstance(padding._mgf, MGF1):
                raise UnsupportedAlgorithm(
                    "Only MGF1 is supported by this backend",
                    _Reasons.UNSUPPORTED_MGF
                )

            # Size of key in bytes - 2 is the maximum
            # PSS signature length (salt length is checked later)
            key_size_bytes = int(math.ceil(public_key.key_size / 8.0))
            if key_size_bytes - algorithm.digest_size - 2 < 0:
                raise ValueError(
                    "Digest too large for key size. Check that you have the "
                    "correct key and digest algorithm."
                )

            if not self._backend.mgf1_hash_supported(padding._mgf._algorithm):
                raise UnsupportedAlgorithm(
                    "When OpenSSL is older than 1.0.1 then only SHA1 is "
                    "supported with MGF1.",
                    _Reasons.UNSUPPORTED_HASH
                )

            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._verify_method = self._verify_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
            else:
                self._verify_method = self._verify_pss
        else:
            raise UnsupportedAlgorithm(
                "{0} is not supported by this backend".format(padding.name),
                _Reasons.UNSUPPORTED_PADDING
            )

        self._padding = padding
        self._algorithm = algorithm
        self._hash_ctx = _HashContext(backend, self._algorithm)

    def update(self, data):
        if self._hash_ctx is None:
            raise AlreadyFinalized("Context has already been finalized")

        self._hash_ctx.update(data)

    def verify(self):
        if self._hash_ctx is None:
            raise AlreadyFinalized("Context has already been finalized")

        evp_pkey = self._backend._rsa_public_key_to_evp_pkey(
            self._public_key)

        evp_md = self._backend._lib.EVP_get_digestbyname(
            self._algorithm.name.encode("ascii"))
        assert evp_md != self._backend._ffi.NULL

        self._verify_method(evp_pkey, evp_md)

    def _verify_pkey_ctx(self, evp_pkey, evp_md):
        pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
            evp_pkey, self._backend._ffi.NULL
        )
        assert pkey_ctx != self._backend._ffi.NULL
        pkey_ctx = self._backend._ffi.gc(pkey_ctx,
                                         self._backend._lib.EVP_PKEY_CTX_free)
        res = self._backend._lib.EVP_PKEY_verify_init(pkey_ctx)
        assert res == 1
        res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
            pkey_ctx, evp_md)
        assert res > 0

        res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
            pkey_ctx, self._padding_enum)
        assert res > 0
        if isinstance(self._padding, PSS):
            res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
                pkey_ctx,
                _get_rsa_pss_salt_length(
                    self._padding,
                    self._public_key.key_size,
                    self._hash_ctx.algorithm.digest_size
                )
            )
            assert res > 0
            if self._backend._lib.Cryptography_HAS_MGF1_MD:
                # MGF1 MD is configurable in OpenSSL 1.0.1+
                mgf1_md = self._backend._lib.EVP_get_digestbyname(
                    self._padding._mgf._algorithm.name.encode("ascii"))
                assert mgf1_md != self._backend._ffi.NULL
                res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
                    pkey_ctx, mgf1_md
                )
                assert res > 0

        data_to_verify = self._hash_ctx.finalize()
        self._hash_ctx = None
        res = self._backend._lib.EVP_PKEY_verify(
            pkey_ctx,
            self._signature,
            len(self._signature),
            data_to_verify,
            len(data_to_verify)
        )
        # The previous call can return negative numbers in the event of an
        # error. This is not a signature failure but we need to fail if it
        # occurs.
        assert res >= 0
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

    def _verify_pkcs1(self, evp_pkey, evp_md):
        res = self._backend._lib.EVP_VerifyFinal(
            self._hash_ctx._ctx,
            self._signature,
            len(self._signature),
            evp_pkey
        )
        self._hash_ctx.finalize()
        self._hash_ctx = None
        # The previous call can return negative numbers in the event of an
        # error. This is not a signature failure but we need to fail if it
        # occurs.
        assert res >= 0
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

    def _verify_pss(self, evp_pkey, evp_md):
        pkey_size = self._backend._lib.EVP_PKEY_size(evp_pkey)
        assert pkey_size > 0
        rsa_cdata = self._backend._lib.EVP_PKEY_get1_RSA(evp_pkey)
        assert rsa_cdata != self._backend._ffi.NULL
        rsa_cdata = self._backend._ffi.gc(rsa_cdata,
                                          self._backend._lib.RSA_free)
        buf = self._backend._ffi.new("unsigned char[]", pkey_size)
        res = self._backend._lib.RSA_public_decrypt(
            len(self._signature),
            self._signature,
            buf,
            rsa_cdata,
            self._backend._lib.RSA_NO_PADDING
        )
        if res != pkey_size:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

        data_to_verify = self._hash_ctx.finalize()
        self._hash_ctx = None
        res = self._backend._lib.RSA_verify_PKCS1_PSS(
            rsa_cdata,
            data_to_verify,
            evp_md,
            buf,
            _get_rsa_pss_salt_length(
                self._padding,
                self._public_key.key_size,
                len(data_to_verify)
            )
        )
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature


@utils.register_interface(interfaces.AsymmetricVerificationContext)
class _DSAVerificationContext(object):
    def __init__(self, backend, public_key, signature, algorithm):
        self._backend = backend
        self._public_key = public_key
        self._signature = signature
        self._algorithm = algorithm

        self._hash_ctx = _HashContext(backend, self._algorithm)

    def update(self, data):
        if self._hash_ctx is None:
            raise AlreadyFinalized("Context has already been finalized")

        self._hash_ctx.update(data)

    def verify(self):
        if self._hash_ctx is None:
            raise AlreadyFinalized("Context has already been finalized")

        self._dsa_cdata = self._backend._dsa_cdata_from_public_key(
            self._public_key)
        self._dsa_cdata = self._backend._ffi.gc(self._dsa_cdata,
                                                self._backend._lib.DSA_free)

        data_to_verify = self._hash_ctx.finalize()
        self._hash_ctx = None

        # The first parameter passed to DSA_verify is unused by OpenSSL but
        # must be an integer.
        res = self._backend._lib.DSA_verify(
            0, data_to_verify, len(data_to_verify), self._signature,
            len(self._signature), self._dsa_cdata)

        if res != 1:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature


@utils.register_interface(interfaces.CMACContext)
class _CMACContext(object):
    def __init__(self, backend, algorithm, ctx=None):
        if not backend.cmac_algorithm_supported(algorithm):
            raise UnsupportedAlgorithm("This backend does not support CMAC",
                                       _Reasons.UNSUPPORTED_CIPHER)

        self._backend = backend
        self._key = algorithm.key
        self._algorithm = algorithm
        self._output_length = algorithm.block_size // 8

        if ctx is None:
            registry = self._backend._cipher_registry
            adapter = registry[type(algorithm), CBC]

            evp_cipher = adapter(self._backend, algorithm, CBC)

            ctx = self._backend._lib.CMAC_CTX_new()

            assert ctx != self._backend._ffi.NULL
            ctx = self._backend._ffi.gc(ctx, self._backend._lib.CMAC_CTX_free)

            self._backend._lib.CMAC_Init(
                ctx, self._key, len(self._key),
                evp_cipher, self._backend._ffi.NULL
            )

        self._ctx = ctx

    def update(self, data):
        res = self._backend._lib.CMAC_Update(self._ctx, data, len(data))
        assert res == 1

    def finalize(self):
        buf = self._backend._ffi.new("unsigned char[]", self._output_length)
        length = self._backend._ffi.new("size_t *", self._output_length)
        res = self._backend._lib.CMAC_Final(
            self._ctx, buf, length
        )
        assert res == 1

        self._ctx = None

        return self._backend._ffi.buffer(buf)[:]

    def copy(self):
        copied_ctx = self._backend._lib.CMAC_CTX_new()
        copied_ctx = self._backend._ffi.gc(
            copied_ctx, self._backend._lib.CMAC_CTX_free
        )
        res = self._backend._lib.CMAC_CTX_copy(
            copied_ctx, self._ctx
        )
        assert res == 1
        return _CMACContext(
            self._backend, self._algorithm, ctx=copied_ctx
        )


backend = Backend()