aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/cryptography/hazmat/backends/openssl/rsa.py241
1 files changed, 131 insertions, 110 deletions
diff --git a/src/cryptography/hazmat/backends/openssl/rsa.py b/src/cryptography/hazmat/backends/openssl/rsa.py
index ba830dd9..4c554be6 100644
--- a/src/cryptography/hazmat/backends/openssl/rsa.py
+++ b/src/cryptography/hazmat/backends/openssl/rsa.py
@@ -12,7 +12,7 @@ from cryptography.exceptions import (
)
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import (
- AsymmetricSignatureContext, AsymmetricVerificationContext, rsa
+ AsymmetricSignatureContext, AsymmetricVerificationContext, rsa,
)
from cryptography.hazmat.primitives.asymmetric.padding import (
AsymmetricPadding, MGF1, OAEP, PKCS1v15, PSS, calculate_max_pss_salt_length
@@ -139,51 +139,127 @@ def _handle_rsa_enc_dec_error(backend, key):
raise ValueError("Decryption failed.")
-@utils.register_interface(AsymmetricSignatureContext)
-class _RSASignatureContext(object):
- def __init__(self, backend, private_key, padding, algorithm):
- self._backend = backend
- self._private_key = private_key
+def _rsa_sig_determine_padding(backend, private_key, padding, algorithm):
+ if not isinstance(padding, AsymmetricPadding):
+ raise TypeError("Expected provider of AsymmetricPadding.")
- if not isinstance(padding, AsymmetricPadding):
- raise TypeError("Expected provider of AsymmetricPadding.")
+ pkey_size = backend._lib.EVP_PKEY_size(private_key._evp_pkey)
+ backend.openssl_assert(pkey_size > 0)
- self._pkey_size = self._backend._lib.EVP_PKEY_size(
- self._private_key._evp_pkey
+ if isinstance(padding, PKCS1v15):
+ padding_enum = backend._lib.RSA_PKCS1_PADDING
+ elif isinstance(padding, PSS):
+ if not isinstance(padding._mgf, MGF1):
+ raise UnsupportedAlgorithm(
+ "Only MGF1 is supported by this backend.",
+ _Reasons.UNSUPPORTED_MGF
+ )
+
+ # Size of key in bytes - 2 is the maximum
+ # PSS signature length (salt length is checked later)
+ if pkey_size - algorithm.digest_size - 2 < 0:
+ raise ValueError("Digest too large for key size. Use a larger "
+ "key.")
+
+ if not backend._pss_mgf1_hash_supported(padding._mgf._algorithm):
+ raise UnsupportedAlgorithm(
+ "When OpenSSL is older than 1.0.1 then only SHA1 is "
+ "supported with MGF1.",
+ _Reasons.UNSUPPORTED_HASH
+ )
+
+ padding_enum = backend._lib.RSA_PKCS1_PSS_PADDING
+ else:
+ raise UnsupportedAlgorithm(
+ "{0} is not supported by this backend.".format(padding.name),
+ _Reasons.UNSUPPORTED_PADDING
)
- self._backend.openssl_assert(self._pkey_size > 0)
- if isinstance(padding, PKCS1v15):
- self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
- elif isinstance(padding, PSS):
- if not isinstance(padding._mgf, MGF1):
- raise UnsupportedAlgorithm(
- "Only MGF1 is supported by this backend.",
- _Reasons.UNSUPPORTED_MGF
- )
+ return padding_enum
- # Size of key in bytes - 2 is the maximum
- # PSS signature length (salt length is checked later)
- if self._pkey_size - algorithm.digest_size - 2 < 0:
- raise ValueError("Digest too large for key size. Use a larger "
- "key.")
- if not self._backend._pss_mgf1_hash_supported(
- padding._mgf._algorithm
- ):
- raise UnsupportedAlgorithm(
- "When OpenSSL is older than 1.0.1 then only SHA1 is "
- "supported with MGF1.",
- _Reasons.UNSUPPORTED_HASH
- )
+def _rsa_sig_sign(backend, padding, padding_enum, algorithm, private_key,
+ data):
+ evp_md = backend._lib.EVP_get_digestbyname(
+ algorithm.name.encode("ascii"))
+ backend.openssl_assert(evp_md != backend._ffi.NULL)
- self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
- else:
- raise UnsupportedAlgorithm(
- "{0} is not supported by this backend.".format(padding.name),
- _Reasons.UNSUPPORTED_PADDING
+ pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
+ private_key._evp_pkey, backend._ffi.NULL
+ )
+ backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
+ pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
+ res = backend._lib.EVP_PKEY_sign_init(pkey_ctx)
+ backend.openssl_assert(res == 1)
+ res = backend._lib.EVP_PKEY_CTX_set_signature_md(
+ pkey_ctx, evp_md)
+ backend.openssl_assert(res > 0)
+
+ res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
+ pkey_ctx, padding_enum)
+ backend.openssl_assert(res > 0)
+ if isinstance(padding, PSS):
+ res = backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
+ pkey_ctx,
+ _get_rsa_pss_salt_length(
+ padding,
+ private_key,
+ algorithm,
)
+ )
+ backend.openssl_assert(res > 0)
+
+ if backend._lib.Cryptography_HAS_MGF1_MD:
+ # MGF1 MD is configurable in OpenSSL 1.0.1+
+ mgf1_md = backend._lib.EVP_get_digestbyname(
+ padding._mgf._algorithm.name.encode("ascii"))
+ backend.openssl_assert(
+ mgf1_md != backend._ffi.NULL
+ )
+ res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
+ pkey_ctx, mgf1_md
+ )
+ backend.openssl_assert(res > 0)
+
+ buflen = backend._ffi.new("size_t *")
+ res = backend._lib.EVP_PKEY_sign(
+ pkey_ctx,
+ backend._ffi.NULL,
+ buflen,
+ data,
+ len(data)
+ )
+ backend.openssl_assert(res == 1)
+ buf = backend._ffi.new("unsigned char[]", buflen[0])
+ res = backend._lib.EVP_PKEY_sign(
+ pkey_ctx, buf, buflen, data, len(data))
+ if res != 1:
+ errors = backend._consume_errors()
+ assert errors[0].lib == backend._lib.ERR_LIB_RSA
+ reason = None
+ if (errors[0].reason ==
+ backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
+ reason = ("Salt length too long for key size. Try using "
+ "MAX_LENGTH instead.")
+ else:
+ assert (errors[0].reason ==
+ backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
+ reason = "Digest too large for key size. Use a larger key."
+ assert reason is not None
+ raise ValueError(reason)
+
+ return backend._ffi.buffer(buf)[:]
+
+
+@utils.register_interface(AsymmetricSignatureContext)
+class _RSASignatureContext(object):
+ def __init__(self, backend, private_key, padding, algorithm):
+ self._backend = backend
+ self._private_key = private_key
+ self._padding_enum = _rsa_sig_determine_padding(
+ backend, private_key, padding, algorithm
+ )
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
@@ -192,76 +268,14 @@ class _RSASignatureContext(object):
self._hash_ctx.update(data)
def finalize(self):
- evp_md = self._backend._lib.EVP_get_digestbyname(
- self._algorithm.name.encode("ascii"))
- self._backend.openssl_assert(evp_md != self._backend._ffi.NULL)
-
- pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
- self._private_key._evp_pkey, self._backend._ffi.NULL
- )
- self._backend.openssl_assert(pkey_ctx != self._backend._ffi.NULL)
- pkey_ctx = self._backend._ffi.gc(pkey_ctx,
- self._backend._lib.EVP_PKEY_CTX_free)
- res = self._backend._lib.EVP_PKEY_sign_init(pkey_ctx)
- self._backend.openssl_assert(res == 1)
- res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
- pkey_ctx, evp_md)
- self._backend.openssl_assert(res > 0)
-
- res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
- pkey_ctx, self._padding_enum)
- self._backend.openssl_assert(res > 0)
- if isinstance(self._padding, PSS):
- res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
- pkey_ctx,
- _get_rsa_pss_salt_length(
- self._padding,
- self._private_key,
- self._hash_ctx.algorithm,
- )
- )
- self._backend.openssl_assert(res > 0)
-
- if self._backend._lib.Cryptography_HAS_MGF1_MD:
- # MGF1 MD is configurable in OpenSSL 1.0.1+
- mgf1_md = self._backend._lib.EVP_get_digestbyname(
- self._padding._mgf._algorithm.name.encode("ascii"))
- self._backend.openssl_assert(
- mgf1_md != self._backend._ffi.NULL
- )
- res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
- pkey_ctx, mgf1_md
- )
- self._backend.openssl_assert(res > 0)
- data_to_sign = self._hash_ctx.finalize()
- buflen = self._backend._ffi.new("size_t *")
- res = self._backend._lib.EVP_PKEY_sign(
- pkey_ctx,
- self._backend._ffi.NULL,
- buflen,
- data_to_sign,
- len(data_to_sign)
+ return _rsa_sig_sign(
+ self._backend,
+ self._padding,
+ self._padding_enum,
+ self._algorithm,
+ self._private_key,
+ self._hash_ctx.finalize()
)
- self._backend.openssl_assert(res == 1)
- buf = self._backend._ffi.new("unsigned char[]", buflen[0])
- res = self._backend._lib.EVP_PKEY_sign(
- pkey_ctx, buf, buflen, data_to_sign, len(data_to_sign))
- if res != 1:
- errors = self._backend._consume_errors()
- assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
- reason = None
- if (errors[0].reason ==
- self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
- reason = ("Salt length too long for key size. Try using "
- "MAX_LENGTH instead.")
- else:
- assert (errors[0].reason ==
- self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
- reason = "Digest too large for key size. Use a larger key."
- assert reason is not None
- raise ValueError(reason)
-
- return self._backend._ffi.buffer(buf)[:]
@utils.register_interface(AsymmetricVerificationContext)
@@ -460,10 +474,17 @@ class _RSAPrivateKey(object):
)
def sign(self, data, padding, algorithm):
- signer = self.signer(padding, algorithm)
- signer.update(data)
- signature = signer.finalize()
- return signature
+ padding_enum = _rsa_sig_determine_padding(
+ self._backend, self, padding, algorithm
+ )
+ hash_ctx = hashes.Hash(algorithm, self._backend)
+ hash_ctx.update(data)
+ data = hash_ctx.finalize()
+
+ return _rsa_sig_sign(
+ self._backend, padding, padding_enum,
+ algorithm, self, data
+ )
@utils.register_interface(RSAPublicKeyWithSerialization)
a> 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * -- MD5 code:
 *
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
 * MD5 Message-Digest Algorithm (RFC 1321).
 *
 * Homepage:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 *
 * Author:
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
 *
 * This software was written by Alexander Peslyak in 2001.  No copyright is
 * claimed, and the software is hereby placed in the public domain.
 * In case this attempt to disclaim copyright and place the software in the
 * public domain is deemed null and void, then the software is
 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
 * general public under the following terms:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted.
 *
 * There's ABSOLUTELY NO WARRANTY, express or implied.
 *
 * (This is a heavily cut-down "BSD license".)
 *
 * This differs from Colin Plumb's older public domain implementation in that
 * no exactly 32-bit integer data type is required (any 32-bit or wider
 * unsigned integer data type will do), there's no compile-time endianness
 * configuration, and the function prototypes match OpenSSL's.  No code from
 * Colin Plumb's implementation has been reused; this comment merely compares
 * the properties of the two independent implementations.
 *
 * The primary goals of this implementation are portability and ease of use.
 * It is meant to be fast, but not as fast as possible.  Some known
 * optimizations are not included to reduce source code size and avoid
 * compile-time configuration.
 *
 * -- SHA256 Code:
 *
 * Copyright 2005 Colin Percival
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */



#ifndef __FreeBSD__
#include <endian.h>
#else
#include <sys/endian.h>
#endif

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/stat.h>

#define ARRAY_SIZE(_n) (sizeof(_n) / sizeof((_n)[0]))

#ifndef __FreeBSD__
static void
be32enc(void *buf, uint32_t u)
{
	uint8_t *p = buf;

	p[0] = ((uint8_t) ((u >> 24) & 0xff));
	p[1] = ((uint8_t) ((u >> 16) & 0xff));
	p[2] = ((uint8_t) ((u >> 8) & 0xff));
	p[3] = ((uint8_t) (u & 0xff));
}

static void
be64enc(void *buf, uint64_t u)
{
	uint8_t *p = buf;

	be32enc(p, ((uint32_t) (u >> 32)));
	be32enc(p + 4, ((uint32_t) (u & 0xffffffffULL)));
}


static uint16_t
be16dec(const void *buf)
{
	const uint8_t *p = buf;

	return (((uint16_t) p[0]) << 8) | p[1];
}

static uint32_t
be32dec(const void *buf)
{
	const uint8_t *p = buf;

	return (((uint32_t) be16dec(p)) << 16) | be16dec(p + 2);
}
#endif

#define MD5_DIGEST_LENGTH	16

typedef struct MD5_CTX {
	uint32_t lo, hi;
	uint32_t a, b, c, d;
	unsigned char buffer[64];
} MD5_CTX;

/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
 * implementation.
 */
#define F(x, y, z)			((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)			((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)			(((x) ^ (y)) ^ (z))
#define H2(x, y, z)			((x) ^ ((y) ^ (z)))
#define I(x, y, z)			((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */
#define STEP(f, a, b, c, d, x, t, s) \
	(a) += f((b), (c), (d)) + (x) + (t); \
	(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
	(a) += (b);

/*
 * SET reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 */
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define SET(n) \
	(*(uint32_t *)&ptr[(n) * 4])
#define GET(n) \
	SET(n)
#else
#define SET(n) \
	(block[(n)] = \
	(uint32_t)ptr[(n) * 4] | \
	((uint32_t)ptr[(n) * 4 + 1] << 8) | \
	((uint32_t)ptr[(n) * 4 + 2] << 16) | \
	((uint32_t)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
	(block[(n)])
#endif

/*
 * This processes one or more 64-byte data blocks, but does NOT update
 * the bit counters.  There are no alignment requirements.
 */
static const void *MD5_body(MD5_CTX *ctx, const void *data, unsigned long size)
{
	const unsigned char *ptr;
	uint32_t a, b, c, d;
	uint32_t saved_a, saved_b, saved_c, saved_d;
#if __BYTE_ORDER != __LITTLE_ENDIAN
	uint32_t block[16];
#endif

	ptr = (const unsigned char *)data;

	a = ctx->a;
	b = ctx->b;
	c = ctx->c;
	d = ctx->d;

	do {
		saved_a = a;
		saved_b = b;
		saved_c = c;
		saved_d = d;

/* Round 1 */
		STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
		STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
		STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
		STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
		STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
		STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
		STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
		STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
		STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
		STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
		STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
		STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
		STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
		STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
		STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
		STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)

/* Round 2 */
		STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
		STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
		STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
		STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
		STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
		STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
		STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
		STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
		STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
		STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
		STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
		STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
		STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
		STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
		STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
		STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)

/* Round 3 */
		STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
		STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
		STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
		STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
		STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
		STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
		STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
		STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
		STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
		STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
		STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
		STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
		STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
		STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
		STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
		STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)

/* Round 4 */
		STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
		STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
		STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
		STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
		STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
		STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
		STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
		STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
		STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
		STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
		STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
		STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
		STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
		STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
		STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
		STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)

		a += saved_a;
		b += saved_b;
		c += saved_c;
		d += saved_d;

		ptr += 64;
	} while (size -= 64);

	ctx->a = a;
	ctx->b = b;
	ctx->c = c;
	ctx->d = d;

	return ptr;
}

void MD5_begin(MD5_CTX *ctx)
{
	ctx->a = 0x67452301;
	ctx->b = 0xefcdab89;
	ctx->c = 0x98badcfe;
	ctx->d = 0x10325476;

	ctx->lo = 0;
	ctx->hi = 0;
}

static void
MD5_hash(const void *data, size_t size, MD5_CTX *ctx)
{
	uint32_t saved_lo;
	unsigned long used, available;

	saved_lo = ctx->lo;
	if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
		ctx->hi++;
	ctx->hi += size >> 29;

	used = saved_lo & 0x3f;

	if (used) {
		available = 64 - used;

		if (size < available) {
			memcpy(&ctx->buffer[used], data, size);
			return;
		}

		memcpy(&ctx->buffer[used], data, available);
		data = (const unsigned char *)data + available;
		size -= available;
		MD5_body(ctx, ctx->buffer, 64);
	}

	if (size >= 64) {
		data = MD5_body(ctx, data, size & ~((size_t) 0x3f));
		size &= 0x3f;
	}

	memcpy(ctx->buffer, data, size);
}

static void
MD5_end(void *resbuf, MD5_CTX *ctx)
{
	unsigned char *result = resbuf;
	unsigned long used, available;

	used = ctx->lo & 0x3f;

	ctx->buffer[used++] = 0x80;

	available = 64 - used;

	if (available < 8) {
		memset(&ctx->buffer[used], 0, available);
		MD5_body(ctx, ctx->buffer, 64);
		used = 0;
		available = 64;
	}

	memset(&ctx->buffer[used], 0, available - 8);

	ctx->lo <<= 3;
	ctx->buffer[56] = ctx->lo;
	ctx->buffer[57] = ctx->lo >> 8;
	ctx->buffer[58] = ctx->lo >> 16;
	ctx->buffer[59] = ctx->lo >> 24;
	ctx->buffer[60] = ctx->hi;
	ctx->buffer[61] = ctx->hi >> 8;
	ctx->buffer[62] = ctx->hi >> 16;
	ctx->buffer[63] = ctx->hi >> 24;

	MD5_body(ctx, ctx->buffer, 64);

	result[0] = ctx->a;
	result[1] = ctx->a >> 8;
	result[2] = ctx->a >> 16;
	result[3] = ctx->a >> 24;
	result[4] = ctx->b;
	result[5] = ctx->b >> 8;
	result[6] = ctx->b >> 16;
	result[7] = ctx->b >> 24;
	result[8] = ctx->c;
	result[9] = ctx->c >> 8;
	result[10] = ctx->c >> 16;
	result[11] = ctx->c >> 24;
	result[12] = ctx->d;
	result[13] = ctx->d >> 8;
	result[14] = ctx->d >> 16;
	result[15] = ctx->d >> 24;

	memset(ctx, 0, sizeof(*ctx));
}

#define SHA256_BLOCK_LENGTH		64
#define SHA256_DIGEST_LENGTH		32
#define SHA256_DIGEST_STRING_LENGTH	(SHA256_DIGEST_LENGTH * 2 + 1)

typedef struct SHA256Context {
	uint32_t state[8];
	uint64_t count;
	uint8_t buf[SHA256_BLOCK_LENGTH];
} SHA256_CTX;

#if BYTE_ORDER == BIG_ENDIAN

/* Copy a vector of big-endian uint32_t into a vector of bytes */
#define be32enc_vect(dst, src, len)	\
	memcpy((void *)dst, (const void *)src, (size_t)len)

/* Copy a vector of bytes into a vector of big-endian uint32_t */
#define be32dec_vect(dst, src, len)	\
	memcpy((void *)dst, (const void *)src, (size_t)len)

#else /* BYTE_ORDER != BIG_ENDIAN */

/*
 * Encode a length len/4 vector of (uint32_t) into a length len vector of
 * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
 */
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
	size_t i;

	for (i = 0; i < len / 4; i++)
		be32enc(dst + i * 4, src[i]);
}

/*
 * Decode a big-endian length len vector of (unsigned char) into a length
 * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
 */
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
	size_t i;

	for (i = 0; i < len / 4; i++)
		dst[i] = be32dec(src + i * 4);
}

#endif /* BYTE_ORDER != BIG_ENDIAN */


/* Elementary functions used by SHA256 */
#define Ch(x, y, z)	((x & (y ^ z)) ^ z)
#define Maj(x, y, z)	((x & (y | z)) | (y & z))
#define ROTR(x, n)	((x >> n) | (x << (32 - n)))

/*
 * SHA256 block compression function.  The 256-bit state is transformed via
 * the 512-bit input block to produce a new state.
 */
static void
SHA256_Transform(uint32_t * state, const unsigned char block[64])
{
	/* SHA256 round constants. */
	static const uint32_t K[64] = {
		0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
		0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
		0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
		0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
		0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
		0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
		0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
		0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
		0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
		0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
		0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
		0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
		0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
		0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
		0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
		0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
	};
	uint32_t W[64];
	uint32_t S[8];
	int i;

#define S0(x)		(ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x)		(ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x)		(ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
#define s1(x)		(ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))

/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k)			\
	h += S1(e) + Ch(e, f, g) + k;			\
	d += h;						\
	h += S0(a) + Maj(a, b, c);

/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii)			\
	RND(S[(64 - i) % 8], S[(65 - i) % 8],	\
	    S[(66 - i) % 8], S[(67 - i) % 8],	\
	    S[(68 - i) % 8], S[(69 - i) % 8],	\
	    S[(70 - i) % 8], S[(71 - i) % 8],	\
	    W[i + ii] + K[i + ii])

/* Message schedule computation */
#define MSCH(W, ii, i)				\
	W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]

	/* 1. Prepare the first part of the message schedule W. */
	be32dec_vect(W, block, 64);

	/* 2. Initialize working variables. */
	memcpy(S, state, 32);

	/* 3. Mix. */
	for (i = 0; i < 64; i += 16) {
		RNDr(S, W, 0, i);
		RNDr(S, W, 1, i);
		RNDr(S, W, 2, i);
		RNDr(S, W, 3, i);
		RNDr(S, W, 4, i);
		RNDr(S, W, 5, i);
		RNDr(S, W, 6, i);
		RNDr(S, W, 7, i);
		RNDr(S, W, 8, i);
		RNDr(S, W, 9, i);
		RNDr(S, W, 10, i);
		RNDr(S, W, 11, i);
		RNDr(S, W, 12, i);
		RNDr(S, W, 13, i);
		RNDr(S, W, 14, i);
		RNDr(S, W, 15, i);

		if (i == 48)
			break;
		MSCH(W, 0, i);
		MSCH(W, 1, i);
		MSCH(W, 2, i);
		MSCH(W, 3, i);
		MSCH(W, 4, i);
		MSCH(W, 5, i);
		MSCH(W, 6, i);
		MSCH(W, 7, i);
		MSCH(W, 8, i);
		MSCH(W, 9, i);
		MSCH(W, 10, i);
		MSCH(W, 11, i);
		MSCH(W, 12, i);
		MSCH(W, 13, i);
		MSCH(W, 14, i);
		MSCH(W, 15, i);
	}

#undef S0
#undef s0
#undef S1
#undef s1
#undef RND
#undef RNDr
#undef MSCH

	/* 4. Mix local working variables into global state */
	for (i = 0; i < 8; i++)
		state[i] += S[i];
}

static unsigned char PAD[64] = {
	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx)
{
	size_t r;

	/* Figure out how many bytes we have buffered. */
	r = (ctx->count >> 3) & 0x3f;

	/* Pad to 56 mod 64, transforming if we finish a block en route. */
	if (r < 56) {
		/* Pad to 56 mod 64. */
		memcpy(&ctx->buf[r], PAD, 56 - r);
	} else {
		/* Finish the current block and mix. */
		memcpy(&ctx->buf[r], PAD, 64 - r);
		SHA256_Transform(ctx->state, ctx->buf);

		/* The start of the final block is all zeroes. */
		memset(&ctx->buf[0], 0, 56);
	}

	/* Add the terminating bit-count. */
	be64enc(&ctx->buf[56], ctx->count);

	/* Mix in the final block. */