aboutsummaryrefslogtreecommitdiffstats
path: root/LUFA/CompileTimeTokens.txt
diff options
context:
space:
mode:
Diffstat (limited to 'LUFA/CompileTimeTokens.txt')
-rw-r--r--LUFA/CompileTimeTokens.txt52
1 files changed, 26 insertions, 26 deletions
diff --git a/LUFA/CompileTimeTokens.txt b/LUFA/CompileTimeTokens.txt
index 53cf9e41e..371c2c790 100644
--- a/LUFA/CompileTimeTokens.txt
+++ b/LUFA/CompileTimeTokens.txt
@@ -14,21 +14,21 @@
* \section Sec_SummaryNonUSBTokens Non USB Related Tokens
* This section describes compile tokens which affect non-USB sections of the LUFA library.
*
- * <b>DISABLE_TERMINAL_CODES</b> - TerminalCodes.h \n
+ * <b>DISABLE_TERMINAL_CODES</b> - ( \ref Group_Terminal ) \n
* If an application contains ANSI terminal control codes listed in TerminalCodes.h, it might be desired to remove them
* at compile time for use with a terminal which is non-ANSI control code aware, without modifying the source code. If
* this token is defined, all ANSI control codes in the application code from the TerminalCodes.h header are removed from
* the source code at compile time.
*
- * <b>NUM_BLOCKS</b> - DynAlloc.h \n
+ * <b>NUM_BLOCKS</b> - ( \ref Group_MemoryAllocator ) \n
* Sets the number of allocable blocks in the psudo-heap of the dynamic memory allocation driver. This should be
* defined as a constant larger than zero.
*
- * <b>BLOCK_SIZE</b> - DynAlloc.h \n
+ * <b>BLOCK_SIZE</b> - ( \ref Group_MemoryAllocator ) \n
* Sets the size of each allocable block in the psudo-heap of the dynamic memory allocation driver. This should be
* defined as a constant larger than zero.
*
- * <b>NUM_HANDLES</b> - DynAlloc.h \n
+ * <b>NUM_HANDLES</b> - ( \ref Group_MemoryAllocator ) \n
* Sets the maximum number of managed memory handles which can be handed out by the dynamic memory allocation driver
* simultaneously, before a handle (and its associated allocated memory) must be freed.
*
@@ -36,38 +36,38 @@
* \section Sec_SummaryUSBClassTokens USB Class Driver Related Tokens
* This section describes compile tokens which affect USB class-specific drivers in the LUFA library.
*
- * <b>HID_ENABLE_FEATURE_PROCESSING</b> - HIDParser.h \n
+ * <b>HID_ENABLE_FEATURE_PROCESSING</b> - ( \ref Group_HIDParser ) \n
* Define this token to enable the processing of FEATURE HID report items, if any, into the processed HID structure.
* By default FEATURE items (which are device features settable by the host but not directly visible by the user) are
* skipped when processing a device HID report.
*
- * <b>HID_INCLUDE_CONSTANT_DATA_ITEMS</b> - HIDParser.h \n
+ * <b>HID_INCLUDE_CONSTANT_DATA_ITEMS</b> - ( \ref Group_HIDParser ) \n
* By default, constant data items (usually used as spacers to align seperate report items to a byte or word boundary)
* in the HID report are skipped during report processing. It is highly unusual for an application to make any use of
* constant data items (as they do not carry any useful data and only occupy limited RAM) however if required defining
* this switch will put constant data items into the processed HID report structure.
*
- * <b>HID_STATETABLE_STACK_DEPTH</b> - HIDParser.h \n
+ * <b>HID_STATETABLE_STACK_DEPTH</b> - ( \ref Group_HIDParser ) \n
* HID reports may contain PUSH and POP elements, to store and retrieve the current HID state table onto a stack. This
* allows for reports to save the state table before modifying it slightly for a data item, and then restore the previous
* state table in a compact manner. This token may be defined to a non-zero value to give the maximum depth of the state
* table stack. If not defined, this defaults to the value indicated in the HID.h file documentation.
*
- * <b>HID_USAGE_STACK_DEPTH</b> - HIDParser.h \n
+ * <b>HID_USAGE_STACK_DEPTH</b> - ( \ref Group_HIDParser ) \n
* HID reports generally contain many USAGE elements, which are assigned to INPUT, OUTPUT and FEATURE items in succession
* when multiple items are defined at once (via REPORT COUNT elements). This allows for several items to be defined with
* different usages in a compact manner. This token may be defined to a non-zero value to set the maximum depth of the
* usage stack, indicating the maximum number of USAGE items which can be stored tempoarily until the next INPUT, OUTPUT
* and FEATURE item. If not defined, this defaults to the value indicated in the HID.h file documentation.
*
- * <b>HID_MAX_COLLECTIONS</b> - HIDParser.h \n
+ * <b>HID_MAX_COLLECTIONS</b> - ( \ref Group_HIDParser ) \n
* HID reports generally contain several COLLECTION elements, used to group related data items together. Collection information
* is stored seperately in the processed usage structure (and referred to by the data elements in the structure) to save space.
* This token may be defined to a non-zero value to set the maximum number of COLLECTION items which can be processed by the
* parser into the resultant processed report structure. If not defined, this defaults to the value indicated in the HID.h file
* documentation.
*
- * <b>HID_MAX_REPORTITEMS</b> - HIDParser.h \n
+ * <b>HID_MAX_REPORTITEMS</b> - ( \ref Group_HIDParser ) \n
* All HID reports contain one or more INPUT, OUTPUT and/or FEATURE items describing the data which can be sent to and from the HID
* device. Each item has associated usages, bit offsets in the item reports and other associated data indicating the manner in which
* the report data should be interpreted by the host. This token may be defined to a non-zero value to set the maximum number of
@@ -79,28 +79,28 @@
* \section Sec_SummaryUSBTokens USB Driver Related Tokens
* This section describes compile tokens which affect USB driver stack as a whole in the LUFA library.
*
- * <b>USE_RAM_DESCRIPTORS</b> - StdDescriptors.h \n
+ * <b>USE_RAM_DESCRIPTORS</b> - ( \ref Group_Descriptors ) \n
* Define this token to indicate to the USB driver that device descriptors are stored in RAM, rather than the default of
* the AVR's flash. RAM descriptors may be desirable in applications where speed or minimizing flash usage is more important
* than RAM usage, or applications where the descriptors need to be modified at runtime.
*
- * <b>USE_EEPROM_DESCRIPTORS</b> - StdDescriptors.h \n
+ * <b>USE_EEPROM_DESCRIPTORS</b> - ( \ref Group_Descriptors ) \n
* Similar to USE_RAM_DESCRIPTORS, but descriptors are stored in the AVR's EEPROM memory rather than RAM.
*
- * <b>USE_NONSTANDARD_DESCRIPTOR_NAMES</b> - StdDescriptors.h \n
+ * <b>USE_NONSTANDARD_DESCRIPTOR_NAMES</b> - ( \ref Group_Descriptors ) \n
* The USB 2.0 standard gives some rather obscure names for the elements in the standard descriptor types (device, configuration,
* string, endpoint, etc.). By default the LUFA library uses these names in its predefined descriptor structure types for
* compatibility. If this token is defined, the structure element names are switched to the LUFA-specific but more descriptive
* names documented in the StdDescriptors.h source file.
*
- * <b>FIXED_CONTROL_ENDPOINT_SIZE</b> - Endpoint.h \n
+ * <b>FIXED_CONTROL_ENDPOINT_SIZE</b> - ( \ref Group_EndpointManagement ) \n
* By default, the library determines the size of the control endpoint (when in device mode) by reading the device descriptor.
* Normally this reduces the amount of configuration required for the library, allows the value to change dynamically (if
* descriptors are stored in EEPROM or RAM rather than flash memory) and reduces code maintenance. However, this token can be
* defined to a non-zero value instead to give the size in bytes of the control endpoint, to reduce the size of the compiled
* binary at the expense of flexibility.
*
- * <b>STATIC_ENDPOINT_CONFIGURATION</b> - Endpoint.h \n
+ * <b>STATIC_ENDPOINT_CONFIGURATION</b> - ( \ref Group_EndpointManagement ) \n
* By default, the endpoint configuration routine is designed to accept dynamic inputs, so that the endpoints can be configured
* using variable values known only at runtime. This allows for a great deal of flexibility, however uses a small amount of binary
* space which may be wasted if all endpoint configurations are static and known at compile time. Define this token via the -D switch
@@ -108,18 +108,18 @@
* flexibility. Note that with this option dynamic values may still be used, but will result in many times more code to be generated than
* if the option was disabled. This is designed to be used only if the FIXED_CONTROL_ENDPOINT_SIZE option is also used.
*
- * <b>USE_SINGLE_DEVICE_CONFIGURATION</b> - DevChapter9.h \n
+ * <b>USE_SINGLE_DEVICE_CONFIGURATION</b> - ( \ref Group_Device ) \n
* By default, the library determines the number of configurations a USB device supports by reading the device descriptor. This reduces
* the amount of configuration required to set up the library, and allows the value to change dynamically (if descriptors are stored in
* EEPROM or RAM rather than flash memory) and reduces code maintenance. However, many USB device projects use only a single configuration.
* Defining this token enables single-configuration mode, reducing the compiled size of the binary at the expense of flexibility.
*
- * <b>FEATURELESS_CONTROL_ONLY_DEVICE</b> - DevChapter9.h \n
+ * <b>FEATURELESS_CONTROL_ONLY_DEVICE</b> \n
* In some limited USB device applications, device features (other than self-power) and endpoints other than the control endpoint aren't
* used. In such limited situations, this token may be defined to remove the handling of the Set Feature Chapter 9 request entirely and
- * parts of the Get Feature chapter 9 request to save space. Generally, this is usually only useful in (some) bootloaders.
+ * parts of the Get Feature chapter 9 request to save space. Generally, this is usually only useful in (some) bootloaders and is best avoided.
*
- * <b>NO_STREAM_CALLBACKS</b> - Endpoint.h, Pipe.h \n
+ * <b>NO_STREAM_CALLBACKS</b> - ( \ref Group_EndpointPacketManagement , \ref Group_PipePacketManagement )\n
* Both the endpoint and the pipe driver code contains stream functions, allowing for arrays of data to be sent to or from the
* host easily via a single function call (rather than complex routines worrying about sending full packets, waiting for the endpoint/
* pipe to become ready, etc.). By default, these stream functions require a callback function which is executed after each byte processed,
@@ -127,39 +127,39 @@
* by defining this token, reducing the compiled binary size. When removed, the stream functions no longer accept a callback function as
* a parameter.
*
- * <b>USB_HOST_TIMEOUT_MS</b> - Host.h \n
+ * <b>USB_HOST_TIMEOUT_MS</b> - ( \ref Group_Host ) \n
* When a control transfer is initiated in host mode to an attached device, a timeout is used to abort the transfer if the attached
* device fails to respond within the timeout period. This token may be defined to a non-zero value to set the timeout period for
* control transfers, specified in milliseconds. If not defined, the default value specified in Host.h is used instead.
*
- * <b>HOST_DEVICE_SETTLE_DELAY_MS</b> - Host.h \n
+ * <b>HOST_DEVICE_SETTLE_DELAY_MS</b> - ( \ref Group_Host ) \n
* Some devices require a delay of up to 5 seconds after they are connected to VBUS before the enumeration process can be started, or
* they will fail to enumerate correctly. By placing a delay before the enumeration process, it can be ensured that the bus has settled
* back to a known idle state before communications occur with the device. This token may be defined to a non-zero value to set the
* device settle period, specified in milliseconds. If not defined, the default value specified in Host.h is used instead.
*
- * <b>USE_STATIC_OPTIONS</b> - LowLevel.h \n
+ * <b>USE_STATIC_OPTIONS</b> - ( \ref Group_USBManagement ) \n
* By default, the USB_Init() function accepts dynamic options at runtime to alter the library behaviour, including whether the USB pad
* voltage regulator is enabled, and the device speed when in device mode. By defining this token to a mask comprised of the USB options
* mask defines usually passed as the Options parameter to USB_Init(), the resulting compiled binary can be decreased in size by removing
* the dynamic options code, and replacing it with the statically set options. When defined, the USB_Init() function no longer accepts an
* Options parameter.
*
- * <b>USB_DEVICE_ONLY</b> - LowLevel.h \n
+ * <b>USB_DEVICE_ONLY</b> - ( \ref Group_USBManagement ) \n
* For the USB AVR models supporting both device and host USB modes, the USB_Init() function contains a Mode parameter which specifies the
* mode the library should be initialized to. If only device mode is required, the code for USB host mode can be removed from the binary to
* save space. When defined, the USB_Init() function no longer accepts a Mode parameter. This define is irrelevent on smaller USB AVRs which
* do not support host mode.
*
- * <b>USB_HOST_ONLY</b> - LowLevel.h \n
+ * <b>USB_HOST_ONLY</b> - ( \ref Group_USBManagement ) \n
* Same as USB_DEVICE_ONLY, except the library is fixed to USB host mode rather than USB device mode. Not available on some USB AVR models.
*
- * <b>USB_STREAM_TIMEOUT_MS</b> - LowLevel.h \n
+ * <b>USB_STREAM_TIMEOUT_MS</b> - ( \ref Group_USBManagement ) \n
* When endpoint and/or pipe stream functions are used, by default there is a timeout between each transfer which the connected device or host
* must satisfy, or the stream function aborts the remaining data transfer. This token may be defined to a non-zero value to set the timeout
* period for stream transfers, specified in milliseconds. If not defined, the default value specified in LowLevel.h is used instead.
*
- * <b>NO_LIMITED_CONTROLLER_CONNECT</b> - Events.h \n
+ * <b>NO_LIMITED_CONTROLLER_CONNECT</b> - ( \ref Group_Events ) \n
* On the smaller USB AVRs, the USB controller lacks VBUS events to determine the physical connection state of the USB bus to a host. In lieu of
* VBUS events, the library attempts to determine the connection state via the bus suspension and wake up events instead. This however may be
* slightly inaccurate due to the possibility of the host suspending the bus while the device is still connected. If accurate connection status is