aboutsummaryrefslogtreecommitdiffstats
path: root/LUFA/Drivers/USB/Core/PipeStream.h
diff options
context:
space:
mode:
authorDean Camera <dean@fourwalledcubicle.com>2011-02-19 22:59:27 +0000
committerDean Camera <dean@fourwalledcubicle.com>2011-02-19 22:59:27 +0000
commit1daa5e16f9a395fb2943906a715adb35b8106988 (patch)
tree016c5790c2b0e50753f9a4edda21ce54b40e914d /LUFA/Drivers/USB/Core/PipeStream.h
parent3832182fe1de292998eef73e00511f73af0efa87 (diff)
downloadlufa-1daa5e16f9a395fb2943906a715adb35b8106988.tar.gz
lufa-1daa5e16f9a395fb2943906a715adb35b8106988.tar.bz2
lufa-1daa5e16f9a395fb2943906a715adb35b8106988.zip
Initial restructuring of the core USB driver module to support multiple architectures in the future.
Diffstat (limited to 'LUFA/Drivers/USB/Core/PipeStream.h')
-rw-r--r--LUFA/Drivers/USB/Core/PipeStream.h461
1 files changed, 461 insertions, 0 deletions
diff --git a/LUFA/Drivers/USB/Core/PipeStream.h b/LUFA/Drivers/USB/Core/PipeStream.h
new file mode 100644
index 000000000..86c544ebe
--- /dev/null
+++ b/LUFA/Drivers/USB/Core/PipeStream.h
@@ -0,0 +1,461 @@
+/*
+ LUFA Library
+ Copyright (C) Dean Camera, 2011.
+
+ dean [at] fourwalledcubicle [dot] com
+ www.lufa-lib.org
+*/
+
+/*
+ Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
+
+ Permission to use, copy, modify, distribute, and sell this
+ software and its documentation for any purpose is hereby granted
+ without fee, provided that the above copyright notice appear in
+ all copies and that both that the copyright notice and this
+ permission notice and warranty disclaimer appear in supporting
+ documentation, and that the name of the author not be used in
+ advertising or publicity pertaining to distribution of the
+ software without specific, written prior permission.
+
+ The author disclaim all warranties with regard to this
+ software, including all implied warranties of merchantability
+ and fitness. In no event shall the author be liable for any
+ special, indirect or consequential damages or any damages
+ whatsoever resulting from loss of use, data or profits, whether
+ in an action of contract, negligence or other tortious action,
+ arising out of or in connection with the use or performance of
+ this software.
+*/
+
+/** \file
+ * \brief USB host pipe stream function definitions.
+ *
+ * This file contains structures, function prototypes and macros related to the sending and receiving of
+ * arbitrary data streams through the device's data pipes when the library is initialized in USB host mode.
+ *
+ * \note This file should not be included directly. It is automatically included as needed by the USB driver
+ * dispatch header located in LUFA/Drivers/USB/USB.h.
+ */
+
+/** \ingroup Group_PipeRW
+ * \defgroup Group_PipeStreamRW Read/Write of Multi-Byte Streams
+ *
+ * Functions, macros, variables, enums and types related to data reading and writing of data streams from
+ * and to pipes.
+ *
+ * @{
+ */
+
+#ifndef __PIPE_STREAM_H__
+#define __PIPE_STREAM_H__
+
+ /* Includes: */
+ #include "../../../Common/Common.h"
+ #include "USBTask.h"
+
+ /* Enable C linkage for C++ Compilers: */
+ #if defined(__cplusplus)
+ extern "C" {
+ #endif
+
+ /* Preprocessor Checks: */
+ #if !defined(__INCLUDE_FROM_USB_DRIVER)
+ #error Do not include this file directly. Include LUFA/Drivers/USB/USB.h instead.
+ #endif
+
+ /* Public Interface - May be used in end-application: */
+ /* Enums: */
+ /** Enum for the possible error return codes of the Pipe_*_Stream_* functions. */
+ enum Pipe_Stream_RW_ErrorCodes_t
+ {
+ PIPE_RWSTREAM_NoError = 0, /**< Command completed successfully, no error. */
+ PIPE_RWSTREAM_PipeStalled = 1, /**< The device stalled the pipe during the transfer. */
+ PIPE_RWSTREAM_DeviceDisconnected = 2, /**< Device was disconnected from the host during
+ * the transfer.
+ */
+ PIPE_RWSTREAM_Timeout = 3, /**< The device failed to accept or send the next packet
+ * within the software timeout period set by the
+ * \ref USB_STREAM_TIMEOUT_MS macro.
+ */
+ PIPE_RWSTREAM_IncompleteTransfer = 4, /**< Indicates that the pipe bank became full/empty before the
+ * complete contents of the stream could be transferred.
+ */
+ };
+
+ /* Function Prototypes: */
+
+ /** \name Stream functions for null data */
+ //@{
+
+ /** Reads and discards the given number of bytes from the pipe, discarding fully read packets from the host
+ * as needed. The last packet is not automatically discarded once the remaining bytes has been read; the
+ * user is responsible for manually discarding the last packet from the device via the \ref Pipe_ClearIN() macro.
+ *
+ * If the BytesProcessed parameter is \c NULL, the entire stream transfer is attempted at once, failing or
+ * succeeding as a single unit. If the BytesProcessed parameter points to a valid storage location, the transfer
+ * will instead be performed as a series of chunks. Each time the pipe bank becomes empty while there is still data
+ * to process (and after the current packet has been acknowledged) the BytesProcessed location will be updated with
+ * the total number of bytes processed in the stream, and the function will exit with an error code of
+ * \ref PIPE_RWSTREAM_IncompleteTransfer. This allows for any abort checking to be performed in the user code - to
+ * continue the transfer, call the function again with identical parameters and it will resume until the BytesProcessed
+ * value reaches the total transfer length.
+ *
+ * <b>Single Stream Transfer Example:</b>
+ * \code
+ * uint8_t ErrorCode;
+ *
+ * if ((ErrorCode = Pipe_Discard_Stream(512, NULL)) != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * <b>Partial Stream Transfers Example:</b>
+ * \code
+ * uint8_t ErrorCode;
+ * uint16_t BytesProcessed;
+ *
+ * BytesProcessed = 0;
+ * while ((ErrorCode = Pipe_Discard_Stream(512, &BytesProcessed)) == PIPE_RWSTREAM_IncompleteTransfer)
+ * {
+ * // Stream not yet complete - do other actions here, abort if required
+ * }
+ *
+ * if (ErrorCode != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * \note The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
+ * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
+ *
+ * \param[in] Length Number of bytes to discard via the currently selected pipe.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be processed at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Discard_Stream(uint16_t Length,
+ uint16_t* const BytesProcessed);
+
+ /** Writes a given number of zeroed bytes to the pipe, sending full pipe packets from the host to the device
+ * as needed. The last packet is not automatically sent once the remaining bytes has been written; the
+ * user is responsible for manually discarding the last packet from the device via the \ref Pipe_ClearOUT() macro.
+ *
+ * If the BytesProcessed parameter is \c NULL, the entire stream transfer is attempted at once, failing or
+ * succeeding as a single unit. If the BytesProcessed parameter points to a valid storage location, the transfer
+ * will instead be performed as a series of chunks. Each time the pipe bank becomes full while there is still data
+ * to process (and after the current packet transmission has been initiated) the BytesProcessed location will be
+ * updated with the total number of bytes processed in the stream, and the function will exit with an error code of
+ * \ref PIPE_RWSTREAM_IncompleteTransfer. This allows for any abort checking to be performed in the user code - to
+ * continue the transfer, call the function again with identical parameters and it will resume until the BytesProcessed
+ * value reaches the total transfer length.
+ *
+ * <b>Single Stream Transfer Example:</b>
+ * \code
+ * uint8_t ErrorCode;
+ *
+ * if ((ErrorCode = Pipe_Null_Stream(512, NULL)) != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * <b>Partial Stream Transfers Example:</b>
+ * \code
+ * uint8_t ErrorCode;
+ * uint16_t BytesProcessed;
+ *
+ * BytesProcessed = 0;
+ * while ((ErrorCode = Pipe_Null_Stream(512, &BytesProcessed)) == PIPE_RWSTREAM_IncompleteTransfer)
+ * {
+ * // Stream not yet complete - do other actions here, abort if required
+ * }
+ *
+ * if (ErrorCode != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * \note The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
+ * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
+ *
+ * \param[in] Length Number of zero bytes to write via the currently selected pipe.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be processed at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Null_Stream(uint16_t Length,
+ uint16_t* const BytesProcessed);
+
+ //@}
+
+ /** \name Stream functions for RAM source/destination data */
+ //@{
+
+ /** Writes the given number of bytes to the pipe from the given buffer in little endian,
+ * sending full packets to the device as needed. The last packet filled is not automatically sent;
+ * the user is responsible for manually sending the last written packet to the host via the
+ * \ref Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
+ * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
+ *
+ * If the BytesProcessed parameter is \c NULL, the entire stream transfer is attempted at once,
+ * failing or succeeding as a single unit. If the BytesProcessed parameter points to a valid
+ * storage location, the transfer will instead be performed as a series of chunks. Each time
+ * the pipe bank becomes full while there is still data to process (and after the current
+ * packet transmission has been initiated) the BytesProcessed location will be updated with the
+ * total number of bytes processed in the stream, and the function will exit with an error code of
+ * \ref PIPE_RWSTREAM_IncompleteTransfer. This allows for any abort checking to be performed
+ * in the user code - to continue the transfer, call the function again with identical parameters
+ * and it will resume until the BytesProcessed value reaches the total transfer length.
+ *
+ * <b>Single Stream Transfer Example:</b>
+ * \code
+ * uint8_t DataStream[512];
+ * uint8_t ErrorCode;
+ *
+ * if ((ErrorCode = Pipe_Write_Stream_LE(DataStream, sizeof(DataStream),
+ * NULL)) != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * <b>Partial Stream Transfers Example:</b>
+ * \code
+ * uint8_t DataStream[512];
+ * uint8_t ErrorCode;
+ * uint16_t BytesProcessed;
+ *
+ * BytesProcessed = 0;
+ * while ((ErrorCode = Pipe_Write_Stream_LE(DataStream, sizeof(DataStream),
+ * &BytesProcessed)) == PIPE_RWSTREAM_IncompleteTransfer)
+ * {
+ * // Stream not yet complete - do other actions here, abort if required
+ * }
+ *
+ * if (ErrorCode != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * \note The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
+ * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
+ *
+ * \param[in] Buffer Pointer to the source data buffer to read from.
+ * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be written at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Write_Stream_LE(const void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+
+ /** Writes the given number of bytes to the pipe from the given buffer in big endian,
+ * sending full packets to the device as needed. The last packet filled is not automatically sent;
+ * the user is responsible for manually sending the last written packet to the host via the
+ * \ref Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
+ * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
+ *
+ * \note The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
+ * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
+ *
+ * \param[in] Buffer Pointer to the source data buffer to read from.
+ * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be written at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Write_Stream_BE(const void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+
+ /** Reads the given number of bytes from the pipe into the given buffer in little endian,
+ * sending full packets to the device as needed. The last packet filled is not automatically sent;
+ * the user is responsible for manually sending the last written packet to the host via the
+ * \ref Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
+ * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
+ *
+ * If the BytesProcessed parameter is \c NULL, the entire stream transfer is attempted at once,
+ * failing or succeeding as a single unit. If the BytesProcessed parameter points to a valid
+ * storage location, the transfer will instead be performed as a series of chunks. Each time
+ * the pipe bank becomes empty while there is still data to process (and after the current
+ * packet has been acknowledged) the BytesProcessed location will be updated with the total number
+ * of bytes processed in the stream, and the function will exit with an error code of
+ * \ref PIPE_RWSTREAM_IncompleteTransfer. This allows for any abort checking to be performed
+ * in the user code - to continue the transfer, call the function again with identical parameters
+ * and it will resume until the BytesProcessed value reaches the total transfer length.
+ *
+ * <b>Single Stream Transfer Example:</b>
+ * \code
+ * uint8_t DataStream[512];
+ * uint8_t ErrorCode;
+ *
+ * if ((ErrorCode = Pipe_Read_Stream_LE(DataStream, sizeof(DataStream),
+ * NULL)) != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * <b>Partial Stream Transfers Example:</b>
+ * \code
+ * uint8_t DataStream[512];
+ * uint8_t ErrorCode;
+ * uint16_t BytesProcessed;
+ *
+ * BytesProcessed = 0;
+ * while ((ErrorCode = Pipe_Read_Stream_LE(DataStream, sizeof(DataStream),
+ * &BytesProcessed)) == PIPE_RWSTREAM_IncompleteTransfer)
+ * {
+ * // Stream not yet complete - do other actions here, abort if required
+ * }
+ *
+ * if (ErrorCode != PIPE_RWSTREAM_NoError)
+ * {
+ * // Stream failed to complete - check ErrorCode here
+ * }
+ * \endcode
+ *
+ * \note The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
+ * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
+ *
+ * \param[out] Buffer Pointer to the source data buffer to write to.
+ * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be read at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Read_Stream_LE(void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+
+ /** Reads the given number of bytes from the pipe into the given buffer in big endian,
+ * sending full packets to the device as needed. The last packet filled is not automatically sent;
+ * the user is responsible for manually sending the last written packet to the host via the
+ * \ref Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
+ * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
+ *
+ * \note The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
+ * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
+ *
+ * \param[out] Buffer Pointer to the source data buffer to write to.
+ * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be read at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Read_Stream_BE(void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+ //@}
+
+ /** \name Stream functions for EEPROM source/destination data */
+ //@{
+
+ /** EEPROM buffer source version of \ref Pipe_Write_Stream_LE().
+ *
+ * \param[in] Buffer Pointer to the source data buffer to read from.
+ * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be written at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Write_EStream_LE(const void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+
+ /** EEPROM buffer source version of \ref Pipe_Write_Stream_BE().
+ *
+ * \param[in] Buffer Pointer to the source data buffer to read from.
+ * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be written at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Write_EStream_BE(const void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+
+ /** EEPROM buffer source version of \ref Pipe_Read_Stream_LE().
+ *
+ * \param[out] Buffer Pointer to the source data buffer to write to.
+ * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be read at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Read_EStream_LE(void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+
+ /** EEPROM buffer source version of \ref Pipe_Read_Stream_BE().
+ *
+ * \param[out] Buffer Pointer to the source data buffer to write to.
+ * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be read at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Read_EStream_BE(void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+ //@}
+
+ /** \name Stream functions for PROGMEM source/destination data */
+ //@{
+
+ /** FLASH buffer source version of \ref Pipe_Write_Stream_LE().
+ *
+ * \pre The FLASH data must be located in the first 64KB of FLASH for this function to work correctly.
+ *
+ * \param[in] Buffer Pointer to the source data buffer to read from.
+ * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be written at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Write_PStream_LE(const void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+
+ /** FLASH buffer source version of \ref Pipe_Write_Stream_BE().
+ *
+ * \pre The FLASH data must be located in the first 64KB of FLASH for this function to work correctly.
+ *
+ * \param[in] Buffer Pointer to the source data buffer to read from.
+ * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
+ * \param[in] BytesProcessed Pointer to a location where the total number of bytes already processed should
+ * updated, \c NULL if the entire stream should be written at once.
+ *
+ * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
+ */
+ uint8_t Pipe_Write_PStream_BE(const void* const Buffer,
+ uint16_t Length,
+ uint16_t* const BytesProcessed) ATTR_NON_NULL_PTR_ARG(1);
+ //@}
+
+ /* Disable C linkage for C++ Compilers: */
+ #if defined(__cplusplus)
+ }
+ #endif
+
+#endif
+
+/** @} */
+