diff options
Diffstat (limited to 'include/gtest')
-rw-r--r-- | include/gtest/gtest-printers.h | 730 | ||||
-rw-r--r-- | include/gtest/gtest.h | 14 | ||||
-rw-r--r-- | include/gtest/internal/gtest-internal.h | 289 | ||||
-rw-r--r-- | include/gtest/internal/gtest-port.h | 137 |
4 files changed, 1158 insertions, 12 deletions
diff --git a/include/gtest/gtest-printers.h b/include/gtest/gtest-printers.h new file mode 100644 index 00000000..b15e366f --- /dev/null +++ b/include/gtest/gtest-printers.h @@ -0,0 +1,730 @@ +// Copyright 2007, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +// Google Test - The Google C++ Testing Framework +// +// This file implements a universal value printer that can print a +// value of any type T: +// +// void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); +// +// A user can teach this function how to print a class type T by +// defining either operator<<() or PrintTo() in the namespace that +// defines T. More specifically, the FIRST defined function in the +// following list will be used (assuming T is defined in namespace +// foo): +// +// 1. foo::PrintTo(const T&, ostream*) +// 2. operator<<(ostream&, const T&) defined in either foo or the +// global namespace. +// +// If none of the above is defined, it will print the debug string of +// the value if it is a protocol buffer, or print the raw bytes in the +// value otherwise. +// +// To aid debugging: when T is a reference type, the address of the +// value is also printed; when T is a (const) char pointer, both the +// pointer value and the NUL-terminated string it points to are +// printed. +// +// We also provide some convenient wrappers: +// +// // Prints a value to a string. For a (const or not) char +// // pointer, the NUL-terminated string (but not the pointer) is +// // printed. +// std::string ::testing::PrintToString(const T& value); +// +// // Prints a value tersely: for a reference type, the referenced +// // value (but not the address) is printed; for a (const or not) char +// // pointer, the NUL-terminated string (but not the pointer) is +// // printed. +// void ::testing::internal::UniversalTersePrint(const T& value, ostream*); +// +// // Prints value using the type inferred by the compiler. The difference +// // from UniversalTersePrint() is that this function prints both the +// // pointer and the NUL-terminated string for a (const or not) char pointer. +// void ::testing::internal::UniversalPrint(const T& value, ostream*); +// +// // Prints the fields of a tuple tersely to a string vector, one +// // element for each field. Tuple support must be enabled in +// // gtest-port.h. +// std::vector<string> UniversalTersePrintTupleFieldsToStrings( +// const Tuple& value); +// +// Known limitation: +// +// The print primitives print the elements of an STL-style container +// using the compiler-inferred type of *iter where iter is a +// const_iterator of the container. When const_iterator is an input +// iterator but not a forward iterator, this inferred type may not +// match value_type, and the print output may be incorrect. In +// practice, this is rarely a problem as for most containers +// const_iterator is a forward iterator. We'll fix this if there's an +// actual need for it. Note that this fix cannot rely on value_type +// being defined as many user-defined container types don't have +// value_type. + +#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ +#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ + +#include <ostream> // NOLINT +#include <sstream> +#include <string> +#include <utility> +#include <vector> +#include <gtest/internal/gtest-port.h> +#include <gtest/internal/gtest-internal.h> + +namespace testing { + +// Definitions in the 'internal' and 'internal2' name spaces are +// subject to change without notice. DO NOT USE THEM IN USER CODE! +namespace internal2 { + +// Prints the given number of bytes in the given object to the given +// ostream. +GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, + size_t count, + ::std::ostream* os); + +// TypeWithoutFormatter<T, kIsProto>::PrintValue(value, os) is called +// by the universal printer to print a value of type T when neither +// operator<< nor PrintTo() is defined for type T. When T is +// ProtocolMessage, proto2::Message, or a subclass of those, kIsProto +// will be true and the short debug string of the protocol message +// value will be printed; otherwise kIsProto will be false and the +// bytes in the value will be printed. +template <typename T, bool kIsProto> +class TypeWithoutFormatter { + public: + static void PrintValue(const T& value, ::std::ostream* os) { + PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), + sizeof(value), os); + } +}; + +// We print a protobuf using its ShortDebugString() when the string +// doesn't exceed this many characters; otherwise we print it using +// DebugString() for better readability. +const size_t kProtobufOneLinerMaxLength = 50; + +template <typename T> +class TypeWithoutFormatter<T, true> { + public: + static void PrintValue(const T& value, ::std::ostream* os) { + const ::testing::internal::string short_str = value.ShortDebugString(); + const ::testing::internal::string pretty_str = + short_str.length() <= kProtobufOneLinerMaxLength ? + short_str : ("\n" + value.DebugString()); + ::std::operator<<(*os, "<" + pretty_str + ">"); + } +}; + +// Prints the given value to the given ostream. If the value is a +// protocol message, its short debug string is printed; otherwise the +// bytes in the value are printed. This is what +// UniversalPrinter<T>::Print() does when it knows nothing about type +// T and T has no << operator. +// +// A user can override this behavior for a class type Foo by defining +// a << operator in the namespace where Foo is defined. +// +// We put this operator in namespace 'internal2' instead of 'internal' +// to simplify the implementation, as much code in 'internal' needs to +// use << in STL, which would conflict with our own << were it defined +// in 'internal'. +// +// Note that this operator<< takes a generic std::basic_ostream<Char, +// CharTraits> type instead of the more restricted std::ostream. If +// we define it to take an std::ostream instead, we'll get an +// "ambiguous overloads" compiler error when trying to print a type +// Foo that supports streaming to std::basic_ostream<Char, +// CharTraits>, as the compiler cannot tell whether +// operator<<(std::ostream&, const T&) or +// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more +// specific. +template <typename Char, typename CharTraits, typename T> +::std::basic_ostream<Char, CharTraits>& operator<<( + ::std::basic_ostream<Char, CharTraits>& os, const T& x) { + TypeWithoutFormatter<T, ::testing::internal::IsAProtocolMessage<T>::value>:: + PrintValue(x, &os); + return os; +} + +} // namespace internal2 +} // namespace testing + +// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up +// magic needed for implementing UniversalPrinter won't work. +namespace testing_internal { + +// Used to print a value that is not an STL-style container when the +// user doesn't define PrintTo() for it. +template <typename T> +void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { + // With the following statement, during unqualified name lookup, + // testing::internal2::operator<< appears as if it was declared in + // the nearest enclosing namespace that contains both + // ::testing_internal and ::testing::internal2, i.e. the global + // namespace. For more details, refer to the C++ Standard section + // 7.3.4-1 [namespace.udir]. This allows us to fall back onto + // testing::internal2::operator<< in case T doesn't come with a << + // operator. + // + // We cannot write 'using ::testing::internal2::operator<<;', which + // gcc 3.3 fails to compile due to a compiler bug. + using namespace ::testing::internal2; // NOLINT + + // Assuming T is defined in namespace foo, in the next statement, + // the compiler will consider all of: + // + // 1. foo::operator<< (thanks to Koenig look-up), + // 2. ::operator<< (as the current namespace is enclosed in ::), + // 3. testing::internal2::operator<< (thanks to the using statement above). + // + // The operator<< whose type matches T best will be picked. + // + // We deliberately allow #2 to be a candidate, as sometimes it's + // impossible to define #1 (e.g. when foo is ::std, defining + // anything in it is undefined behavior unless you are a compiler + // vendor.). + *os << value; +} + +} // namespace testing_internal + +namespace testing { +namespace internal { + +// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given +// value to the given ostream. The caller must ensure that +// 'ostream_ptr' is not NULL, or the behavior is undefined. +// +// We define UniversalPrinter as a class template (as opposed to a +// function template), as we need to partially specialize it for +// reference types, which cannot be done with function templates. +template <typename T> +class UniversalPrinter; + +template <typename T> +void UniversalPrint(const T& value, ::std::ostream* os); + +// Used to print an STL-style container when the user doesn't define +// a PrintTo() for it. +template <typename C> +void DefaultPrintTo(IsContainer /* dummy */, + false_type /* is not a pointer */, + const C& container, ::std::ostream* os) { + const size_t kMaxCount = 32; // The maximum number of elements to print. + *os << '{'; + size_t count = 0; + for (typename C::const_iterator it = container.begin(); + it != container.end(); ++it, ++count) { + if (count > 0) { + *os << ','; + if (count == kMaxCount) { // Enough has been printed. + *os << " ..."; + break; + } + } + *os << ' '; + // We cannot call PrintTo(*it, os) here as PrintTo() doesn't + // handle *it being a native array. + internal::UniversalPrint(*it, os); + } + + if (count > 0) { + *os << ' '; + } + *os << '}'; +} + +// Used to print a pointer that is neither a char pointer nor a member +// pointer, when the user doesn't define PrintTo() for it. (A member +// variable pointer or member function pointer doesn't really point to +// a location in the address space. Their representation is +// implementation-defined. Therefore they will be printed as raw +// bytes.) +template <typename T> +void DefaultPrintTo(IsNotContainer /* dummy */, + true_type /* is a pointer */, + T* p, ::std::ostream* os) { + if (p == NULL) { + *os << "NULL"; + } else { + // We want to print p as a const void*. However, we cannot cast + // it to const void* directly, even using reinterpret_cast, as + // earlier versions of gcc (e.g. 3.4.5) cannot compile the cast + // when p is a function pointer. Casting to UInt64 first solves + // the problem. + *os << reinterpret_cast<const void*>(reinterpret_cast<internal::UInt64>(p)); + } +} + +// Used to print a non-container, non-pointer value when the user +// doesn't define PrintTo() for it. +template <typename T> +void DefaultPrintTo(IsNotContainer /* dummy */, + false_type /* is not a pointer */, + const T& value, ::std::ostream* os) { + ::testing_internal::DefaultPrintNonContainerTo(value, os); +} + +// Prints the given value using the << operator if it has one; +// otherwise prints the bytes in it. This is what +// UniversalPrinter<T>::Print() does when PrintTo() is not specialized +// or overloaded for type T. +// +// A user can override this behavior for a class type Foo by defining +// an overload of PrintTo() in the namespace where Foo is defined. We +// give the user this option as sometimes defining a << operator for +// Foo is not desirable (e.g. the coding style may prevent doing it, +// or there is already a << operator but it doesn't do what the user +// wants). +template <typename T> +void PrintTo(const T& value, ::std::ostream* os) { + // DefaultPrintTo() is overloaded. The type of its first two + // arguments determine which version will be picked. If T is an + // STL-style container, the version for container will be called; if + // T is a pointer, the pointer version will be called; otherwise the + // generic version will be called. + // + // Note that we check for container types here, prior to we check + // for protocol message types in our operator<<. The rationale is: + // + // For protocol messages, we want to give people a chance to + // override Google Mock's format by defining a PrintTo() or + // operator<<. For STL containers, other formats can be + // incompatible with Google Mock's format for the container + // elements; therefore we check for container types here to ensure + // that our format is used. + // + // The second argument of DefaultPrintTo() is needed to bypass a bug + // in Symbian's C++ compiler that prevents it from picking the right + // overload between: + // + // PrintTo(const T& x, ...); + // PrintTo(T* x, ...); + DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); +} + +// The following list of PrintTo() overloads tells +// UniversalPrinter<T>::Print() how to print standard types (built-in +// types, strings, plain arrays, and pointers). + +// Overloads for various char types. +GTEST_API_ void PrintCharTo(char c, int char_code, ::std::ostream* os); +inline void PrintTo(unsigned char c, ::std::ostream* os) { + PrintCharTo(c, c, os); +} +inline void PrintTo(signed char c, ::std::ostream* os) { + PrintCharTo(c, c, os); +} +inline void PrintTo(char c, ::std::ostream* os) { + // When printing a plain char, we always treat it as unsigned. This + // way, the output won't be affected by whether the compiler thinks + // char is signed or not. + PrintTo(static_cast<unsigned char>(c), os); +} + +// Overloads for other simple built-in types. +inline void PrintTo(bool x, ::std::ostream* os) { + *os << (x ? "true" : "false"); +} + +// Overload for wchar_t type. +// Prints a wchar_t as a symbol if it is printable or as its internal +// code otherwise and also as its decimal code (except for L'\0'). +// The L'\0' char is printed as "L'\\0'". The decimal code is printed +// as signed integer when wchar_t is implemented by the compiler +// as a signed type and is printed as an unsigned integer when wchar_t +// is implemented as an unsigned type. +GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); + +// Overloads for C strings. +GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); +inline void PrintTo(char* s, ::std::ostream* os) { + PrintTo(implicit_cast<const char*>(s), os); +} + +// MSVC can be configured to define wchar_t as a typedef of unsigned +// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native +// type. When wchar_t is a typedef, defining an overload for const +// wchar_t* would cause unsigned short* be printed as a wide string, +// possibly causing invalid memory accesses. +#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) +// Overloads for wide C strings +GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); +inline void PrintTo(wchar_t* s, ::std::ostream* os) { + PrintTo(implicit_cast<const wchar_t*>(s), os); +} +#endif + +// Overload for C arrays. Multi-dimensional arrays are printed +// properly. + +// Prints the given number of elements in an array, without printing +// the curly braces. +template <typename T> +void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { + UniversalPrinter<T>::Print(a[0], os); + for (size_t i = 1; i != count; i++) { + *os << ", "; + UniversalPrinter<T>::Print(a[i], os); + } +} + +// Overloads for ::string and ::std::string. +#if GTEST_HAS_GLOBAL_STRING +GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); +inline void PrintTo(const ::string& s, ::std::ostream* os) { + PrintStringTo(s, os); +} +#endif // GTEST_HAS_GLOBAL_STRING + +GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); +inline void PrintTo(const ::std::string& s, ::std::ostream* os) { + PrintStringTo(s, os); +} + +// Overloads for ::wstring and ::std::wstring. +#if GTEST_HAS_GLOBAL_WSTRING +GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); +inline void PrintTo(const ::wstring& s, ::std::ostream* os) { + PrintWideStringTo(s, os); +} +#endif // GTEST_HAS_GLOBAL_WSTRING + +#if GTEST_HAS_STD_WSTRING +GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); +inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { + PrintWideStringTo(s, os); +} +#endif // GTEST_HAS_STD_WSTRING + +#if GTEST_HAS_TR1_TUPLE +// Overload for ::std::tr1::tuple. Needed for printing function arguments, +// which are packed as tuples. + +// Helper function for printing a tuple. T must be instantiated with +// a tuple type. +template <typename T> +void PrintTupleTo(const T& t, ::std::ostream* os); + +// Overloaded PrintTo() for tuples of various arities. We support +// tuples of up-to 10 fields. The following implementation works +// regardless of whether tr1::tuple is implemented using the +// non-standard variadic template feature or not. + +inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1> +void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2> +void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3> +void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3, typename T4> +void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3, typename T4, typename T5> +void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3, typename T4, typename T5, + typename T6> +void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3, typename T4, typename T5, + typename T6, typename T7> +void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3, typename T4, typename T5, + typename T6, typename T7, typename T8> +void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3, typename T4, typename T5, + typename T6, typename T7, typename T8, typename T9> +void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template <typename T1, typename T2, typename T3, typename T4, typename T5, + typename T6, typename T7, typename T8, typename T9, typename T10> +void PrintTo( + const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} +#endif // GTEST_HAS_TR1_TUPLE + +// Overload for std::pair. +template <typename T1, typename T2> +void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { + *os << '('; + UniversalPrinter<T1>::Print(value.first, os); + *os << ", "; + UniversalPrinter<T2>::Print(value.second, os); + *os << ')'; +} + +// Implements printing a non-reference type T by letting the compiler +// pick the right overload of PrintTo() for T. +template <typename T> +class UniversalPrinter { + public: + // MSVC warns about adding const to a function type, so we want to + // disable the warning. +#ifdef _MSC_VER +#pragma warning(push) // Saves the current warning state. +#pragma warning(disable:4180) // Temporarily disables warning 4180. +#endif // _MSC_VER + + // Note: we deliberately don't call this PrintTo(), as that name + // conflicts with ::testing::internal::PrintTo in the body of the + // function. + static void Print(const T& value, ::std::ostream* os) { + // By default, ::testing::internal::PrintTo() is used for printing + // the value. + // + // Thanks to Koenig look-up, if T is a class and has its own + // PrintTo() function defined in its namespace, that function will + // be visible here. Since it is more specific than the generic ones + // in ::testing::internal, it will be picked by the compiler in the + // following statement - exactly what we want. + PrintTo(value, os); + } + +#ifdef _MSC_VER +#pragma warning(pop) // Restores the warning state. +#endif // _MSC_VER +}; + +// UniversalPrintArray(begin, len, os) prints an array of 'len' +// elements, starting at address 'begin'. +template <typename T> +void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { + if (len == 0) { + *os << "{}"; + } else { + *os << "{ "; + const size_t kThreshold = 18; + const size_t kChunkSize = 8; + // If the array has more than kThreshold elements, we'll have to + // omit some details by printing only the first and the last + // kChunkSize elements. + // TODO(wan@google.com): let the user control the threshold using a flag. + if (len <= kThreshold) { + PrintRawArrayTo(begin, len, os); + } else { + PrintRawArrayTo(begin, kChunkSize, os); + *os << ", ..., "; + PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); + } + *os << " }"; + } +} +// This overload prints a (const) char array compactly. +GTEST_API_ void UniversalPrintArray(const char* begin, + size_t len, + ::std::ostream* os); + +// Implements printing an array type T[N]. +template <typename T, size_t N> +class UniversalPrinter<T[N]> { + public: + // Prints the given array, omitting some elements when there are too + // many. + static void Print(const T (&a)[N], ::std::ostream* os) { + UniversalPrintArray(a, N, os); + } +}; + +// Implements printing a reference type T&. +template <typename T> +class UniversalPrinter<T&> { + public: + // MSVC warns about adding const to a function type, so we want to + // disable the warning. +#ifdef _MSC_VER +#pragma warning(push) // Saves the current warning state. +#pragma warning(disable:4180) // Temporarily disables warning 4180. +#endif // _MSC_VER + + static void Print(const T& value, ::std::ostream* os) { + // Prints the address of the value. We use reinterpret_cast here + // as static_cast doesn't compile when T is a function type. + *os << "@" << reinterpret_cast<const void*>(&value) << " "; + + // Then prints the value itself. + UniversalPrinter<T>::Print(value, os); + } + +#ifdef _MSC_VER +#pragma warning(pop) // Restores the warning state. +#endif // _MSC_VER +}; + +// Prints a value tersely: for a reference type, the referenced value +// (but not the address) is printed; for a (const) char pointer, the +// NUL-terminated string (but not the pointer) is printed. +template <typename T> +void UniversalTersePrint(const T& value, ::std::ostream* os) { + UniversalPrinter<T>::Print(value, os); +} +inline void UniversalTersePrint(const char* str, ::std::ostream* os) { + if (str == NULL) { + *os << "NULL"; + } else { + UniversalPrinter<string>::Print(string(str), os); + } +} +inline void UniversalTersePrint(char* str, ::std::ostream* os) { + UniversalTersePrint(static_cast<const char*>(str), os); +} + +// Prints a value using the type inferred by the compiler. The +// difference between this and UniversalTersePrint() is that for a +// (const) char pointer, this prints both the pointer and the +// NUL-terminated string. +template <typename T> +void UniversalPrint(const T& value, ::std::ostream* os) { + UniversalPrinter<T>::Print(value, os); +} + +#if GTEST_HAS_TR1_TUPLE +typedef ::std::vector<string> Strings; + +// This helper template allows PrintTo() for tuples and +// UniversalTersePrintTupleFieldsToStrings() to be defined by +// induction on the number of tuple fields. The idea is that +// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N +// fields in tuple t, and can be defined in terms of +// TuplePrefixPrinter<N - 1>. + +// The inductive case. +template <size_t N> +struct TuplePrefixPrinter { + // Prints the first N fields of a tuple. + template <typename Tuple> + static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { + TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); + *os << ", "; + UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> + ::Print(::std::tr1::get<N - 1>(t), os); + } + + // Tersely prints the first N fields of a tuple to a string vector, + // one element for each field. + template <typename Tuple> + static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { + TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); + ::std::stringstream ss; + UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); + strings->push_back(ss.str()); + } +}; + +// Base cases. +template <> +struct TuplePrefixPrinter<0> { + template <typename Tuple> + static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} + + template <typename Tuple> + static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} +}; +template <> +template <typename Tuple> +void TuplePrefixPrinter<1>::PrintPrefixTo(const Tuple& t, ::std::ostream* os) { + UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: + Print(::std::tr1::get<0>(t), os); +} + +// Helper function for printing a tuple. T must be instantiated with +// a tuple type. +template <typename T> +void PrintTupleTo(const T& t, ::std::ostream* os) { + *os << "("; + TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: + PrintPrefixTo(t, os); + *os << ")"; +} + +// Prints the fields of a tuple tersely to a string vector, one +// element for each field. See the comment before +// UniversalTersePrint() for how we define "tersely". +template <typename Tuple> +Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { + Strings result; + TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: + TersePrintPrefixToStrings(value, &result); + return result; +} +#endif // GTEST_HAS_TR1_TUPLE + +} // namespace internal + +template <typename T> +::std::string PrintToString(const T& value) { + ::std::stringstream ss; + internal::UniversalTersePrint(value, &ss); + return ss.str(); +} + +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ diff --git a/include/gtest/gtest.h b/include/gtest/gtest.h index d0277246..4599aba1 100644 --- a/include/gtest/gtest.h +++ b/include/gtest/gtest.h @@ -59,6 +59,7 @@ #include <gtest/gtest-death-test.h> #include <gtest/gtest-message.h> #include <gtest/gtest-param-test.h> +#include <gtest/gtest-printers.h> #include <gtest/gtest_prod.h> #include <gtest/gtest-test-part.h> #include <gtest/gtest-typed-test.h> @@ -1926,17 +1927,6 @@ GTEST_API_ AssertionResult DoubleLE(const char* expr1, const char* expr2, ::testing::internal::ScopedTrace GTEST_CONCAT_TOKEN_(gtest_trace_, __LINE__)(\ __FILE__, __LINE__, ::testing::Message() << (message)) -namespace internal { - -// This template is declared, but intentionally undefined. -template <typename T1, typename T2> -struct StaticAssertTypeEqHelper; - -template <typename T> -struct StaticAssertTypeEqHelper<T, T> {}; - -} // namespace internal - // Compile-time assertion for type equality. // StaticAssertTypeEq<type1, type2>() compiles iff type1 and type2 are // the same type. The value it returns is not interesting. @@ -1969,7 +1959,7 @@ struct StaticAssertTypeEqHelper<T, T> {}; // to cause a compiler error. template <typename T1, typename T2> bool StaticAssertTypeEq() { - (void)internal::StaticAssertTypeEqHelper<T1, T2>(); + internal::StaticAssertTypeEqHelper<T1, T2>(); return true; } diff --git a/include/gtest/internal/gtest-internal.h b/include/gtest/internal/gtest-internal.h index 31a66e99..dc486017 100644 --- a/include/gtest/internal/gtest-internal.h +++ b/include/gtest/internal/gtest-internal.h @@ -97,6 +97,9 @@ inline void GTestStreamToHelper(std::ostream* os, const T& val) { *os << val; } +class ProtocolMessage; +namespace proto2 { class Message; } + namespace testing { // Forward declaration of classes. @@ -784,6 +787,292 @@ class GTEST_API_ Random { GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); }; +// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a +// compiler error iff T1 and T2 are different types. +template <typename T1, typename T2> +struct CompileAssertTypesEqual; + +template <typename T> +struct CompileAssertTypesEqual<T, T> { +}; + +// Removes the reference from a type if it is a reference type, +// otherwise leaves it unchanged. This is the same as +// tr1::remove_reference, which is not widely available yet. +template <typename T> +struct RemoveReference { typedef T type; }; // NOLINT +template <typename T> +struct RemoveReference<T&> { typedef T type; }; // NOLINT + +// A handy wrapper around RemoveReference that works when the argument +// T depends on template parameters. +#define GTEST_REMOVE_REFERENCE_(T) \ + typename ::testing::internal::RemoveReference<T>::type + +// Removes const from a type if it is a const type, otherwise leaves +// it unchanged. This is the same as tr1::remove_const, which is not +// widely available yet. +template <typename T> +struct RemoveConst { typedef T type; }; // NOLINT +template <typename T> +struct RemoveConst<const T> { typedef T type; }; // NOLINT + +// MSVC 8.0 has a bug which causes the above definition to fail to +// remove the const in 'const int[3]'. The following specialization +// works around the bug. However, it causes trouble with gcc and thus +// needs to be conditionally compiled. +#ifdef _MSC_VER +template <typename T, size_t N> +struct RemoveConst<T[N]> { + typedef typename RemoveConst<T>::type type[N]; +}; +#endif // _MSC_VER + +// A handy wrapper around RemoveConst that works when the argument +// T depends on template parameters. +#define GTEST_REMOVE_CONST_(T) \ + typename ::testing::internal::RemoveConst<T>::type + +// Adds reference to a type if it is not a reference type, +// otherwise leaves it unchanged. This is the same as +// tr1::add_reference, which is not widely available yet. +template <typename T> +struct AddReference { typedef T& type; }; // NOLINT +template <typename T> +struct AddReference<T&> { typedef T& type; }; // NOLINT + +// A handy wrapper around AddReference that works when the argument T +// depends on template parameters. +#define GTEST_ADD_REFERENCE_(T) \ + typename ::testing::internal::AddReference<T>::type + +// Adds a reference to const on top of T as necessary. For example, +// it transforms +// +// char ==> const char& +// const char ==> const char& +// char& ==> const char& +// const char& ==> const char& +// +// The argument T must depend on some template parameters. +#define GTEST_REFERENCE_TO_CONST_(T) \ + GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T)) + +// ImplicitlyConvertible<From, To>::value is a compile-time bool +// constant that's true iff type From can be implicitly converted to +// type To. +template <typename From, typename To> +class ImplicitlyConvertible { + private: + // We need the following helper functions only for their types. + // They have no implementations. + + // MakeFrom() is an expression whose type is From. We cannot simply + // use From(), as the type From may not have a public default + // constructor. + static From MakeFrom(); + + // These two functions are overloaded. Given an expression + // Helper(x), the compiler will pick the first version if x can be + // implicitly converted to type To; otherwise it will pick the + // second version. + // + // The first version returns a value of size 1, and the second + // version returns a value of size 2. Therefore, by checking the + // size of Helper(x), which can be done at compile time, we can tell + // which version of Helper() is used, and hence whether x can be + // implicitly converted to type To. + static char Helper(To); + static char (&Helper(...))[2]; // NOLINT + + // We have to put the 'public' section after the 'private' section, + // or MSVC refuses to compile the code. + public: + // MSVC warns about implicitly converting from double to int for + // possible loss of data, so we need to temporarily disable the + // warning. +#ifdef _MSC_VER +#pragma warning(push) // Saves the current warning state. +#pragma warning(disable:4244) // Temporarily disables warning 4244. + static const bool value = + sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; +#pragma warning(pop) // Restores the warning state. +#else + static const bool value = + sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; +#endif // _MSV_VER +}; +template <typename From, typename To> +const bool ImplicitlyConvertible<From, To>::value; + +// IsAProtocolMessage<T>::value is a compile-time bool constant that's +// true iff T is type ProtocolMessage, proto2::Message, or a subclass +// of those. +template <typename T> +struct IsAProtocolMessage + : public bool_constant< + ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value || + ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> { +}; + +// When the compiler sees expression IsContainerTest<C>(0), the first +// overload of IsContainerTest will be picked if C is an STL-style +// container class (since C::const_iterator* is a valid type and 0 can +// be converted to it), while the second overload will be picked +// otherwise (since C::const_iterator will be an invalid type in this +// case). Therefore, we can determine whether C is a container class +// by checking the type of IsContainerTest<C>(0). The value of the +// expression is insignificant. +typedef int IsContainer; +template <class C> +IsContainer IsContainerTest(typename C::const_iterator*) { return 0; } + +typedef char IsNotContainer; +template <class C> +IsNotContainer IsContainerTest(...) { return '\0'; } + +// Utilities for native arrays. + +// ArrayEq() compares two k-dimensional native arrays using the +// elements' operator==, where k can be any integer >= 0. When k is +// 0, ArrayEq() degenerates into comparing a single pair of values. + +template <typename T, typename U> +bool ArrayEq(const T* lhs, size_t size, const U* rhs); + +// This generic version is used when k is 0. +template <typename T, typename U> +inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } + +// This overload is used when k >= 1. +template <typename T, typename U, size_t N> +inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { + return internal::ArrayEq(lhs, N, rhs); +} + +// This helper reduces code bloat. If we instead put its logic inside +// the previous ArrayEq() function, arrays with different sizes would +// lead to different copies of the template code. +template <typename T, typename U> +bool ArrayEq(const T* lhs, size_t size, const U* rhs) { + for (size_t i = 0; i != size; i++) { + if (!internal::ArrayEq(lhs[i], rhs[i])) + return false; + } + return true; +} + +// Finds the first element in the iterator range [begin, end) that +// equals elem. Element may be a native array type itself. +template <typename Iter, typename Element> +Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { + for (Iter it = begin; it != end; ++it) { + if (internal::ArrayEq(*it, elem)) + return it; + } + return end; +} + +// CopyArray() copies a k-dimensional native array using the elements' +// operator=, where k can be any integer >= 0. When k is 0, +// CopyArray() degenerates into copying a single value. + +template <typename T, typename U> +void CopyArray(const T* from, size_t size, U* to); + +// This generic version is used when k is 0. +template <typename T, typename U> +inline void CopyArray(const T& from, U* to) { *to = from; } + +// This overload is used when k >= 1. +template <typename T, typename U, size_t N> +inline void CopyArray(const T(&from)[N], U(*to)[N]) { + internal::CopyArray(from, N, *to); +} + +// This helper reduces code bloat. If we instead put its logic inside +// the previous CopyArray() function, arrays with different sizes +// would lead to different copies of the template code. +template <typename T, typename U> +void CopyArray(const T* from, size_t size, U* to) { + for (size_t i = 0; i != size; i++) { + internal::CopyArray(from[i], to + i); + } +} + +// The relation between an NativeArray object (see below) and the +// native array it represents. +enum RelationToSource { + kReference, // The NativeArray references the native array. + kCopy // The NativeArray makes a copy of the native array and + // owns the copy. +}; + +// Adapts a native array to a read-only STL-style container. Instead +// of the complete STL container concept, this adaptor only implements +// members useful for Google Mock's container matchers. New members +// should be added as needed. To simplify the implementation, we only +// support Element being a raw type (i.e. having no top-level const or +// reference modifier). It's the client's responsibility to satisfy +// this requirement. Element can be an array type itself (hence +// multi-dimensional arrays are supported). +template <typename Element> +class NativeArray { + public: + // STL-style container typedefs. + typedef Element value_type; + typedef const Element* const_iterator; + + // Constructs from a native array. + NativeArray(const Element* array, size_t count, RelationToSource relation) { + Init(array, count, relation); + } + + // Copy constructor. + NativeArray(const NativeArray& rhs) { + Init(rhs.array_, rhs.size_, rhs.relation_to_source_); + } + + ~NativeArray() { + // Ensures that the user doesn't instantiate NativeArray with a + // const or reference type. + static_cast<void>(StaticAssertTypeEqHelper<Element, + GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(Element))>()); + if (relation_to_source_ == kCopy) + delete[] array_; + } + + // STL-style container methods. + size_t size() const { return size_; } + const_iterator begin() const { return array_; } + const_iterator end() const { return array_ + size_; } + bool operator==(const NativeArray& rhs) const { + return size() == rhs.size() && + ArrayEq(begin(), size(), rhs.begin()); + } + + private: + // Initializes this object; makes a copy of the input array if + // 'relation' is kCopy. + void Init(const Element* array, size_t a_size, RelationToSource relation) { + if (relation == kReference) { + array_ = array; + } else { + Element* const copy = new Element[a_size]; + CopyArray(array, a_size, copy); + array_ = copy; + } + size_ = a_size; + relation_to_source_ = relation; + } + + const Element* array_; + size_t size_; + RelationToSource relation_to_source_; + + GTEST_DISALLOW_ASSIGN_(NativeArray); +}; + } // namespace internal } // namespace testing diff --git a/include/gtest/internal/gtest-port.h b/include/gtest/internal/gtest-port.h index a2a62be9..f2c80f34 100644 --- a/include/gtest/internal/gtest-port.h +++ b/include/gtest/internal/gtest-port.h @@ -609,6 +609,91 @@ namespace internal { class String; +// The GTEST_COMPILE_ASSERT_ macro can be used to verify that a compile time +// expression is true. For example, you could use it to verify the +// size of a static array: +// +// GTEST_COMPILE_ASSERT_(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES, +// content_type_names_incorrect_size); +// +// or to make sure a struct is smaller than a certain size: +// +// GTEST_COMPILE_ASSERT_(sizeof(foo) < 128, foo_too_large); +// +// The second argument to the macro is the name of the variable. If +// the expression is false, most compilers will issue a warning/error +// containing the name of the variable. + +template <bool> +struct CompileAssert { +}; + +#define GTEST_COMPILE_ASSERT_(expr, msg) \ + typedef ::testing::internal::CompileAssert<(bool(expr))> \ + msg[bool(expr) ? 1 : -1] + +// Implementation details of GTEST_COMPILE_ASSERT_: +// +// - GTEST_COMPILE_ASSERT_ works by defining an array type that has -1 +// elements (and thus is invalid) when the expression is false. +// +// - The simpler definition +// +// #define GTEST_COMPILE_ASSERT_(expr, msg) typedef char msg[(expr) ? 1 : -1] +// +// does not work, as gcc supports variable-length arrays whose sizes +// are determined at run-time (this is gcc's extension and not part +// of the C++ standard). As a result, gcc fails to reject the +// following code with the simple definition: +// +// int foo; +// GTEST_COMPILE_ASSERT_(foo, msg); // not supposed to compile as foo is +// // not a compile-time constant. +// +// - By using the type CompileAssert<(bool(expr))>, we ensures that +// expr is a compile-time constant. (Template arguments must be +// determined at compile-time.) +// +// - The outter parentheses in CompileAssert<(bool(expr))> are necessary +// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written +// +// CompileAssert<bool(expr)> +// +// instead, these compilers will refuse to compile +// +// GTEST_COMPILE_ASSERT_(5 > 0, some_message); +// +// (They seem to think the ">" in "5 > 0" marks the end of the +// template argument list.) +// +// - The array size is (bool(expr) ? 1 : -1), instead of simply +// +// ((expr) ? 1 : -1). +// +// This is to avoid running into a bug in MS VC 7.1, which +// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. + +// StaticAssertTypeEqHelper is used by StaticAssertTypeEq defined in gtest.h. +// +// This template is declared, but intentionally undefined. +template <typename T1, typename T2> +struct StaticAssertTypeEqHelper; + +template <typename T> +struct StaticAssertTypeEqHelper<T, T> {}; + +#if GTEST_HAS_GLOBAL_STRING +typedef ::string string; +#else +typedef ::std::string string; +#endif // GTEST_HAS_GLOBAL_STRING + +#if GTEST_HAS_GLOBAL_WSTRING +typedef ::wstring wstring; +#elif GTEST_HAS_STD_WSTRING +typedef ::std::wstring wstring; +#endif // GTEST_HAS_GLOBAL_WSTRING + typedef ::std::stringstream StrStream; // A helper for suppressing warnings on constant condition. It just @@ -790,6 +875,58 @@ inline void FlushInfoLog() { fflush(NULL); } // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // +// Use implicit_cast as a safe version of static_cast for upcasting in +// the type hierarchy (e.g. casting a Foo* to a SuperclassOfFoo* or a +// const Foo*). When you use implicit_cast, the compiler checks that +// the cast is safe. Such explicit implicit_casts are necessary in +// surprisingly many situations where C++ demands an exact type match +// instead of an argument type convertable to a target type. +// +// The syntax for using implicit_cast is the same as for static_cast: +// +// implicit_cast<ToType>(expr) +// +// implicit_cast would have been part of the C++ standard library, +// but the proposal was submitted too late. It will probably make +// its way into the language in the future. +template<typename To> +inline To implicit_cast(To x) { return x; } + +// When you upcast (that is, cast a pointer from type Foo to type +// SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts +// always succeed. When you downcast (that is, cast a pointer from +// type Foo to type SubclassOfFoo), static_cast<> isn't safe, because +// how do you know the pointer is really of type SubclassOfFoo? It +// could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, +// when you downcast, you should use this macro. In debug mode, we +// use dynamic_cast<> to double-check the downcast is legal (we die +// if it's not). In normal mode, we do the efficient static_cast<> +// instead. Thus, it's important to test in debug mode to make sure +// the cast is legal! +// This is the only place in the code we should use dynamic_cast<>. +// In particular, you SHOULDN'T be using dynamic_cast<> in order to +// do RTTI (eg code like this: +// if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); +// if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); +// You should design the code some other way not to need this. +template<typename To, typename From> // use like this: down_cast<T*>(foo); +inline To down_cast(From* f) { // so we only accept pointers + // Ensures that To is a sub-type of From *. This test is here only + // for compile-time type checking, and has no overhead in an + // optimized build at run-time, as it will be optimized away + // completely. + if (false) { + const To to = NULL; + ::testing::internal::implicit_cast<From*>(to); + } + +#if GTEST_HAS_RTTI + // RTTI: debug mode only! + GTEST_CHECK_(f == NULL || dynamic_cast<To>(f) != NULL); +#endif + return static_cast<To>(f); +} + // Downcasts the pointer of type Base to Derived. // Derived must be a subclass of Base. The parameter MUST // point to a class of type Derived, not any subclass of it. |