aboutsummaryrefslogtreecommitdiffstats
path: root/tmk_core/common/uart.c
blob: c17649b08220393e13cb948ef6f914b26bc6fce1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// TODO: Teensy support(ATMega32u4/AT90USB128)
// Fixed for Arduino Duemilanove ATmega168p by Jun Wako
/* UART Example for Teensy USB Development Board
 * http://www.pjrc.com/teensy/
 * Copyright (c) 2009 PJRC.COM, LLC
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

// Version 1.0: Initial Release
// Version 1.1: Add support for Teensy 2.0, minor optimizations


#include <avr/io.h>
#include <avr/interrupt.h>

#include "uart.h"

// These buffers may be any size from 2 to 256 bytes.
#define RX_BUFFER_SIZE 64
#define TX_BUFFER_SIZE 40

static volatile uint8_t tx_buffer[TX_BUFFER_SIZE];
static volatile uint8_t tx_buffer_head;
static volatile uint8_t tx_buffer_tail;
static volatile uint8_t rx_buffer[RX_BUFFER_SIZE];
static volatile uint8_t rx_buffer_head;
static volatile uint8_t rx_buffer_tail;

// Initialize the UART
void uart_init(uint32_t baud)
{
	cli();
	UBRR0 = (F_CPU / 4 / baud - 1) / 2;
	UCSR0A = (1<<U2X0);
	UCSR0B = (1<<RXEN0) | (1<<TXEN0) | (1<<RXCIE0);
	UCSR0C = (1<<UCSZ01) | (1<<UCSZ00);
	tx_buffer_head = tx_buffer_tail = 0;
	rx_buffer_head = rx_buffer_tail = 0;
	sei();
}

// Transmit a byte
void uart_putchar(uint8_t c)
{
	uint8_t i;

	i = tx_buffer_head + 1;
	if (i >= TX_BUFFER_SIZE) i = 0;
	while (tx_buffer_tail == i) ; // wait until space in buffer
	//cli();
	tx_buffer[i] = c;
	tx_buffer_head = i;
	UCSR0B = (1<<RXEN0) | (1<<TXEN0) | (1<<RXCIE0) | (1<<UDRIE0);
	//sei();
}

// Receive a byte
uint8_t uart_getchar(void)
{
        uint8_t c, i;

	while (rx_buffer_head == rx_buffer_tail) ; // wait for character
        i = rx_buffer_tail + 1;
        if (i >= RX_BUFFER_SIZE) i = 0;
        c = rx_buffer[i];
        rx_buffer_tail = i;
        return c;
}

// Return the number of bytes waiting in the receive buffer.
// Call this before uart_getchar() to check if it will need
// to wait for a byte to arrive.
uint8_t uart_available(void)
{
	uint8_t head, tail;

	head = rx_buffer_head;
	tail = rx_buffer_tail;
	if (head >= tail) return head - tail;
	return RX_BUFFER_SIZE + head - tail;
}

// Transmit Interrupt
ISR(USART_UDRE_vect)
{
	uint8_t i;

	if (tx_buffer_head == tx_buffer_tail) {
		// buffer is empty, disable transmit interrupt
		UCSR0B = (1<<RXEN0) | (1<<TXEN0) | (1<<RXCIE0);
	} else {
		i = tx_buffer_tail + 1;
		if (i >= TX_BUFFER_SIZE) i = 0;
		UDR0 = tx_buffer[i];
		tx_buffer_tail = i;
	}
}

// Receive Interrupt
ISR(USART_RX_vect)
{
	uint8_t c, i;

	c = UDR0;
	i = rx_buffer_head + 1;
	if (i >= RX_BUFFER_SIZE) i = 0;
	if (i != rx_buffer_tail) {
		rx_buffer[i] = c;
		rx_buffer_head = i;
	}
}
.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#ifndef MODTOOLS_H
#define MODTOOLS_H

#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"

YOSYS_NAMESPACE_BEGIN

struct ModIndex : public RTLIL::Monitor
{
	struct PortInfo {
		RTLIL::Cell* cell;
		RTLIL::IdString port;
		int offset;

		PortInfo() : cell(), port(), offset() { }
		PortInfo(RTLIL::Cell* _c, RTLIL::IdString _p, int _o) : cell(_c), port(_p), offset(_o) { }

		bool operator<(const PortInfo &other) const {
			if (cell != other.cell)
				return cell < other.cell;
			if (offset != other.offset)
				return offset < other.offset;
			return port < other.port;
		}

		bool operator==(const PortInfo &other) const {
			return cell == other.cell && port == other.port && offset == other.offset;
		}

		unsigned int hash() const {
			return mkhash_add(mkhash(cell->name.hash(), port.hash()), offset);
		}
	};

	struct SigBitInfo
	{
		bool is_input, is_output;
		pool<PortInfo> ports;

		SigBitInfo() : is_input(false), is_output(false) { }

		bool operator==(const SigBitInfo &other) const {
			return is_input == other.is_input && is_output == other.is_output && ports == other.ports;
		}

		void merge(const SigBitInfo &other)
		{
			is_input = is_input || other.is_input;
			is_output = is_output || other.is_output;
			ports.insert(other.ports.begin(), other.ports.end());
		}
	};

	SigMap sigmap;
	RTLIL::Module *module;
	std::map<RTLIL::SigBit, SigBitInfo> database;
	int auto_reload_counter;
	bool auto_reload_module;

	void port_add(RTLIL::Cell *cell, RTLIL::IdString port, const RTLIL::SigSpec &sig)
	{
		for (int i = 0; i < GetSize(sig); i++) {
			RTLIL::SigBit bit = sigmap(sig[i]);
			if (bit.wire)
				database[bit].ports.insert(PortInfo(cell, port, i));
		}
	}

	void port_del(RTLIL::Cell *cell, RTLIL::IdString port, const RTLIL::SigSpec &sig)
	{
		for (int i = 0; i < GetSize(sig); i++) {
			RTLIL::SigBit bit = sigmap(sig[i]);
			if (bit.wire)
				database[bit].ports.erase(PortInfo(cell, port, i));
		}
	}

	const SigBitInfo &info(RTLIL::SigBit bit)
	{
		return database[sigmap(bit)];
	}

	void reload_module(bool reset_sigmap = true)
	{
		if (reset_sigmap) {
			sigmap.clear();
			sigmap.set(module);
		}

		database.clear();
		for (auto wire : module->wires())
			if (wire->port_input || wire->port_output)
				for (int i = 0; i < GetSize(wire); i++) {
					RTLIL::SigBit bit = sigmap(RTLIL::SigBit(wire, i));
					if (bit.wire && wire->port_input)
						database[bit].is_input = true;
					if (bit.wire && wire->port_output)
						database[bit].is_output = true;
				}
		for (auto cell : module->cells())
			for (auto &conn : cell->connections())
				port_add(cell, conn.first, conn.second);

		if (auto_reload_module) {
			if (++auto_reload_counter > 2)
				log_warning("Auto-reload in ModIndex -- possible performance bug!\n");
			auto_reload_module = false;
		}
	}

	void check()
	{
#ifndef NDEBUG
		if (auto_reload_module)
			return;

		for (auto it : database)
			log_assert(it.first == sigmap(it.first));

		auto database_bak = std::move(database);
		reload_module(false);

		if (!(database == database_bak))
		{
			for (auto &it : database_bak)
				if (!database.count(it.first))
					log("ModuleIndex::check(): Only in database_bak, not database: %s\n", log_signal(it.first));

			for (auto &it : database)
				if (!database_bak.count(it.first))
					log("ModuleIndex::check(): Only in database, not database_bak: %s\n", log_signal(it.first));
				else if (!(it.second == database_bak.at(it.first)))
					log("ModuleIndex::check(): Different content for database[%s].\n", log_signal(it.first));

			log_assert(database == database_bak);
		}
#endif
	}

	virtual void notify_connect(RTLIL::Cell *cell, const RTLIL::IdString &port, const RTLIL::SigSpec &old_sig, RTLIL::SigSpec &sig) YS_OVERRIDE
	{
		log_assert(module == cell->module);

		if (auto_reload_module)
			return;

		port_del(cell, port, old_sig);
		port_add(cell, port, sig);
	}

	virtual void notify_connect(RTLIL::Module *mod YS_ATTRIBUTE(unused), const RTLIL::SigSig &sigsig) YS_OVERRIDE
	{
		log_assert(module == mod);

		if (auto_reload_module)
			return;

		for (int i = 0; i < GetSize(sigsig.first); i++)
		{
			RTLIL::SigBit lhs = sigmap(sigsig.first[i]);
			RTLIL::SigBit rhs = sigmap(sigsig.second[i]);
			bool has_lhs = database.count(lhs) != 0;
			bool has_rhs = database.count(rhs) != 0;

			if (!has_lhs && !has_rhs) {
				sigmap.add(lhs, rhs);
			} else
			if (!has_rhs) {
				SigBitInfo new_info = database.at(lhs);
				database.erase(lhs);
				sigmap.add(lhs, rhs);
				lhs = sigmap(lhs);
				if (lhs.wire)
					database[lhs] = new_info;
			} else
			if (!has_lhs) {
				SigBitInfo new_info = database.at(rhs);
				database.erase(rhs);
				sigmap.add(lhs, rhs);
				rhs = sigmap(rhs);
				if (rhs.wire)
					database[rhs] = new_info;
			} else {
				SigBitInfo new_info = database.at(lhs);
				new_info.merge(database.at(rhs));
				database.erase(lhs);
				database.erase(rhs);
				sigmap.add(lhs, rhs);
				rhs = sigmap(rhs);
				if (rhs.wire)
					database[rhs] = new_info;
			}
		}
	}

	virtual void notify_connect(RTLIL::Module *mod YS_ATTRIBUTE(unused), const std::vector<RTLIL::SigSig>&) YS_OVERRIDE
	{
		log_assert(module == mod);
		auto_reload_module = true;
	}

	virtual void notify_blackout(RTLIL::Module *mod YS_ATTRIBUTE(unused)) YS_OVERRIDE
	{
		log_assert(module == mod);
		auto_reload_module = true;
	}

	ModIndex(RTLIL::Module *_m) : sigmap(_m), module(_m)
	{
		auto_reload_counter = 0;
		auto_reload_module = true;
		module->monitors.insert(this);
	}

	~ModIndex()
	{
		module->monitors.erase(this);
	}

	SigBitInfo *query(RTLIL::SigBit bit)
	{
		if (auto_reload_module)
			reload_module();

		auto it = database.find(sigmap(bit));
		if (it == database.end())
			return nullptr;
		else
			return &it->second;
	}

	bool query_is_input(RTLIL::SigBit bit)
	{
		const SigBitInfo *info = query(bit);
		if (info == nullptr)
			return false;
		return info->is_input;
	}

	bool query_is_output(RTLIL::SigBit bit)
	{
		const SigBitInfo *info = query(bit);
		if (info == nullptr)
			return false;
		return info->is_output;
	}

	pool<PortInfo> &query_ports(RTLIL::SigBit bit)
	{
		static pool<PortInfo> empty_result_set;
		SigBitInfo *info = query(bit);
		if (info == nullptr)
			return empty_result_set;
		return info->ports;
	}

	void dump_db()
	{
		log("--- ModIndex Dump ---\n");

		if (auto_reload_module) {
			log("AUTO-RELOAD\n");
			reload_module();
		}

		for (auto &it : database) {
			log("BIT %s:\n", log_signal(it.first));
			if (it.second.is_input)
				log("  PRIMARY INPUT\n");
			if (it.second.is_output)
				log("  PRIMARY OUTPUT\n");
			for (auto &port : it.second.ports)
				log("  PORT: %s.%s[%d] (%s)\n", log_id(port.cell),
						log_id(port.port), port.offset, log_id(port.cell->type));
		}
	}
};

struct ModWalker
{
	struct PortBit
	{
		RTLIL::Cell *cell;
		RTLIL::IdString port;
		int offset;

		bool operator<(const PortBit &other) const {
			if (cell != other.cell)
				return cell < other.cell;
			if (port != other.port)
				return port < other.port;
			return offset < other.offset;
		}

		bool operator==(const PortBit &other) const {
			return cell == other.cell && port == other.port && offset == other.offset;
		}

		unsigned int hash() const {
			return mkhash_add(mkhash(cell->name.hash(), port.hash()), offset);
		}
	};

	RTLIL::Design *design;
	RTLIL::Module *module;

	CellTypes ct;
	SigMap sigmap;

	dict<RTLIL::SigBit, pool<PortBit>> signal_drivers;
	dict<RTLIL::SigBit, pool<PortBit>> signal_consumers;
	pool<RTLIL::SigBit> signal_inputs, signal_outputs;

	dict<RTLIL::Cell*, pool<RTLIL::SigBit>> cell_outputs, cell_inputs;

	void add_wire(RTLIL::Wire *wire)
	{
		if (wire->port_input) {
			std::vector<RTLIL::SigBit> bits = sigmap(wire);
			for (auto bit : bits)
				if (bit.wire != NULL)
					signal_inputs.insert(bit);
		}

		if (wire->port_output) {
			std::vector<RTLIL::SigBit> bits = sigmap(wire);
			for (auto bit : bits)
				if (bit.wire != NULL)
					signal_outputs.insert(bit);
		}
	}

	void add_cell_port(RTLIL::Cell *cell, RTLIL::IdString port, std::vector<RTLIL::SigBit> bits, bool is_output, bool is_input)
	{
		for (int i = 0; i < int(bits.size()); i++)
			if (bits[i].wire != NULL) {
				PortBit pbit = { cell, port, i };
				if (is_output) {
					signal_drivers[bits[i]].insert(pbit);
					cell_outputs[cell].insert(bits[i]);
				}
				if (is_input) {
					signal_consumers[bits[i]].insert(pbit);
					cell_inputs[cell].insert(bits[i]);
				}
			}
	}

	void add_cell(RTLIL::Cell *cell)
	{
		if (ct.cell_known(cell->type)) {
			for (auto &conn : cell->connections())
				add_cell_port(cell, conn.first, sigmap(conn.second),
						ct.cell_output(cell->type, conn.first),
						ct.cell_input(cell->type, conn.first));
		} else {
			for (auto &conn : cell->connections())
				add_cell_port(cell, conn.first, sigmap(conn.second), true, true);
		}
	}

	ModWalker() : design(NULL), module(NULL)
	{
	}

	ModWalker(RTLIL::Design *design, RTLIL::Module *module, CellTypes *filter_ct = NULL)
	{
		setup(design, module, filter_ct);
	}

	void setup(RTLIL::Design *design, RTLIL::Module *module, CellTypes *filter_ct = NULL)
	{
		this->design = design;
		this->module = module;

		ct.clear();
		ct.setup(design);
		sigmap.set(module);

		signal_drivers.clear();
		signal_consumers.clear();
		signal_inputs.clear();
		signal_outputs.clear();

		for (auto &it : module->wires_)
			add_wire(it.second);
		for (auto &it : module->cells_)
			if (filter_ct == NULL || filter_ct->cell_known(it.second->type))
				add_cell(it.second);
	}

	// get_* methods -- single RTLIL::SigBit

	template<typename T>
	inline bool get_drivers(pool<PortBit> &result, RTLIL::SigBit bit) const
	{
		bool found = false;
		if (signal_drivers.count(bit)) {
			const pool<PortBit> &r = signal_drivers.at(bit);
			result.insert(r.begin(), r.end());
			found = true;
		}
		return found;
	}

	template<typename T>
	inline bool get_consumers(pool<PortBit> &result, RTLIL::SigBit bit) const
	{
		bool found = false;
		if (signal_consumers.count(bit)) {
			const pool<PortBit> &r = signal_consumers.at(bit);
			result.insert(r.begin(), r.end());
			found = true;
		}
		return found;
	}

	template<typename T>
	inline bool get_inputs(pool<RTLIL::SigBit> &result, RTLIL::SigBit bit) const
	{
		bool found = false;
		if (signal_inputs.count(bit))
			result.insert(bit), found = true;
		return found;
	}

	template<typename T>
	inline bool get_outputs(pool<RTLIL::SigBit> &result, RTLIL::SigBit bit) const
	{
		bool found = false;
		if (signal_outputs.count(bit))
			result.insert(bit), found = true;
		return found;
	}

	// get_* methods -- container of RTLIL::SigBit's (always by reference)

	template<typename T>
	inline bool get_drivers(pool<PortBit> &result, const T &bits) const
	{
		bool found = false;
		for (RTLIL::SigBit bit : bits)
			if (signal_drivers.count(bit)) {
				const pool<PortBit> &r = signal_drivers.at(bit);
				result.insert(r.begin(), r.end());
				found = true;
			}
		return found;
	}

	template<typename T>
	inline bool get_consumers(pool<PortBit> &result, const T &bits) const
	{
		bool found = false;
		for (RTLIL::SigBit bit : bits)
			if (signal_consumers.count(bit)) {
				const pool<PortBit> &r = signal_consumers.at(bit);
				result.insert(r.begin(), r.end());
				found = true;
			}
		return found;
	}

	template<typename T>
	inline bool get_inputs(pool<RTLIL::SigBit> &result, const T &bits) const
	{
		bool found = false;
		for (RTLIL::SigBit bit : bits)
			if (signal_inputs.count(bit))
				result.insert(bit), found = true;
		return found;
	}

	template<typename T>
	inline bool get_outputs(pool<RTLIL::SigBit> &result, const T &bits) const
	{
		bool found = false;
		for (RTLIL::SigBit bit : bits)
			if (signal_outputs.count(bit))
				result.insert(bit), found = true;
		return found;
	}

	// get_* methods -- call by RTLIL::SigSpec (always by value)

	bool get_drivers(pool<PortBit> &result, RTLIL::SigSpec signal) const
	{
		std::vector<RTLIL::SigBit> bits = sigmap(signal);
		return get_drivers(result, bits);
	}

	bool get_consumers(pool<PortBit> &result, RTLIL::SigSpec signal) const
	{
		std::vector<RTLIL::SigBit> bits = sigmap(signal);
		return get_consumers(result, bits);
	}

	bool get_inputs(pool<RTLIL::SigBit> &result, RTLIL::SigSpec signal) const
	{
		std::vector<RTLIL::SigBit> bits = sigmap(signal);
		return get_inputs(result, bits);
	}

	bool get_outputs(pool<RTLIL::SigBit> &result, RTLIL::SigSpec signal) const
	{
		std::vector<RTLIL::SigBit> bits = sigmap(signal);
		return get_outputs(result, bits);
	}

	// has_* methods -- call by reference

	template<typename T>
	inline bool has_drivers(const T &sig) const {
		pool<PortBit> result;
		return get_drivers(result, sig);
	}

	template<typename T>
	inline bool has_consumers(const T &sig) const {
		pool<PortBit> result;
		return get_consumers(result, sig);
	}

	template<typename T>
	inline bool has_inputs(const T &sig) const {
		pool<RTLIL::SigBit> result;
		return get_inputs(result, sig);
	}

	template<typename T>
	inline bool has_outputs(const T &sig) const {
		pool<RTLIL::SigBit> result;
		return get_outputs(result, sig);
	}

	// has_* methods -- call by value

	inline bool has_drivers(RTLIL::SigSpec sig) const {
		pool<PortBit> result;
		return get_drivers(result, sig);
	}

	inline bool has_consumers(RTLIL::SigSpec sig) const {
		pool<PortBit> result;
		return get_consumers(result, sig);
	}

	inline bool has_inputs(RTLIL::SigSpec sig) const {
		pool<RTLIL::SigBit> result;
		return get_inputs(result, sig);
	}

	inline bool has_outputs(RTLIL::SigSpec sig) const {
		pool<RTLIL::SigBit> result;
		return get_outputs(result, sig);
	}
};

YOSYS_NAMESPACE_END

#endif