aboutsummaryrefslogtreecommitdiffstats
path: root/tmk_core/common/command.h
blob: 4f77be085c9a15de5198d3e003a2412cd63ac23b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
Copyright 2011 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#pragma once

/* FIXME: Add doxygen comments for the behavioral defines in here. */

/* TODO: Refactoring */
typedef enum { ONESHOT, CONSOLE, MOUSEKEY } command_state_t;
extern command_state_t command_state;

/* This allows to extend commands. Return false when command is not processed. */
bool command_extra(uint8_t code);
bool command_console_extra(uint8_t code);

#ifdef COMMAND_ENABLE
uint8_t numkey2num(uint8_t code);
bool    command_proc(uint8_t code);
#else
#    define command_proc(code) false
#endif

#ifndef IS_COMMAND
#    define IS_COMMAND() (get_mods() == MOD_MASK_SHIFT)
#endif

#ifndef MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS
#    define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS true
#endif

#ifndef MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS
#    define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS true
#endif

#ifndef MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM
#    define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM false
#endif

#ifndef MAGIC_KEY_HELP
#    define MAGIC_KEY_HELP H
#endif

#ifndef MAGIC_KEY_HELP_ALT
#    define MAGIC_KEY_HELP_ALT SLASH
#endif

#ifndef MAGIC_KEY_DEBUG
#    define MAGIC_KEY_DEBUG D
#endif

#ifndef MAGIC_KEY_DEBUG_MATRIX
#    define MAGIC_KEY_DEBUG_MATRIX X
#endif

#ifndef MAGIC_KEY_DEBUG_KBD
#    define MAGIC_KEY_DEBUG_KBD K
#endif

#ifndef MAGIC_KEY_DEBUG_MOUSE
#    define MAGIC_KEY_DEBUG_MOUSE M
#endif

#ifndef MAGIC_KEY_VERSION
#    define MAGIC_KEY_VERSION V
#endif

#ifndef MAGIC_KEY_STATUS
#    define MAGIC_KEY_STATUS S
#endif

#ifndef MAGIC_KEY_CONSOLE
#    define MAGIC_KEY_CONSOLE C
#endif

#ifndef MAGIC_KEY_LAYER0
#    define MAGIC_KEY_LAYER0 0
#endif

#ifndef MAGIC_KEY_LAYER0_ALT
#    define MAGIC_KEY_LAYER0_ALT GRAVE
#endif

#ifndef MAGIC_KEY_LAYER1
#    define MAGIC_KEY_LAYER1 1
#endif

#ifndef MAGIC_KEY_LAYER2
#    define MAGIC_KEY_LAYER2 2
#endif

#ifndef MAGIC_KEY_LAYER3
#    define MAGIC_KEY_LAYER3 3
#endif

#ifndef MAGIC_KEY_LAYER4
#    define MAGIC_KEY_LAYER4 4
#endif

#ifndef MAGIC_KEY_LAYER5
#    define MAGIC_KEY_LAYER5 5
#endif

#ifndef MAGIC_KEY_LAYER6
#    define MAGIC_KEY_LAYER6 6
#endif

#ifndef MAGIC_KEY_LAYER7
#    define MAGIC_KEY_LAYER7 7
#endif

#ifndef MAGIC_KEY_LAYER8
#    define MAGIC_KEY_LAYER8 8
#endif

#ifndef MAGIC_KEY_LAYER9
#    define MAGIC_KEY_LAYER9 9
#endif

#ifndef MAGIC_KEY_BOOTLOADER
#    define MAGIC_KEY_BOOTLOADER B
#endif

#ifndef MAGIC_KEY_BOOTLOADER_ALT
#    define MAGIC_KEY_BOOTLOADER_ALT ESC
#endif

#ifndef MAGIC_KEY_LOCK
#    define MAGIC_KEY_LOCK CAPS
#endif

#ifndef MAGIC_KEY_EEPROM
#    define MAGIC_KEY_EEPROM E
#endif

#ifndef MAGIC_KEY_EEPROM_CLEAR
#    define MAGIC_KEY_EEPROM_CLEAR BSPACE
#endif

#ifndef MAGIC_KEY_NKRO
#    define MAGIC_KEY_NKRO N
#endif

#ifndef MAGIC_KEY_SLEEP_LED
#    define MAGIC_KEY_SLEEP_LED Z

#endif

#define XMAGIC_KC(key) KC_##key
#define MAGIC_KC(key) XMAGIC_KC(key)
5 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 *  linux/drivers/char/mem.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Added devfs support. 
 *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
 *  Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
 *
 *  MODIFIED FOR XEN by Keir Fraser, 10th July 2003.
 *  Linux running on Xen has strange semantics for /dev/mem and /dev/kmem!!
 *   1. mmap will not work on /dev/kmem
 *   2. mmap on /dev/mem interprets the 'file offset' as a machine address
 *      rather than a physical address.
 *  I don't believe anyone sane mmaps /dev/kmem, but /dev/mem is mmapped
 *  to get at memory-mapped I/O spaces (eg. the VESA X server does this).
 *  For this to work at all we need to expect machine addresses.
 *  Reading/writing of /dev/kmem expects kernel virtual addresses, as usual.
 *  Reading/writing of /dev/mem expects 'physical addresses' as usual -- this
 *  is because /dev/mem can only read/write existing kernel mappings, which
 *  will be normal RAM, and we should present pseudo-physical layout for all
 *  except I/O (which is the sticky case that mmap is hacked to deal with).
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/tpqic02.h>
#include <linux/ftape.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mman.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/raw.h>
#include <linux/tty.h>
#include <linux/capability.h>
#include <linux/ptrace.h>

#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/pgalloc.h>

#ifdef CONFIG_I2C
extern int i2c_init_all(void);
#endif
#ifdef CONFIG_FB
extern void fbmem_init(void);
#endif
#ifdef CONFIG_PROM_CONSOLE
extern void prom_con_init(void);
#endif
#ifdef CONFIG_MDA_CONSOLE
extern void mda_console_init(void);
#endif
#if defined(CONFIG_S390_TAPE) && defined(CONFIG_S390_TAPE_CHAR)
extern void tapechar_init(void);
#endif
     
static ssize_t do_write_mem(struct file * file, void *p, unsigned long realp,
			    const char * buf, size_t count, loff_t *ppos)
{
	ssize_t written;

	written = 0;
#if defined(__sparc__) || defined(__mc68000__)
	/* we don't have page 0 mapped on sparc and m68k.. */
	if (realp < PAGE_SIZE) {
		unsigned long sz = PAGE_SIZE-realp;
		if (sz > count) sz = count; 
		/* Hmm. Do something? */
		buf+=sz;
		p+=sz;
		count-=sz;
		written+=sz;
	}
#endif
	if (copy_from_user(p, buf, count))
		return -EFAULT;
	written += count;
	*ppos = realp + written;
	return written;
}


/*
 * This funcion reads the *physical* memory. The f_pos points directly to the 
 * memory location. 
 */
static ssize_t read_mem(struct file * file, char * buf,
			size_t count, loff_t *ppos)
{
	unsigned long p = *ppos;
	unsigned long end_mem;
	ssize_t read;
	
	end_mem = __pa(high_memory);
	if (p >= end_mem)
		return 0;
	if (count > end_mem - p)
		count = end_mem - p;
	read = 0;
#if defined(__sparc__) || defined(__mc68000__)
	/* we don't have page 0 mapped on sparc and m68k.. */
	if (p < PAGE_SIZE) {
		unsigned long sz = PAGE_SIZE-p;
		if (sz > count) 
			sz = count; 
		if (sz > 0) {
			if (clear_user(buf, sz))
				return -EFAULT;
			buf += sz; 
			p += sz; 
			count -= sz; 
			read += sz; 
		}
	}
#endif
	if (copy_to_user(buf, __va(p), count))
		return -EFAULT;
	read += count;
	*ppos = p + read;
	return read;
}

static ssize_t write_mem(struct file * file, const char * buf, 
			 size_t count, loff_t *ppos)
{
	unsigned long p = *ppos;
	unsigned long end_mem;

	end_mem = __pa(high_memory);
	if (p >= end_mem)
		return 0;
	if (count > end_mem - p)
		count = end_mem - p;
	return do_write_mem(file, __va(p), p, buf, count, ppos);
}

#ifndef pgprot_noncached

/*
 * This should probably be per-architecture in <asm/pgtable.h>
 */
static inline pgprot_t pgprot_noncached(pgprot_t _prot)
{
	unsigned long prot = pgprot_val(_prot);

#if defined(__i386__) || defined(__x86_64__)
	/* On PPro and successors, PCD alone doesn't always mean 
	    uncached because of interactions with the MTRRs. PCD | PWT
	    means definitely uncached. */ 
	if (boot_cpu_data.x86 > 3)
		prot |= _PAGE_PCD | _PAGE_PWT;
#elif defined(__powerpc__)
	prot |= _PAGE_NO_CACHE | _PAGE_GUARDED;
#elif defined(__mc68000__)
#ifdef SUN3_PAGE_NOCACHE
	if (MMU_IS_SUN3)
		prot |= SUN3_PAGE_NOCACHE;
	else
#endif
	if (MMU_IS_851 || MMU_IS_030)
		prot |= _PAGE_NOCACHE030;
	/* Use no-cache mode, serialized */
	else if (MMU_IS_040 || MMU_IS_060)
		prot = (prot & _CACHEMASK040) | _PAGE_NOCACHE_S;
#endif

	return __pgprot(prot);
}

#endif /* !pgprot_noncached */

/*
 * Architectures vary in how they handle caching for addresses 
 * outside of main memory.
 */
static inline int noncached_address(unsigned long addr)
{
#if defined(__i386__)
	/* 
	 * On the PPro and successors, the MTRRs are used to set
	 * memory types for physical addresses outside main memory, 
	 * so blindly setting PCD or PWT on those pages is wrong.
	 * For Pentiums and earlier, the surround logic should disable 
	 * caching for the high addresses through the KEN pin, but
	 * we maintain the tradition of paranoia in this code.
	 */
 	return !( test_bit(X86_FEATURE_MTRR, &boot_cpu_data.x86_capability) ||
		  test_bit(X86_FEATURE_K6_MTRR, &boot_cpu_data.x86_capability) ||
		  test_bit(X86_FEATURE_CYRIX_ARR, &boot_cpu_data.x86_capability) ||
		  test_bit(X86_FEATURE_CENTAUR_MCR, &boot_cpu_data.x86_capability) )
	  && addr >= __pa(high_memory);
#else
	return addr >= __pa(high_memory);
#endif
}

#if !defined(CONFIG_XEN)
static int mmap_mem(struct file * file, struct vm_area_struct * vma)
{
	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

	/*
	 * Accessing memory above the top the kernel knows about or
	 * through a file pointer that was marked O_SYNC will be
	 * done non-cached.
	 */
	if (noncached_address(offset) || (file->f_flags & O_SYNC))
		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

	/* Don't try to swap out physical pages.. */
	vma->vm_flags |= VM_RESERVED;

	/*
	 * Don't dump addresses that are not real memory to a core file.
	 */
	if (offset >= __pa(high_memory) || (file->f_flags & O_SYNC))
		vma->vm_flags |= VM_IO;

	if (remap_page_range(vma->vm_start, offset, vma->vm_end-vma->vm_start,
			     vma->vm_page_prot))
		return -EAGAIN;
	return 0;
}
#elif !defined(CONFIG_XEN_PRIVILEGED_GUEST)
static int mmap_mem(struct file * file, struct vm_area_struct * vma)
{
	return -ENXIO;
}
#else
static int mmap_mem(struct file * file, struct vm_area_struct * vma)
{
	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

	if (!(xen_start_info.flags & SIF_PRIVILEGED))
		return -ENXIO;

	/* DONTCOPY is essential for Xen as copy_page_range is broken. */
	vma->vm_flags |= VM_RESERVED | VM_IO | VM_DONTCOPY;
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
	if (direct_remap_area_pages(vma->vm_mm, vma->vm_start, offset, 
				vma->vm_end-vma->vm_start, vma->vm_page_prot,
				DOMID_IO))
		return -EAGAIN;
	return 0;
}
#endif /* CONFIG_XEN */

/*
 * This function reads the *virtual* memory as seen by the kernel.
 */
static ssize_t read_kmem(struct file *file, char *buf, 
			 size_t count, loff_t *ppos)
{
	unsigned long p = *ppos;
	ssize_t read = 0;
	ssize_t virtr = 0;
	char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
		
	if (p < (unsigned long) high_memory) {
		read = count;
		if (count > (unsigned long) high_memory - p)
			read = (unsigned long) high_memory - p;

#if defined(__sparc__) || defined(__mc68000__)
		/* we don't have page 0 mapped on sparc and m68k.. */
		if (p < PAGE_SIZE && read > 0) {
			size_t tmp = PAGE_SIZE - p;
			if (tmp > read) tmp = read;
			if (clear_user(buf, tmp))
				return -EFAULT;
			buf += tmp;
			p += tmp;
			read -= tmp;
			count -= tmp;
		}
#endif
		if (copy_to_user(buf, (char *)p, read))
			return -EFAULT;
		p += read;
		buf += read;
		count -= read;
	}

	if (count > 0) {
		kbuf = (char *)__get_free_page(GFP_KERNEL);
		if (!kbuf)
			return -ENOMEM;
		while (count > 0) {
			int len = count;

			if (len > PAGE_SIZE)
				len = PAGE_SIZE;
			len = vread(kbuf, (char *)p, len);
			if (!len)
				break;
			if (copy_to_user(buf, kbuf, len)) {
				free_page((unsigned long)kbuf);
				return -EFAULT;
			}
			count -= len;
			buf += len;
			virtr += len;
			p += len;
		}
		free_page((unsigned long)kbuf);
	}
 	*ppos = p;
 	return virtr + read;
}

extern long vwrite(char *buf, char *addr, unsigned long count);

/*
 * This function writes to the *virtual* memory as seen by the kernel.
 */
static ssize_t write_kmem(struct file * file, const char * buf, 
			  size_t count, loff_t *ppos)
{
	unsigned long p = *ppos;
	ssize_t wrote = 0;
	ssize_t virtr = 0;
	char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */

	if (p < (unsigned long) high_memory) {
		wrote = count;
		if (count > (unsigned long) high_memory - p)
			wrote = (unsigned long) high_memory - p;

		wrote = do_write_mem(file, (void*)p, p, buf, wrote, ppos);

		p += wrote;
		buf += wrote;
		count -= wrote;
	}

	if (count > 0) {
		kbuf = (char *)__get_free_page(GFP_KERNEL);
		if (!kbuf)
			return -ENOMEM;
		while (count > 0) {
			int len = count;

			if (len > PAGE_SIZE)
				len = PAGE_SIZE;
			if (len && copy_from_user(kbuf, buf, len)) {
				free_page((unsigned long)kbuf);
				return -EFAULT;
			}
			len = vwrite(kbuf, (char *)p, len);
			count -= len;
			buf += len;
			virtr += len;
			p += len;
		}
		free_page((unsigned long)kbuf);
	}

 	*ppos = p;
 	return virtr + wrote;
}

#if defined(CONFIG_ISA) || !defined(__mc68000__)
static ssize_t read_port(struct file * file, char * buf,
			 size_t count, loff_t *ppos)
{
	unsigned long i = *ppos;
	char *tmp = buf;

	if (verify_area(VERIFY_WRITE,buf,count))
		return -EFAULT; 
	while (count-- > 0 && i < 65536) {
		if (__put_user(inb(i),tmp) < 0) 
			return -EFAULT;  
		i++;
		tmp++;
	}
	*ppos = i;
	return tmp-buf;
}

static ssize_t write_port(struct file * file, const char * buf,
			  size_t count, loff_t *ppos)
{
	unsigned long i = *ppos;
	const char * tmp = buf;

	if (verify_area(VERIFY_READ,buf,count))
		return -EFAULT;
	while (count-- > 0 && i < 65536) {
		char c;
		if (__get_user(c, tmp)) 
			return -EFAULT; 
		outb(c,i);
		i++;
		tmp++;
	}
	*ppos = i;
	return tmp-buf;
}
#endif

static ssize_t read_null(struct file * file, char * buf,
			 size_t count, loff_t *ppos)
{
	return 0;
}

static ssize_t write_null(struct file * file, const char * buf,
			  size_t count, loff_t *ppos)
{
	return count;
}

/*
 * For fun, we are using the MMU for this.
 */
static inline size_t read_zero_pagealigned(char * buf, size_t size)
{
	struct mm_struct *mm;
	struct vm_area_struct * vma;
	unsigned long addr=(unsigned long)buf;

	mm = current->mm;
	/* Oops, this was forgotten before. -ben */
	down_read(&mm->mmap_sem);

	/* For private mappings, just map in zero pages. */
	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
		unsigned long count;

		if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0)
			goto out_up;
		if (vma->vm_flags & VM_SHARED)
			break;
		count = vma->vm_end - addr;
		if (count > size)
			count = size;

		zap_page_range(mm, addr, count);
        	zeromap_page_range(addr, count, PAGE_COPY);

		size -= count;
		buf += count;
		addr += count;
		if (size == 0)
			goto out_up;
	}

	up_read(&mm->mmap_sem);
	
	/* The shared case is hard. Let's do the conventional zeroing. */ 
	do {
		unsigned long unwritten = clear_user(buf, PAGE_SIZE);
		if (unwritten)
			return size + unwritten - PAGE_SIZE;
		if (current->need_resched)
			schedule();
		buf += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size);

	return size;
out_up:
	up_read(&mm->mmap_sem);
	return size;
}

static ssize_t read_zero(struct file * file, char * buf, 
			 size_t count, loff_t *ppos)
{
	unsigned long left, unwritten, written = 0;

	if (!count)
		return 0;

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	left = count;

	/* do we want to be clever? Arbitrary cut-off */
	if (count >= PAGE_SIZE*4) {
		unsigned long partial;

		/* How much left of the page? */
		partial = (PAGE_SIZE-1) & -(unsigned long) buf;
		unwritten = clear_user(buf, partial);
		written = partial - unwritten;
		if (unwritten)
			goto out;
		left -= partial;
		buf += partial;
		unwritten = read_zero_pagealigned(buf, left & PAGE_MASK);
		written += (left & PAGE_MASK) - unwritten;
		if (unwritten)
			goto out;
		buf += left & PAGE_MASK;
		left &= ~PAGE_MASK;
	}
	unwritten = clear_user(buf, left);
	written += left - unwritten;
out:
	return written ? written : -EFAULT;
}

static int mmap_zero(struct file * file, struct vm_area_struct * vma)
{
	if (vma->vm_flags & VM_SHARED)
		return shmem_zero_setup(vma);
	if (zeromap_page_range(vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot))
		return -EAGAIN;
	return 0;
}

static ssize_t write_full(struct file * file, const char * buf,
			  size_t count, loff_t *ppos)
{
	return -ENOSPC;
}

/*
 * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
 * can fopen() both devices with "a" now.  This was previously impossible.
 * -- SRB.
 */

static loff_t null_lseek(struct file * file, loff_t offset, int orig)
{
	return file->f_pos = 0;
}

/*
 * The memory devices use the full 32/64 bits of the offset, and so we cannot
 * check against negative addresses: they are ok. The return value is weird,
 * though, in that case (0).
 *
 * also note that seeking relative to the "end of file" isn't supported:
 * it has no meaning, so it returns -EINVAL.
 */
static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
{
	loff_t ret;

	switch (orig) {
		case 0:
			file->f_pos = offset;
			ret = file->f_pos;
			force_successful_syscall_return();
			break;
		case 1:
			file->f_pos += offset;
			ret = file->f_pos;
			force_successful_syscall_return();
			break;
		default:
			ret = -EINVAL;
	}
	return ret;
}

static int open_port(struct inode * inode, struct file * filp)
{
	return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
}

struct page *kmem_vm_nopage(struct vm_area_struct *vma, unsigned long address, int write)
{
	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
	unsigned long kaddr;
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *ptep, pte;
	struct page *page = NULL;

	/* address is user VA; convert to kernel VA of desired page */
	kaddr = (address - vma->vm_start) + offset;
	kaddr = VMALLOC_VMADDR(kaddr);

	spin_lock(&init_mm.page_table_lock);

	/* Lookup page structure for kernel VA */
	pgd = pgd_offset(&init_mm, kaddr);
	if (pgd_none(*pgd) || pgd_bad(*pgd))
		goto out;
	pmd = pmd_offset(pgd, kaddr);
	if (pmd_none(*pmd) || pmd_bad(*pmd))
		goto out;
	ptep = pte_offset(pmd, kaddr);
	if (!ptep)
		goto out;
	pte = *ptep;
	if (!pte_present(pte))
		goto out;
	if (write && !pte_write(pte))
		goto out;
	page = pte_page(pte);
	if (!VALID_PAGE(page)) {
		page = NULL;
		goto out;
	}

	/* Increment reference count on page */
	get_page(page);

out:
	spin_unlock(&init_mm.page_table_lock);

	return page;
}

struct vm_operations_struct kmem_vm_ops = {
	nopage:		kmem_vm_nopage,
};

static int mmap_kmem(struct file * file, struct vm_area_struct * vma)
{
	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
	unsigned long size = vma->vm_end - vma->vm_start;

	/*
	 * If the user is not attempting to mmap a high memory address then
	 * the standard mmap_mem mechanism will work.  High memory addresses
	 * need special handling, as remap_page_range expects a physically-
	 * contiguous range of kernel addresses (such as obtained in kmalloc).
	 */
	if ((offset + size) < (unsigned long) high_memory)
		return mmap_mem(file, vma);

	/*
	 * Accessing memory above the top the kernel knows about or
	 * through a file pointer that was marked O_SYNC will be
	 * done non-cached.
	 */
	if (noncached_address(offset) || (file->f_flags & O_SYNC))
		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

	/* Don't do anything here; "nopage" will fill the holes */
	vma->vm_ops = &kmem_vm_ops;

	/* Don't try to swap out physical pages.. */
	vma->vm_flags |= VM_RESERVED;

	/*
	 * Don't dump addresses that are not real memory to a core file.
	 */
	vma->vm_flags |= VM_IO;

	return 0;
}

#define zero_lseek	null_lseek
#define full_lseek      null_lseek
#define write_zero	write_null
#define read_full       read_zero
#define open_mem	open_port
#define open_kmem	open_mem

static struct file_operations mem_fops = {
	llseek:		memory_lseek,
	read:		read_mem,
	write:		write_mem,
	mmap:		mmap_mem,
	open:		open_mem,
};

static struct file_operations kmem_fops = {
	llseek:		memory_lseek,
	read:		read_kmem,
	write:		write_kmem,
#if !defined(CONFIG_XEN)
	mmap:		mmap_kmem,
#endif
	open:		open_kmem,
};

static struct file_operations null_fops = {
	llseek:		null_lseek,
	read:		read_null,
	write:		write_null,
};

#if defined(CONFIG_ISA) || !defined(__mc68000__)
static struct file_operations port_fops = {
	llseek:		memory_lseek,
	read:		read_port,
	write:		write_port,
	open:		open_port,
};
#endif

static struct file_operations zero_fops = {
	llseek:		zero_lseek,
	read:		read_zero,
	write:		write_zero,
	mmap:		mmap_zero,
};

static struct file_operations full_fops = {
	llseek:		full_lseek,
	read:		read_full,
	write:		write_full,
};

static int memory_open(struct inode * inode, struct file * filp)
{
	switch (MINOR(inode->i_rdev)) {
		case 1:
			filp->f_op = &mem_fops;
			break;
		case 2:
			filp->f_op = &kmem_fops;
			break;
		case 3:
			filp->f_op = &null_fops;
			break;
#if defined(CONFIG_ISA) || !defined(__mc68000__)
		case 4:
			filp->f_op = &port_fops;
			break;
#endif
		case 5:
			filp->f_op = &zero_fops;
			break;
		case 7:
			filp->f_op = &full_fops;
			break;
		case 8:
			filp->f_op = &random_fops;
			break;
		case 9:
			filp->f_op = &urandom_fops;
			break;
		default:
			return -ENXIO;
	}
	if (filp->f_op && filp->f_op->open)
		return filp->f_op->open(inode,filp);
	return 0;
}

void __init memory_devfs_register (void)
{
    /*  These are never unregistered  */
    static const struct {
	unsigned short minor;
	char *name;
	umode_t mode;
	struct file_operations *fops;
    } list[] = { /* list of minor devices */
	{1, "mem",     S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
	{2, "kmem",    S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops},
	{3, "null",    S_IRUGO | S_IWUGO,           &null_fops},
#if defined(CONFIG_ISA) || !defined(__mc68000__)
	{4, "port",    S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
#endif
	{5, "zero",    S_IRUGO | S_IWUGO,           &zero_fops},
	{7, "full",    S_IRUGO | S_IWUGO,           &full_fops},
	{8, "random",  S_IRUGO | S_IWUSR,           &random_fops},
	{9, "urandom", S_IRUGO | S_IWUSR,           &urandom_fops}
    };
    int i;

    for (i=0; i<(sizeof(list)/sizeof(*list)); i++)
	devfs_register (NULL, list[i].name, DEVFS_FL_NONE,
			MEM_MAJOR, list[i].minor,
			list[i].mode | S_IFCHR,
			list[i].fops, NULL);
}

static struct file_operations memory_fops = {
	open:		memory_open,	/* just a selector for the real open */
};

int __init chr_dev_init(void)
{
	if (devfs_register_chrdev(MEM_MAJOR,"mem",&memory_fops))
		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
	memory_devfs_register();
	rand_initialize();
#ifdef CONFIG_I2C
	i2c_init_all();
#endif
#if defined (CONFIG_FB)
	fbmem_init();
#endif
#if defined (CONFIG_PROM_CONSOLE)
	prom_con_init();
#endif
#if defined (CONFIG_MDA_CONSOLE)
	mda_console_init();
#endif
	tty_init();
#ifdef CONFIG_M68K_PRINTER
	lp_m68k_init();
#endif
	misc_init();
#if CONFIG_QIC02_TAPE
	qic02_tape_init();
#endif
#ifdef CONFIG_FTAPE
	ftape_init();
#endif
#if defined(CONFIG_S390_TAPE) && defined(CONFIG_S390_TAPE_CHAR)
	tapechar_init();
#endif
	return 0;
}

__initcall(chr_dev_init);