aboutsummaryrefslogtreecommitdiffstats
path: root/tmk_core/common/command.h
blob: 052e251843889c84f1ed2ff583180f07b0b14be5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*
Copyright 2011 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#pragma once

/* FIXME: Add doxygen comments for the behavioral defines in here. */

/* TODO: Refactoring */
typedef enum { ONESHOT, CONSOLE, MOUSEKEY } command_state_t;
extern command_state_t command_state;

/* This allows to extend commands. Return false when command is not processed. */
bool command_extra(uint8_t code);
bool command_console_extra(uint8_t code);

#ifdef COMMAND_ENABLE
uint8_t numkey2num(uint8_t code);
bool command_proc(uint8_t code);
#else
#define command_proc(code)      false
#endif

#ifndef IS_COMMAND
#define IS_COMMAND() (get_mods() == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)))
#endif

#ifndef MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS
#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS  true
#endif

#ifndef MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS
#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS  true
#endif

#ifndef MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM
#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM false
#endif

#ifndef MAGIC_KEY_HELP1
#define MAGIC_KEY_HELP1          H
#endif

#ifndef MAGIC_KEY_HELP2
#define MAGIC_KEY_HELP2          SLASH
#endif

#ifndef MAGIC_KEY_DEBUG
#define MAGIC_KEY_DEBUG          D
#endif

#ifndef MAGIC_KEY_DEBUG_MATRIX
#define MAGIC_KEY_DEBUG_MATRIX   X
#endif

#ifndef MAGIC_KEY_DEBUG_KBD
#define MAGIC_KEY_DEBUG_KBD      K
#endif

#ifndef MAGIC_KEY_DEBUG_MOUSE
#define MAGIC_KEY_DEBUG_MOUSE    M
#endif

#ifndef MAGIC_KEY_VERSION
#define MAGIC_KEY_VERSION        V
#endif

#ifndef MAGIC_KEY_STATUS
#define MAGIC_KEY_STATUS         S
#endif

#ifndef MAGIC_KEY_CONSOLE
#define MAGIC_KEY_CONSOLE        C
#endif

#ifndef MAGIC_KEY_LAYER0_ALT1
#define MAGIC_KEY_LAYER0_ALT1    ESC
#endif

#ifndef MAGIC_KEY_LAYER0_ALT2
#define MAGIC_KEY_LAYER0_ALT2    GRAVE
#endif

#ifndef MAGIC_KEY_LAYER0
#define MAGIC_KEY_LAYER0         0
#endif

#ifndef MAGIC_KEY_LAYER1
#define MAGIC_KEY_LAYER1         1
#endif

#ifndef MAGIC_KEY_LAYER2
#define MAGIC_KEY_LAYER2         2
#endif

#ifndef MAGIC_KEY_LAYER3
#define MAGIC_KEY_LAYER3         3
#endif

#ifndef MAGIC_KEY_LAYER4
#define MAGIC_KEY_LAYER4         4
#endif

#ifndef MAGIC_KEY_LAYER5
#define MAGIC_KEY_LAYER5         5
#endif

#ifndef MAGIC_KEY_LAYER6
#define MAGIC_KEY_LAYER6         6
#endif

#ifndef MAGIC_KEY_LAYER7
#define MAGIC_KEY_LAYER7         7
#endif

#ifndef MAGIC_KEY_LAYER8
#define MAGIC_KEY_LAYER8         8
#endif

#ifndef MAGIC_KEY_LAYER9
#define MAGIC_KEY_LAYER9         9
#endif

#ifndef MAGIC_KEY_BOOTLOADER
#define MAGIC_KEY_BOOTLOADER     PAUSE
#endif

#ifndef MAGIC_KEY_LOCK
#define MAGIC_KEY_LOCK           CAPS
#endif

#ifndef MAGIC_KEY_EEPROM
#define MAGIC_KEY_EEPROM         E
#endif

#ifndef MAGIC_KEY_NKRO
#define MAGIC_KEY_NKRO           N
#endif

#ifndef MAGIC_KEY_SLEEP_LED
#define MAGIC_KEY_SLEEP_LED      Z

#endif

#define XMAGIC_KC(key) KC_##key
#define MAGIC_KC(key) XMAGIC_KC(key)
n517' href='#n517'>517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
# Defining a Mock Class #

## Mocking a Normal Class ##

Given
```
class Foo {
  ...
  virtual ~Foo();
  virtual int GetSize() const = 0;
  virtual string Describe(const char* name) = 0;
  virtual string Describe(int type) = 0;
  virtual bool Process(Bar elem, int count) = 0;
};
```
(note that `~Foo()` **must** be virtual) we can define its mock as
```
#include "gmock/gmock.h"

class MockFoo : public Foo {
  MOCK_CONST_METHOD0(GetSize, int());
  MOCK_METHOD1(Describe, string(const char* name));
  MOCK_METHOD1(Describe, string(int type));
  MOCK_METHOD2(Process, bool(Bar elem, int count));
};
```

To create a "nice" mock object which ignores all uninteresting calls,
or a "strict" mock object, which treats them as failures:
```
NiceMock<MockFoo> nice_foo;     // The type is a subclass of MockFoo.
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
```

## Mocking a Class Template ##

To mock
```
template <typename Elem>
class StackInterface {
 public:
  ...
  virtual ~StackInterface();
  virtual int GetSize() const = 0;
  virtual void Push(const Elem& x) = 0;
};
```
(note that `~StackInterface()` **must** be virtual) just append `_T` to the `MOCK_*` macros:
```
template <typename Elem>
class MockStack : public StackInterface<Elem> {
 public:
  ...
  MOCK_CONST_METHOD0_T(GetSize, int());
  MOCK_METHOD1_T(Push, void(const Elem& x));
};
```

## Specifying Calling Conventions for Mock Functions ##

If your mock function doesn't use the default calling convention, you
can specify it by appending `_WITH_CALLTYPE` to any of the macros
described in the previous two sections and supplying the calling
convention as the first argument to the macro. For example,
```
  MOCK_METHOD_1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n));
  MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y));
```
where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.

# Using Mocks in Tests #

The typical flow is:
  1. Import the Google Mock names you need to use. All Google Mock names are in the `testing` namespace unless they are macros or otherwise noted.
  1. Create the mock objects.
  1. Optionally, set the default actions of the mock objects.
  1. Set your expectations on the mock objects (How will they be called? What wil they do?).
  1. Exercise code that uses the mock objects; if necessary, check the result using [Google Test](../../googletest/) assertions.
  1. When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied.

Here is an example:
```
using ::testing::Return;                            // #1

TEST(BarTest, DoesThis) {
  MockFoo foo;                                    // #2

  ON_CALL(foo, GetSize())                         // #3
      .WillByDefault(Return(1));
  // ... other default actions ...

  EXPECT_CALL(foo, Describe(5))                   // #4
      .Times(3)
      .WillRepeatedly(Return("Category 5"));
  // ... other expectations ...

  EXPECT_EQ("good", MyProductionFunction(&foo));  // #5
}                                                 // #6
```

# Setting Default Actions #

Google Mock has a **built-in default action** for any function that
returns `void`, `bool`, a numeric value, or a pointer.

To customize the default action for functions with return type `T` globally:
```
using ::testing::DefaultValue;

// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
//   T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();
```

To customize the default action for a particular method, use `ON_CALL()`:
```
ON_CALL(mock_object, method(matchers))
    .With(multi_argument_matcher)  ?
    .WillByDefault(action);
```

# Setting Expectations #

`EXPECT_CALL()` sets **expectations** on a mock method (How will it be
called? What will it do?):
```
EXPECT_CALL(mock_object, method(matchers))
    .With(multi_argument_matcher)  ?
    .Times(cardinality)            ?
    .InSequence(sequences)         *
    .After(expectations)           *
    .WillOnce(action)              *
    .WillRepeatedly(action)        ?
    .RetiresOnSaturation();        ?
```

If `Times()` is omitted, the cardinality is assumed to be:

  * `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
  * `Times(n)` when there are `n WillOnce()`s but no `WillRepeatedly()`, where `n` >= 1; or
  * `Times(AtLeast(n))` when there are `n WillOnce()`s and a `WillRepeatedly()`, where `n` >= 0.

A method with no `EXPECT_CALL()` is free to be invoked _any number of times_, and the default action will be taken each time.

# Matchers #

A **matcher** matches a _single_ argument.  You can use it inside
`ON_CALL()` or `EXPECT_CALL()`, or use it to validate a value
directly:

| `EXPECT_THAT(value, matcher)` | Asserts that `value` matches `matcher`. |
|:------------------------------|:----------------------------------------|
| `ASSERT_THAT(value, matcher)` | The same as `EXPECT_THAT(value, matcher)`, except that it generates a **fatal** failure. |

Built-in matchers (where `argument` is the function argument) are
divided into several categories:

## Wildcard ##
|`_`|`argument` can be any value of the correct type.|
|:--|:-----------------------------------------------|
|`A<type>()` or `An<type>()`|`argument` can be any value of type `type`.     |

## Generic Comparison ##

|`Eq(value)` or `value`|`argument == value`|
|:---------------------|:------------------|
|`Ge(value)`           |`argument >= value`|
|`Gt(value)`           |`argument > value` |
|`Le(value)`           |`argument <= value`|
|`Lt(value)`           |`argument < value` |
|`Ne(value)`           |`argument != value`|
|`IsNull()`            |`argument` is a `NULL` pointer (raw or smart).|
|`NotNull()`           |`argument` is a non-null pointer (raw or smart).|
|`Ref(variable)`       |`argument` is a reference to `variable`.|
|`TypedEq<type>(value)`|`argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded.|

Except `Ref()`, these matchers make a _copy_ of `value` in case it's
modified or destructed later. If the compiler complains that `value`
doesn't have a public copy constructor, try wrap it in `ByRef()`,
e.g. `Eq(ByRef(non_copyable_value))`. If you do that, make sure
`non_copyable_value` is not changed afterwards, or the meaning of your
matcher will be changed.

## Floating-Point Matchers ##

|`DoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal.|
|:-------------------|:----------------------------------------------------------------------------------------------|
|`FloatEq(a_float)`  |`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal.  |
|`NanSensitiveDoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal.  |
|`NanSensitiveFloatEq(a_float)`|`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal.    |

The above matchers use ULP-based comparison (the same as used in
[Google Test](../../googletest/)). They
automatically pick a reasonable error bound based on the absolute
value of the expected value.  `DoubleEq()` and `FloatEq()` conform to
the IEEE standard, which requires comparing two NaNs for equality to
return false. The `NanSensitive*` version instead treats two NaNs as
equal, which is often what a user wants.

|`DoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal.|
|:------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
|`FloatNear(a_float, max_abs_error)`  |`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal.  |
|`NanSensitiveDoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal.  |
|`NanSensitiveFloatNear(a_float, max_abs_error)`|`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal.    |

## String Matchers ##

The `argument` can be either a C string or a C++ string object:

|`ContainsRegex(string)`|`argument` matches the given regular expression.|
|:----------------------|:-----------------------------------------------|
|`EndsWith(suffix)`     |`argument` ends with string `suffix`.           |
|`HasSubstr(string)`    |`argument` contains `string` as a sub-string.   |
|`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.|
|`StartsWith(prefix)`   |`argument` starts with string `prefix`.         |
|`StrCaseEq(string)`    |`argument` is equal to `string`, ignoring case. |
|`StrCaseNe(string)`    |`argument` is not equal to `string`, ignoring case.|
|`StrEq(string)`        |`argument` is equal to `string`.                |
|`StrNe(string)`        |`argument` is not equal to `string`.            |

`ContainsRegex()` and `MatchesRegex()` use the regular expression
syntax defined
[here](../../googletest/docs/AdvancedGuide.md#regular-expression-syntax).
`StrCaseEq()`, `StrCaseNe()`, `StrEq()`, and `StrNe()` work for wide
strings as well.

## Container Matchers ##

Most STL-style containers support `==`, so you can use
`Eq(expected_container)` or simply `expected_container` to match a
container exactly.   If you want to write the elements in-line,
match them more flexibly, or get more informative messages, you can use:

| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
|:-------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| `Contains(e)`            | `argument` contains an element that matches `e`, which can be either a value or a matcher.                                       |
| `Each(e)`                | `argument` is a container where _every_ element matches `e`, which can be either a value or a matcher.                           |
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei`, which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `ElementsAreArray({ e0, e1, ..., en })`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `IsEmpty()`              | `argument` is an empty container (`container.empty()`).                                                                          |
| `Pointwise(m, container)` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
| `SizeIs(m)`              | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`.                                           |
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i`), which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `UnorderedElementsAreArray({ e0, e1, ..., en })`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `WhenSorted(m)`          | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(UnorderedElementsAre(1, 2, 3))` verifies that `argument` contains elements `1`, `2`, and `3`, ignoring order. |
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))`. |

Notes:

  * These matchers can also match:
    1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), and
    1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers](#Multiargument_Matchers.md)).
  * The array being matched may be multi-dimensional (i.e. its elements can be arrays).
  * `m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write:

```
using ::testing::get;
MATCHER(FooEq, "") {
  return get<0>(arg).Equals(get<1>(arg));
}
...
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
```

## Member Matchers ##

|`Field(&class::field, m)`|`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
|:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
|`Key(e)`                 |`argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`.|
|`Pair(m1, m2)`           |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`.                                                |
|`Property(&class::property, m)`|`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|

## Matching the Result of a Function or Functor ##

|`ResultOf(f, m)`|`f(argument)` matches matcher `m`, where `f` is a function or functor.|
|:---------------|:---------------------------------------------------------------------|

## Pointer Matchers ##

|`Pointee(m)`|`argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`.|
|:-----------|:-----------------------------------------------------------------------------------------------|
|`WhenDynamicCastTo<T>(m)`| when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`.                 |

## Multiargument Matchers ##

Technically, all matchers match a _single_ value. A "multi-argument"
matcher is just one that matches a _tuple_. The following matchers can
be used to match a tuple `(x, y)`:

|`Eq()`|`x == y`|
|:-----|:-------|
|`Ge()`|`x >= y`|
|`Gt()`|`x > y` |
|`Le()`|`x <= y`|
|`Lt()`|`x < y` |
|`Ne()`|`x != y`|

You can use the following selectors to pick a subset of the arguments
(or reorder them) to participate in the matching:

|`AllArgs(m)`|Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`.|
|:-----------|:-------------------------------------------------------------------|
|`Args<N1, N2, ..., Nk>(m)`|The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`.|

## Composite Matchers ##

You can make a matcher from one or more other matchers:

|`AllOf(m1, m2, ..., mn)`|`argument` matches all of the matchers `m1` to `mn`.|
|:-----------------------|:---------------------------------------------------|
|`AnyOf(m1, m2, ..., mn)`|`argument` matches at least one of the matchers `m1` to `mn`.|
|`Not(m)`                |`argument` doesn't match matcher `m`.               |

## Adapters for Matchers ##

|`MatcherCast<T>(m)`|casts matcher `m` to type `Matcher<T>`.|
|:------------------|:--------------------------------------|
|`SafeMatcherCast<T>(m)`| [safely casts](CookBook.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
|`Truly(predicate)` |`predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor.|

## Matchers as Predicates ##

|`Matches(m)(value)`|evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor.|
|:------------------|:---------------------------------------------------------------------------------------------|
|`ExplainMatchResult(m, value, result_listener)`|evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`.       |
|`Value(value, m)`  |evaluates to `true` if `value` matches `m`.                                                   |

## Defining Matchers ##

| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
|:-------------------------------------------------|:------------------------------------------------------|