aboutsummaryrefslogtreecommitdiffstats
path: root/quantum/split_common/transport.c
blob: b32d48eb88c7946a5289ddbca66a5228f74adfbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include <string.h>
#include <stddef.h>

#include "config.h"
#include "matrix.h"
#include "quantum.h"

#define ROWS_PER_HAND (MATRIX_ROWS / 2)

#ifdef RGBLIGHT_ENABLE
#  include "rgblight.h"
#endif

#ifdef BACKLIGHT_ENABLE
#  include "backlight.h"
#endif

#ifdef ENCODER_ENABLE
#  include "encoder.h"
#endif

#if defined(USE_I2C) || defined(EH)

#  include "i2c_master.h"
#  include "i2c_slave.h"

typedef struct _I2C_slave_buffer_t {
    matrix_row_t smatrix[ROWS_PER_HAND];
    uint8_t      backlight_level;
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
    rgblight_syncinfo_t rgblight_sync;
#endif
#ifdef ENCODER_ENABLE
    uint8_t encoder_state[NUMBER_OF_ENCODERS];
#endif
} I2C_slave_buffer_t;

static I2C_slave_buffer_t * const i2c_buffer = (I2C_slave_buffer_t *)i2c_slave_reg;

#  define I2C_BACKLIGHT_START offsetof(I2C_slave_buffer_t, backlight_level)
#  define I2C_RGB_START offsetof(I2C_slave_buffer_t, rgblight_sync)
#  define I2C_KEYMAP_START offsetof(I2C_slave_buffer_t, smatrix)
#  define I2C_ENCODER_START offsetof(I2C_slave_buffer_t, encoder_state)

#  define TIMEOUT 100

#  ifndef SLAVE_I2C_ADDRESS
#    define SLAVE_I2C_ADDRESS 0x32
#  endif

// Get rows from other half over i2c
bool transport_master(matrix_row_t matrix[]) {
  i2c_readReg(SLAVE_I2C_ADDRESS, I2C_KEYMAP_START, (void *)matrix, sizeof(i2c_buffer->smatrix), TIMEOUT);

  // write backlight info
#  ifdef BACKLIGHT_ENABLE
  uint8_t level = is_backlight_enabled() ? get_backlight_level() : 0;
  if (level != i2c_buffer->backlight_level) {
    if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_BACKLIGHT_START, (void *)&level, sizeof(level), TIMEOUT) >= 0) {
      i2c_buffer->backlight_level = level;
    }
  }
#  endif

#  if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  if (rgblight_get_change_flags()) {
    rgblight_syncinfo_t rgblight_sync;
    rgblight_get_syncinfo(&rgblight_sync);
    if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_RGB_START,
                     (void *)&rgblight_sync, sizeof(rgblight_sync), TIMEOUT) >= 0) {
      rgblight_clear_change_flags();
    }
  }
#  endif

#  ifdef ENCODER_ENABLE
  i2c_readReg(SLAVE_I2C_ADDRESS, I2C_ENCODER_START, (void *)i2c_buffer->encoder_state, sizeof(i2c_buffer->encoder_state), TIMEOUT);
  encoder_update_raw(i2c_buffer->encoder_state);
#  endif

  return true;
}

void transport_slave(matrix_row_t matrix[]) {
  // Copy matrix to I2C buffer
  memcpy((void*)i2c_buffer->smatrix, (void *)matrix, sizeof(i2c_buffer->smatrix));

// Read Backlight Info
#  ifdef BACKLIGHT_ENABLE
  backlight_set(i2c_buffer->backlight_level);
#  endif

#  if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  // Update the RGB with the new data
  if (i2c_buffer->rgblight_sync.status.change_flags != 0) {
      rgblight_update_sync(&i2c_buffer->rgblight_sync, false);
      i2c_buffer->rgblight_sync.status.change_flags = 0;
  }
#  endif

#  ifdef ENCODER_ENABLE
  encoder_state_raw(i2c_buffer->encoder_state);
#  endif
}

void transport_master_init(void) { i2c_init(); }

void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); }

#else  // USE_SERIAL

#  include "serial.h"

typedef struct _Serial_s2m_buffer_t {
  // TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack
  matrix_row_t smatrix[ROWS_PER_HAND];

#  ifdef ENCODER_ENABLE
  uint8_t encoder_state[NUMBER_OF_ENCODERS];
#  endif

} Serial_s2m_buffer_t;

typedef struct _Serial_m2s_buffer_t {
#  ifdef BACKLIGHT_ENABLE
  uint8_t           backlight_level;
#  endif
} Serial_m2s_buffer_t;

#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
// When MCUs on both sides drive their respective RGB LED chains,
// it is necessary to synchronize, so it is necessary to communicate RGB
// information. In that case, define RGBLIGHT_SPLIT with info on the number
// of LEDs on each half.
//
// Otherwise, if the master side MCU drives both sides RGB LED chains,
// there is no need to communicate.

typedef struct _Serial_rgblight_t {
    rgblight_syncinfo_t rgblight_sync;
} Serial_rgblight_t;

volatile Serial_rgblight_t serial_rgblight = {};
uint8_t volatile status_rgblight           = 0;
#endif

volatile Serial_s2m_buffer_t serial_s2m_buffer = {};
volatile Serial_m2s_buffer_t serial_m2s_buffer = {};
uint8_t volatile status0                       = 0;

enum serial_transaction_id {
    GET_SLAVE_MATRIX = 0,
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
    PUT_RGBLIGHT,
#endif
};

SSTD_t transactions[] = {
    [GET_SLAVE_MATRIX] = {
        (uint8_t *)&status0,
        sizeof(serial_m2s_buffer),
        (uint8_t *)&serial_m2s_buffer,
        sizeof(serial_s2m_buffer),
        (uint8_t *)&serial_s2m_buffer,
    },
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
    [PUT_RGBLIGHT] = {
        (uint8_t *)&status_rgblight,
        sizeof(serial_rgblight),
        (uint8_t *)&serial_rgblight,
        0, NULL // no slave to master transfer
    },
#endif
};

void transport_master_init(void) { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }

void transport_slave_init(void) { soft_serial_target_init(transactions, TID_LIMIT(transactions)); }

#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)

// rgblight synchronization information communication.

void transport_rgblight_master(void) {
  if (rgblight_get_change_flags()) {
    rgblight_get_syncinfo((rgblight_syncinfo_t *)&serial_rgblight.rgblight_sync);
    if (soft_serial_transaction(PUT_RGBLIGHT) == TRANSACTION_END) {
        rgblight_clear_change_flags();
    }
  }
}

void transport_rgblight_slave(void) {
  if (status_rgblight == TRANSACTION_ACCEPTED) {
    rgblight_update_sync((rgblight_syncinfo_t *)&serial_rgblight.rgblight_sync,
                         false);
    status_rgblight = TRANSACTION_END;
  }
}

#else
#define transport_rgblight_master()
#define transport_rgblight_slave()
#endif

bool transport_master(matrix_row_t matrix[]) {
#ifndef SERIAL_USE_MULTI_TRANSACTION
  if (soft_serial_transaction() != TRANSACTION_END) {
    return false;
  }
#else
  transport_rgblight_master();
  if (soft_serial_transaction(GET_SLAVE_MATRIX) != TRANSACTION_END) {
    return false;
  }
#endif

  // TODO:  if MATRIX_COLS > 8 change to unpack()
  for (int i = 0; i < ROWS_PER_HAND; ++i) {
    matrix[i] = serial_s2m_buffer.smatrix[i];
  }

#  ifdef BACKLIGHT_ENABLE
  // Write backlight level for slave to read
  serial_m2s_buffer.backlight_level = is_backlight_enabled() ? get_backlight_level() : 0;
#  endif

#  ifdef ENCODER_ENABLE
  encoder_update_raw((uint8_t *)serial_s2m_buffer.encoder_state);
#  endif

  return true;
}

void transport_slave(matrix_row_t matrix[]) {
  transport_rgblight_slave();
  // TODO: if MATRIX_COLS > 8 change to pack()
  for (int i = 0; i < ROWS_PER_HAND; ++i) {
    serial_s2m_buffer.smatrix[i] = matrix[i];
  }
#  ifdef BACKLIGHT_ENABLE
  backlight_set(serial_m2s_buffer.backlight_level);
#  endif

#  ifdef ENCODER_ENABLE
  encoder_state_raw((uint8_t *)serial_s2m_buffer.encoder_state);
#  endif

}

#endif