aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Projects/TempDataLogger/TempLogHostApp/DataLoggerSettings.cs
blob: c3d1e15645bf2892a0f6f58969f340745651c5b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using Hid;

namespace Project1HostApp
{
    public partial class frmDataloggerSettings : Form
    {
        private const int DEVICE_VID = 0x03EB;
        private const int DEVICE_PID = 0x2063;

        private struct Device_Report_t
        {
            public Byte Day;
            public Byte Month;
            public Byte Year;

            public Byte Hour;
            public Byte Minute;
            public Byte Second;

            public Byte LogInterval500MS;

            public Byte[] ToReport()
            {
                Byte[] Report = new Byte[7];

                Report[0] = this.Hour;
                Report[1] = this.Minute;
                Report[2] = this.Second;
                Report[3] = this.Day;
                Report[4] = this.Month;
                Report[5] = this.Year;
                Report[6] = this.LogInterval500MS;

                return Report;
            }

            public void FromReport(Byte[] Report)
            {
                this.Hour = Report[0];
                this.Minute = Report[1];
                this.Second = Report[2];
                this.Day = Report[3];
                this.Month = Report[4];
                this.Year = Report[5];
                this.LogInterval500MS = Report[6];
            }
        };

        private IDevice GetDeviceConnection()
        {
            IDevice[] ConnectedDevices = DeviceFactory.Enumerate(DEVICE_VID, DEVICE_PID);
            IDevice ConnectionHandle = null;

            if (ConnectedDevices.Count() > 0)
                ConnectionHandle = ConnectedDevices[0];
            else
                return null;

            // Fix report handle under Windows
            if (ConnectionHandle is Hid.Win32.Win32DeviceSet)
            {
                ((Hid.Win32.Win32DeviceSet)ConnectionHandle).AddDevice(0x00,
                    ((Hid.Win32.Win32DeviceSet)ConnectionHandle).UnallocatedDevices[0]);
            }

            return ConnectionHandle;
        }

        public frmDataloggerSettings()
        {
            InitializeComponent();
        }

        private void btnSetValues_Click(object sender, EventArgs e)
        {
            IDevice ConnectionHandle = GetDeviceConnection();

            if (ConnectionHandle == null)
            {
                MessageBox.Show("Error: Cannot connect to Datalogger device.");
                return;
            }

            Device_Report_t DeviceReport = new Device_Report_t();
            DeviceReport.Day = (byte)dtpDate.Value.Day;
            DeviceReport.Month = (byte)dtpDate.Value.Month;
            DeviceReport.Year = (byte)((dtpDate.Value.Year < 2000) ? 0 : (dtpDate.Value.Year - 2000));
            DeviceReport.Hour = (byte)dtpTime.Value.Hour;
            DeviceReport.Minute = (byte)dtpTime.Value.Minute;
            DeviceReport.Second = (byte)dtpTime.Value.Second;
            DeviceReport.LogInterval500MS = (byte)(nudLogInterval.Value * 2);

            try
            {
                ConnectionHandle.Write(0x00, DeviceReport.ToReport());
                MessageBox.Show("Device parameters updated successfully.");
            }
            catch (Exception ex)
            {
                MessageBox.Show("Error: " + ex.Message);
            }
        }

        private void btnGetValues_Click(object sender, EventArgs e)
        {
            IDevice ConnectionHandle = GetDeviceConnection();

            if (ConnectionHandle == null)
            {
                MessageBox.Show("Error: Cannot connect to Datalogger device.");
                return;
            }

            Device_Report_t DeviceReport = new Device_Report_t();

            try
            {
                Byte[] Report = new Byte[7];

                ConnectionHandle.Read(0x00, Report);
                DeviceReport.FromReport(Report);
                String msgText = "Device parameters retrieved successfully.";

                try
                {
                    dtpDate.Value = new DateTime(
                        (2000 + DeviceReport.Year),
                        DeviceReport.Month,
                        DeviceReport.Day);

                    dtpTime.Value = new DateTime(
                        DateTime.Now.Year, DateTime.Now.Month, DateTime.Now.Day,
                        DeviceReport.Hour,
                        DeviceReport.Minute,
                        DeviceReport.Second);
                }
                catch (Exception ex)
                {
                    msgText = "Problem reading device:\n" +
                        ex.Message +
                        "\nY:" + DeviceReport.Year.ToString() +
                        " M:" + DeviceReport.Month.ToString() +
                        " D:" + DeviceReport.Day.ToString() +
                        "\n\nUsing current date and time.";
                    dtpDate.Value = DateTime.Now;
                    dtpTime.Value = DateTime.Now;
                }

                try
                {
                    nudLogInterval.Value = (DeviceReport.LogInterval500MS / 2);
                }
                catch (Exception ex)
                {
                    nudLogInterval.Value = nudLogInterval.Minimum;
                }

                MessageBox.Show(msgText);
            }
            catch (Exception ex)
            {
                MessageBox.Show("Error: " + ex.Message);
            }
        }

        private void frmDataloggerSettings_Load(object sender, EventArgs e)
        {

        }
    }
}
60' href='#n1060'>1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// [[CITE]] ABC
// Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification
// http://www.eecs.berkeley.edu/~alanmi/abc/

// [[CITE]] Berkeley Logic Interchange Format (BLIF)
// University of California. Berkeley. July 28, 1992
// http://www.ece.cmu.edu/~ee760/760docs/blif.pdf

// [[CITE]] Kahn's Topological sorting algorithm
// Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM 5 (11): 558-562, doi:10.1145/368996.369025
// http://en.wikipedia.org/wiki/Topological_sorting

#define ABC_COMMAND_LIB "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_CTR "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_COMMAND_LUT "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; dch -f; if; mfs2"
#define ABC_COMMAND_SOP "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; dch -f; cover {I} {P}"
#define ABC_COMMAND_DFL "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put"

#define ABC_FAST_COMMAND_LIB "strash; dretime; retime {D}; map {D}"
#define ABC_FAST_COMMAND_CTR "strash; dretime; retime {D}; map {D}; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_FAST_COMMAND_LUT "strash; dretime; retime {D}; if"
#define ABC_FAST_COMMAND_SOP "strash; dretime; retime {D}; cover -I {I} -P {P}"
#define ABC_FAST_COMMAND_DFL "strash; dretime; retime {D}; map"

#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/cost.h"
#include "kernel/log.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cctype>
#include <cerrno>
#include <sstream>
#include <climits>

#ifndef _WIN32
#  include <unistd.h>
#  include <dirent.h>
#endif

#include "frontends/blif/blifparse.h"

#ifdef YOSYS_LINK_ABC
extern "C" int Abc_RealMain(int argc, char *argv[]);
#endif

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

enum class gate_type_t {
	G_NONE,
	G_FF,
	G_BUF,
	G_NOT,
	G_AND,
	G_NAND,
	G_OR,
	G_NOR,
	G_XOR,
	G_XNOR,
	G_ANDNOT,
	G_ORNOT,
	G_MUX,
	G_NMUX,
	G_AOI3,
	G_OAI3,
	G_AOI4,
	G_OAI4
};

#define G(_name) gate_type_t::G_ ## _name

struct gate_t
{
	int id;
	gate_type_t type;
	int in1, in2, in3, in4;
	bool is_port;
	RTLIL::SigBit bit;
	RTLIL::State init;
};

bool map_mux4;
bool map_mux8;
bool map_mux16;

bool markgroups;
int map_autoidx;
SigMap assign_map;
RTLIL::Module *module;
std::vector<gate_t> signal_list;
std::map<RTLIL::SigBit, int> signal_map;
std::map<RTLIL::SigBit, RTLIL::State> signal_init;
pool<std::string> enabled_gates;
bool recover_init, cmos_cost;

bool clk_polarity, en_polarity;
RTLIL::SigSpec clk_sig, en_sig;
dict<int, std::string> pi_map, po_map;

int map_signal(RTLIL::SigBit bit, gate_type_t gate_type = G(NONE), int in1 = -1, int in2 = -1, int in3 = -1, int in4 = -1)
{
	assign_map.apply(bit);

	if (signal_map.count(bit) == 0) {
		gate_t gate;
		gate.id = signal_list.size();
		gate.type = G(NONE);
		gate.in1 = -1;
		gate.in2 = -1;
		gate.in3 = -1;
		gate.in4 = -1;
		gate.is_port = false;
		gate.bit = bit;
		if (signal_init.count(bit))
			gate.init = signal_init.at(bit);
		else
			gate.init = State::Sx;
		signal_list.push_back(gate);
		signal_map[bit] = gate.id;
	}

	gate_t &gate = signal_list[signal_map[bit]];

	if (gate_type != G(NONE))
		gate.type = gate_type;
	if (in1 >= 0)
		gate.in1 = in1;
	if (in2 >= 0)
		gate.in2 = in2;
	if (in3 >= 0)
		gate.in3 = in3;
	if (in4 >= 0)
		gate.in4 = in4;

	return gate.id;
}

void mark_port(RTLIL::SigSpec sig)
{
	for (auto &bit : assign_map(sig))
		if (bit.wire != NULL && signal_map.count(bit) > 0)
			signal_list[signal_map[bit]].is_port = true;
}

void extract_cell(RTLIL::Cell *cell, bool keepff)
{
	if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
	{
		if (clk_polarity != (cell->type == ID($_DFF_P_)))
			return;
		if (clk_sig != assign_map(cell->getPort(ID(C))))
			return;
		if (GetSize(en_sig) != 0)
			return;
		goto matching_dff;
	}

	if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
	{
		if (clk_polarity != cell->type.in(ID($_DFFE_PN_), ID($_DFFE_PP_)))
			return;
		if (en_polarity != cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_)))
			return;
		if (clk_sig != assign_map(cell->getPort(ID(C))))
			return;
		if (en_sig != assign_map(cell->getPort(ID(E))))
			return;
		goto matching_dff;
	}

	if (0) {
	matching_dff:
		RTLIL::SigSpec sig_d = cell->getPort(ID(D));
		RTLIL::SigSpec sig_q = cell->getPort(ID(Q));

		if (keepff)
			for (auto &c : sig_q.chunks())
				if (c.wire != NULL)
					c.wire->attributes[ID::keep] = 1;

		assign_map.apply(sig_d);
		assign_map.apply(sig_q);

		map_signal(sig_q, G(FF), map_signal(sig_d));

		module->remove(cell);
		return;
	}

	if (cell->type.in(ID($_BUF_), ID($_NOT_)))
	{
		RTLIL::SigSpec sig_a = cell->getPort(ID::A);
		RTLIL::SigSpec sig_y = cell->getPort(ID::Y);

		assign_map.apply(sig_a);
		assign_map.apply(sig_y);

		map_signal(sig_y, cell->type == ID($_BUF_) ? G(BUF) : G(NOT), map_signal(sig_a));

		module->remove(cell);
		return;
	}

	if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_OR_), ID($_NOR_), ID($_XOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_)))
	{
		RTLIL::SigSpec sig_a = cell->getPort(ID::A);
		RTLIL::SigSpec sig_b = cell->getPort(ID::B);
		RTLIL::SigSpec sig_y = cell->getPort(ID::Y);

		assign_map.apply(sig_a);
		assign_map.apply(sig_b);
		assign_map.apply(sig_y);

		int mapped_a = map_signal(sig_a);
		int mapped_b = map_signal(sig_b);

		if (cell->type == ID($_AND_))
			map_signal(sig_y, G(AND), mapped_a, mapped_b);
		else if (cell->type == ID($_NAND_))
			map_signal(sig_y, G(NAND), mapped_a, mapped_b);
		else if (cell->type == ID($_OR_))
			map_signal(sig_y, G(OR), mapped_a, mapped_b);
		else if (cell->type == ID($_NOR_))
			map_signal(sig_y, G(NOR), mapped_a, mapped_b);
		else if (cell->type == ID($_XOR_))
			map_signal(sig_y, G(XOR), mapped_a, mapped_b);
		else if (cell->type == ID($_XNOR_))
			map_signal(sig_y, G(XNOR), mapped_a, mapped_b);
		else if (cell->type == ID($_ANDNOT_))
			map_signal(sig_y, G(ANDNOT), mapped_a, mapped_b);
		else if (cell->type == ID($_ORNOT_))
			map_signal(sig_y, G(ORNOT), mapped_a, mapped_b);
		else
			log_abort();

		module->remove(cell);
		return;
	}

	if (cell->type.in(ID($_MUX_), ID($_NMUX_)))
	{
		RTLIL::SigSpec sig_a = cell->getPort(ID::A);
		RTLIL::SigSpec sig_b = cell->getPort(ID::B);
		RTLIL::SigSpec sig_s = cell->getPort(ID(S));
		RTLIL::SigSpec sig_y = cell->getPort(ID::Y);

		assign_map.apply(sig_a);
		assign_map.apply(sig_b);
		assign_map.apply(sig_s);
		assign_map.apply(sig_y);

		int mapped_a = map_signal(sig_a);
		int mapped_b = map_signal(sig_b);
		int mapped_s = map_signal(sig_s);

		map_signal(sig_y, cell->type == ID($_MUX_) ? G(MUX) : G(NMUX), mapped_a, mapped_b, mapped_s);

		module->remove(cell);
		return;
	}

	if (cell->type.in(ID($_AOI3_), ID($_OAI3_)))
	{
		RTLIL::SigSpec sig_a = cell->getPort(ID::A);
		RTLIL::SigSpec sig_b = cell->getPort(ID::B);
		RTLIL::SigSpec sig_c = cell->getPort(ID(C));
		RTLIL::SigSpec sig_y = cell->getPort(ID::Y);

		assign_map.apply(sig_a);
		assign_map.apply(sig_b);
		assign_map.apply(sig_c);
		assign_map.apply(sig_y);

		int mapped_a = map_signal(sig_a);
		int mapped_b = map_signal(sig_b);
		int mapped_c = map_signal(sig_c);

		map_signal(sig_y, cell->type == ID($_AOI3_) ? G(AOI3) : G(OAI3), mapped_a, mapped_b, mapped_c);

		module->remove(cell);
		return;
	}

	if (cell->type.in(ID($_AOI4_), ID($_OAI4_)))
	{
		RTLIL::SigSpec sig_a = cell->getPort(ID::A);
		RTLIL::SigSpec sig_b = cell->getPort(ID::B);
		RTLIL::SigSpec sig_c = cell->getPort(ID(C));
		RTLIL::SigSpec sig_d = cell->getPort(ID(D));
		RTLIL::SigSpec sig_y = cell->getPort(ID::Y);

		assign_map.apply(sig_a);
		assign_map.apply(sig_b);
		assign_map.apply(sig_c);
		assign_map.apply(sig_d);
		assign_map.apply(sig_y);

		int mapped_a = map_signal(sig_a);
		int mapped_b = map_signal(sig_b);
		int mapped_c = map_signal(sig_c);
		int mapped_d = map_signal(sig_d);

		map_signal(sig_y, cell->type == ID($_AOI4_) ? G(AOI4) : G(OAI4), mapped_a, mapped_b, mapped_c, mapped_d);

		module->remove(cell);
		return;
	}
}

std::string remap_name(RTLIL::IdString abc_name, RTLIL::Wire **orig_wire = nullptr)
{
	std::string abc_sname = abc_name.substr(1);
	bool isnew = false;
	if (abc_sname.compare(0, 4, "new_") == 0)
	{
		abc_sname.erase(0, 4);
		isnew = true;
	}
	if (abc_sname.compare(0, 5, "ys__n") == 0)
	{
		abc_sname.erase(0, 5);
		if (std::isdigit(abc_sname.at(0)))
		{
			int sid = std::atoi(abc_sname.c_str());
			size_t postfix_start = abc_sname.find_first_not_of("0123456789");
			std::string postfix = postfix_start != std::string::npos ? abc_sname.substr(postfix_start) : "";

			if (sid < GetSize(signal_list))
			{
				auto sig = signal_list.at(sid);
				if (sig.bit.wire != nullptr)
				{
					std::string s = stringf("$abc$%d$%s", map_autoidx, sig.bit.wire->name.c_str()+1);
					if (sig.bit.wire->width != 1)
						s += stringf("[%d]", sig.bit.offset);
					if (isnew)
						s += "_new";
					s += postfix;
					if (orig_wire != nullptr)
						*orig_wire = sig.bit.wire;
					return s;
				}
			}
		}
	}
	return stringf("$abc$%d$%s", map_autoidx, abc_name.c_str()+1);
}

void dump_loop_graph(FILE *f, int &nr, std::map<int, std::set<int>> &edges, std::set<int> &workpool, std::vector<int> &in_counts)
{
	if (f == NULL)
		return;

	log("Dumping loop state graph to slide %d.\n", ++nr);

	fprintf(f, "digraph \"slide%d\" {\n", nr);
	fprintf(f, "  label=\"slide%d\";\n", nr);
	fprintf(f, "  rankdir=\"TD\";\n");

	std::set<int> nodes;
	for (auto &e : edges) {
		nodes.insert(e.first);
		for (auto n : e.second)
			nodes.insert(n);
	}

	for (auto n : nodes)
		fprintf(f, "  ys__n%d [label=\"%s\\nid=%d, count=%d\"%s];\n", n, log_signal(signal_list[n].bit),
				n, in_counts[n], workpool.count(n) ? ", shape=box" : "");

	for (auto &e : edges)
	for (auto n : e.second)
		fprintf(f, "  ys__n%d -> ys__n%d;\n", e.first, n);

	fprintf(f, "}\n");
}

void handle_loops()
{
	// http://en.wikipedia.org/wiki/Topological_sorting
	// (Kahn, Arthur B. (1962), "Topological sorting of large networks")

	std::map<int, std::set<int>> edges;
	std::vector<int> in_edges_count(signal_list.size());
	std::set<int> workpool;

	FILE *dot_f = NULL;
	int dot_nr = 0;

	// uncomment for troubleshooting the loop detection code
	// dot_f = fopen("test.dot", "w");

	for (auto &g : signal_list) {
		if (g.type == G(NONE) || g.type == G(FF)) {
			workpool.insert(g.id);
		} else {
			if (g.in1 >= 0) {
				edges[g.in1].insert(g.id);
				in_edges_count[g.id]++;
			}
			if (g.in2 >= 0 && g.in2 != g.in1) {
				edges[g.in2].insert(g.id);
				in_edges_count[g.id]++;
			}
			if (g.in3 >= 0 && g.in3 != g.in2 && g.in3 != g.in1) {
				edges[g.in3].insert(g.id);
				in_edges_count[g.id]++;
			}
			if (g.in4 >= 0 && g.in4 != g.in3 && g.in4 != g.in2 && g.in4 != g.in1) {
				edges[g.in4].insert(g.id);
				in_edges_count[g.id]++;
			}
		}
	}

	dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count);

	while (workpool.size() > 0)
	{
		int id = *workpool.begin();
		workpool.erase(id);

		// log("Removing non-loop node %d from graph: %s\n", id, log_signal(signal_list[id].bit));

		for (int id2 : edges[id]) {
			log_assert(in_edges_count[id2] > 0);
			if (--in_edges_count[id2] == 0)
				workpool.insert(id2);
		}
		edges.erase(id);

		dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count);

		while (workpool.size() == 0)
		{
			if (edges.size() == 0)
				break;

			int id1 = edges.begin()->first;

			for (auto &edge_it : edges) {
				int id2 = edge_it.first;
				RTLIL::Wire *w1 = signal_list[id1].bit.wire;
				RTLIL::Wire *w2 = signal_list[id2].bit.wire;
				if (w1 == NULL)
					id1 = id2;
				else if (w2 == NULL)
					continue;
				else if (w1->name[0] == '$' && w2->name[0] == '\\')
					id1 = id2;
				else if (w1->name[0] == '\\' && w2->name[0] == '$')
					continue;
				else if (edges[id1].size() < edges[id2].size())
					id1 = id2;
				else if (edges[id1].size() > edges[id2].size())
					continue;
				else if (w2->name.str() < w1->name.str())
					id1 = id2;
			}

			if (edges[id1].size() == 0) {
				edges.erase(id1);
				continue;
			}

			log_assert(signal_list[id1].bit.wire != NULL);

			std::stringstream sstr;
			sstr << "$abcloop$" << (autoidx++);
			RTLIL::Wire *wire = module->addWire(sstr.str());

			bool first_line = true;
			for (int id2 : edges[id1]) {
				if (first_line)
					log("Breaking loop using new signal %s: %s -> %s\n", log_signal(RTLIL::SigSpec(wire)),
							log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit));
				else
					log("                               %*s  %s -> %s\n", int(strlen(log_signal(RTLIL::SigSpec(wire)))), "",
							log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit));
				first_line = false;
			}

			int id3 = map_signal(RTLIL::SigSpec(wire));
			signal_list[id1].is_port = true;
			signal_list[id3].is_port = true;
			log_assert(id3 == int(in_edges_count.size()));
			in_edges_count.push_back(0);
			workpool.insert(id3);

			for (int id2 : edges[id1]) {
				if (signal_list[id2].in1 == id1)
					signal_list[id2].in1 = id3;
				if (signal_list[id2].in2 == id1)
					signal_list[id2].in2 = id3;
				if (signal_list[id2].in3 == id1)
					signal_list[id2].in3 = id3;
				if (signal_list[id2].in4 == id1)
					signal_list[id2].in4 = id3;
			}
			edges[id1].swap(edges[id3]);

			module->connect(RTLIL::SigSig(signal_list[id3].bit, signal_list[id1].bit));
			dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count);
		}
	}

	if (dot_f != NULL)
		fclose(dot_f);
}

std::string add_echos_to_abc_cmd(std::string str)
{
	std::string new_str, token;
	for (size_t i = 0; i < str.size(); i++) {
		token += str[i];
		if (str[i] == ';') {
			while (i+1 < str.size() && str[i+1] == ' ')
				i++;
			new_str += "echo + " + token + " " + token + " ";
			token.clear();
		}
	}

	if (!token.empty()) {
		if (!new_str.empty())
			new_str += "echo + " + token + "; ";
		new_str += token;
	}

	return new_str;
}

std::string fold_abc_cmd(std::string str)
{
	std::string token, new_str = "          ";
	int char_counter = 10;

	for (size_t i = 0; i <= str.size(); i++) {
		if (i < str.size())
			token += str[i];
		if (i == str.size() || str[i] == ';') {
			if (char_counter + token.size() > 75)
				new_str += "\n              ", char_counter = 14;
			new_str += token, char_counter += token.size();
			token.clear();
		}
	}

	return new_str;
}

std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir)
{
	if (show_tempdir)
		return text;

	while (1) {
		size_t pos = text.find(tempdir_name);
		if (pos == std::string::npos)
			break;
		text = text.substr(0, pos) + "<abc-temp-dir>" + text.substr(pos + GetSize(tempdir_name));
	}

	std::string  selfdir_name = proc_self_dirname();
	if (selfdir_name != "/") {
		while (1) {
			size_t pos = text.find(selfdir_name);
			if (pos == std::string::npos)
				break;
			text = text.substr(0, pos) + "<yosys-exe-dir>/" + text.substr(pos + GetSize(selfdir_name));
		}
	}

	return text;
}

struct abc_output_filter
{
	bool got_cr;
	int escape_seq_state;
	std::string linebuf;
	std::string tempdir_name;
	bool show_tempdir;

	abc_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir)
	{
		got_cr = false;
		escape_seq_state = 0;
	}

	void next_char(char ch)
	{
		if (escape_seq_state == 0 && ch == '\033') {
			escape_seq_state = 1;
			return;
		}
		if (escape_seq_state == 1) {
			escape_seq_state = ch == '[' ? 2 : 0;
			return;
		}
		if (escape_seq_state == 2) {
			if ((ch < '0' || '9' < ch) && ch != ';')
				escape_seq_state = 0;
			return;
		}
		escape_seq_state = 0;
		if (ch == '\r') {
			got_cr = true;
			return;
		}
		if (ch == '\n') {
			log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str());
			got_cr = false, linebuf.clear();
			return;
		}
		if (got_cr)
			got_cr = false, linebuf.clear();
		linebuf += ch;
	}

	void next_line(const std::string &line)
	{
		int pi, po;
		if (sscanf(line.c_str(), "Start-point = pi%d.  End-point = po%d.", &pi, &po) == 2) {
			log("ABC: Start-point = pi%d (%s).  End-point = po%d (%s).\n",
					pi, pi_map.count(pi) ? pi_map.at(pi).c_str() : "???",
					po, po_map.count(po) ? po_map.at(po).c_str() : "???");
			return;
		}

		for (char ch : line)
			next_char(ch);
	}
};

void abc_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file,
		std::string liberty_file, std::string constr_file, bool cleanup, vector<int> lut_costs, bool dff_mode, std::string clk_str,
		bool keepff, std::string delay_target, std::string sop_inputs, std::string sop_products, std::string lutin_shared, bool fast_mode,
		const std::vector<RTLIL::Cell*> &cells, bool show_tempdir, bool sop_mode, bool abc_dress)
{
	module = current_module;
	map_autoidx = autoidx++;

	signal_map.clear();
	signal_list.clear();
	pi_map.clear();
	po_map.clear();
	recover_init = false;

	if (clk_str != "$")
	{
		clk_polarity = true;
		clk_sig = RTLIL::SigSpec();

		en_polarity = true;
		en_sig = RTLIL::SigSpec();
	}

	if (!clk_str.empty() && clk_str != "$")
	{
		if (clk_str.find(',') != std::string::npos) {
			int pos = clk_str.find(',');
			std::string en_str = clk_str.substr(pos+1);
			clk_str = clk_str.substr(0, pos);
			if (en_str[0] == '!') {
				en_polarity = false;
				en_str = en_str.substr(1);
			}
			if (module->wires_.count(RTLIL::escape_id(en_str)) != 0)
				en_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(en_str)), 0));
		}
		if (clk_str[0] == '!') {
			clk_polarity = false;
			clk_str = clk_str.substr(1);
		}
		if (module->wires_.count(RTLIL::escape_id(clk_str)) != 0)
			clk_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(clk_str)), 0));
	}

	if (dff_mode && clk_sig.empty())
		log_cmd_error("Clock domain %s not found.\n", clk_str.c_str());

	std::string tempdir_name = "/tmp/yosys-abc-XXXXXX";
	if (!cleanup)
		tempdir_name[0] = tempdir_name[4] = '_';
	tempdir_name = make_temp_dir(tempdir_name);
	log_header(design, "Extracting gate netlist of module `%s' to `%s/input.blif'..\n",
			module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str());

	std::string abc_script = stringf("read_blif %s/input.blif; ", tempdir_name.c_str());

	if (!liberty_file.empty()) {
		abc_script += stringf("read_lib -w %s; ", liberty_file.c_str());
		if (!constr_file.empty())
			abc_script += stringf("read_constr -v %s; ", constr_file.c_str());
	} else
	if (!lut_costs.empty())
		abc_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str());
	else
		abc_script += stringf("read_library %s/stdcells.genlib; ", tempdir_name.c_str());

	if (!script_file.empty()) {
		if (script_file[0] == '+') {
			for (size_t i = 1; i < script_file.size(); i++)
				if (script_file[i] == '\'')
					abc_script += "'\\''";
				else if (script_file[i] == ',')
					abc_script += " ";
				else
					abc_script += script_file[i];
		} else
			abc_script += stringf("source %s", script_file.c_str());
	} else if (!lut_costs.empty()) {
		bool all_luts_cost_same = true;
		for (int this_cost : lut_costs)
			if (this_cost != lut_costs.front())
				all_luts_cost_same = false;
		abc_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT;
		if (all_luts_cost_same && !fast_mode)
			abc_script += "; lutpack {S}";
	} else if (!liberty_file.empty())
		abc_script += constr_file.empty() ? (fast_mode ? ABC_FAST_COMMAND_LIB : ABC_COMMAND_LIB) : (fast_mode ? ABC_FAST_COMMAND_CTR : ABC_COMMAND_CTR);
	else if (sop_mode)
		abc_script += fast_mode ? ABC_FAST_COMMAND_SOP : ABC_COMMAND_SOP;
	else
		abc_script += fast_mode ? ABC_FAST_COMMAND_DFL : ABC_COMMAND_DFL;

	for (size_t pos = abc_script.find("{D}"); pos != std::string::npos; pos = abc_script.find("{D}", pos))
		abc_script = abc_script.substr(0, pos) + delay_target + abc_script.substr(pos+3);

	for (size_t pos = abc_script.find("{I}"); pos != std::string::npos; pos = abc_script.find("{D}", pos))
		abc_script = abc_script.substr(0, pos) + sop_inputs + abc_script.substr(pos+3);

	for (size_t pos = abc_script.find("{P}"); pos != std::string::npos; pos = abc_script.find("{D}", pos))
		abc_script = abc_script.substr(0, pos) + sop_products + abc_script.substr(pos+3);

	for (size_t pos = abc_script.find("{S}"); pos != std::string::npos; pos = abc_script.find("{S}", pos))
		abc_script = abc_script.substr(0, pos) + lutin_shared + abc_script.substr(pos+3);
	if (abc_dress)
		abc_script += "; dress";
	abc_script += stringf("; write_blif %s/output.blif", tempdir_name.c_str());
	abc_script = add_echos_to_abc_cmd(abc_script);

	for (size_t i = 0; i+1 < abc_script.size(); i++)
		if (abc_script[i] == ';' && abc_script[i+1] == ' ')
			abc_script[i+1] = '\n';

	FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt");
	fprintf(f, "%s\n", abc_script.c_str());
	fclose(f);

	if (dff_mode || !clk_str.empty())
	{
		if (clk_sig.size() == 0)
			log("No%s clock domain found. Not extracting any FF cells.\n", clk_str.empty() ? "" : " matching");
		else {
			log("Found%s %s clock domain: %s", clk_str.empty() ? "" : " matching", clk_polarity ? "posedge" : "negedge", log_signal(clk_sig));
			if (en_sig.size() != 0)
				log(", enabled by %s%s", en_polarity ? "" : "!", log_signal(en_sig));
			log("\n");
		}
	}

	for (auto c : cells)
		extract_cell(c, keepff);

	for (auto &wire_it : module->wires_) {
		if (wire_it.second->port_id > 0 || wire_it.second->get_bool_attribute(ID::keep))
			mark_port(RTLIL::SigSpec(wire_it.second));
	}

	for (auto &cell_it : module->cells_)
	for (auto &port_it : cell_it.second->connections())
		mark_port(port_it.second);

	if (clk_sig.size() != 0)
		mark_port(clk_sig);

	if (en_sig.size() != 0)
		mark_port(en_sig);

	handle_loops();

	std::string buffer = stringf("%s/input.blif", tempdir_name.c_str());
	f = fopen(buffer.c_str(), "wt");
	if (f == NULL)
		log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));

	fprintf(f, ".model netlist\n");

	int count_input = 0;
	fprintf(f, ".inputs");
	for (auto &si : signal_list) {
		if (!si.is_port || si.type != G(NONE))
			continue;
		fprintf(f, " ys__n%d", si.id);
		pi_map[count_input++] = log_signal(si.bit);
	}
	if (count_input == 0)
		fprintf(f, " dummy_input\n");
	fprintf(f, "\n");

	int count_output = 0;
	fprintf(f, ".outputs");
	for (auto &si : signal_list) {
		if (!si.is_port || si.type == G(NONE))
			continue;
		fprintf(f, " ys__n%d", si.id);
		po_map[count_output++] = log_signal(si.bit);
	}
	fprintf(f, "\n");

	for (auto &si : signal_list)
		fprintf(f, "# ys__n%-5d %s\n", si.id, log_signal(si.bit));

	for (auto &si : signal_list) {
		if (si.bit.wire == NULL) {
			fprintf(f, ".names ys__n%d\n", si.id);
			if (si.bit == RTLIL::State::S1)
				fprintf(f, "1\n");
		}
	}

	int count_gates = 0;
	for (auto &si : signal_list) {
		if (si.type == G(BUF)) {
			fprintf(f, ".names ys__n%d ys__n%d\n", si.in1, si.id);
			fprintf(f, "1 1\n");
		} else if (si.type == G(NOT)) {
			fprintf(f, ".names ys__n%d ys__n%d\n", si.in1, si.id);
			fprintf(f, "0 1\n");
		} else if (si.type == G(AND)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "11 1\n");
		} else if (si.type == G(NAND)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "0- 1\n");
			fprintf(f, "-0 1\n");
		} else if (si.type == G(OR)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "-1 1\n");
			fprintf(f, "1- 1\n");
		} else if (si.type == G(NOR)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "00 1\n");
		} else if (si.type == G(XOR)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "01 1\n");
			fprintf(f, "10 1\n");
		} else if (si.type == G(XNOR)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "00 1\n");
			fprintf(f, "11 1\n");
		} else if (si.type == G(ANDNOT)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "10 1\n");
		} else if (si.type == G(ORNOT)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id);
			fprintf(f, "1- 1\n");
			fprintf(f, "-0 1\n");
		} else if (si.type == G(MUX)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id);
			fprintf(f, "1-0 1\n");
			fprintf(f, "-11 1\n");
		} else if (si.type == G(NMUX)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id);
			fprintf(f, "0-0 1\n");
			fprintf(f, "-01 1\n");
		} else if (si.type == G(AOI3)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id);
			fprintf(f, "-00 1\n");
			fprintf(f, "0-0 1\n");
		} else if (si.type == G(OAI3)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id);
			fprintf(f, "00- 1\n");
			fprintf(f, "--0 1\n");
		} else if (si.type == G(AOI4)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.in4, si.id);
			fprintf(f, "-0-0 1\n");
			fprintf(f, "-00- 1\n");
			fprintf(f, "0--0 1\n");
			fprintf(f, "0-0- 1\n");
		} else if (si.type == G(OAI4)) {
			fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.in4, si.id);
			fprintf(f, "00-- 1\n");
			fprintf(f, "--00 1\n");
		} else if (si.type == G(FF)) {
			if (si.init == State::S0 || si.init == State::S1) {
				fprintf(f, ".latch ys__n%d ys__n%d %d\n", si.in1, si.id, si.init == State::S1 ? 1 : 0);
				recover_init = true;
			} else
				fprintf(f, ".latch ys__n%d ys__n%d 2\n", si.in1, si.id);
		} else if (si.type != G(NONE))
			log_abort();
		if (si.type != G(NONE))
			count_gates++;
	}

	fprintf(f, ".end\n");
	fclose(f);

	log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n",
			count_gates, GetSize(signal_list), count_input, count_output);
	log_push();
	if (count_output > 0)
	{
		log_header(design, "Executing ABC.\n");

		auto &cell_cost = cmos_cost ? CellCosts::cmos_gate_cost() : CellCosts::default_gate_cost();

		buffer = stringf("%s/stdcells.genlib", tempdir_name.c_str());
		f = fopen(buffer.c_str(), "wt");
		if (f == NULL)
			log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
		fprintf(f, "GATE ZERO    1 Y=CONST0;\n");
		fprintf(f, "GATE ONE     1 Y=CONST1;\n");
		fprintf(f, "GATE BUF    %d Y=A;                  PIN * NONINV  1 999 1 0 1 0\n", cell_cost.at(ID($_BUF_)));
		fprintf(f, "GATE NOT    %d Y=!A;                 PIN * INV     1 999 1 0 1 0\n", cell_cost.at(ID($_NOT_)));
		if (enabled_gates.count("AND"))
			fprintf(f, "GATE AND    %d Y=A*B;                PIN * NONINV  1 999 1 0 1 0\n", cell_cost.at(ID($_AND_)));
		if (enabled_gates.count("NAND"))
			fprintf(f, "GATE NAND   %d Y=!(A*B);             PIN * INV     1 999 1 0 1 0\n", cell_cost.at(ID($_NAND_)));
		if (enabled_gates.count("OR"))
			fprintf(f, "GATE OR     %d Y=A+B;                PIN * NONINV  1 999 1 0 1 0\n", cell_cost.at(ID($_OR_)));
		if (enabled_gates.count("NOR"))
			fprintf(f, "GATE NOR    %d Y=!(A+B);             PIN * INV     1 999 1 0 1 0\n", cell_cost.at(ID($_NOR_)));
		if (enabled_gates.count("XOR"))
			fprintf(f, "GATE XOR    %d Y=(A*!B)+(!A*B);      PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_XOR_)));
		if (enabled_gates.count("XNOR"))
			fprintf(f, "GATE XNOR   %d Y=(A*B)+(!A*!B);      PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_XNOR_)));
		if (enabled_gates.count("ANDNOT"))
			fprintf(f, "GATE ANDNOT %d Y=A*!B;               PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_ANDNOT_)));
		if (enabled_gates.count("ORNOT"))
			fprintf(f, "GATE ORNOT  %d Y=A+!B;               PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_ORNOT_)));
		if (enabled_gates.count("AOI3"))
			fprintf(f, "GATE AOI3   %d Y=!((A*B)+C);         PIN * INV     1 999 1 0 1 0\n", cell_cost.at(ID($_AOI3_)));
		if (enabled_gates.count("OAI3"))
			fprintf(f, "GATE OAI3   %d Y=!((A+B)*C);         PIN * INV     1 999 1 0 1 0\n", cell_cost.at(ID($_OAI3_)));
		if (enabled_gates.count("AOI4"))
			fprintf(f, "GATE AOI4   %d Y=!((A*B)+(C*D));     PIN * INV     1 999 1 0 1 0\n", cell_cost.at(ID($_AOI4_)));
		if (enabled_gates.count("OAI4"))
			fprintf(f, "GATE OAI4   %d Y=!((A+B)*(C+D));     PIN * INV     1 999 1 0 1 0\n", cell_cost.at(ID($_OAI4_)));
		if (enabled_gates.count("MUX"))
			fprintf(f, "GATE MUX    %d Y=(A*B)+(S*B)+(!S*A); PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_MUX_)));
		if (enabled_gates.count("NMUX"))
			fprintf(f, "GATE NMUX   %d Y=!((A*B)+(S*B)+(!S*A)); PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_NMUX_)));
		if (map_mux4)
			fprintf(f, "GATE MUX4   %d Y=(!S*!T*A)+(S*!T*B)+(!S*T*C)+(S*T*D); PIN * UNKNOWN 1 999 1 0 1 0\n", 2*cell_cost.at(ID($_MUX_)));
		if (map_mux8)
			fprintf(f, "GATE MUX8   %d Y=(!S*!T*!U*A)+(S*!T*!U*B)+(!S*T*!U*C)+(S*T*!U*D)+(!S*!T*U*E)+(S*!T*U*F)+(!S*T*U*G)+(S*T*U*H); PIN * UNKNOWN 1 999 1 0 1 0\n", 4*cell_cost.at(ID($_MUX_)));
		if (map_mux16)
			fprintf(f, "GATE MUX16  %d Y=(!S*!T*!U*!V*A)+(S*!T*!U*!V*B)+(!S*T*!U*!V*C)+(S*T*!U*!V*D)+(!S*!T*U*!V*E)+(S*!T*U*!V*F)+(!S*T*U*!V*G)+(S*T*U*!V*H)+(!S*!T*!U*V*I)+(S*!T*!U*V*J)+(!S*T*!U*V*K)+(S*T*!U*V*L)+(!S*!T*U*V*M)+(S*!T*U*V*N)+(!S*T*U*V*O)+(S*T*U*V*P); PIN * UNKNOWN 1 999 1 0 1 0\n", 8*cell_cost.at(ID($_MUX_)));
		fclose(f);

		if (!lut_costs.empty()) {
			buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str());
			f = fopen(buffer.c_str(), "wt");
			if (f == NULL)
				log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
			for (int i = 0; i < GetSize(lut_costs); i++)
				fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i));
			fclose(f);
		}

		buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str());
		log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str());

#ifndef YOSYS_LINK_ABC
		abc_output_filter filt(tempdir_name, show_tempdir);
		int ret = run_command(buffer, std::bind(&abc_output_filter::next_line, filt, std::placeholders::_1));
#else
		// These needs to be mutable, supposedly due to getopt
		char *abc_argv[5];
		string tmp_script_name = stringf("%s/abc.script", tempdir_name.c_str());
		abc_argv[0] = strdup(exe_file.c_str());
		abc_argv[1] = strdup("-s");
		abc_argv[2] = strdup("-f");
		abc_argv[3] = strdup(tmp_script_name.c_str());
		abc_argv[4] = 0;
		int ret = Abc_RealMain(4, abc_argv);
		free(abc_argv[0]);
		free(abc_argv[1]);
		free(abc_argv[2]);
		free(abc_argv[3]);
#endif
		if (ret != 0)
			log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret);

		buffer = stringf("%s/%s", tempdir_name.c_str(), "output.blif");
		std::ifstream ifs;
		ifs.open(buffer);
		if (ifs.fail())
			log_error("Can't open ABC output file `%s'.\n", buffer.c_str());

		bool builtin_lib = liberty_file.empty();
		RTLIL::Design *mapped_design = new RTLIL::Design;
		parse_blif(mapped_design, ifs, builtin_lib ? ID(DFF) : ID(_dff_), false, sop_mode);

		ifs.close();

		log_header(design, "Re-integrating ABC results.\n");
		RTLIL::Module *mapped_mod = mapped_design->modules_[ID(netlist)];
		if (mapped_mod == NULL)
			log_error("ABC output file does not contain a module `netlist'.\n");
		for (auto &it : mapped_mod->wires_) {
			RTLIL::Wire *w = it.second;
			RTLIL::Wire *orig_wire = nullptr;
			RTLIL::Wire *wire = module->addWire(remap_name(w->name, &orig_wire));
			if (orig_wire != nullptr && orig_wire->attributes.count(ID(src)))
				wire->attributes[ID(src)] = orig_wire->attributes[ID(src)];
			if (markgroups) wire->attributes[ID(abcgroup)] = map_autoidx;
			design->select(module, wire);
		}

		std::map<std::string, int> cell_stats;
		for (auto c : mapped_mod->cells())
		{
			if (builtin_lib)
			{
				cell_stats[RTLIL::unescape_id(c->type)]++;
				if (c->type.in(ID(ZERO), ID(ONE))) {
					RTLIL::SigSig conn;
					conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]);
					conn.second = RTLIL::SigSpec(c->type == ID(ZERO) ? 0 : 1, 1);
					module->connect(conn);
					continue;
				}
				if (c->type == ID(BUF)) {
					RTLIL::SigSig conn;
					conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]);
					conn.second = RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]);
					module->connect(conn);
					continue;
				}
				if (c->type == ID(NOT)) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_NOT_));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type.in(ID(AND), ID(OR), ID(XOR), ID(NAND), ID(NOR), ID(XNOR), ID(ANDNOT), ID(ORNOT))) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::B, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::B).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type.in(ID(MUX), ID(NMUX))) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::B, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::B).as_wire()->name)]));
					cell->setPort(ID(S), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(S)).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type == ID(MUX4)) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_MUX4_));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::B, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::B).as_wire()->name)]));
					cell->setPort(ID(C), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(C)).as_wire()->name)]));
					cell->setPort(ID(D), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(D)).as_wire()->name)]));
					cell->setPort(ID(S), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(S)).as_wire()->name)]));
					cell->setPort(ID(T), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(T)).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type == ID(MUX8)) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_MUX8_));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::B, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::B).as_wire()->name)]));
					cell->setPort(ID(C), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(C)).as_wire()->name)]));
					cell->setPort(ID(D), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(D)).as_wire()->name)]));
					cell->setPort(ID(E), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(E)).as_wire()->name)]));
					cell->setPort(ID(F), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(F)).as_wire()->name)]));
					cell->setPort(ID(G), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(G)).as_wire()->name)]));
					cell->setPort(ID(H), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(H)).as_wire()->name)]));
					cell->setPort(ID(S), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(S)).as_wire()->name)]));
					cell->setPort(ID(T), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(T)).as_wire()->name)]));
					cell->setPort(ID(U), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(U)).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type == ID(MUX16)) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_MUX16_));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::B, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::B).as_wire()->name)]));
					cell->setPort(ID(C), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(C)).as_wire()->name)]));
					cell->setPort(ID(D), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(D)).as_wire()->name)]));
					cell->setPort(ID(E), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(E)).as_wire()->name)]));
					cell->setPort(ID(F), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(F)).as_wire()->name)]));
					cell->setPort(ID(G), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(G)).as_wire()->name)]));
					cell->setPort(ID(H), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(H)).as_wire()->name)]));
					cell->setPort(ID(I), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(I)).as_wire()->name)]));
					cell->setPort(ID(J), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(J)).as_wire()->name)]));
					cell->setPort(ID(K), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(K)).as_wire()->name)]));
					cell->setPort(ID(L), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(L)).as_wire()->name)]));
					cell->setPort(ID(M), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(M)).as_wire()->name)]));
					cell->setPort(ID(N), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(N)).as_wire()->name)]));
					cell->setPort(ID(O), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(O)).as_wire()->name)]));
					cell->setPort(ID(P), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(P)).as_wire()->name)]));
					cell->setPort(ID(S), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(S)).as_wire()->name)]));
					cell->setPort(ID(T), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(T)).as_wire()->name)]));
					cell->setPort(ID(U), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(U)).as_wire()->name)]));
					cell->setPort(ID(V), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(V)).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type.in(ID(AOI3), ID(OAI3))) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::B, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::B).as_wire()->name)]));
					cell->setPort(ID(C), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(C)).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type.in(ID(AOI4), ID(OAI4))) {
					RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1));
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID::A, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)]));
					cell->setPort(ID::B, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::B).as_wire()->name)]));
					cell->setPort(ID(C), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(C)).as_wire()->name)]));
					cell->setPort(ID(D), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(D)).as_wire()->name)]));
					cell->setPort(ID::Y, RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)]));
					design->select(module, cell);
					continue;
				}
				if (c->type == ID(DFF)) {
					log_assert(clk_sig.size() == 1);
					RTLIL::Cell *cell;
					if (en_sig.size() == 0) {
						cell = module->addCell(remap_name(c->name), clk_polarity ? ID($_DFF_P_) : ID($_DFF_N_));
					} else {
						log_assert(en_sig.size() == 1);
						cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
						cell->setPort(ID(E), en_sig);
					}
					if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
					cell->setPort(ID(D), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(D)).as_wire()->name)]));
					cell->setPort(ID(Q), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(Q)).as_wire()->name)]));
					cell->setPort(ID(C), clk_sig);
					design->select(module, cell);
					continue;
				}
			}
			else
				cell_stats[RTLIL::unescape_id(c->type)]++;

			if (c->type.in(ID(_const0_), ID(_const1_))) {
				RTLIL::SigSig conn;
				conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->connections().begin()->second.as_wire()->name)]);
				conn.second = RTLIL::SigSpec(c->type == ID(_const0_) ? 0 : 1, 1);
				module->connect(conn);
				continue;
			}

			if (c->type == ID(_dff_)) {
				log_assert(clk_sig.size() == 1);
				RTLIL::Cell *cell;
				if (en_sig.size() == 0) {
					cell = module->addCell(remap_name(c->name), clk_polarity ? ID($_DFF_P_) : ID($_DFF_N_));
				} else {
					log_assert(en_sig.size() == 1);
					cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
					cell->setPort(ID(E), en_sig);
				}
				if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
				cell->setPort(ID(D), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(D)).as_wire()->name)]));
				cell->setPort(ID(Q), RTLIL::SigSpec(module->wires_[remap_name(c->getPort(ID(Q)).as_wire()->name)]));
				cell->setPort(ID(C), clk_sig);
				design->select(module, cell);
				continue;
			}

			if (c->type == ID($lut) && GetSize(c->getPort(ID::A)) == 1 && c->getParam(ID(LUT)).as_int() == 2) {
				SigSpec my_a = module->wires_[remap_name(c->getPort(ID::A).as_wire()->name)];
				SigSpec my_y = module->wires_[remap_name(c->getPort(ID::Y).as_wire()->name)];
				module->connect(my_y, my_a);
				continue;
			}

			RTLIL::Cell *cell = module->addCell(remap_name(c->name), c->type);
			if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
			cell->parameters = c->parameters;
			for (auto &conn : c->connections()) {
				RTLIL::SigSpec newsig;
				for (auto &c : conn.second.chunks()) {
					if (c.width == 0)
						continue;
					log_assert(c.width == 1);
					newsig.append(module->wires_[remap_name(c.wire->name)]);
				}
				cell->setPort(conn.first, newsig);
			}
			design->select(module, cell);
		}

		for (auto conn : mapped_mod->connections()) {
			if (!conn.first.is_fully_const())
				conn.first = RTLIL::SigSpec(module->wires_[remap_name(conn.first.as_wire()->name)]);
			if (!conn.second.is_fully_const())
				conn.second = RTLIL::SigSpec(module->wires_[remap_name(conn.second.as_wire()->name)]);
			module->connect(conn);
		}

		if (recover_init)
			for (auto wire : mapped_mod->wires()) {
				if (wire->attributes.count(ID(init))) {
					Wire *w = module->wires_[remap_name(wire->name)];
					log_assert(w->attributes.count(ID(init)) == 0);
					w->attributes[ID(init)] = wire->attributes.at(ID(init));
				}
			}

		for (auto &it : cell_stats)
			log("ABC RESULTS:   %15s cells: %8d\n", it.first.c_str(), it.second);
		int in_wires = 0, out_wires = 0;
		for (auto &si : signal_list)
			if (si.is_port) {
				char buffer[100];
				snprintf(buffer, 100, "\\ys__n%d", si.id);
				RTLIL::SigSig conn;
				if (si.type != G(NONE)) {
					conn.first = si.bit;
					conn.second = RTLIL::SigSpec(module->wires_[remap_name(buffer)]);
					out_wires++;
				} else {
					conn.first = RTLIL::SigSpec(module->wires_[remap_name(buffer)]);
					conn.second = si.bit;
					in_wires++;
				}
				module->connect(conn);
			}
		log("ABC RESULTS:        internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
		log("ABC RESULTS:           input signals: %8d\n", in_wires);
		log("ABC RESULTS:          output signals: %8d\n", out_wires);

		delete mapped_design;
	}
	else
	{
		log("Don't call ABC as there is nothing to map.\n");
	}

	if (cleanup)
	{
		log("Removing temp directory.\n");
		remove_directory(tempdir_name);
	}

	log_pop();
}

struct AbcPass : public Pass {
	AbcPass() : Pass("abc", "use ABC for technology mapping") { }
	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    abc [options] [selection]\n");
		log("\n");
		log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n");
		log("library to a target architecture.\n");
		log("\n");
		log("    -exe <command>\n");
#ifdef ABCEXTERNAL
		log("        use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n");
#else
		log("        use the specified command instead of \"<yosys-bindir>/yosys-abc\" to execute ABC.\n");
#endif
		log("        This can e.g. be used to call a specific version of ABC or a wrapper.\n");
		log("\n");
		log("    -script <file>\n");
		log("        use the specified ABC script file instead of the default script.\n");
		log("\n");
		log("        if <file> starts with a plus sign (+), then the rest of the filename\n");
		log("        string is interpreted as the command string to be passed to ABC. The\n");
		log("        leading plus sign is removed and all commas (,) in the string are\n");
		log("        replaced with blanks before the string is passed to ABC.\n");
		log("\n");
		log("        if no -script parameter is given, the following scripts are used:\n");
		log("\n");
		log("        for -liberty without -constr:\n");
		log("%s\n", fold_abc_cmd(ABC_COMMAND_LIB).c_str());
		log("\n");
		log("        for -liberty with -constr:\n");
		log("%s\n", fold_abc_cmd(ABC_COMMAND_CTR).c_str());
		log("\n");
		log("        for -lut/-luts (only one LUT size):\n");
		log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT "; lutpack {S}").c_str());
		log("\n");
		log("        for -lut/-luts (different LUT sizes):\n");
		log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT).c_str());
		log("\n");
		log("        for -sop:\n");
		log("%s\n", fold_abc_cmd(ABC_COMMAND_SOP).c_str());
		log("\n");
		log("        otherwise:\n");
		log("%s\n", fold_abc_cmd(ABC_COMMAND_DFL).c_str());
		log("\n");
		log("    -fast\n");
		log("        use different default scripts that are slightly faster (at the cost\n");
		log("        of output quality):\n");
		log("\n");
		log("        for -liberty without -constr:\n");
		log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LIB).c_str());
		log("\n");
		log("        for -liberty with -constr:\n");
		log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_CTR).c_str());
		log("\n");
		log("        for -lut/-luts:\n");
		log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LUT).c_str());
		log("\n");
		log("        for -sop:\n");
		log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_SOP).c_str());
		log("\n");
		log("        otherwise:\n");
		log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_DFL).c_str());
		log("\n");
		log("    -liberty <file>\n");
		log("        generate netlists for the specified cell library (using the liberty\n");
		log("        file format).\n");
		log("\n");
		log("    -constr <file>\n");
		log("        pass this file with timing constraints to ABC. use with -liberty.\n");
		log("\n");
		log("        a constr file contains two lines:\n");
		log("            set_driving_cell <cell_name>\n");
		log("            set_load <floating_point_number>\n");
		log("\n");
		log("        the set_driving_cell statement defines which cell type is assumed to\n");
		log("        drive the primary inputs and the set_load statement sets the load in\n");
		log("        femtofarads for each primary output.\n");
		log("\n");
		log("    -D <picoseconds>\n");
		log("        set delay target. the string {D} in the default scripts above is\n");
		log("        replaced by this option when used, and an empty string otherwise.\n");
		log("        this also replaces 'dretime' with 'dretime; retime -o {D}' in the\n");
		log("        default scripts above.\n");
		log("\n");
		log("    -I <num>\n");
		log("        maximum number of SOP inputs.\n");
		log("        (replaces {I} in the default scripts above)\n");
		log("\n");
		log("    -P <num>\n");
		log("        maximum number of SOP products.\n");
		log("        (replaces {P} in the default scripts above)\n");
		log("\n");
		log("    -S <num>\n");
		log("        maximum number of LUT inputs shared.\n");
		log("        (replaces {S} in the default scripts above, default: -S 1)\n");
		log("\n");
		log("    -lut <width>\n");
		log("        generate netlist using luts of (max) the specified width.\n");
		log("\n");
		log("    -lut <w1>:<w2>\n");
		log("        generate netlist using luts of (max) the specified width <w2>. All\n");
		log("        luts with width <= <w1> have constant cost. for luts larger than <w1>\n");
		log("        the area cost doubles with each additional input bit. the delay cost\n");
		log("        is still constant for all lut widths.\n");
		log("\n");
		log("    -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..\n");
		log("        generate netlist using luts. Use the specified costs for luts with 1,\n");
		log("        2, 3, .. inputs.\n");
		log("\n");
		log("    -sop\n");
		log("        map to sum-of-product cells and inverters\n");
		log("\n");
		// log("    -mux4, -mux8, -mux16\n");
		// log("        try to extract 4-input, 8-input, and/or 16-input muxes\n");
		// log("        (ignored when used with -liberty or -lut)\n");
		// log("\n");
		log("    -g type1,type2,...\n");
		log("        Map to the specified list of gate types. Supported gates types are:\n");
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("           AND, NAND, OR, NOR, XOR, XNOR, ANDNOT, ORNOT, MUX,\n");
		log("           NMUX, AOI3, OAI3, AOI4, OAI4.\n");
		log("        (The NOT gate is always added to this list automatically.)\n");
		log("\n");
		log("        The following aliases can be used to reference common sets of gate types:\n");
		log("          simple: AND OR XOR MUX\n");
		log("          cmos2:  NAND NOR\n");
		log("          cmos3:  NAND NOR AOI3 OAI3\n");
		log("          cmos4:  NAND NOR AOI3 OAI3 AOI4 OAI4\n");
		log("          cmos:   NAND NOR AOI3 OAI3 AOI4 OAI4 NMUX MUX XOR XNOR\n");
		log("          gates:  AND NAND OR NOR XOR XNOR ANDNOT ORNOT\n");
		log("          aig:    AND NAND OR NOR ANDNOT ORNOT\n");
		log("\n");
		log("        The alias 'all' represent the full set of all gate types.\n");
		log("\n");
		log("        Prefix a gate type with a '-' to remove it from the list. For example\n");
		log("        the arguments 'AND,OR,XOR' and 'simple,-MUX' are equivalent.\n");
		log("\n");
		log("        The default is 'all,-NMUX,-AOI3,-OAI3,-AOI4,-OAI4'.\n");
		log("\n");
		log("    -dff\n");
		log("        also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many\n");
		log("        clock domains are automatically partitioned in clock domains and each\n");
		log("        domain is passed through ABC independently.\n");
		log("\n");
		log("    -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]\n");
		log("        use only the specified clock domain. this is like -dff, but only FF\n");
		log("        cells that belong to the specified clock domain are used.\n");
		log("\n");
		log("    -keepff\n");
		log("        set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n");
		log("        them, for example for equivalence checking.)\n");
		log("\n");
		log("    -nocleanup\n");
		log("        when this option is used, the temporary files created by this pass\n");
		log("        are not removed. this is useful for debugging.\n");
		log("\n");
		log("    -showtmp\n");
		log("        print the temp dir name in log. usually this is suppressed so that the\n");
		log("        command output is identical across runs.\n");
		log("\n");
		log("    -markgroups\n");
		log("        set a 'abcgroup' attribute on all objects created by ABC. The value of\n");
		log("        this attribute is a unique integer for each ABC process started. This\n");
		log("        is useful for debugging the partitioning of clock domains.\n");
		log("\n");
		log("    -dress\n");
		log("        run the 'dress' command after all other ABC commands. This aims to\n");
		log("        preserve naming by an equivalence check between the original and post-ABC\n");
		log("        netlists (experimental).\n");
		log("\n");
		log("When neither -liberty nor -lut is used, the Yosys standard cell library is\n");
		log("loaded into ABC before the ABC script is executed.\n");
		log("\n");
		log("Note that this is a logic optimization pass within Yosys that is calling ABC\n");
		log("internally. This is not going to \"run ABC on your design\". It will instead run\n");
		log("ABC on logic snippets extracted from your design. You will not get any useful\n");
		log("output when passing an ABC script that writes a file. Instead write your full\n");
		log("design as BLIF file with write_blif and then load that into ABC externally if\n");
		log("you want to use ABC to convert your design into another format.\n");
		log("\n");
		log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		log_header(design, "Executing ABC pass (technology mapping using ABC).\n");
		log_push();

		assign_map.clear();
		signal_list.clear();
		signal_map.clear();
		signal_init.clear();
		pi_map.clear();
		po_map.clear();

#ifdef ABCEXTERNAL
		std::string exe_file = ABCEXTERNAL;
#else
		std::string exe_file = proc_self_dirname() + "yosys-abc";
#endif
		std::string script_file, liberty_file, constr_file, clk_str;
		std::string delay_target, sop_inputs, sop_products, lutin_shared = "-S 1";
		bool fast_mode = false, dff_mode = false, keepff = false, cleanup = true;
		bool show_tempdir = false, sop_mode = false;
		bool abc_dress = false;
		vector<int> lut_costs;
		markgroups = false;

		map_mux4 = false;
		map_mux8 = false;
		map_mux16 = false;
		enabled_gates.clear();
		cmos_cost = false;

#ifdef _WIN32
#ifndef ABCEXTERNAL
		if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe"))
			exe_file = proc_self_dirname() + "..\\yosys-abc";
#endif
#endif

		size_t argidx;
		char pwd [PATH_MAX];
		if (!getcwd(pwd, sizeof(pwd))) {
			log_cmd_error("getcwd failed: %s\n", strerror(errno));
			log_abort();
		}
		for (argidx = 1; argidx < args.size(); argidx++) {
			std::string arg = args[argidx];
			if (arg == "-exe" && argidx+1 < args.size()) {
				exe_file = args[++argidx];
				continue;
			}
			if (arg == "-script" && argidx+1 < args.size()) {
				script_file = args[++argidx];
				rewrite_filename(script_file);
				if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+')
					script_file = std::string(pwd) + "/" + script_file;
				continue;
			}
			if (arg == "-liberty" && argidx+1 < args.size()) {
				liberty_file = args[++argidx];
				rewrite_filename(liberty_file);
				if (!liberty_file.empty() && !is_absolute_path(liberty_file))
					liberty_file = std::string(pwd) + "/" + liberty_file;
				continue;
			}
			if (arg == "-constr" && argidx+1 < args.size()) {
				rewrite_filename(constr_file);
				constr_file = args[++argidx];
				if (!constr_file.empty() && !is_absolute_path(constr_file))
					constr_file = std::string(pwd) + "/" + constr_file;
				continue;
			}
			if (arg == "-D" && argidx+1 < args.size()) {
				delay_target = "-D " + args[++argidx];
				continue;
			}
			if (arg == "-I" && argidx+1 < args.size()) {
				sop_inputs = "-I " + args[++argidx];
				continue;
			}
			if (arg == "-P" && argidx+1 < args.size()) {
				sop_products = "-P " + args[++argidx];
				continue;
			}
			if (arg == "-S" && argidx+1 < args.size()) {
				lutin_shared = "-S " + args[++argidx];
				continue;
			}
			if (arg == "-lut" && argidx+1 < args.size()) {
				string arg = args[++argidx];
				size_t pos = arg.find_first_of(':');
				int lut_mode = 0, lut_mode2 = 0;
				if (pos != string::npos) {
					lut_mode = atoi(arg.substr(0, pos).c_str());
					lut_mode2 = atoi(arg.substr(pos+1).c_str());
				} else {
					lut_mode = atoi(arg.c_str());
					lut_mode2 = lut_mode;
				}
				lut_costs.clear();
				for (int i = 0; i < lut_mode; i++)
					lut_costs.push_back(1);
				for (int i = lut_mode; i < lut_mode2; i++)
					lut_costs.push_back(2 << (i - lut_mode));
				continue;
			}
			if (arg == "-luts" && argidx+1 < args.size()) {
				lut_costs.clear();
				for (auto &tok : split_tokens(args[++argidx], ",")) {
					auto parts = split_tokens(tok, ":");
					if (GetSize(parts) == 0 && !lut_costs.empty())
						lut_costs.push_back(lut_costs.back());
					else if (GetSize(parts) == 1)
						lut_costs.push_back(atoi(parts.at(0).c_str()));
					else if (GetSize(parts) == 2)
						while (GetSize(lut_costs) < std::atoi(parts.at(0).c_str()))
							lut_costs.push_back(atoi(parts.at(1).c_str()));
					else
						log_cmd_error("Invalid -luts syntax.\n");
				}
				continue;
			}
			if (arg == "-sop") {
				sop_mode = true;
				continue;
			}
			if (arg == "-mux4") {
				map_mux4 = true;
				continue;
			}
			if (arg == "-mux8") {
				map_mux8 = true;
				continue;
			}
			if (arg == "-mux16") {
				map_mux16 = true;
				continue;
			}
			if (arg == "-dress") {
				abc_dress = true;
				continue;
			}
			if (arg == "-g" && argidx+1 < args.size()) {
				for (auto g : split_tokens(args[++argidx], ",")) {
					vector<string> gate_list;
					bool remove_gates = false;
					if (GetSize(g) > 0 && g[0] == '-') {
						remove_gates = true;
						g = g.substr(1);
					}
					if (g == "AND") goto ok_gate;
					if (g == "NAND") goto ok_gate;
					if (g == "OR") goto ok_gate;
					if (g == "NOR") goto ok_gate;
					if (g == "XOR") goto ok_gate;
					if (g == "XNOR") goto ok_gate;
					if (g == "ANDNOT") goto ok_gate;
					if (g == "ORNOT") goto ok_gate;
					if (g == "MUX") goto ok_gate;
					if (g == "NMUX") goto ok_gate;
					if (g == "AOI3") goto ok_gate;
					if (g == "OAI3") goto ok_gate;
					if (g == "AOI4") goto ok_gate;
					if (g == "OAI4") goto ok_gate;
					if (g == "simple") {
						gate_list.push_back("AND");
						gate_list.push_back("OR");
						gate_list.push_back("XOR");
						gate_list.push_back("MUX");
						goto ok_alias;
					}
					if (g == "cmos2") {
						if (!remove_gates)
							cmos_cost = true;
						gate_list.push_back("NAND");
						gate_list.push_back("NOR");
						goto ok_alias;
					}
					if (g == "cmos3") {
						if (!remove_gates)
							cmos_cost = true;
						gate_list.push_back("NAND");
						gate_list.push_back("NOR");
						gate_list.push_back("AOI3");
						gate_list.push_back("OAI3");
						goto ok_alias;
					}
					if (g == "cmos4") {
						if (!remove_gates)
							cmos_cost = true;
						gate_list.push_back("NAND");
						gate_list.push_back("NOR");
						gate_list.push_back("AOI3");
						gate_list.push_back("OAI3");
						gate_list.push_back("AOI4");
						gate_list.push_back("OAI4");
						goto ok_alias;
					}
					if (g == "cmos") {
						if (!remove_gates)
							cmos_cost = true;
						gate_list.push_back("NAND");
						gate_list.push_back("NOR");
						gate_list.push_back("AOI3");
						gate_list.push_back("OAI3");
						gate_list.push_back("AOI4");
						gate_list.push_back("OAI4");
						gate_list.push_back("NMUX");
						gate_list.push_back("MUX");
						gate_list.push_back("XOR");
						gate_list.push_back("XNOR");
						goto ok_alias;
					}
					if (g == "gates") {
						gate_list.push_back("AND");
						gate_list.push_back("NAND");
						gate_list.push_back("OR");
						gate_list.push_back("NOR");
						gate_list.push_back("XOR");
						gate_list.push_back("XNOR");
						gate_list.push_back("ANDNOT");
						gate_list.push_back("ORNOT");
						goto ok_alias;
					}
					if (g == "aig") {
						gate_list.push_back("AND");
						gate_list.push_back("NAND");
						gate_list.push_back("OR");
						gate_list.push_back("NOR");
						gate_list.push_back("ANDNOT");
						gate_list.push_back("ORNOT");
						goto ok_alias;
					}
					if (g == "all") {
						gate_list.push_back("AND");
						gate_list.push_back("NAND");
						gate_list.push_back("OR");
						gate_list.push_back("NOR");
						gate_list.push_back("XOR");
						gate_list.push_back("XNOR");
						gate_list.push_back("ANDNOT");
						gate_list.push_back("ORNOT");
						gate_list.push_back("AOI3");
						gate_list.push_back("OAI3");
						gate_list.push_back("AOI4");
						gate_list.push_back("OAI4");
						gate_list.push_back("MUX");
						gate_list.push_back("NMUX");
					}
					cmd_error(args, argidx, stringf("Unsupported gate type: %s", g.c_str()));
				ok_gate:
					gate_list.push_back(g);
				ok_alias:
					for (auto gate : gate_list) {
						if (remove_gates)
							enabled_gates.erase(gate);
						else
							enabled_gates.insert(gate);
					}
				}
				continue;
			}
			if (arg == "-fast") {
				fast_mode = true;
				continue;
			}
			if (arg == "-dff") {
				dff_mode = true;
				continue;
			}
			if (arg == "-clk" && argidx+1 < args.size()) {
				clk_str = args[++argidx];
				dff_mode = true;
				continue;
			}
			if (arg == "-keepff") {
				keepff = true;
				continue;
			}
			if (arg == "-nocleanup") {
				cleanup = false;
				continue;
			}
			if (arg == "-showtmp") {
				show_tempdir = true;
				continue;
			}
			if (arg == "-markgroups") {
				markgroups = true;
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		if (!lut_costs.empty() && !liberty_file.empty())
			log_cmd_error("Got -lut and -liberty! This two options are exclusive.\n");
		if (!constr_file.empty() && liberty_file.empty())
			log_cmd_error("Got -constr but no -liberty!\n");

		if (enabled_gates.empty()) {
			enabled_gates.insert("AND");
			enabled_gates.insert("NAND");
			enabled_gates.insert("OR");
			enabled_gates.insert("NOR");
			enabled_gates.insert("XOR");
			enabled_gates.insert("XNOR");
			enabled_gates.insert("ANDNOT");
			enabled_gates.insert("ORNOT");
			// enabled_gates.insert("AOI3");
			// enabled_gates.insert("OAI3");
			// enabled_gates.insert("AOI4");
			// enabled_gates.insert("OAI4");
			enabled_gates.insert("MUX");
			// enabled_gates.insert("NMUX");
		}

		for (auto mod : design->selected_modules())
		{
			if (mod->processes.size() > 0) {
				log("Skipping module %s as it contains processes.\n", log_id(mod));
				continue;
			}

			assign_map.set(mod);
			signal_init.clear();

			for (Wire *wire : mod->wires())
				if (wire->attributes.count(ID(init))) {
					SigSpec initsig = assign_map(wire);
					Const initval = wire->attributes.at(ID(init));
					for (int i = 0; i < GetSize(initsig) && i < GetSize(initval); i++)
						switch (initval[i]) {
							case State::S0:
								signal_init[initsig[i]] = State::S0;
								break;
							case State::S1:
								signal_init[initsig[i]] = State::S1;
								break;
							default:
								break;
						}
				}

			if (!dff_mode || !clk_str.empty()) {
				abc_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs, dff_mode, clk_str, keepff,
						delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, mod->selected_cells(), show_tempdir, sop_mode, abc_dress);
				continue;
			}

			CellTypes ct(design);

			std::vector<RTLIL::Cell*> all_cells = mod->selected_cells();
			std::set<RTLIL::Cell*> unassigned_cells(all_cells.begin(), all_cells.end());

			std::set<RTLIL::Cell*> expand_queue, next_expand_queue;
			std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
			std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;

			typedef tuple<bool, RTLIL::SigSpec, bool, RTLIL::SigSpec> clkdomain_t;
			std::map<clkdomain_t, std::vector<RTLIL::Cell*>> assigned_cells;
			std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;

			std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
			std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;

			for (auto cell : all_cells)
			{
				clkdomain_t key;

				for (auto &conn : cell->connections())
				for (auto bit : conn.second) {
					bit = assign_map(bit);
					if (bit.wire != nullptr) {
						cell_to_bit[cell].insert(bit);
						bit_to_cell[bit].insert(cell);
						if (ct.cell_input(cell->type, conn.first)) {
							cell_to_bit_up[cell].insert(bit);
							bit_to_cell_down[bit].insert(cell);
						}
						if (ct.cell_output(cell->type, conn.first)) {
							cell_to_bit_down[cell].insert(bit);
							bit_to_cell_up[bit].insert(cell);
						}
					}
				}

				if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
				{
					key = clkdomain_t(cell->type == ID($_DFF_P_), assign_map(cell->getPort(ID(C))), true, RTLIL::SigSpec());
				}
				else
				if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
				{
					bool this_clk_pol = cell->type.in(ID($_DFFE_PN_), ID($_DFFE_PP_));
					bool this_en_pol = cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_));
					key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(ID(C))), this_en_pol, assign_map(cell->getPort(ID(E))));
				}
				else
					continue;

				unassigned_cells.erase(cell);
				expand_queue.insert(cell);
				expand_queue_up.insert(cell);
				expand_queue_down.insert(cell);

				assigned_cells[key].push_back(cell);
				assigned_cells_reverse[cell] = key;
			}

			while (!expand_queue_up.empty() || !expand_queue_down.empty())
			{
				if (!expand_queue_up.empty())
				{
					RTLIL::Cell *cell = *expand_queue_up.begin();
					clkdomain_t key = assigned_cells_reverse.at(cell);
					expand_queue_up.erase(cell);

					for (auto bit : cell_to_bit_up[cell])
					for (auto c : bit_to_cell_up[bit])
						if (unassigned_cells.count(c)) {
							unassigned_cells.erase(c);
							next_expand_queue_up.insert(c);
							assigned_cells[key].push_back(c);
							assigned_cells_reverse[c] = key;
							expand_queue.insert(c);
						}
				}

				if (!expand_queue_down.empty())
				{
					RTLIL::Cell *cell = *expand_queue_down.begin();
					clkdomain_t key = assigned_cells_reverse.at(cell);
					expand_queue_down.erase(cell);

					for (auto bit : cell_to_bit_down[cell])
					for (auto c : bit_to_cell_down[bit])
						if (unassigned_cells.count(c)) {
							unassigned_cells.erase(c);
							next_expand_queue_up.insert(c);
							assigned_cells[key].push_back(c);
							assigned_cells_reverse[c] = key;
							expand_queue.insert(c);
						}
				}

				if (expand_queue_up.empty() && expand_queue_down.empty()) {
					expand_queue_up.swap(next_expand_queue_up);
					expand_queue_down.swap(next_expand_queue_down);
				}
			}

			while (!expand_queue.empty())
			{
				RTLIL::Cell *cell = *expand_queue.begin();
				clkdomain_t key = assigned_cells_reverse.at(cell);
				expand_queue.erase(cell);

				for (auto bit : cell_to_bit.at(cell)) {
					for (auto c : bit_to_cell[bit])
						if (unassigned_cells.count(c)) {
							unassigned_cells.erase(c);
							next_expand_queue.insert(c);
							assigned_cells[key].push_back(c);
							assigned_cells_reverse[c] = key;
						}
					bit_to_cell[bit].clear();
				}

				if (expand_queue.empty())
					expand_queue.swap(next_expand_queue);
			}

			clkdomain_t key(true, RTLIL::SigSpec(), true, RTLIL::SigSpec());
			for (auto cell : unassigned_cells) {
				assigned_cells[key].push_back(cell);
				assigned_cells_reverse[cell] = key;
			}

			log_header(design, "Summary of detected clock domains:\n");
			for (auto &it : assigned_cells)
				log("  %d cells in clk=%s%s, en=%s%s\n", GetSize(it.second),
						std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)),
						std::get<2>(it.first) ? "" : "!", log_signal(std::get<3>(it.first)));

			for (auto &it : assigned_cells) {
				clk_polarity = std::get<0>(it.first);
				clk_sig = assign_map(std::get<1>(it.first));
				en_polarity = std::get<2>(it.first);
				en_sig = assign_map(std::get<3>(it.first));
				abc_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs, !clk_sig.empty(), "$",
						keepff, delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, it.second, show_tempdir, sop_mode, abc_dress);
				assign_map.set(mod);
			}
		}

		assign_map.clear();
		signal_list.clear();
		signal_map.clear();
		signal_init.clear();
		pi_map.clear();
		po_map.clear();

		log_pop();
	}
} AbcPass;

PRIVATE_NAMESPACE_END