aboutsummaryrefslogtreecommitdiffstats
path: root/keyboards/gskt00/rules.mk
blob: f0bbcad813e196a0dfb96ec5caff600d5dfc3bfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# MCU name
MCU = atmega32u4

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu

# Build Options
#   comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes	# Virtual DIP switch configuration
MOUSEKEY_ENABLE = yes	# Mouse keys
EXTRAKEY_ENABLE = yes	# Audio control and System control
CONSOLE_ENABLE = yes	# Console for debug
COMMAND_ENABLE = no    # Commands for debug and configuration
SLEEP_LED_ENABLE = no  # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes		# USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no  # Enable keyboard backlight functionality
AUDIO_ENABLE = no
RGBLIGHT_ENABLE = no

LAYOUTS = 60_ansi_tsangan 60_iso_tsangan
href='#n255'>255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
# Defining a Mock Class #

## Mocking a Normal Class ##

Given
```
class Foo {
  ...
  virtual ~Foo();
  virtual int GetSize() const = 0;
  virtual string Describe(const char* name) = 0;
  virtual string Describe(int type) = 0;
  virtual bool Process(Bar elem, int count) = 0;
};
```
(note that `~Foo()` **must** be virtual) we can define its mock as
```
#include "gmock/gmock.h"

class MockFoo : public Foo {
  MOCK_CONST_METHOD0(GetSize, int());
  MOCK_METHOD1(Describe, string(const char* name));
  MOCK_METHOD1(Describe, string(int type));
  MOCK_METHOD2(Process, bool(Bar elem, int count));
};
```

To create a "nice" mock object which ignores all uninteresting calls,
or a "strict" mock object, which treats them as failures:
```
NiceMock<MockFoo> nice_foo;     // The type is a subclass of MockFoo.
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
```

## Mocking a Class Template ##

To mock
```
template <typename Elem>
class StackInterface {
 public:
  ...
  virtual ~StackInterface();
  virtual int GetSize() const = 0;
  virtual void Push(const Elem& x) = 0;
};
```
(note that `~StackInterface()` **must** be virtual) just append `_T` to the `MOCK_*` macros:
```
template <typename Elem>
class MockStack : public StackInterface<Elem> {
 public:
  ...
  MOCK_CONST_METHOD0_T(GetSize, int());
  MOCK_METHOD1_T(Push, void(const Elem& x));
};
```

## Specifying Calling Conventions for Mock Functions ##

If your mock function doesn't use the default calling convention, you
can specify it by appending `_WITH_CALLTYPE` to any of the macros
described in the previous two sections and supplying the calling
convention as the first argument to the macro. For example,
```
  MOCK_METHOD_1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n));
  MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y));
```
where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.

# Using Mocks in Tests #

The typical flow is:
  1. Import the Google Mock names you need to use. All Google Mock names are in the `testing` namespace unless they are macros or otherwise noted.
  1. Create the mock objects.
  1. Optionally, set the default actions of the mock objects.
  1. Set your expectations on the mock objects (How will they be called? What wil they do?).
  1. Exercise code that uses the mock objects; if necessary, check the result using [Google Test](../../googletest/) assertions.
  1. When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied.

Here is an example:
```
using ::testing::Return;                            // #1

TEST(BarTest, DoesThis) {
  MockFoo foo;                                    // #2

  ON_CALL(foo, GetSize())                         // #3
      .WillByDefault(Return(1));
  // ... other default actions ...

  EXPECT_CALL(foo, Describe(5))                   // #4
      .Times(3)
      .WillRepeatedly(Return("Category 5"));
  // ... other expectations ...

  EXPECT_EQ("good", MyProductionFunction(&foo));  // #5
}                                                 // #6
```

# Setting Default Actions #

Google Mock has a **built-in default action** for any function that
returns `void`, `bool`, a numeric value, or a pointer.

To customize the default action for functions with return type `T` globally:
```
using ::testing::DefaultValue;

// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
//   T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();
```

To customize the default action for a particular method, use `ON_CALL()`:
```
ON_CALL(mock_object, method(matchers))
    .With(multi_argument_matcher)  ?
    .WillByDefault(action);
```

# Setting Expectations #

`EXPECT_CALL()` sets **expectations** on a mock method (How will it be
called? What will it do?):
```
EXPECT_CALL(mock_object, method(matchers))
    .With(multi_argument_matcher)  ?
    .Times(cardinality)            ?
    .InSequence(sequences)         *
    .After(expectations)           *
    .WillOnce(action)              *
    .WillRepeatedly(action)        ?
    .RetiresOnSaturation();        ?
```

If `Times()` is omitted, the cardinality is assumed to be:

  * `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
  * `Times(n)` when there are `n WillOnce()`s but no `WillRepeatedly()`, where `n` >= 1; or
  * `Times(AtLeast(n))` when there are `n WillOnce()`s and a `WillRepeatedly()`, where `n` >= 0.

A method with no `EXPECT_CALL()` is free to be invoked _any number of times_, and the default action will be taken each time.

# Matchers #

A **matcher** matches a _single_ argument.  You can use it inside
`ON_CALL()` or `EXPECT_CALL()`, or use it to validate a value
directly:

| `EXPECT_THAT(value, matcher)` | Asserts that `value` matches `matcher`. |
|:------------------------------|:----------------------------------------|
| `ASSERT_THAT(value, matcher)` | The same as `EXPECT_THAT(value, matcher)`, except that it generates a **fatal** failure. |

Built-in matchers (where `argument` is the function argument) are
divided into several categories:

## Wildcard ##
|`_`|`argument` can be any value of the correct type.|
|:--|:-----------------------------------------------|
|`A<type>()` or `An<type>()`|`argument` can be any value of type `type`.     |

## Generic Comparison ##

|`Eq(value)` or `value`|`argument == value`|
|:---------------------|:------------------|
|`Ge(value)`           |`argument >= value`|
|`Gt(value)`           |`argument > value` |
|`Le(value)`           |`argument <= value`|
|`Lt(value)`           |`argument < value` |
|`Ne(value)`           |`argument != value`|
|`IsNull()`            |`argument` is a `NULL` pointer (raw or smart).|
|`NotNull()`           |`argument` is a non-null pointer (raw or smart).|
|`Ref(variable)`       |`argument` is a reference to `variable`.|
|`TypedEq<type>(value)`|`argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded.|

Except `Ref()`, these matchers make a _copy_ of `value` in case it's
modified or destructed later. If the compiler complains that `value`
doesn't have a public copy constructor, try wrap it in `ByRef()`,
e.g. `Eq(ByRef(non_copyable_value))`. If you do that, make sure
`non_copyable_value` is not changed afterwards, or the meaning of your
matcher will be changed.

## Floating-Point Matchers ##

|`DoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal.|
|:-------------------|:----------------------------------------------------------------------------------------------|
|`FloatEq(a_float)`  |`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal.  |
|`NanSensitiveDoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal.  |
|`NanSensitiveFloatEq(a_float)`|`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal.    |

The above matchers use ULP-based comparison (the same as used in
[Google Test](../../googletest/)). They
automatically pick a reasonable error bound based on the absolute
value of the expected value.  `DoubleEq()` and `FloatEq()` conform to
the IEEE standard, which requires comparing two NaNs for equality to
return false. The `NanSensitive*` version instead treats two NaNs as
equal, which is often what a user wants.

|`DoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal.|
|:------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
|`FloatNear(a_float, max_abs_error)`  |`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal.  |
|`NanSensitiveDoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal.  |
|`NanSensitiveFloatNear(a_float, max_abs_error)`|`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal.    |

## String Matchers ##

The `argument` can be either a C string or a C++ string object:

|`ContainsRegex(string)`|`argument` matches the given regular expression.|
|:----------------------|:-----------------------------------------------|
|`EndsWith(suffix)`     |`argument` ends with string `suffix`.           |
|`HasSubstr(string)`    |`argument` contains `string` as a sub-string.   |
|`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.|
|`StartsWith(prefix)`   |`argument` starts with string `prefix`.         |
|`StrCaseEq(string)`    |`argument` is equal to `string`, ignoring case. |
|`StrCaseNe(string)`    |`argument` is not equal to `string`, ignoring case.|
|`StrEq(string)`        |`argument` is equal to `string`.                |
|`StrNe(string)`        |`argument` is not equal to `string`.            |

`ContainsRegex()` and `MatchesRegex()` use the regular expression
syntax defined
[here](../../googletest/docs/AdvancedGuide.md#regular-expression-syntax).
`StrCaseEq()`, `StrCaseNe()`, `StrEq()`, and `StrNe()` work for wide
strings as well.

## Container Matchers ##

Most STL-style containers support `==`, so you can use
`Eq(expected_container)` or simply `expected_container` to match a
container exactly.   If you want to write the elements in-line,
match them more flexibly, or get more informative messages, you can use:

| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
|:-------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| `Contains(e)`            | `argument` contains an element that matches `e`, which can be either a value or a matcher.                                       |
| `Each(e)`                | `argument` is a container where _every_ element matches `e`, which can be either a value or a matcher.                           |
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei`, which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `ElementsAreArray({ e0, e1, ..., en })`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `IsEmpty()`              | `argument` is an empty container (`container.empty()`).                                                                          |
| `Pointwise(m, container)` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
| `SizeIs(m)`              | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`.                                           |
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i`), which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `UnorderedElementsAreArray({ e0, e1, ..., en })`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `WhenSorted(m)`          | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(UnorderedElementsAre(1, 2, 3))` verifies that `argument` contains elements `1`, `2`, and `3`, ignoring order. |
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))`. |

Notes:

  * These matchers can also match:
    1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), and
    1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers](#Multiargument_Matchers.md)).
  * The array being matched may be multi-dimensional (i.e. its elements can be arrays).
  * `m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write:

```
using ::testing::get;
MATCHER(FooEq, "") {
  return get<0>(arg).Equals(get<1>(arg));
}
...
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
```

## Member Matchers ##

|`Field(&class::field, m)`|`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
|:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
|`Key(e)`                 |`argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`.|
|`Pair(m1, m2)`           |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`.                                                |
|`Property(&class::property, m)`|`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|

## Matching the Result of a Function or Functor ##

|`ResultOf(f, m)`|`f(argument)` matches matcher `m`, where `f` is a function or functor.|
|:---------------|:---------------------------------------------------------------------|

## Pointer Matchers ##

|`Pointee(m)`|`argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`.|
|:-----------|:-----------------------------------------------------------------------------------------------|
|`WhenDynamicCastTo<T>(m)`| when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`.                 |

## Multiargument Matchers ##

Technically, all matchers match a _single_ value. A "multi-argument"
matcher is just one that matches a _tuple_. The following matchers can
be used to match a tuple `(x, y)`:

|`Eq()`|`x == y`|
|:-----|:-------|
|`Ge()`|`x >= y`|
|`Gt()`|`x > y` |
|`Le()`|`x <= y`|
|`Lt()`|`x < y` |
|`Ne()`|`x != y`|

You can use the following selectors to pick a subset of the arguments
(or reorder them) to participate in the matching:

|`AllArgs(m)`|Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`.|
|:-----------|:-------------------------------------------------------------------|
|`Args<N1, N2, ..., Nk>(m)`|The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`.|

## Composite Matchers ##

You can make a matcher from one or more other matchers:

|`AllOf(m1, m2, ..., mn)`|`argument` matches all of the matchers `m1` to `mn`.|
|:-----------------------|:---------------------------------------------------|
|`AnyOf(m1, m2, ..., mn)`|`argument` matches at least one of the matchers `m1` to `mn`.|
|`Not(m)`                |`argument` doesn't match matcher `m`.               |

## Adapters for Matchers ##

|`MatcherCast<T>(m)`|casts matcher `m` to type `Matcher<T>`.|
|:------------------|:--------------------------------------|
|`SafeMatcherCast<T>(m)`| [safely casts](CookBook.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
|`Truly(predicate)` |`predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor.|

## Matchers as Predicates ##

|`Matches(m)(value)`|evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor.|
|:------------------|:---------------------------------------------------------------------------------------------|
|`ExplainMatchResult(m, value, result_listener)`|evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`.       |
|`Value(value, m)`  |evaluates to `true` if `value` matches `m`.                                                   |

## Defining Matchers ##

| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
|:-------------------------------------------------|:------------------------------------------------------|