aboutsummaryrefslogtreecommitdiffstats
path: root/docs/ja/newbs_getting_started.md
blob: 2e283840ca44ff749f60f389a0ffa3acf9f4d887 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# イントロダクション

<!---
  grep --no-filename "^[ ]*git diff" docs/ja/*.md | sh
  original document: 161d469:docs/newbs_getting_started.md
  git diff 161d469 HEAD -- docs/newbs_getting_started.md | cat
-->

キーボードにはプロセッサが入っており、それはコンピュータに入っているものと大して違わないものです。
このプロセッサでは、キーボードのボタンの押し下げの検出を担当しキーボードのどのボタンが押されている/離されているかのレポートをコンピュータに送信するソフトウェアが動作しています。
QMK は、そのソフトウェアの役割を果たし、ボタンの押下を検出しその情報をホストコンピュータに渡します。
カスタムキーマップを作るということは、キーボード上で動くプログラムを作るということなのです。

QMK は、簡単なことは簡単に、そして、難しいことを可能なことにすることで、あなたの手にたくさんのパワーをもたらします。
パワフルなキーマップを作るためにプログラムを作成する方法を知る必要はありません。いくつかのシンプルな文法に従うだけで OK です。

# はじめに

キーマップをビルドする前に、いくつかのソフトウェアをインストールしてビルド環境を構築する必要があります。
ファームウェアをコンパイルするキーボードの数に関わらず、この作業を一度だけ実行する必要があります。

もし、GUI で作業をしたい場合、オンラインで作業できる [QMK Configurator](https://config.qmk.fm) を使ってください。
使い方は [オンライン GUI を使用して初めてのファームウェアを構築する](ja/newbs_building_firmware_configurator.md) を参照してください。

## ソフトウェアのダウンロード

### テキストエディタ

GUI を使わない場合、プレーンテキストを編集・保存できるエディタが必要です。
Windows の場合、メモ帳が使えます。Linux の場合、gedit が使えます。
どちらもシンプルですが機能的なテキストエディタです。
macOS では、デフォルトのテキストエディットアプリに注意してください。_フォーマット_ メニューから _標準テキストにする_ を選択しない限り、プレーンテキストとして保存されません。

[Sublime Text](https://www.sublimetext.com/) や [VS Code](https://code.visualstudio.com/) のような専用のテキストエディタをダウンロードしてインストールすることもできます。これらのプログラムはコードを編集するために特別に作成されているため、これはプラットフォームに関係なくベストな方法です。

?> どのエディタを使えば良いか分からない場合、Laurence Bradford が書いたこの記事 [a great introduction](https://learntocodewith.me/programming/basics/text-editors/) を読んでください。

### QMK Toolbox

QMK Toolbox は、Windows と macOS で使える GUI を備えたプログラムで、カスタムキーボードのプログラミングとデバッグの両方ができます。
このプログラムは、キーボードに簡単にファームウェアを書き込んだり、出力されるデバッグメッセージを確認する際に、かけがえのないものであることがわかるでしょう。

[QMK Toolbox の最新版](https://github.com/qmk/qmk_toolbox/releases/latest)

* Windows 版: `qmk_toolbox.exe` (portable) または `qmk_toolbox_install.exe` (installer)
* macOS 版: `QMK.Toolbox.app.zip` (portable) または `QMK.Toolbox.pkg` (installer)

## 環境構築 :id=set-up-your-environment

私たちは、QMK を可能な限り簡単に構築できるように努力しています。
Linux か Unix 環境を用意するだけで、QMK に残りをインストールさせることができます。

?> もし、Linux か Unix のコマンドを使ったことがない場合、こちらで基本的な概念や各種コマンドを学んでください。これらの教材で QMK を使うのに必要なことを学ぶことができます。

[Must Know Linux Commands](https://www.guru99.com/must-know-linux-commands.html)<br>
[Some Basic Unix Commands](https://www.tjhsst.edu/~dhyatt/superap/unixcmd.html)

### Windows

MSYS2 と Git のインストールが必要です。

* [MSYS2 homepage](http://www.msys2.org) の手順に従って MSYS2 をインストールします。
* 開いている MSYS2 の全ターミナル画面を閉じて、新しい MSYS2 MinGW 64-bit のターミナル画面を開きます。
* `pacman -S git` を実行して Git をインストールします。

### macOS

[Homebrew homepage](https://brew.sh) の手順に従って Homebrew をインストールしてください。

Homebrew をインストールしたら、以下の _QMK の設定_ に進んでください。そのステップでは、他のパッケージをインストールするスクリプトを実行します。

### Linux

Git のインストールが必要です。既にインストールされている可能性は高いですが、そうでない場合、次のコマンドでインストールできます。

* Debian / Ubuntu / Devuan: `apt-get install git`
* Fedora / Red Hat / CentOS: `yum install git`
* Arch: `pacman -S git`

?> 全てのプラットフォームにおいて、Docker を使うことも可能です。[詳細はこちらをクリックしてください](ja/getting_started_build_tools.md#docker)。

## QMK の設定 :id=set-up-qmk

Linux/Unix 環境が準備できたら QMK のダウンロードの準備は完了です。Git を使用して QMK のリポジトリを「クローン」することで QMK をダウンロードします。ターミナルか MSYS2 MinGW ウィンドウを開いて、このガイドの残りの部分では開いたままにします。そのウィンドウ内で、次の2つのコマンドを実行します。

```shell
git clone --recurse-submodules https://github.com/qmk/qmk_firmware.git
cd qmk_firmware
```

?> 既に [GitHub の使いかた](ja/getting_started_github.md)を知っているなら、clone ではなく fork を勧めます。この一文の意味が分からない場合、このメッセージは無視してかまいません。

QMK には、必要な残りの設定を手助けするスクリプトが含まれています。
セットアップ作業を完了させるため、次のコマンドを実行します。

    util/qmk_install.sh

## ビルド環境の確認

これで QMK のビルド環境が用意できましたので、キーボードのファームウェアをビルドできます。
キーボードのデフォルトキーマップをビルドすることから始めます。次の形式のコマンドでビルドできるはずです。

    make <keyboard>:default

例)Clueboard 66% のファームウェアをビルドする

    make clueboard/66/rev3:default

大量の出力の最後に次のように出力されると完了です。

```
Linking: .build/clueboard_66_rev3_default.elf                                     [OK]
Creating load file for flashing: .build/clueboard_66_rev3_default.hex             [OK]
Copying clueboard_66_rev3_default.hex to qmk_firmware folder                      [OK]
Checking file size of clueboard_66_rev3_default.hex                               [OK]
 * The firmware size is fine - 26356/28672 (2316 bytes free)
```

# キーマップの作成

これであなた専用のキーマップを作成する準備ができました!
次は [Building Your First Firmware](ja/newbs_building_firmware.md) で専用のキーマップを作成します。
n570'>570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
-- -----------------------------------------------------------------
-- 
-- Copyright 2019 IEEE P1076 WG Authors
-- 
-- See the LICENSE file distributed with this work for copyright and
-- licensing information and the AUTHORS file.
-- 
-- This file to you under the Apache License, Version 2.0 (the "License").
-- You may obtain a copy of the License at
-- 
--     http://www.apache.org/licenses/LICENSE-2.0
-- 
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
-- implied.  See the License for the specific language governing
-- permissions and limitations under the License.
--
--   Title     :  Standard VHDL Mathematical Packages
--             :  (MATH_COMPLEX package body)
--             :
--   Library   :  This package shall be compiled into a library
--             :  symbolically named IEEE.
--             :
--   Developers:  IEEE DASC VHDL Mathematical Packages Working Group
--             :
--   Purpose   :  This package defines a standard for designers to use in
--             :  describing VHDL models that make use of common COMPLEX
--             :  constants and common COMPLEX mathematical functions and
--             :  operators.
--             :
--   Limitation:  The values generated by the functions in this package
--             :  may vary from platform to platform, and the precision
--             :  of results is only guaranteed to be the minimum required
--             :  by IEEE Std 1076-2008.
--             :
--   Note      :  This package may be modified to include additional data
--             :  required by tools, but it must in no way change the
--             :  external interfaces or simulation behavior of the
--             :  description. It is permissible to add comments and/or
--             :  attributes to the package declarations, but not to change
--             :  or delete any original lines of the package declaration.
--             :  The package body may be changed only in accordance with
--             :  the terms of Clause 16 of this standard.
--             :
-- --------------------------------------------------------------------
-- $Revision: 1220 $
-- $Date: 2008-04-10 17:16:09 +0930 (Thu, 10 Apr 2008) $
-- --------------------------------------------------------------------

use WORK.MATH_REAL.all;

package body MATH_COMPLEX is

    --
    -- Equality and Inequality Operators for COMPLEX_POLAR
    --
    function "=" ( L: in COMPLEX_POLAR;  R: in COMPLEX_POLAR ) return BOOLEAN
                                                                         is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns FALSE on error
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in =(L,R)"
                            severity ERROR;
                return FALSE;
        end if;

        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in =(L,R)"
                            severity ERROR;
                return FALSE;
        end if;

        -- Get special values
        if ( L.MAG = 0.0 and R.MAG = 0.0 ) then
                return TRUE;
        end if;

        -- Get value for general case
        if ( L.MAG = R.MAG and L.ARG = R.ARG ) then
                return TRUE;
        end if;

        return FALSE;
    end function "=";


    function "/=" ( L: in COMPLEX_POLAR;  R: in COMPLEX_POLAR ) return BOOLEAN
                                                                         is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns FALSE on error
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in /=(L,R)"
                            severity ERROR;
                return FALSE;
        end if;

        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in /=(L,R)"
                            severity ERROR;
                return FALSE;
        end if;

        -- Get special values
        if ( L.MAG = 0.0 and R.MAG = 0.0 ) then
                return FALSE;
        end if;

        -- Get value for general case
        if ( L.MAG = R.MAG and L.ARG = R.ARG ) then
                return FALSE;
        end if;

        return TRUE;
    end function "/=";

    --
    -- Other Functions Start Here
    --

    function CMPLX(X: in REAL;  Y: in REAL := 0.0 ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(X, Y);
    end function CMPLX;


    function GET_PRINCIPAL_VALUE(X: in REAL ) return PRINCIPAL_VALUE is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
        variable TEMP: REAL;
    begin
        -- Check if already a principal value
        if ( X > -MATH_PI and X <= MATH_PI ) then
                return PRINCIPAL_VALUE'(X);
        end if;

        -- Get principal value
        TEMP := X;
        while ( TEMP <= -MATH_PI ) loop
                TEMP := TEMP + MATH_2_PI;
        end loop;
        while (TEMP > MATH_PI ) loop
                TEMP := TEMP - MATH_2_PI;
        end loop;

        return PRINCIPAL_VALUE'(TEMP);
    end function GET_PRINCIPAL_VALUE;

    function COMPLEX_TO_POLAR(Z: in COMPLEX ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
        variable TEMP: REAL;
    begin
        -- Get value for special cases
        if ( Z.RE = 0.0 ) then
            if ( Z.IM = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
            elsif ( Z.IM > 0.0 ) then
                return COMPLEX_POLAR'(Z.IM, MATH_PI_OVER_2);
            else
                return COMPLEX_POLAR'(-Z.IM, -MATH_PI_OVER_2);
            end if;
        end if;

        if ( Z.IM = 0.0 ) then
            if ( Z.RE = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
            elsif ( Z.RE > 0.0 ) then
                return COMPLEX_POLAR'(Z.RE, 0.0);
            else
                return COMPLEX_POLAR'(-Z.RE, MATH_PI);
            end if;
        end if;

        -- Get principal value for general case
        TEMP := ARCTAN(Z.IM, Z.RE);

        return COMPLEX_POLAR'(SQRT(Z.RE*Z.RE + Z.IM*Z.IM),
                                                 GET_PRINCIPAL_VALUE(TEMP));
    end function COMPLEX_TO_POLAR;

    function POLAR_TO_COMPLEX(Z: in COMPLEX_POLAR ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns MATH_CZERO on error
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                assert FALSE
                       report "Z.ARG = -MATH_PI in POLAR_TO_COMPLEX(Z)"
                       severity ERROR;
                return MATH_CZERO;
        end if;

        -- Get value for general case
        return COMPLEX'( Z.MAG*COS(Z.ARG), Z.MAG*SIN(Z.ARG) );
    end function POLAR_TO_COMPLEX;


    function "ABS"(Z: in COMPLEX ) return POSITIVE_REAL is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) ABS(Z) = SQRT(Z.RE*Z.RE + Z.IM*Z.IM)

    begin
        -- Get value for general case
        return POSITIVE_REAL'(SQRT(Z.RE*Z.RE + Z.IM*Z.IM));
    end function "ABS";

    function "ABS"(Z: in COMPLEX_POLAR ) return POSITIVE_REAL is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) ABS(Z) = Z.MAG
        --        b) Returns 0.0 on error

    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in ABS(Z)"
                            severity ERROR;
                  return 0.0;
        end if;

        -- Get value for general case
        return Z.MAG;
    end function "ABS";


    function ARG(Z: in COMPLEX ) return PRINCIPAL_VALUE is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) ARG(Z) = ARCTAN(Z.IM, Z.RE)

        variable ZTEMP : COMPLEX_POLAR;
    begin
        -- Get value for general case
        ZTEMP := COMPLEX_TO_POLAR(Z);
        return ZTEMP.ARG;
    end function ARG;

    function ARG(Z: in COMPLEX_POLAR ) return PRINCIPAL_VALUE is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) ARG(Z) = Z.ARG
        --        b) Returns 0.0 on error

    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in ARG(Z)"
                            severity ERROR;
                  return 0.0;
        end if;

        -- Get value for general case
        return Z.ARG;
    end function ARG;

    function "-" (Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns -x -jy for Z = x + jy
    begin
        -- Get value for general case
        return COMPLEX'(-Z.RE, -Z.IM);
    end function "-";

    function "-" (Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns (Z.MAG, Z.ARG + MATH_PI)
        --        b) Returns Z on error
        variable TEMP: REAL;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in -(Z)"
                            severity ERROR;
                  return Z;
        end if;

        -- Get principal value for general case
        TEMP := REAL'(Z.ARG) + MATH_PI;

        return COMPLEX_POLAR'(Z.MAG, GET_PRINCIPAL_VALUE(TEMP));
    end function "-";

    function CONJ (Z: in COMPLEX) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns x - jy for Z = x + jy
    begin
        -- Get value for general case
        return COMPLEX'(Z.RE, -Z.IM);
    end function CONJ;

    function CONJ (Z: in COMPLEX_POLAR) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX conjugate (Z.MAG, -Z.ARG)
        --        b) Returns Z on error
        --
        variable TEMP: PRINCIPAL_VALUE;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in CONJ(Z)"
                            severity ERROR;
                  return Z;
        end if;

        -- Get principal value for general case
        if ( Z.ARG = MATH_PI or Z.ARG = 0.0 ) then
                TEMP := Z.ARG;
        else
                TEMP := -Z.ARG;
        end if;

         return COMPLEX_POLAR'(Z.MAG, TEMP);
    end function CONJ;

    function SQRT(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
        variable ZTEMP : COMPLEX_POLAR;
        variable ZOUT : COMPLEX;
        variable TMAG : REAL;
        variable TARG : REAL;
    begin
        -- Get value for special cases
        if ( Z = MATH_CZERO ) then
                return MATH_CZERO;
        end if;

        -- Get value for general case
        ZTEMP := COMPLEX_TO_POLAR(Z);
        TMAG := SQRT(ZTEMP.MAG);
        TARG := 0.5*ZTEMP.ARG;

        if ( COS(TARG) > 0.0 ) then
                ZOUT.RE := TMAG*COS(TARG);
                ZOUT.IM := TMAG*SIN(TARG);
                return ZOUT;
        end if;

        if ( COS(TARG) < 0.0 ) then
                ZOUT.RE := TMAG*COS(TARG + MATH_PI);
                ZOUT.IM := TMAG*SIN(TARG + MATH_PI);
                return ZOUT;
        end if;

        if ( SIN(TARG) > 0.0 ) then
                ZOUT.RE := 0.0;
                ZOUT.IM := TMAG*SIN(TARG);
                return ZOUT;
        end if;

        ZOUT.RE := 0.0;
        ZOUT.IM := TMAG*SIN(TARG + MATH_PI);
        return ZOUT;
    end function SQRT;

    function SQRT(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns Z on error

        variable ZOUT : COMPLEX_POLAR;
        variable TMAG : REAL;
        variable TARG : REAL;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in SQRT(Z)"
                            severity ERROR;
                  return Z;
        end if;

        -- Get value for special cases
        if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
                return Z;
        end if;

        -- Get principal value for general case
        TMAG := SQRT(Z.MAG);
        TARG := 0.5*Z.ARG;

        ZOUT.MAG := POSITIVE_REAL'(TMAG);

        if ( COS(TARG) < 0.0 ) then
                TARG := TARG + MATH_PI;
        end if;

        if ( (COS(TARG) = 0.0) and (SIN(TARG) < 0.0) ) then
                TARG := TARG + MATH_PI;
        end if;

        ZOUT.ARG := GET_PRINCIPAL_VALUE(TARG);
        return ZOUT;
    end function SQRT;

    function EXP(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None

        variable TEMP: REAL;
    begin
        -- Get value for special cases
        if ( Z = MATH_CZERO ) then
                return MATH_CBASE_1;
        end if;

        if ( Z.RE = 0.0 ) then
                if ( Z.IM = MATH_PI or Z.IM = -MATH_PI ) then
                        return COMPLEX'(-1.0, 0.0);
                end if;

                if ( Z.IM = MATH_PI_OVER_2 ) then
                        return MATH_CBASE_J;
                end if;

                if ( Z.IM = -MATH_PI_OVER_2 ) then
                        return COMPLEX'(0.0, -1.0);
                end if;
        end if;

        -- Get value for general case
        TEMP := EXP(Z.RE);
        return COMPLEX'(TEMP*COS(Z.IM), TEMP*SIN(Z.IM));
    end function EXP;

    function EXP(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns Z on error

        variable ZTEMP : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in EXP(Z)"
                            severity ERROR;
                  return Z;
        end if;

        -- Get value for special cases
        if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(1.0, 0.0);
        end if;

        if ( Z.MAG = MATH_PI and (Z.ARG = MATH_PI_OVER_2 or
                                                 Z.ARG = -MATH_PI_OVER_2 )) then
                return COMPLEX_POLAR'(1.0, MATH_PI);
        end if;

        if ( Z.MAG = MATH_PI_OVER_2 ) then
                if ( Z.ARG = MATH_PI_OVER_2 ) then
                        return COMPLEX_POLAR'(1.0, MATH_PI_OVER_2);
                end if;

                if ( Z.ARG = -MATH_PI_OVER_2 ) then
                        return COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2);
                end if;
        end if;

        -- Get principal value for general case
        ZTEMP := POLAR_TO_COMPLEX(Z);
        ZOUT.MAG := POSITIVE_REAL'(EXP(ZTEMP.RE));
        ZOUT.ARG := GET_PRINCIPAL_VALUE(ZTEMP.IM);

        return ZOUT;
    end function EXP;

    function LOG(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX'(REAL'LOW, 0.0) on error

        variable ZTEMP : COMPLEX_POLAR;
        variable TEMP : REAL;
    begin
        -- Check validity of input arguments
        if ( Z.RE = 0.0  and Z.IM = 0.0 ) then
                assert FALSE
                        report "Z.RE = 0.0 and Z.IM = 0.0 in LOG(Z)"
                        severity ERROR;
                return COMPLEX'(REAL'LOW, 0.0);
        end if;

        -- Get value for special cases
        if ( Z.IM = 0.0 ) then
                if ( Z.RE = -1.0 ) then
                        return COMPLEX'(0.0, MATH_PI);
                end if;
                if ( Z.RE = MATH_E ) then
                        return MATH_CBASE_1;
                end if;
                if ( Z.RE = 1.0 ) then
                        return MATH_CZERO;
                end if;
        end if;

        if ( Z.RE = 0.0 ) then
                if (Z.IM = 1.0) then
                        return COMPLEX'(0.0, MATH_PI_OVER_2);
                end if;
                if (Z.IM = -1.0) then
                        return COMPLEX'(0.0, -MATH_PI_OVER_2);
                end if;
        end if;

        -- Get value for general case
        ZTEMP := COMPLEX_TO_POLAR(Z);
        TEMP := LOG(ZTEMP.MAG);
        return COMPLEX'(TEMP, ZTEMP.ARG);
    end function LOG;

    function LOG2(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX'(REAL'LOW, 0.0) on error

        variable ZTEMP : COMPLEX_POLAR;
        variable TEMP : REAL;
    begin

        -- Check validity of input arguments
        if ( Z.RE = 0.0  and Z.IM = 0.0 ) then
                assert FALSE
                        report "Z.RE = 0.0 and Z.IM = 0.0 in LOG2(Z)"
                        severity ERROR;
                return COMPLEX'(REAL'LOW, 0.0);
        end if;

        -- Get value for special cases
        if ( Z.IM = 0.0 ) then
                if ( Z.RE = 2.0 ) then
                        return MATH_CBASE_1;
                end if;
                if ( Z.RE = 1.0 ) then
                        return MATH_CZERO;
                end if;
        end if;

        -- Get value for general case
        ZTEMP := COMPLEX_TO_POLAR(Z);
        TEMP := MATH_LOG2_OF_E*LOG(ZTEMP.MAG);
        return COMPLEX'(TEMP, MATH_LOG2_OF_E*ZTEMP.ARG);
    end function LOG2;

    function LOG10(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX'(REAL'LOW, 0.0) on error

        variable ZTEMP : COMPLEX_POLAR;
        variable TEMP : REAL;
    begin
        -- Check validity of input arguments
        if ( Z.RE = 0.0  and Z.IM = 0.0 ) then
                assert FALSE
                        report "Z.RE = 0.0 and Z.IM = 0.0 in LOG10(Z)"
                        severity ERROR;
                return COMPLEX'(REAL'LOW, 0.0);
        end if;

        -- Get value for special cases
        if ( Z.IM = 0.0 ) then
                if ( Z.RE = 10.0 ) then
                        return MATH_CBASE_1;
                end if;
                if ( Z.RE = 1.0 ) then
                        return MATH_CZERO;
                end if;
        end if;

        -- Get value for general case
        ZTEMP := COMPLEX_TO_POLAR(Z);
        TEMP := MATH_LOG10_OF_E*LOG(ZTEMP.MAG);
        return COMPLEX'(TEMP, MATH_LOG10_OF_E*ZTEMP.ARG);
    end function LOG10;


    function LOG(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error

        variable ZTEMP : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.MAG <= 0.0 ) then
                assert FALSE
                        report "Z.MAG <= 0.0 in LOG(Z)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in LOG(Z)"
                            severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        -- Compute value for special cases
        if (Z.MAG = 1.0 ) then
                if ( Z.ARG = 0.0 ) then
                        return COMPLEX_POLAR'(0.0, 0.0);
                end if;

                if ( Z.ARG = MATH_PI ) then
                        return COMPLEX_POLAR'(MATH_PI, MATH_PI_OVER_2);
                end if;

                if ( Z.ARG = MATH_PI_OVER_2 ) then
                        return COMPLEX_POLAR'(MATH_PI_OVER_2, MATH_PI_OVER_2);
                end if;

                if ( Z.ARG = -MATH_PI_OVER_2 ) then
                        return COMPLEX_POLAR'(MATH_PI_OVER_2, -MATH_PI_OVER_2);
                end if;
        end if;

        if ( Z.MAG = MATH_E and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(1.0, 0.0);
        end if;

        -- Compute value for general case
        ZTEMP.RE := LOG(Z.MAG);
        ZTEMP.IM := Z.ARG;
        ZOUT := COMPLEX_TO_POLAR(ZTEMP);
        return ZOUT;
    end function LOG;



    function LOG2(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error

        variable ZTEMP : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.MAG <= 0.0 ) then
                assert FALSE
                        report "Z.MAG <= 0.0 in LOG2(Z)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                            report "Z.ARG = -MATH_PI in LOG2(Z)"
                            severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        -- Compute value for special cases
        if (Z.MAG = 1.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = 2.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(1.0, 0.0);
        end if;

        -- Compute value for general case
        ZTEMP.RE := MATH_LOG2_OF_E*LOG(Z.MAG);
        ZTEMP.IM := MATH_LOG2_OF_E*Z.ARG;
        ZOUT := COMPLEX_TO_POLAR(ZTEMP);
        return ZOUT;
    end function LOG2;

    function LOG10(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error
        variable ZTEMP : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.MAG <= 0.0 ) then
                assert FALSE
                        report "Z.MAG <= 0.0 in LOG10(Z)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;


        if ( Z.ARG = -MATH_PI ) then
                  assert FALSE
                           report "Z.ARG = -MATH_PI in LOG10(Z)"
                           severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        -- Compute value for special cases
        if (Z.MAG = 1.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = 10.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(1.0, 0.0);
        end if;

        -- Compute value for general case
        ZTEMP.RE := MATH_LOG10_OF_E*LOG(Z.MAG);
        ZTEMP.IM := MATH_LOG10_OF_E*Z.ARG;
        ZOUT := COMPLEX_TO_POLAR(ZTEMP);
        return ZOUT;
    end function LOG10;

    function LOG(Z: in COMPLEX; BASE: in REAL ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX'(REAL'LOW, 0.0) on error

        variable ZTEMP : COMPLEX_POLAR;
        variable TEMPRE : REAL;
        variable TEMPIM : REAL;
    begin
        -- Check validity of input arguments
        if ( Z.RE = 0.0  and Z.IM = 0.0 ) then
                assert FALSE
                        report "Z.RE = 0.0 and Z.IM = 0.0 in LOG(Z,BASE)"
                        severity ERROR;
                return COMPLEX'(REAL'LOW, 0.0);
        end if;

        if ( BASE <= 0.0 or BASE = 1.0 ) then
                assert FALSE
                        report "BASE <= 0.0 or BASE = 1.0 in LOG(Z,BASE)"
                        severity ERROR;
                return COMPLEX'(REAL'LOW, 0.0);
        end if;

        -- Get value for special cases
        if ( Z.IM = 0.0 ) then
                if ( Z.RE = BASE ) then
                        return MATH_CBASE_1;
                end if;
                if ( Z.RE = 1.0 ) then
                        return MATH_CZERO;
                end if;
        end if;

        -- Get value for general case
        ZTEMP := COMPLEX_TO_POLAR(Z);
        TEMPRE := LOG(ZTEMP.MAG, BASE);
        TEMPIM := ZTEMP.ARG/LOG(BASE);
        return COMPLEX'(TEMPRE, TEMPIM);
    end function LOG;

    function LOG(Z: in COMPLEX_POLAR; BASE: in REAL ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error

        variable ZTEMP : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.MAG <= 0.0 ) then
                assert FALSE
                        report "Z.MAG <= 0.0 in LOG(Z,BASE)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        if ( BASE <= 0.0 or BASE = 1.0 ) then
                assert FALSE
                        report "BASE <= 0.0 or BASE = 1.0 in LOG(Z,BASE)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        if ( Z.ARG = -MATH_PI ) then
                assert FALSE
                           report "Z.ARG = -MATH_PI in LOG(Z,BASE)"
                           severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
        end if;

        -- Compute value for special cases
        if (Z.MAG = 1.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = BASE and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(1.0, 0.0);
        end if;

        -- Compute value for general case
        ZTEMP.RE := LOG(Z.MAG, BASE);
        ZTEMP.IM := Z.ARG/LOG(BASE);
        ZOUT := COMPLEX_TO_POLAR(ZTEMP);
        return ZOUT;
    end function LOG;


    function SIN(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        -- Get value for special cases
        if ( Z.IM = 0.0 ) then
                if ( Z.RE = 0.0 or Z.RE = MATH_PI) then
                        return MATH_CZERO;
                end if;
        end if;

        -- Get value for general case
        return COMPLEX'(SIN(Z.RE)*COSH(Z.IM), COS(Z.RE)*SINH(Z.IM));
    end function SIN;

    function SIN(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(0.0, 0.0) on error

        variable Z1, Z2 : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                assert FALSE
                            report "Z.ARG = -MATH_PI in SIN(Z)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Compute value for special cases
        if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = MATH_PI and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Compute value for general case
        Z1 := POLAR_TO_COMPLEX(Z);
        Z2 := COMPLEX'(SIN(Z1.RE)*COSH(Z1.IM), COS(Z1.RE)*SINH(Z1.IM));
        ZOUT := COMPLEX_TO_POLAR(Z2);
        return ZOUT;
    end function SIN;

    function COS(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin


        -- Get value for special cases
        if ( Z.IM = 0.0 ) then
                if ( Z.RE = MATH_PI_OVER_2 or Z.RE = -MATH_PI_OVER_2) then
                        return MATH_CZERO;
                end if;
        end if;

        -- Get value for general case
        return COMPLEX'(COS(Z.RE)*COSH(Z.IM), -SIN(Z.RE)*SINH(Z.IM));
    end function COS;

    function COS(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(0.0, 0.0) on error

        variable Z1, Z2 : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                assert FALSE
                            report "Z.ARG = -MATH_PI in COS(Z)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Compute value for special cases
        if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = MATH_PI ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Compute value for general case
        Z1 := POLAR_TO_COMPLEX(Z);
        Z2 := COMPLEX'(COS(Z1.RE)*COSH(Z1.IM), -SIN(Z1.RE)*SINH(Z1.IM));
        ZOUT := COMPLEX_TO_POLAR(Z2);
        return ZOUT;
    end function COS;

    function SINH(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        -- Get value for special cases
        if ( Z.RE = 0.0 ) then
                if ( Z.IM = 0.0 or Z.IM = MATH_PI ) then
                        return MATH_CZERO;
                end if;



                if ( Z.IM = MATH_PI_OVER_2 ) then
                        return MATH_CBASE_J;
                end if;

                if ( Z.IM = -MATH_PI_OVER_2 ) then
                        return -MATH_CBASE_J;
                end if;
        end if;

        -- Get value for general case
        return COMPLEX'(SINH(Z.RE)*COS(Z.IM), COSH(Z.RE)*SIN(Z.IM));
    end function SINH;

    function SINH(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(0.0, 0.0) on error

        variable Z1, Z2 : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                assert FALSE
                            report "Z.ARG = -MATH_PI in SINH(Z)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Compute value for special cases
        if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = MATH_PI and Z.ARG = MATH_PI_OVER_2 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2 ) then
                return COMPLEX_POLAR'(1.0, MATH_PI_OVER_2);
        end if;

        if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2 ) then
                return COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2);
        end if;

        -- Compute value for general case
        Z1 := POLAR_TO_COMPLEX(Z);
        Z2 := COMPLEX'(SINH(Z1.RE)*COS(Z1.IM), COSH(Z1.RE)*SIN(Z1.IM));
        ZOUT := COMPLEX_TO_POLAR(Z2);
        return ZOUT;
    end function SINH;


    function COSH(Z: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        -- Get value for special cases
        if ( Z.RE = 0.0 ) then
                if ( Z.IM = 0.0 ) then
                        return MATH_CBASE_1;
                end if;

                if ( Z.IM = MATH_PI ) then
                        return -MATH_CBASE_1;
                end if;

                if ( Z.IM = MATH_PI_OVER_2 or Z.IM = -MATH_PI_OVER_2 ) then
                        return MATH_CZERO;
                end if;
        end if;

        -- Get value for general case
        return COMPLEX'(COSH(Z.RE)*COS(Z.IM), SINH(Z.RE)*SIN(Z.IM));
    end function COSH;

    function COSH(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR(0.0, 0.0) on error

        variable Z1, Z2 : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( Z.ARG = -MATH_PI ) then
                assert FALSE
                            report "Z.ARG = -MATH_PI in COSH(Z)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Compute value for special cases
        if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
                return COMPLEX_POLAR'(1.0, 0.0);
        end if;

        if ( Z.MAG = MATH_PI and Z.ARG = MATH_PI_OVER_2 ) then
                return COMPLEX_POLAR'(1.0, MATH_PI);
        end if;

        if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2 ) then
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Compute value for general case
        Z1 := POLAR_TO_COMPLEX(Z);
        Z2 := COMPLEX'(COSH(Z1.RE)*COS(Z1.IM), SINH(Z1.RE)*SIN(Z1.IM));
        ZOUT := COMPLEX_TO_POLAR(Z2);
        return ZOUT;
    end function COSH;


    --
    -- Arithmetic Operators
    --
    function "+" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L.RE + R.RE, L.IM + R.IM);
    end function "+";

    function "+" ( L: in REAL; R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L + R.RE, R.IM);
    end function "+";

    function "+" ( L: in COMPLEX;  R: in REAL )    return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L.RE + R, L.IM);
    end function "+";

    function "+" (L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
        variable ZL, ZR : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in +(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;


        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in +(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZL := POLAR_TO_COMPLEX( L );
        ZR := POLAR_TO_COMPLEX( R );
        ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE + ZR.RE, ZL.IM +ZR.IM));
        return ZOUT;
    end function "+";

    function "+" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        variable ZR : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in +(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZR := POLAR_TO_COMPLEX( R );
        ZOUT := COMPLEX_TO_POLAR(COMPLEX'(L + ZR.RE, ZR.IM));
        return ZOUT;
    end function "+";

    function "+" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
        variable ZL : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in +(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZL := POLAR_TO_COMPLEX( L );
        ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE + R, ZL.IM));
        return ZOUT;
    end function "+";

    function "-" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L.RE - R.RE, L.IM - R.IM);
    end function "-";

    function "-" ( L: in REAL;     R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L - R.RE, -1.0 * R.IM);
    end function "-";

    function "-" ( L: in COMPLEX;  R: in REAL )    return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L.RE - R, L.IM);
    end function "-";

    function "-" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
        variable ZL, ZR : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in -(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in -(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;
        -- Get principal value
        ZL := POLAR_TO_COMPLEX( L );
        ZR := POLAR_TO_COMPLEX( R );
        ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE - ZR.RE, ZL.IM -ZR.IM));
        return ZOUT;
    end function "-";

    function "-" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
        variable ZR : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in -(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZR := POLAR_TO_COMPLEX( R );
        ZOUT := COMPLEX_TO_POLAR(COMPLEX'(L - ZR.RE, -1.0*ZR.IM));
        return ZOUT;
    end function "-";

    function "-" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
        variable ZL : COMPLEX;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in -(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZL := POLAR_TO_COMPLEX( L );
        ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE - R, ZL.IM));
        return ZOUT;
    end function "-";


    function "*" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L.RE * R.RE - L.IM * R.IM, L.RE * R.IM + L.IM * R.RE);
    end function "*";


    function "*" ( L: in REAL;  R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L * R.RE, L * R.IM);
    end function "*";

    function "*" ( L: in COMPLEX;  R: in REAL )    return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        None
    begin
        return COMPLEX'(L.RE * R, L.IM * R);
    end function "*";

    function "*" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in *(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in *(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZOUT.MAG := L.MAG * R.MAG;
        ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG + R.ARG);

        return ZOUT;
    end function "*";

    function "*" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
            variable ZL : COMPLEX_POLAR;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                            report "R.ARG = -MATH_PI in *(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZL.MAG := POSITIVE_REAL'(ABS(L));
        if ( L < 0.0 ) then
                ZL.ARG := MATH_PI;
        else
                ZL.ARG := 0.0;
        end if;

        ZOUT.MAG := ZL.MAG * R.MAG;
        ZOUT.ARG := GET_PRINCIPAL_VALUE(ZL.ARG + R.ARG);

        return ZOUT;
    end function "*";

    function "*" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
        --
        variable ZR : COMPLEX_POLAR;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                            report "L.ARG = -MATH_PI in *(L,R)"
                            severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZR.MAG := POSITIVE_REAL'(ABS(R));
        if ( R < 0.0 ) then
                ZR.ARG := MATH_PI;
        else
                ZR.ARG := 0.0;
        end if;

        ZOUT.MAG := L.MAG * ZR.MAG;
        ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG + ZR.ARG);

        return ZOUT;
    end function "*";

   function "/" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX'(REAL'HIGH, 0.0) on error
        --
        constant TEMP : REAL := R.RE*R.RE + R.IM*R.IM;
   begin
        -- Check validity of input arguments
        if (TEMP = 0.0) then
                 assert FALSE
                        report "Attempt to divide COMPLEX by (0.0, 0.0)"
                        severity ERROR;
                 return COMPLEX'(REAL'HIGH, 0.0);
        end if;

        -- Get value
        return COMPLEX'( (L.RE * R.RE + L.IM * R.IM) / TEMP,
                         (L.IM * R.RE - L.RE * R.IM) / TEMP);
    end function "/";

   function "/" ( L: in REAL;  R: in COMPLEX ) return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX'(REAL'HIGH, 0.0) on error
        --
        variable TEMP : REAL := R.RE*R.RE + R.IM*R.IM;
    begin
        -- Check validity of input arguments
        if (TEMP = 0.0) then
                 assert FALSE
                        report "Attempt to divide COMPLEX by (0.0, 0.0)"
                        severity ERROR;
                 return COMPLEX'(REAL'HIGH, 0.0);
        end if;

        -- Get value
        TEMP := L / TEMP;
        return  COMPLEX'( TEMP * R.RE, -TEMP * R.IM );
    end function "/";

    function "/" ( L: in COMPLEX;  R: in REAL )    return COMPLEX is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX'(REAL'HIGH, 0.0) on error
    begin
        -- Check validity of input arguments
        if (R = 0.0) then
                 assert FALSE
                        report "Attempt to divide COMPLEX by 0.0"
                        severity ERROR;
                 return COMPLEX'(REAL'HIGH, 0.0);
        end if;

        -- Get value
        return COMPLEX'(L.RE / R, L.IM / R);
    end function "/";


    function "/" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(REAL'HIGH, 0.0) on error
        --
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if (R.MAG = 0.0) then
                assert FALSE
                        report "Attempt to divide COMPLEX_POLAR by (0.0, 0.0)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, 0.0);
        end if;

        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                        report "L.ARG = -MATH_PI in /(L,R)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, 0.0);
        end if;

        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                        report "R.ARG = -MATH_PI in /(L,R)"
                        severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZOUT.MAG := L.MAG/R.MAG;
        ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG - R.ARG);

        return ZOUT;
    end function "/";

    function "/" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(REAL'HIGH, 0.0) on error
        --
        variable ZR : COMPLEX_POLAR;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if (R = 0.0) then
                assert FALSE
                        report "Attempt to divide COMPLEX_POLAR by 0.0"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, 0.0);
        end if;

        if ( L.ARG = -MATH_PI ) then
                assert FALSE
                        report "L.ARG = -MATH_PI in /(L,R)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, 0.0);
        end if;

        -- Get principal value
        ZR.MAG := POSITIVE_REAL'(ABS(R));
        if R < 0.0 then
                ZR.ARG := MATH_PI;
        else
                ZR.ARG := 0.0;
        end if;

        ZOUT.MAG := L.MAG/ZR.MAG;
        ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG - ZR.ARG);

        return ZOUT;
    end function "/";

    function "/" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR is
        -- Description:
        --        See function declaration in IEEE Std 1076.2-1996
        -- Notes:
        --        a) Returns COMPLEX_POLAR'(REAL'HIGH, 0.0) on error
        --
        variable ZL : COMPLEX_POLAR;
        variable ZOUT : COMPLEX_POLAR;
    begin
        -- Check validity of input arguments
        if (R.MAG = 0.0) then
                assert FALSE
                        report "Attempt to divide COMPLEX_POLAR by (0.0, 0.0)"
                        severity ERROR;
                return COMPLEX_POLAR'(REAL'HIGH, 0.0);
        end if;

        if ( R.ARG = -MATH_PI ) then
                assert FALSE
                        report "R.ARG = -MATH_P in /(L,R)"
                        severity ERROR;
                return COMPLEX_POLAR'(0.0, 0.0);
        end if;

        -- Get principal value
        ZL.MAG := POSITIVE_REAL'(ABS(L));
        if L < 0.0 then
                ZL.ARG := MATH_PI;
        else
                ZL.ARG := 0.0;
        end if;

        ZOUT.MAG := ZL.MAG/R.MAG;
        ZOUT.ARG := GET_PRINCIPAL_VALUE(ZL.ARG - R.ARG);

        return ZOUT;
    end function "/";

end package body MATH_COMPLEX;