aboutsummaryrefslogtreecommitdiffstats
path: root/docs/getting_started_github.md
blob: aeb8738b772b01ec85157b0b12e916f1515ebe0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# How to Use Github with QMK

Github can be a little tricky to those that aren't familiar with it - this guide will walk through each step of forking, cloning, and submitting a pull request with QMK.

?> This guide assumes you're somewhat comfortable with running things at the command line, and have git installed on your system.

Start on the [QMK Github page](https://github.com/qmk/qmk_firmware), and you'll see a button in the upper right that says "Fork":

![Fork on Github](http://i.imgur.com/8Toomz4.jpg)

If you're a part of an organization, you'll need to choose which account to fork it to. In most circumstances, you'll want to fork it to your personal account. Once your fork is completed (sometimes this takes a little while), click the "Clone or Download" button:

![Download from Github](http://i.imgur.com/N1NYcSz.jpg)

And be sure to select "HTTPS", and select the link and copy it:

![HTTPS link](http://i.imgur.com/eGO0ohO.jpg)

From here, enter `git clone ` into the command line, and then paste your link:

```
user@computer:~$ git clone https://github.com/whoeveryouare/qmk_firmware.git
Cloning into 'qmk_firmware'...
remote: Counting objects: 46625, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 46625 (delta 0), reused 0 (delta 0), pack-reused 46623
Receiving objects: 100% (46625/46625), 84.47 MiB | 3.14 MiB/s, done.
Resolving deltas: 100% (29362/29362), done.
Checking out files: 100% (2799/2799), done.
```

You now have your QMK fork on your local machine, and you can add your keymap, compile it and flash it to your board. Once you're happy with your changes, you can add, commit, and push them to your fork like this:

```
user@computer:~$ git add .
user@computer:~$ git commit -m "adding my keymap"
[master cccb1608] adding my keymap
 1 file changed, 1 insertion(+)
 create mode 100644 keyboards/planck/keymaps/mine/keymap.c
user@computer:~$ git push
Counting objects: 1, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (1/1), done.
Writing objects: 100% (1/1), 1.64 KiB | 0 bytes/s, done.
Total 1 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local objects.
To https://github.com/whoeveryouare/qmk_firmware.git
 + 20043e64...7da94ac5 master -> master
```

Your changes now exist on your fork on Github - if you go back there (`https://github.com/<whoeveryouare>/qmk_firmware`), you can create a "New Pull Request" by clicking this button:

![New Pull Request](http://i.imgur.com/DxMHpJ8.jpg)

Here you'll be able to see exactly what you've committed - if it all looks good, you can finalize it by clicking "Create Pull Request":

![Create Pull Request](http://i.imgur.com/Ojydlaj.jpg)

After submitting, we may talk to you about your changes, ask that you make changes, and eventually accept it! Thanks for contributing to QMK :)
ORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "gfx.h" #include "math.h" #include "led_backlight_keyframes.h" static uint8_t fade_led_color(keyframe_animation_t* animation, int from, int to) { int frame_length = animation->frame_lengths[animation->current_frame]; int current_pos = frame_length - animation->time_left_in_frame; int delta = to - from; int luma = (delta * current_pos) / frame_length; luma += from; return luma; } static void keyframe_fade_all_leds_from_to(keyframe_animation_t* animation, uint8_t from, uint8_t to) { uint8_t luma = fade_led_color(animation, from, to); color_t color = LUMA2COLOR(luma); gdispGClear(LED_DISPLAY, color); } // TODO: Should be customizable per keyboard #define NUM_ROWS LED_HEIGHT #define NUM_COLS LED_WIDTH static uint8_t crossfade_start_frame[NUM_ROWS][NUM_COLS]; static uint8_t crossfade_end_frame[NUM_ROWS][NUM_COLS]; static uint8_t compute_gradient_color(float t, float index, float num) { const float two_pi = M_PI * 2.0f; float normalized_index = (1.0f - index / (num - 1.0f)) * two_pi; float x = t * two_pi + normalized_index; float v = 0.5 * (cosf(x) + 1.0f); return (uint8_t)(255.0f * v); } bool led_backlight_keyframe_fade_in_all(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; keyframe_fade_all_leds_from_to(animation, 0, 255); return true; } bool led_backlight_keyframe_fade_out_all(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; keyframe_fade_all_leds_from_to(animation, 255, 0); return true; } bool led_backlight_keyframe_left_to_right_gradient(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; float frame_length = animation->frame_lengths[animation->current_frame]; float current_pos = frame_length - animation->time_left_in_frame; float t = current_pos / frame_length; for (int i=0; i< NUM_COLS; i++) { uint8_t color = compute_gradient_color(t, i, NUM_COLS); gdispGDrawLine(LED_DISPLAY, i, 0, i, NUM_ROWS - 1, LUMA2COLOR(color)); } return true; } bool led_backlight_keyframe_top_to_bottom_gradient(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; float frame_length = animation->frame_lengths[animation->current_frame]; float current_pos = frame_length - animation->time_left_in_frame; float t = current_pos / frame_length; for (int i=0; i< NUM_ROWS; i++) { uint8_t color = compute_gradient_color(t, i, NUM_ROWS); gdispGDrawLine(LED_DISPLAY, 0, i, NUM_COLS - 1, i, LUMA2COLOR(color)); } return true; } static void copy_current_led_state(uint8_t* dest) { for (int i=0;i<NUM_ROWS;i++) { for (int j=0;j<NUM_COLS;j++) { dest[i*NUM_COLS + j] = gdispGGetPixelColor(LED_DISPLAY, j, i); } } } bool led_backlight_keyframe_crossfade(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; if (animation->first_update_of_frame) { copy_current_led_state(&crossfade_start_frame[0][0]); run_next_keyframe(animation, state); copy_current_led_state(&crossfade_end_frame[0][0]); } for (int i=0;i<NUM_ROWS;i++) { for (int j=0;j<NUM_COLS;j++) { color_t color = LUMA2COLOR(fade_led_color(animation, crossfade_start_frame[i][j], crossfade_end_frame[i][j])); gdispGDrawPixel(LED_DISPLAY, j, i, color); } } return true; } bool led_backlight_keyframe_mirror_orientation(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; (void)animation; gdispGSetOrientation(LED_DISPLAY, GDISP_ROTATE_180); return false; } bool led_backlight_keyframe_normal_orientation(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; (void)animation; gdispGSetOrientation(LED_DISPLAY, GDISP_ROTATE_0); return false; } bool led_backlight_keyframe_disable(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; (void)animation; gdispGSetPowerMode(LED_DISPLAY, powerOff); return false; } bool led_backlight_keyframe_enable(keyframe_animation_t* animation, visualizer_state_t* state) { (void)state; (void)animation; gdispGSetPowerMode(LED_DISPLAY, powerOn); return false; }