aboutsummaryrefslogtreecommitdiffstats
path: root/testhal/STM32/STM32L1xx/ADC/chconf.h
blob: 7a264d679371cafaeda10ed85d4d5e548d08e936 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/*
    ChibiOS - Copyright (C) 2006..2015 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

/**
 * @file    templates/chconf.h
 * @brief   Configuration file template.
 * @details A copy of this file must be placed in each project directory, it
 *          contains the application specific kernel settings.
 *
 * @addtogroup config
 * @details Kernel related settings and hooks.
 * @{
 */

#ifndef _CHCONF_H_
#define _CHCONF_H_

/*===========================================================================*/
/**
 * @name System timers settings
 * @{
 */
/*===========================================================================*/

/**
 * @brief   System time counter resolution.
 * @note    Allowed values are 16 or 32 bits.
 */
#define CH_CFG_ST_RESOLUTION                16

/**
 * @brief   System tick frequency.
 * @details Frequency of the system timer that drives the system ticks. This
 *          setting also defines the system tick time unit.
 */
#define CH_CFG_ST_FREQUENCY                 1000

/**
 * @brief   Time delta constant for the tick-less mode.
 * @note    If this value is zero then the system uses the classic
 *          periodic tick. This value represents the minimum number
 *          of ticks that is safe to specify in a timeout directive.
 *          The value one is not valid, timeouts are rounded up to
 *          this value.
 */
#define CH_CFG_ST_TIMEDELTA                 2

/** @} */

/*===========================================================================*/
/**
 * @name Kernel parameters and options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Round robin interval.
 * @details This constant is the number of system ticks allowed for the
 *          threads before preemption occurs. Setting this value to zero
 *          disables the preemption for threads with equal priority and the
 *          round robin becomes cooperative. Note that higher priority
 *          threads can still preempt, the kernel is always preemptive.
 * @note    Disabling the round robin preemption makes the kernel more compact
 *          and generally faster.
 * @note    The round robin preemption is not supported in tickless mode and
 *          must be set to zero in that case.
 */
#define CH_CFG_TIME_QUANTUM                 0

/**
 * @brief   Managed RAM size.
 * @details Size of the RAM area to be managed by the OS. If set to zero
 *          then the whole available RAM is used. The core memory is made
 *          available to the heap allocator and/or can be used directly through
 *          the simplified core memory allocator.
 *
 * @note    In order to let the OS manage the whole RAM the linker script must
 *          provide the @p __heap_base__ and @p __heap_end__ symbols.
 * @note    Requires @p CH_CFG_USE_MEMCORE.
 */
#define CH_CFG_MEMCORE_SIZE                 0

/**
 * @brief   Idle thread automatic spawn suppression.
 * @details When this option is activated the function @p chSysInit()
 *          does not spawn the idle thread. The application @p main()
 *          function becomes the idle thread and must implement an
 *          infinite loop.
 */
#define CH_CFG_NO_IDLE_THREAD               FALSE

/** @} */

/*===========================================================================*/
/**
 * @name Performance options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   OS optimization.
 * @details If enabled then time efficient rather than space efficient code
 *          is used when two possible implementations exist.
 *
 * @note    This is not related to the compiler optimization options.
 * @note    The default is @p TRUE.
 */
#define CH_CFG_OPTIMIZE_SPEED               TRUE

/** @} */

/*===========================================================================*/
/**
 * @name Subsystem options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Time Measurement APIs.
 * @details If enabled then the time measurement APIs are included in
 *          the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_TM                       TRUE

/**
 * @brief   Threads registry APIs.
 * @details If enabled then the registry APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_REGISTRY                 TRUE

/**
 * @brief   Threads synchronization APIs.
 * @details If enabled then the @p chThdWait() function is included in
 *          the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_WAITEXIT                 TRUE

/**
 * @brief   Semaphores APIs.
 * @details If enabled then the Semaphores APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_SEMAPHORES               TRUE

/**
 * @brief   Semaphores queuing mode.
 * @details If enabled then the threads are enqueued on semaphores by
 *          priority rather than in FIFO order.
 *
 * @note    The default is @p FALSE. Enable this if you have special
 *          requirements.
 * @note    Requires @p CH_CFG_USE_SEMAPHORES.
 */
#define CH_CFG_USE_SEMAPHORES_PRIORITY      FALSE

/**
 * @brief   Mutexes APIs.
 * @details If enabled then the mutexes APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MUTEXES                  TRUE

/**
 * @brief   Enables recursive behavior on mutexes.
 * @note    Recursive mutexes are heavier and have an increased
 *          memory footprint.
 *
 * @note    The default is @p FALSE.
 * @note    Requires @p CH_CFG_USE_MUTEXES.
 */
#define CH_CFG_USE_MUTEXES_RECURSIVE        FALSE

/**
 * @brief   Conditional Variables APIs.
 * @details If enabled then the conditional variables APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_MUTEXES.
 */
#define CH_CFG_USE_CONDVARS                 TRUE

/**
 * @brief   Conditional Variables APIs with timeout.
 * @details If enabled then the conditional variables APIs with timeout
 *          specification are included in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_CONDVARS.
 */
#define CH_CFG_USE_CONDVARS_TIMEOUT         TRUE

/**
 * @brief   Events Flags APIs.
 * @details If enabled then the event flags APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_EVENTS                   TRUE

/**
 * @brief   Events Flags APIs with timeout.
 * @details If enabled then the events APIs with timeout specification
 *          are included in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_EVENTS.
 */
#define CH_CFG_USE_EVENTS_TIMEOUT           TRUE

/**
 * @brief   Synchronous Messages APIs.
 * @details If enabled then the synchronous messages APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MESSAGES                 TRUE

/**
 * @brief   Synchronous Messages queuing mode.
 * @details If enabled then messages are served by priority rather than in
 *          FIFO order.
 *
 * @note    The default is @p FALSE. Enable this if you have special
 *          requirements.
 * @note    Requires @p CH_CFG_USE_MESSAGES.
 */
#define CH_CFG_USE_MESSAGES_PRIORITY        FALSE

/**
 * @brief   Mailboxes APIs.
 * @details If enabled then the asynchronous messages (mailboxes) APIs are
 *          included in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_SEMAPHORES.
 */
#define CH_CFG_USE_MAILBOXES                TRUE

/**
 * @brief   I/O Queues APIs.
 * @details If enabled then the I/O queues APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_QUEUES                   TRUE

/**
 * @brief   Core Memory Manager APIs.
 * @details If enabled then the core memory manager APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MEMCORE                  TRUE

/**
 * @brief   Heap Allocator APIs.
 * @details If enabled then the memory heap allocator APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_MEMCORE and either @p CH_CFG_USE_MUTEXES or
 *          @p CH_CFG_USE_SEMAPHORES.
 * @note    Mutexes are recommended.
 */
#define CH_CFG_USE_HEAP                     TRUE

/**
 * @brief   Memory Pools Allocator APIs.
 * @details If enabled then the memory pools allocator APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MEMPOOLS                 TRUE

/**
 * @brief   Dynamic Threads APIs.
 * @details If enabled then the dynamic threads creation APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_WAITEXIT.
 * @note    Requires @p CH_CFG_USE_HEAP and/or @p CH_CFG_USE_MEMPOOLS.
 */
#define CH_CFG_USE_DYNAMIC                  TRUE

/** @} */

/*===========================================================================*/
/**
 * @name Debug options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Debug option, kernel statistics.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_STATISTICS                   TRUE

/**
 * @brief   Debug option, system state check.
 * @details If enabled the correct call protocol for system APIs is checked
 *          at runtime.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_SYSTEM_STATE_CHECK           TRUE

/**
 * @brief   Debug option, parameters checks.
 * @details If enabled then the checks on the API functions input
 *          parameters are activated.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_ENABLE_CHECKS                TRUE

/**
 * @brief   Debug option, consistency checks.
 * @details If enabled then all the assertions in the kernel code are
 *          activated. This includes consistency checks inside the kernel,
 *          runtime anomalies and port-defined checks.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_ENABLE_ASSERTS               TRUE

/**
 * @brief   Debug option, trace buffer.
 * @details If enabled then the context switch circular trace buffer is
 *          activated.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_ENABLE_TRACE                 TRUE

/**
 * @brief   Debug option, stack checks.
 * @details If enabled then a runtime stack check is performed.
 *
 * @note    The default is @p FALSE.
 * @note    The stack check is performed in a architecture/port dependent way.
 *          It may not be implemented or some ports.
 * @note    The default failure mode is to halt the system with the global
 *          @p panic_msg variable set to @p NULL.
 */
#define CH_DBG_ENABLE_STACK_CHECK           TRUE

/**
 * @brief   Debug option, stacks initialization.
 * @details If enabled then the threads working area is filled with a byte
 *          value when a thread is created. This can be useful for the
 *          runtime measurement of the used stack.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_FILL_THREADS                 TRUE

/**
 * @brief   Debug option, threads profiling.
 * @details If enabled then a field is added to the @p thread_t structure that
 *          counts the system ticks occurred while executing the thread.
 *
 * @note    The default is @p FALSE.
 * @note    This debug option is not currently compatible with the
 *          tickless mode.
 */
#define CH_DBG_THREADS_PROFILING            FALSE

/** @} */

/*===========================================================================*/
/**
 * @name Kernel hooks
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Threads descriptor structure extension.
 * @details User fields added to the end of the @p thread_t structure.
 */
#define CH_CFG_THREAD_EXTRA_FIELDS                                          \
  /* Add threads custom fields here.*/

/**
 * @brief   Threads initialization hook.
 * @details User initialization code added to the @p chThdInit() API.
 *
 * @note    It is invoked from within @p chThdInit() and implicitly from all
 *          the threads creation APIs.
 */
#define CH_CFG_THREAD_INIT_HOOK(tp) {                                       \
  /* Add threads initialization code here.*/                                \
}

/**
 * @brief   Threads finalization hook.
 * @details User finalization code added to the @p chThdExit() API.
 *
 * @note    It is inserted into lock zone.
 * @note    It is also invoked when the threads simply return in order to
 *          terminate.
 */
#define CH_CFG_THREAD_EXIT_HOOK(tp) {                                       \
  /* Add threads finalization code here.*/                                  \
}

/**
 * @brief   Context switch hook.
 * @details This hook is invoked just before switching between threads.
 */
#define CH_CFG_CONTEXT_SWITCH_HOOK(ntp, otp) {                              \
  /* Context switch code here.*/                                            \
}

/**
 * @brief   Idle thread enter hook.
 * @note    This hook is invoked within a critical zone, no OS functions
 *          should be invoked from here.
 * @note    This macro can be used to activate a power saving mode.
 */
#define CH_CFG_IDLE_ENTER_HOOK() {                                          \
}

/**
 * @brief   Idle thread leave hook.
 * @note    This hook is invoked within a critical zone, no OS functions
 *          should be invoked from here.
 * @note    This macro can be used to deactivate a power saving mode.
 */
#define CH_CFG_IDLE_LEAVE_HOOK() {                                          \
}

/**
 * @brief   Idle Loop hook.
 * @details This hook is continuously invoked by the idle thread loop.
 */
#define CH_CFG_IDLE_LOOP_HOOK() {                                           \
  /* Idle loop code here.*/                                                 \
}

/**
 * @brief   System tick event hook.
 * @details This hook is invoked in the system tick handler immediately
 *          after processing the virtual timers queue.
 */
#define CH_CFG_SYSTEM_TICK_HOOK() {                                         \
  /* System tick event code here.*/                                         \
}

/**
 * @brief   System halt hook.
 * @details This hook is invoked in case to a system halting error before
 *          the system is halted.
 */
#define CH_CFG_SYSTEM_HALT_HOOK(reason) {                                   \
  /* System halt code here.*/                                               \
}

/** @} */

/*===========================================================================*/
/* Port-specific settings (override port settings defaulted in chcore.h).    */
/*===========================================================================*/

#endif  /* _CHCONF_H_ */

/** @} */
color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in matchers generated by a script.

#include "gmock/gmock-generated-matchers.h"

#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"

namespace {

using std::list;
using std::map;
using std::pair;
using std::set;
using std::stringstream;
using std::vector;
using testing::get;
using testing::make_tuple;
using testing::tuple;
using testing::_;
using testing::Args;
using testing::Contains;
using testing::ElementsAre;
using testing::ElementsAreArray;
using testing::Eq;
using testing::Ge;
using testing::Gt;
using testing::Le;
using testing::Lt;
using testing::MakeMatcher;
using testing::Matcher;
using testing::MatcherInterface;
using testing::MatchResultListener;
using testing::Ne;
using testing::Not;
using testing::Pointee;
using testing::PrintToString;
using testing::Ref;
using testing::StaticAssertTypeEq;
using testing::StrEq;
using testing::Value;
using testing::internal::ElementsAreArrayMatcher;
using testing::internal::string;

// Returns the description of the given matcher.
template <typename T>
string Describe(const Matcher<T>& m) {
  stringstream ss;
  m.DescribeTo(&ss);
  return ss.str();
}

// Returns the description of the negation of the given matcher.
template <typename T>
string DescribeNegation(const Matcher<T>& m) {
  stringstream ss;
  m.DescribeNegationTo(&ss);
  return ss.str();
}

// Returns the reason why x matches, or doesn't match, m.
template <typename MatcherType, typename Value>
string Explain(const MatcherType& m, const Value& x) {
  stringstream ss;
  m.ExplainMatchResultTo(x, &ss);
  return ss.str();
}

// Tests Args<k0, ..., kn>(m).

TEST(ArgsTest, AcceptsZeroTemplateArg) {
  const tuple<int, bool> t(5, true);
  EXPECT_THAT(t, Args<>(Eq(tuple<>())));
  EXPECT_THAT(t, Not(Args<>(Ne(tuple<>()))));
}

TEST(ArgsTest, AcceptsOneTemplateArg) {
  const tuple<int, bool> t(5, true);
  EXPECT_THAT(t, Args<0>(Eq(make_tuple(5))));
  EXPECT_THAT(t, Args<1>(Eq(make_tuple(true))));
  EXPECT_THAT(t, Not(Args<1>(Eq(make_tuple(false)))));
}

TEST(ArgsTest, AcceptsTwoTemplateArgs) {
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT

  EXPECT_THAT(t, (Args<0, 1>(Lt())));
  EXPECT_THAT(t, (Args<1, 2>(Lt())));
  EXPECT_THAT(t, Not(Args<0, 2>(Gt())));
}

TEST(ArgsTest, AcceptsRepeatedTemplateArgs) {
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT
  EXPECT_THAT(t, (Args<0, 0>(Eq())));
  EXPECT_THAT(t, Not(Args<1, 1>(Ne())));
}

TEST(ArgsTest, AcceptsDecreasingTemplateArgs) {
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT
  EXPECT_THAT(t, (Args<2, 0>(Gt())));
  EXPECT_THAT(t, Not(Args<2, 1>(Lt())));
}

// The MATCHER*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4.  Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma.  Therefore
// we suppress them here.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif

MATCHER(SumIsZero, "") {
  return get<0>(arg) + get<1>(arg) + get<2>(arg) == 0;
}

TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) {
  EXPECT_THAT(make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero())));
  EXPECT_THAT(make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero())));
}

TEST(ArgsTest, CanBeNested) {
  const tuple<short, int, long, int> t(4, 5, 6L, 6);  // NOLINT
  EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq()))));
  EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt()))));
}

TEST(ArgsTest, CanMatchTupleByValue) {
  typedef tuple<char, int, int> Tuple3;
  const Matcher<Tuple3> m = Args<1, 2>(Lt());
  EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2)));
  EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2)));
}

TEST(ArgsTest, CanMatchTupleByReference) {
  typedef tuple<char, char, int> Tuple3;
  const Matcher<const Tuple3&> m = Args<0, 1>(Lt());
  EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2)));
  EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2)));
}

// Validates that arg is printed as str.
MATCHER_P(PrintsAs, str, "") {
  return testing::PrintToString(arg) == str;
}

TEST(ArgsTest, AcceptsTenTemplateArgs) {
  EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
              (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
                  PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
  EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
              Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
                      PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
}

TEST(ArgsTest, DescirbesSelfCorrectly) {
  const Matcher<tuple<int, bool, char> > m = Args<2, 0>(Lt());
  EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where "
            "the first < the second",
            Describe(m));
}

TEST(ArgsTest, DescirbesNestedArgsCorrectly) {
  const Matcher<const tuple<int, bool, char, int>&> m =
      Args<0, 2, 3>(Args<2, 0>(Lt()));
  EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple "
            "whose fields (#2, #0) are a pair where the first < the second",
            Describe(m));
}

TEST(ArgsTest, DescribesNegationCorrectly) {
  const Matcher<tuple<int, char> > m = Args<1, 0>(Gt());
  EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair "
            "where the first > the second",
            DescribeNegation(m));
}

TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) {
  const Matcher<tuple<bool, int, int> > m = Args<1, 2>(Eq());
  EXPECT_EQ("whose fields (#1, #2) are (42, 42)",
            Explain(m, make_tuple(false, 42, 42)));
  EXPECT_EQ("whose fields (#1, #2) are (42, 43)",
            Explain(m, make_tuple(false, 42, 43)));
}

// For testing Args<>'s explanation.
class LessThanMatcher : public MatcherInterface<tuple<char, int> > {
 public:
  virtual void DescribeTo(::std::ostream* os) const {}

  virtual bool MatchAndExplain(tuple<char, int> value,
                               MatchResultListener* listener) const {
    const int diff = get<0>(value) - get<1>(value);
    if (diff > 0) {
      *listener << "where the first value is " << diff
                << " more than the second";
    }
    return diff < 0;
  }
};

Matcher<tuple<char, int> > LessThan() {
  return MakeMatcher(new LessThanMatcher);
}

TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) {
  const Matcher<tuple<char, int, int> > m = Args<0, 2>(LessThan());
  EXPECT_EQ("whose fields (#0, #2) are ('a' (97, 0x61), 42), "
            "where the first value is 55 more than the second",
            Explain(m, make_tuple('a', 42, 42)));
  EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)",
            Explain(m, make_tuple('\0', 42, 43)));
}

// For testing ExplainMatchResultTo().
class GreaterThanMatcher : public MatcherInterface<int> {
 public:
  explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}

  virtual void DescribeTo(::std::ostream* os) const {
    *os << "is greater than " << rhs_;
  }

  virtual bool MatchAndExplain(int lhs,
                               MatchResultListener* listener) const {
    const int diff = lhs - rhs_;
    if (diff > 0) {
      *listener << "which is " << diff << " more than " << rhs_;
    } else if (diff == 0) {
      *listener << "which is the same as " << rhs_;
    } else {
      *listener << "which is " << -diff << " less than " << rhs_;
    }

    return lhs > rhs_;
  }

 private:
  int rhs_;
};

Matcher<int> GreaterThan(int n) {
  return MakeMatcher(new GreaterThanMatcher(n));
}

// Tests for ElementsAre().

TEST(ElementsAreTest, CanDescribeExpectingNoElement) {
  Matcher<const vector<int>&> m = ElementsAre();
  EXPECT_EQ("is empty", Describe(m));
}

TEST(ElementsAreTest, CanDescribeExpectingOneElement) {
  Matcher<vector<int> > m = ElementsAre(Gt(5));
  EXPECT_EQ("has 1 element that is > 5", Describe(m));
}

TEST(ElementsAreTest, CanDescribeExpectingManyElements) {
  Matcher<list<string> > m = ElementsAre(StrEq("one"), "two");
  EXPECT_EQ("has 2 elements where\n"
            "element #0 is equal to \"one\",\n"
            "element #1 is equal to \"two\"", Describe(m));
}

TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) {
  Matcher<vector<int> > m = ElementsAre();
  EXPECT_EQ("isn't empty", DescribeNegation(m));
}

TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElment) {
  Matcher<const list<int>& > m = ElementsAre(Gt(5));
  EXPECT_EQ("doesn't have 1 element, or\n"
            "element #0 isn't > 5", DescribeNegation(m));
}

TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) {
  Matcher<const list<string>& > m = ElementsAre("one", "two");
  EXPECT_EQ("doesn't have 2 elements, or\n"
            "element #0 isn't equal to \"one\", or\n"
            "element #1 isn't equal to \"two\"", DescribeNegation(m));
}

TEST(ElementsAreTest, DoesNotExplainTrivialMatch) {
  Matcher<const list<int>& > m = ElementsAre(1, Ne(2));

  list<int> test_list;
  test_list.push_back(1);
  test_list.push_back(3);
  EXPECT_EQ("", Explain(m, test_list));  // No need to explain anything.
}

TEST(ElementsAreTest, ExplainsNonTrivialMatch) {
  Matcher<const vector<int>& > m =
      ElementsAre(GreaterThan(1), 0, GreaterThan(2));

  const int a[] = { 10, 0, 100 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_EQ("whose element #0 matches, which is 9 more than 1,\n"
            "and whose element #2 matches, which is 98 more than 2",
            Explain(m, test_vector));
}

TEST(ElementsAreTest, CanExplainMismatchWrongSize) {
  Matcher<const list<int>& > m = ElementsAre(1, 3);

  list<int> test_list;
  // No need to explain when the container is empty.
  EXPECT_EQ("", Explain(m, test_list));

  test_list.push_back(1);
  EXPECT_EQ("which has 1 element", Explain(m, test_list));
}

TEST(ElementsAreTest, CanExplainMismatchRightSize) {
  Matcher<const vector<int>& > m = ElementsAre(1, GreaterThan(5));

  vector<int> v;
  v.push_back(2);
  v.push_back(1);
  EXPECT_EQ("whose element #0 doesn't match", Explain(m, v));

  v[0] = 1;
  EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5",
            Explain(m, v));
}

TEST(ElementsAreTest, MatchesOneElementVector) {
  vector<string> test_vector;
  test_vector.push_back("test string");

  EXPECT_THAT(test_vector, ElementsAre(StrEq("test string")));
}

TEST(ElementsAreTest, MatchesOneElementList) {
  list<string> test_list;
  test_list.push_back("test string");

  EXPECT_THAT(test_list, ElementsAre("test string"));
}

TEST(ElementsAreTest, MatchesThreeElementVector) {
  vector<string> test_vector;
  test_vector.push_back("one");
  test_vector.push_back("two");
  test_vector.push_back("three");

  EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _));
}

TEST(ElementsAreTest, MatchesOneElementEqMatcher) {
  vector<int> test_vector;
  test_vector.push_back(4);

  EXPECT_THAT(test_vector, ElementsAre(Eq(4)));
}

TEST(ElementsAreTest, MatchesOneElementAnyMatcher) {
  vector<int> test_vector;
  test_vector.push_back(4);

  EXPECT_THAT(test_vector, ElementsAre(_));
}

TEST(ElementsAreTest, MatchesOneElementValue) {
  vector<int> test_vector;
  test_vector.push_back(4);

  EXPECT_THAT(test_vector, ElementsAre(4));
}

TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) {
  vector<int> test_vector;
  test_vector.push_back(1);
  test_vector.push_back(2);
  test_vector.push_back(3);

  EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _));
}

TEST(ElementsAreTest, MatchesTenElementVector) {
  const int a[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));

  EXPECT_THAT(test_vector,
              // The element list can contain values and/or matchers
              // of different types.
              ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _));
}

TEST(ElementsAreTest, DoesNotMatchWrongSize) {
  vector<string> test_vector;
  test_vector.push_back("test string");
  test_vector.push_back("test string");

  Matcher<vector<string> > m = ElementsAre(StrEq("test string"));
  EXPECT_FALSE(m.Matches(test_vector));
}

TEST(ElementsAreTest, DoesNotMatchWrongValue) {
  vector<string> test_vector;
  test_vector.push_back("other string");

  Matcher<vector<string> > m = ElementsAre(StrEq("test string"));
  EXPECT_FALSE(m.Matches(test_vector));
}

TEST(ElementsAreTest, DoesNotMatchWrongOrder) {
  vector<string> test_vector;
  test_vector.push_back("one");
  test_vector.push_back("three");
  test_vector.push_back("two");

  Matcher<vector<string> > m = ElementsAre(
    StrEq("one"), StrEq("two"), StrEq("three"));
  EXPECT_FALSE(m.Matches(test_vector));
}

TEST(ElementsAreTest, WorksForNestedContainer) {
  const char* strings[] = {
    "Hi",
    "world"
  };

  vector<list<char> > nested;
  for (size_t i = 0; i < GTEST_ARRAY_SIZE_(strings); i++) {
    nested.push_back(list<char>(strings[i], strings[i] + strlen(strings[i])));
  }

  EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')),
                                  ElementsAre('w', 'o', _, _, 'd')));
  EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'),
                                      ElementsAre('w', 'o', _, _, 'd'))));
}

TEST(ElementsAreTest, WorksWithByRefElementMatchers) {
  int a[] = { 0, 1, 2 };
  vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));

  EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2])));
  EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2]))));
}

TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) {
  int a[] = { 0, 1, 2 };
  vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));

  EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _)));
  EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3))));
}

TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) {
  int array[] = { 0, 1, 2 };
  EXPECT_THAT(array, ElementsAre(0, 1, _));
  EXPECT_THAT(array, Not(ElementsAre(1, _, _)));
  EXPECT_THAT(array, Not(ElementsAre(0, _)));
}

class NativeArrayPassedAsPointerAndSize {
 public:
  NativeArrayPassedAsPointerAndSize() {}

  MOCK_METHOD2(Helper, void(int* array, int size));

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize);
};

TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) {
  int array[] = { 0, 1 };
  ::testing::tuple<int*, size_t> array_as_tuple(array, 2);
  EXPECT_THAT(array_as_tuple, ElementsAre(0, 1));
  EXPECT_THAT(array_as_tuple, Not(ElementsAre(0)));

  NativeArrayPassedAsPointerAndSize helper;
  EXPECT_CALL(helper, Helper(_, _))
      .With(ElementsAre(0, 1));
  helper.Helper(array, 2);
}

TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) {
  const char a2[][3] = { "hi", "lo" };
  EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'),
                              ElementsAre('l', 'o', '\0')));
  EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo")));
  EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')),
                              ElementsAre('l', 'o', '\0')));
}

TEST(ElementsAreTest, AcceptsStringLiteral) {
  string array[] = { "hi", "one", "two" };
  EXPECT_THAT(array, ElementsAre("hi", "one", "two"));
  EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too")));
}

#ifndef _MSC_VER

// The following test passes a value of type const char[] to a
// function template that expects const T&.  Some versions of MSVC
// generates a compiler error C2665 for that.  We believe it's a bug
// in MSVC.  Therefore this test is #if-ed out for MSVC.

// Declared here with the size unknown.  Defined AFTER the following test.
extern const char kHi[];

TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) {
  // The size of kHi is not known in this test, but ElementsAre() should
  // still accept it.

  string array1[] = { "hi" };
  EXPECT_THAT(array1, ElementsAre(kHi));

  string array2[] = { "ho" };
  EXPECT_THAT(array2, Not(ElementsAre(kHi)));
}

const char kHi[] = "hi";

#endif  // _MSC_VER

TEST(ElementsAreTest, MakesCopyOfArguments) {
  int x = 1;
  int y = 2;
  // This should make a copy of x and y.
  ::testing::internal::ElementsAreMatcher<testing::tuple<int, int> >
          polymorphic_matcher = ElementsAre(x, y);
  // Changing x and y now shouldn't affect the meaning of the above matcher.
  x = y = 0;
  const int array1[] = { 1, 2 };
  EXPECT_THAT(array1, polymorphic_matcher);
  const int array2[] = { 0, 0 };
  EXPECT_THAT(array2, Not(polymorphic_matcher));
}


// Tests for ElementsAreArray().  Since ElementsAreArray() shares most
// of the implementation with ElementsAre(), we don't test it as
// thoroughly here.

TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) {
  const int a[] = { 1, 2, 3 };

  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(a));

  test_vector[2] = 0;
  EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) {
  const char* a[] = { "one", "two", "three" };

  vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(a, GTEST_ARRAY_SIZE_(a)));

  const char** p = a;
  test_vector[0] = "1";
  EXPECT_THAT(test_vector, Not(ElementsAreArray(p, GTEST_ARRAY_SIZE_(a))));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) {
  const char* a[] = { "one", "two", "three" };

  vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(a));

  test_vector[0] = "1";
  EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) {
  const Matcher<string> kMatcherArray[] =
    { StrEq("one"), StrEq("two"), StrEq("three") };

  vector<string> test_vector;
  test_vector.push_back("one");
  test_vector.push_back("two");
  test_vector.push_back("three");
  EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray));

  test_vector.push_back("three");
  EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithVector) {
  const int a[] = { 1, 2, 3 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(expected));
  test_vector.push_back(4);
  EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
}

#if GTEST_HAS_STD_INITIALIZER_LIST_

TEST(ElementsAreArrayTest, TakesInitializerList) {
  const int a[5] = { 1, 2, 3, 4, 5 };
  EXPECT_THAT(a, ElementsAreArray({ 1, 2, 3, 4, 5 }));
  EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 5, 4 })));
  EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 4, 6 })));
}

TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) {
  const string a[5] = { "a", "b", "c", "d", "e" };
  EXPECT_THAT(a, ElementsAreArray({ "a", "b", "c", "d", "e" }));
  EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "e", "d" })));
  EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "d", "ef" })));
}

TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) {
  const int a[5] = { 1, 2, 3, 4, 5 };
  EXPECT_THAT(a, ElementsAreArray(
      { Eq(1), Eq(2), Eq(3), Eq(4), Eq(5) }));
  EXPECT_THAT(a, Not(ElementsAreArray(
      { Eq(1), Eq(2), Eq(3), Eq(4), Eq(6) })));
}

TEST(ElementsAreArrayTest,
     TakesInitializerListOfDifferentTypedMatchers) {
  const int a[5] = { 1, 2, 3, 4, 5 };
  // The compiler cannot infer the type of the initializer list if its
  // elements have different types.  We must explicitly specify the
  // unified element type in this case.
  EXPECT_THAT(a, ElementsAreArray<Matcher<int> >(
      { Eq(1), Ne(-2), Ge(3), Le(4), Eq(5) }));
  EXPECT_THAT(a, Not(ElementsAreArray<Matcher<int> >(
      { Eq(1), Ne(-2), Ge(3), Le(4), Eq(6) })));
}

#endif  // GTEST_HAS_STD_INITIALIZER_LIST_

TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) {
  const int a[] = { 1, 2, 3 };
  const Matcher<int> kMatchers[] = { Eq(1), Eq(2), Eq(3) };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  const vector<Matcher<int> > expected(
      kMatchers, kMatchers + GTEST_ARRAY_SIZE_(kMatchers));
  EXPECT_THAT(test_vector, ElementsAreArray(expected));
  test_vector.push_back(4);
  EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
}

TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) {
  const int a[] = { 1, 2, 3 };
  const vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
  EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end()));
  // Pointers are iterators, too.
  EXPECT_THAT(test_vector, ElementsAreArray(a, a + GTEST_ARRAY_SIZE_(a)));
  // The empty range of NULL pointers should also be okay.
  int* const null_int = NULL;
  EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int)));
  EXPECT_THAT((vector<int>()), ElementsAreArray(null_int, null_int));
}

// Since ElementsAre() and ElementsAreArray() share much of the
// implementation, we only do a sanity test for native arrays here.
TEST(ElementsAreArrayTest, WorksWithNativeArray) {
  ::std::string a[] = { "hi", "ho" };
  ::std::string b[] = { "hi", "ho" };

  EXPECT_THAT(a, ElementsAreArray(b));
  EXPECT_THAT(a, ElementsAreArray(b, 2));
  EXPECT_THAT(a, Not(ElementsAreArray(b, 1)));
}

TEST(ElementsAreArrayTest, SourceLifeSpan) {
  const int a[] = { 1, 2, 3 };
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
  vector<int> expect(a, a + GTEST_ARRAY_SIZE_(a));
  ElementsAreArrayMatcher<int> matcher_maker =
      ElementsAreArray(expect.begin(), expect.end());
  EXPECT_THAT(test_vector, matcher_maker);
  // Changing in place the values that initialized matcher_maker should not
  // affect matcher_maker anymore. It should have made its own copy of them.
  typedef vector<int>::iterator Iter;
  for (Iter it = expect.begin(); it != expect.end(); ++it) { *it += 10; }
  EXPECT_THAT(test_vector, matcher_maker);
  test_vector.push_back(3);
  EXPECT_THAT(test_vector, Not(matcher_maker));
}

// Tests for the MATCHER*() macro family.

// Tests that a simple MATCHER() definition works.

MATCHER(IsEven, "") { return (arg % 2) == 0; }

TEST(MatcherMacroTest, Works) {
  const Matcher<int> m = IsEven();
  EXPECT_TRUE(m.Matches(6));
  EXPECT_FALSE(m.Matches(7));

  EXPECT_EQ("is even", Describe(m));
  EXPECT_EQ("not (is even)", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 6));
  EXPECT_EQ("", Explain(m, 7));
}

// This also tests that the description string can reference 'negation'.
MATCHER(IsEven2, negation ? "is odd" : "is even") {
  if ((arg % 2) == 0) {
    // Verifies that we can stream to result_listener, a listener
    // supplied by the MATCHER macro implicitly.
    *result_listener << "OK";
    return true;
  } else {
    *result_listener << "% 2 == " << (arg % 2);
    return false;
  }
}

// This also tests that the description string can reference matcher
// parameters.
MATCHER_P2(EqSumOf, x, y,
           string(negation ? "doesn't equal" : "equals") + " the sum of " +
           PrintToString(x) + " and " + PrintToString(y)) {
  if (arg == (x + y)) {
    *result_listener << "OK";
    return true;
  } else {
    // Verifies that we can stream to the underlying stream of
    // result_listener.
    if (result_listener->stream() != NULL) {
      *result_listener->stream() << "diff == " << (x + y - arg);
    }
    return false;
  }
}

// Tests that the matcher description can reference 'negation' and the
// matcher parameters.
TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) {
  const Matcher<int> m1 = IsEven2();
  EXPECT_EQ("is even", Describe(m1));
  EXPECT_EQ("is odd", DescribeNegation(m1));

  const Matcher<int> m2 = EqSumOf(5, 9);
  EXPECT_EQ("equals the sum of 5 and 9", Describe(m2));
  EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2));
}

// Tests explaining match result in a MATCHER* macro.
TEST(MatcherMacroTest, CanExplainMatchResult) {
  const Matcher<int> m1 = IsEven2();
  EXPECT_EQ("OK", Explain(m1, 4));
  EXPECT_EQ("% 2 == 1", Explain(m1, 5));

  const Matcher<int> m2 = EqSumOf(1, 2);
  EXPECT_EQ("OK", Explain(m2, 3));
  EXPECT_EQ("diff == -1", Explain(m2, 4));
}

// Tests that the body of MATCHER() can reference the type of the
// value being matched.

MATCHER(IsEmptyString, "") {
  StaticAssertTypeEq< ::std::string, arg_type>();
  return arg == "";
}

MATCHER(IsEmptyStringByRef, "") {
  StaticAssertTypeEq<const ::std::string&, arg_type>();
  return arg == "";
}

TEST(MatcherMacroTest, CanReferenceArgType) {
  const Matcher< ::std::string> m1 = IsEmptyString();
  EXPECT_TRUE(m1.Matches(""));

  const Matcher<const ::std::string&> m2 = IsEmptyStringByRef();
  EXPECT_TRUE(m2.Matches(""));
}

// Tests that MATCHER() can be used in a namespace.

namespace matcher_test {
MATCHER(IsOdd, "") { return (arg % 2) != 0; }
}  // namespace matcher_test

TEST(MatcherMacroTest, WorksInNamespace) {
  Matcher<int> m = matcher_test::IsOdd();
  EXPECT_FALSE(m.Matches(4));
  EXPECT_TRUE(m.Matches(5));
}

// Tests that Value() can be used to compose matchers.
MATCHER(IsPositiveOdd, "") {
  return Value(arg, matcher_test::IsOdd()) && arg > 0;
}

TEST(MatcherMacroTest, CanBeComposedUsingValue) {
  EXPECT_THAT(3, IsPositiveOdd());
  EXPECT_THAT(4, Not(IsPositiveOdd()));
  EXPECT_THAT(-1, Not(IsPositiveOdd()));
}

// Tests that a simple MATCHER_P() definition works.

MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; }

TEST(MatcherPMacroTest, Works) {
  const Matcher<int> m = IsGreaterThan32And(5);
  EXPECT_TRUE(m.Matches(36));
  EXPECT_FALSE(m.Matches(5));

  EXPECT_EQ("is greater than 32 and 5", Describe(m));
  EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 36));
  EXPECT_EQ("", Explain(m, 5));
}

// Tests that the description is calculated correctly from the matcher name.
MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; }

TEST(MatcherPMacroTest, GeneratesCorrectDescription) {
  const Matcher<int> m = _is_Greater_Than32and_(5);

  EXPECT_EQ("is greater than 32 and 5", Describe(m));
  EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 36));
  EXPECT_EQ("", Explain(m, 5));
}

// Tests that a MATCHER_P matcher can be explicitly instantiated with
// a reference parameter type.

class UncopyableFoo {
 public:
  explicit UncopyableFoo(char value) : value_(value) {}
 private:
  UncopyableFoo(const UncopyableFoo&);
  void operator=(const UncopyableFoo&);

  char value_;
};

MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; }

TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) {
  UncopyableFoo foo1('1'), foo2('2');
  const Matcher<const UncopyableFoo&> m =
      ReferencesUncopyable<const UncopyableFoo&>(foo1);

  EXPECT_TRUE(m.Matches(foo1));
  EXPECT_FALSE(m.Matches(foo2));

  // We don't want the address of the parameter printed, as most
  // likely it will just annoy the user.  If the address is
  // interesting, the user should consider passing the parameter by
  // pointer instead.
  EXPECT_EQ("references uncopyable 1-byte object <31>", Describe(m));
}


// Tests that the body of MATCHER_Pn() can reference the parameter
// types.

MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") {
  StaticAssertTypeEq<int, foo_type>();
  StaticAssertTypeEq<long, bar_type>();  // NOLINT
  StaticAssertTypeEq<char, baz_type>();
  return arg == 0;
}

TEST(MatcherPnMacroTest, CanReferenceParamTypes) {
  EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a'));
}

// Tests that a MATCHER_Pn matcher can be explicitly instantiated with
// reference parameter types.

MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") {
  return &arg == &variable1 || &arg == &variable2;
}

TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) {
  UncopyableFoo foo1('1'), foo2('2'), foo3('3');
  const Matcher<const UncopyableFoo&> m =
      ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);

  EXPECT_TRUE(m.Matches(foo1));
  EXPECT_TRUE(m.Matches(foo2));
  EXPECT_FALSE(m.Matches(foo3));
}

TEST(MatcherPnMacroTest,
     GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) {
  UncopyableFoo foo1('1'), foo2('2');
  const Matcher<const UncopyableFoo&> m =
      ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);

  // We don't want the addresses of the parameters printed, as most
  // likely they will just annoy the user.  If the addresses are
  // interesting, the user should consider passing the parameters by
  // pointers instead.
  EXPECT_EQ("references any of (1-byte object <31>, 1-byte object <32>)",
            Describe(m));
}

// Tests that a simple MATCHER_P2() definition works.

MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; }

TEST(MatcherPnMacroTest, Works) {
  const Matcher<const long&> m = IsNotInClosedRange(10, 20);  // NOLINT
  EXPECT_TRUE(m.Matches(36L));
  EXPECT_FALSE(m.Matches(15L));

  EXPECT_EQ("is not in closed range (10, 20)", Describe(m));
  EXPECT_EQ("not (is not in closed range (10, 20))", DescribeNegation(m));
  EXPECT_EQ("", Explain(m, 36L));
  EXPECT_EQ("", Explain(m, 15L));
}

// Tests that MATCHER*() definitions can be overloaded on the number
// of parameters; also tests MATCHER_Pn() where n >= 3.

MATCHER(EqualsSumOf, "") { return arg == 0; }
MATCHER_P(EqualsSumOf, a, "") { return arg == a; }
MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; }
MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; }
MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; }
MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; }
MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") {
  return arg == a + b + c + d + e + f;
}
MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") {
  return arg == a + b + c + d + e + f + g;
}
MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") {
  return arg == a + b + c + d + e + f + g + h;
}
MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") {
  return arg == a + b + c + d + e + f + g + h + i;
}
MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") {
  return arg == a + b + c + d + e + f + g + h + i + j;
}

TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) {
  EXPECT_THAT(0, EqualsSumOf());
  EXPECT_THAT(1, EqualsSumOf(1));
  EXPECT_THAT(12, EqualsSumOf(10, 2));
  EXPECT_THAT(123, EqualsSumOf(100, 20, 3));
  EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4));
  EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5));
  EXPECT_THAT("abcdef",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'));
  EXPECT_THAT("abcdefg",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g'));
  EXPECT_THAT("abcdefgh",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                          "h"));
  EXPECT_THAT("abcdefghi",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                          "h", 'i'));
  EXPECT_THAT("abcdefghij",
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                          "h", 'i', ::std::string("j")));

  EXPECT_THAT(1, Not(EqualsSumOf()));
  EXPECT_THAT(-1, Not(EqualsSumOf(1)));
  EXPECT_THAT(-12, Not(EqualsSumOf(10, 2)));
  EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3)));
  EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4)));
  EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5)));
  EXPECT_THAT("abcdef ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')));
  EXPECT_THAT("abcdefg ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f',
                              'g')));
  EXPECT_THAT("abcdefgh ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                              "h")));
  EXPECT_THAT("abcdefghi ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                              "h", 'i')));
  EXPECT_THAT("abcdefghij ",
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
                              "h", 'i', ::std::string("j"))));
}

// Tests that a MATCHER_Pn() definition can be instantiated with any
// compatible parameter types.
TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) {
  EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3)));
  EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d"));

  EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3))));
  EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d")));
}

// Tests that the matcher body can promote the parameter types.

MATCHER_P2(EqConcat, prefix, suffix, "") {
  // The following lines promote the two parameters to desired types.
  std::string prefix_str(prefix);
  char suffix_char = static_cast<char>(suffix);
  return arg == prefix_str + suffix_char;
}

TEST(MatcherPnMacroTest, SimpleTypePromotion) {
  Matcher<std::string> no_promo =
      EqConcat(std::string("foo"), 't');
  Matcher<const std::string&> promo =
      EqConcat("foo", static_cast<int>('t'));
  EXPECT_FALSE(no_promo.Matches("fool"));
  EXPECT_FALSE(promo.Matches("fool"));
  EXPECT_TRUE(no_promo.Matches("foot"));
  EXPECT_TRUE(promo.Matches("foot"));
}

// Verifies the type of a MATCHER*.

TEST(MatcherPnMacroTest, TypesAreCorrect) {
  // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable.
  EqualsSumOfMatcher a0 = EqualsSumOf();

  // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable.
  EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1);

  // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk
  // variable, and so on.
  EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2');
  EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3');
  EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4');
  EqualsSumOfMatcherP5<int, int, int, int, char> a5 =
      EqualsSumOf(1, 2, 3, 4, '5');
  EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 =
      EqualsSumOf(1, 2, 3, 4, 5, '6');
  EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, '7');
  EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8');
  EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9');
  EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 =
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0');

  // Avoid "unused variable" warnings.
  (void)a0;
  (void)a1;
  (void)a2;
  (void)a3;
  (void)a4;
  (void)a5;
  (void)a6;
  (void)a7;
  (void)a8;
  (void)a9;
  (void)a10;
}

// Tests that matcher-typed parameters can be used in Value() inside a
// MATCHER_Pn definition.

// Succeeds if arg matches exactly 2 of the 3 matchers.
MATCHER_P3(TwoOf, m1, m2, m3, "") {
  const int count = static_cast<int>(Value(arg, m1))
      + static_cast<int>(Value(arg, m2)) + static_cast<int>(Value(arg, m3));
  return count == 2;
}

TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) {
  EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10)));
  EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0))));
}

// Tests Contains().

TEST(ContainsTest, ListMatchesWhenElementIsInContainer) {
  list<int> some_list;
  some_list.push_back(3);
  some_list.push_back(1);
  some_list.push_back(2);
  EXPECT_THAT(some_list, Contains(1));
  EXPECT_THAT(some_list, Contains(Gt(2.5)));
  EXPECT_THAT(some_list, Contains(Eq(2.0f)));

  list<string> another_list;
  another_list.push_back("fee");
  another_list.push_back("fie");
  another_list.push_back("foe");
  another_list.push_back("fum");
  EXPECT_THAT(another_list, Contains(string("fee")));
}

TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) {
  list<int> some_list;
  some_list.push_back(3);
  some_list.push_back(1);
  EXPECT_THAT(some_list, Not(Contains(4)));
}

TEST(ContainsTest, SetMatchesWhenElementIsInContainer) {
  set<int> some_set;
  some_set.insert(3);
  some_set.insert(1);
  some_set.insert(2);
  EXPECT_THAT(some_set, Contains(Eq(1.0)));
  EXPECT_THAT(some_set, Contains(Eq(3.0f)));
  EXPECT_THAT(some_set, Contains(2));

  set<const char*> another_set;
  another_set.insert("fee");
  another_set.insert("fie");
  another_set.insert("foe");
  another_set.insert("fum");
  EXPECT_THAT(another_set, Contains(Eq(string("fum"))));
}

TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) {
  set<int> some_set;
  some_set.insert(3);
  some_set.insert(1);
  EXPECT_THAT(some_set, Not(Contains(4)));

  set<const char*> c_string_set;
  c_string_set.insert("hello");
  EXPECT_THAT(c_string_set, Not(Contains(string("hello").c_str())));
}

TEST(ContainsTest, ExplainsMatchResultCorrectly) {
  const int a[2] = { 1, 2 };
  Matcher<const int (&)[2]> m = Contains(2);
  EXPECT_EQ("whose element #1 matches", Explain(m, a));

  m = Contains(3);
  EXPECT_EQ("", Explain(m, a));

  m = Contains(GreaterThan(0));
  EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a));

  m = Contains(GreaterThan(10));
  EXPECT_EQ("", Explain(m, a));
}

TEST(ContainsTest, DescribesItselfCorrectly) {
  Matcher<vector<int> > m = Contains(1);
  EXPECT_EQ("contains at least one element that is equal to 1", Describe(m));

  Matcher<vector<int> > m2 = Not(m);
  EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2));
}

TEST(ContainsTest, MapMatchesWhenElementIsInContainer) {
  map<const char*, int> my_map;
  const char* bar = "a string";
  my_map[bar] = 2;
  EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2)));

  map<string, int> another_map;
  another_map["fee"] = 1;
  another_map["fie"] = 2;
  another_map["foe"] = 3;
  another_map["fum"] = 4;
  EXPECT_THAT(another_map, Contains(pair<const string, int>(string("fee"), 1)));
  EXPECT_THAT(another_map, Contains(pair<const string, int>("fie", 2)));
}

TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) {
  map<int, int> some_map;
  some_map[1] = 11;
  some_map[2] = 22;
  EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23))));
}

TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) {
  const char* string_array[] = { "fee", "fie", "foe", "fum" };
  EXPECT_THAT(string_array, Contains(Eq(string("fum"))));
}

TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) {
  int int_array[] = { 1, 2, 3, 4 };
  EXPECT_THAT(int_array, Not(Contains(5)));
}

TEST(ContainsTest, AcceptsMatcher) {
  const int a[] = { 1, 2, 3 };
  EXPECT_THAT(a, Contains(Gt(2)));
  EXPECT_THAT(a, Not(Contains(Gt(4))));
}

TEST(ContainsTest, WorksForNativeArrayAsTuple) {
  const int a[] = { 1, 2 };
  const int* const pointer = a;
  EXPECT_THAT(make_tuple(pointer, 2), Contains(1));
  EXPECT_THAT(make_tuple(pointer, 2), Not(Contains(Gt(3))));
}

TEST(ContainsTest, WorksForTwoDimensionalNativeArray) {
  int a[][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
  EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6)));
  EXPECT_THAT(a, Contains(Contains(5)));
  EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5))));
  EXPECT_THAT(a, Contains(Not(Contains(5))));
}

TEST(AllOfTest, HugeMatcher) {
  // Verify that using AllOf with many arguments doesn't cause
  // the compiler to exceed template instantiation depth limit.
  EXPECT_THAT(0, testing::AllOf(_, _, _, _, _, _, _, _, _,
                                testing::AllOf(_, _, _, _, _, _, _, _, _, _)));
}

TEST(AnyOfTest, HugeMatcher) {
  // Verify that using AnyOf with many arguments doesn't cause
  // the compiler to exceed template instantiation depth limit.
  EXPECT_THAT(0, testing::AnyOf(_, _, _, _, _, _, _, _, _,
                                testing::AnyOf(_, _, _, _, _, _, _, _, _, _)));
}

namespace adl_test {

// Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf
// don't issue unqualified recursive calls.  If they do, the argument dependent
// name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found
// as a candidate and the compilation will break due to an ambiguous overload.

// The matcher must be in the same namespace as AllOf/AnyOf to make argument
// dependent lookup find those.
MATCHER(M, "") { return true; }

template <typename T1, typename T2>
bool AllOf(const T1& t1, const T2& t2) { return true; }

TEST(AllOfTest, DoesNotCallAllOfUnqualified) {
  EXPECT_THAT(42, testing::AllOf(
      M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
}

template <typename T1, typename T2> bool
AnyOf(const T1& t1, const T2& t2) { return true; }

TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) {
  EXPECT_THAT(42, testing::AnyOf(
      M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
}

}  // namespace adl_test

#ifdef _MSC_VER
# pragma warning(pop)
#endif

}  // namespace