aboutsummaryrefslogtreecommitdiffstats
path: root/test/rt/source/test/test_sequence_005.c
blob: ad953d3af324dd48583f151e6a1891359a0c8aeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
    ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#include "hal.h"
#include "ch_test.h"
#include "test_root.h"

/**
 * @page test_sequence_005 [5] Mutexes, Condition Variables and Priority Inheritance
 *
 * File: @ref test_sequence_005.c
 *
 * <h2>Description</h2>
 * This sequence tests the ChibiOS/RT functionalities related to
 * mutexes, condition variables and priority inheritance algorithm.
 *
 * <h2>Conditions</h2>
 * This sequence is only executed if the following preprocessor condition
 * evaluates to true:
 * - CH_CFG_USE_MUTEXES
 * .
 *
 * <h2>Test Cases</h2>
 * - @subpage test_005_001
 * - @subpage test_005_002
 * - @subpage test_005_003
 * - @subpage test_005_004
 * .
 */

#if (CH_CFG_USE_MUTEXES) || defined(__DOXYGEN__)

/****************************************************************************
 * Shared code.
 ****************************************************************************/

static MUTEX_DECL(m1);
static MUTEX_DECL(m2);
#if CH_CFG_USE_CONDVARS || defined(__DOXYGEN__)
static CONDVAR_DECL(c1);
#endif

#if CH_DBG_THREADS_PROFILING || defined(__DOXYGEN__)
/**
 * @brief   CPU pulse.
 * @note    The current implementation is not totally reliable.
 *
 * @param[in] duration      CPU pulse duration in milliseconds
 */
void test_cpu_pulse(unsigned duration) {
  systime_t start, end, now;

  start = chThdGetTicksX(chThdGetSelfX());
  end = start + MS2ST(duration);
  do {
    now = chThdGetTicksX(chThdGetSelfX());
#if defined(SIMULATOR)
    _sim_check_for_interrupts();
#endif
  }
  while (chVTIsTimeWithinX(now, start, end));
}
#endif /* CH_DBG_THREADS_PROFILING */

static THD_FUNCTION(thread1, p) {

  chMtxLock(&m1);
  test_emit_token(*(char *)p);
  chMtxUnlock(&m1);
}

/* Low priority thread */
static THD_FUNCTION(thread2L, p) {

  (void)p;
  chMtxLock(&m1);
  test_cpu_pulse(40);
  chMtxUnlock(&m1);
  test_cpu_pulse(10);
  test_emit_token('C');
}

/* Medium priority thread */
static THD_FUNCTION(thread2M, p) {

  (void)p;
  chThdSleepMilliseconds(20);
  test_cpu_pulse(40);
  test_emit_token('B');
}

/* High priority thread */
static THD_FUNCTION(thread2H, p) {

  (void)p;
  chThdSleepMilliseconds(40);
  chMtxLock(&m1);
  test_cpu_pulse(10);
  chMtxUnlock(&m1);
  test_emit_token('A');
}

/* Lowest priority thread */
static THD_FUNCTION(thread3LL, p) {

  (void)p;
  chMtxLock(&m1);
  test_cpu_pulse(30);
  chMtxUnlock(&m1);
  test_emit_token('E');
}

/* Low priority thread */
static THD_FUNCTION(thread3L, p) {

  (void)p;
  chThdSleepMilliseconds(10);
  chMtxLock(&m2);
  test_cpu_pulse(20);
  chMtxLock(&m1);
  test_cpu_pulse(10);
  chMtxUnlock(&m1);
  test_cpu_pulse(10);
  chMtxUnlock(&m2);
  test_emit_token('D');
}

/* Medium priority thread */
static THD_FUNCTION(thread3M, p) {

  (void)p;
  chThdSleepMilliseconds(20);
  chMtxLock(&m2);
  test_cpu_pulse(10);
  chMtxUnlock(&m2);
  test_emit_token('C');
}

/* High priority thread */
static THD_FUNCTION(thread3H, p) {

  (void)p;
  chThdSleepMilliseconds(40);
  test_cpu_pulse(20);
  test_emit_token('B');
}

/* Highest priority thread */
static THD_FUNCTION(thread3HH, p) {

  (void)p;
  chThdSleepMilliseconds(50);
  chMtxLock(&m2);
  test_cpu_pulse(10);
  chMtxUnlock(&m2);
  test_emit_token('A');
}

static THD_FUNCTION(thread4A, p) {

  (void)p;
  chThdSleepMilliseconds(50);
  chMtxLock(&m1);
  chMtxUnlock(&m1);
}

static THD_FUNCTION(thread4B, p) {

  (void)p;
  chThdSleepMilliseconds(150);
  chSysLock();
  chMtxLockS(&m2);   /* For coverage of the chMtxLockS() function variant.*/
  chMtxUnlockS(&m2); /* For coverage of the chMtxUnlockS() function variant.*/
  chSchRescheduleS();
  chSysUnlock();
}

#if CH_CFG_USE_CONDVARS || defined(__DOXYGEN__)
static THD_FUNCTION(thread6, p) {

  chMtxLock(&m1);
  chCondWait(&c1);
  test_emit_token(*(char *)p);
  chMtxUnlock(&m1);
}

static THD_FUNCTION(thread8, p) {

  chMtxLock(&m2);
  chMtxLock(&m1);
#if CH_CFG_USE_CONDVARS_TIMEOUT || defined(__DOXYGEN__)
  chCondWaitTimeout(&c1, TIME_INFINITE);
#else
  chCondWait(&c1);
#endif
  test_emit_token(*(char *)p);
  chMtxUnlock(&m1);
  chMtxUnlock(&m2);
}
#endif /* CH_CFG_USE_CONDVARS */

/****************************************************************************
 * Test cases.
 ****************************************************************************/

/**
 * @page test_005_001 [5.1] Priority enqueuing test
 *
 * <h2>Description</h2>
 * Five threads, with increasing priority, are enqueued on a locked
 * mutex then the mutex is unlocked. The test expects the threads to
 * perform their operations in increasing priority order regardless of
 * the initial order.
 *
 * <h2>Test Steps</h2>
 * - [5.1.1] Getting the initial priority.
 * - [5.1.2] Locking the mutex.
 * - [5.1.3] Five threads are created that try to lock and unlock the
 *   mutex then terminate. The threads are created in ascending
 *   priority order.
 * - [5.1.4] Unlocking the mutex, the threads will wakeup in priority
 *   order because the mutext queue is an ordered one.
 * .
 */

static void test_005_001_setup(void) {
  chMtxObjectInit(&m1);
}

static void test_005_001_execute(void) {
  tprio_t prio;

  /* [5.1.1] Getting the initial priority.*/
  test_set_step(1);
  {
    prio = chThdGetPriorityX();
  }

  /* [5.1.2] Locking the mutex.*/
  test_set_step(2);
  {
    chMtxLock(&m1);
  }

  /* [5.1.3] Five threads are created that try to lock and unlock the
     mutex then terminate. The threads are created in ascending
     priority order.*/
  test_set_step(3);
  {
    threads[0] = chThdCreateStatic(wa[0], WA_SIZE, prio+1, thread1, "E");
    threads[1] = chThdCreateStatic(wa[1], WA_SIZE, prio+2, thread1, "D");
    threads[2] = chThdCreateStatic(wa[2], WA_SIZE, prio+3, thread1, "C");
    threads[3] = chThdCreateStatic(wa[3], WA_SIZE, prio+4, thread1, "B");
    threads[4] = chThdCreateStatic(wa[4], WA_SIZE, prio+5, thread1, "A");
  }

  /* [5.1.4] Unlocking the mutex, the threads will wakeup in priority
     order because the mutext queue is an ordered one.*/
  test_set_step(4);
  {
    chMtxUnlock(&m1);
    test_wait_threads();
    test_assert(prio == chThdGetPriorityX(), "wrong priority level");
    test_assert_sequence("ABCDE", "invalid sequence");
  }
}

static const testcase_t test_005_001 = {
  "Priority enqueuing test",
  test_005_001_setup,
  NULL,
  test_005_001_execute
};

/**
 * @page test_005_002 [5.2] Priority inheritance, simple case
 *
 * <h2>Description</h2>
 * Three threads are involved in the classic priority inversion
 * scenario, a medium priority thread tries to starve an high priority
 * thread by blocking a low priority thread into a mutex lock zone. The
 * test expects the threads to reach their goal in increasing priority
 * order by rearranging their priorities in order to avoid the priority
 * inversion trap.
 *
 * <h2>Test Steps</h2>
 * - [5.2.1] Getting the system time for test duration measurement.
 * - [5.2.2] The three contenders threads are created and let run
 *   atomically, the goals sequence is tested, the threads must
 *   complete in priority order.
 * - [5.2.3] Testing that all threads completed within the specified
 *   time windows (100mS...100mS+ALLOWED_DELAY).
 * .
 */

static void test_005_002_setup(void) {
  chMtxObjectInit(&m1);
}

static void test_005_002_execute(void) {
  systime_t time;

  /* [5.2.1] Getting the system time for test duration measurement.*/
  test_set_step(1);
  {
    time = test_wait_tick();
  }

  /* [5.2.2] The three contenders threads are created and let run
     atomically, the goals sequence is tested, the threads must
     complete in priority order.*/
  test_set_step(2);
  {
    threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-1, thread2H, 0);
    threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-2, thread2M, 0);
    threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread2L, 0);
    test_wait_threads();
    test_assert_sequence("ABC", "invalid sequence");
  }

  /* [5.2.3] Testing that all threads completed within the specified
     time windows (100mS...100mS+ALLOWED_DELAY).*/
  test_set_step(3);
  {
    test_assert_time_window(time + MS2ST(100), time + MS2ST(100) + ALLOWED_DELAY,
                            "out of time window");
  }
}

static const testcase_t test_005_002 = {
  "Priority inheritance, simple case",
  test_005_002_setup,
  NULL,
  test_005_002_execute
};

/**
 * @page test_005_003 [5.3] Priority inheritance, complex case
 *
 * <h2>Description</h2>
 * Five threads are involved in the complex priority inversion
 * scenario, the priority inheritance algorithm is tested for depths
 * greater than one. The test expects the threads to perform their
 * operations in increasing priority order by rearranging their
 * priorities in order to avoid the priority inversion trap.
 *
 * <h2>Test Steps</h2>
 * - [5.3.1] Getting the system time for test duration measurement.
 * - [5.3.2] The five contenders threads are created and let run
 *   atomically, the goals sequence is tested, the threads must
 *   complete in priority order.
 * - [5.3.3] Testing that all threads completed within the specified
 *   time windows (110mS...110mS+ALLOWED_DELAY).
 * .
 */

static void test_005_003_setup(void) {
  chMtxObjectInit(&m1); /* Mutex B.*/
  chMtxObjectInit(&m2); /* Mutex A.*/
}

static void test_005_003_execute(void) {
  systime_t time;

  /* [5.3.1] Getting the system time for test duration measurement.*/
  test_set_step(1);
  {
    time = test_wait_tick();
  }

  /* [5.3.2] The five contenders threads are created and let run
     atomically, the goals sequence is tested, the threads must
     complete in priority order.*/
  test_set_step(2);
  {
    threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-5, thread3LL, 0);
    threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-4, thread3L, 0);
    threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread3M, 0);
    threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()-2, thread3H, 0);
    threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()-1, thread3HH, 0);
    test_wait_threads();
    test_assert_sequence("ABCDE", "invalid sequence");
  }

  /* [5.3.3] Testing that all threads completed within the specified
     time windows (110mS...110mS+ALLOWED_DELAY).*/
  test_set_step(3);
  {
    test_assert_time_window(time + MS2ST(110), time + MS2ST(110) + ALLOWED_DELAY,
                            "out of time window");
  }
}

static const testcase_t test_005_003 = {
  "Priority inheritance, complex case",
  test_005_003_setup,
  NULL,
  test_005_003_execute
};

/**
 * @page test_005_004 [5.4] Priority return verification
 *
 * <h2>Description</h2>
 * Two threads are spawned that try to lock the mutexes already locked
 * by the tester thread with precise timing. The test expects that the
 * priority changes caused by the priority inheritance algorithm happen
 * at the right moment and with the right values.<br> Thread A performs
 * wait(50), lock(m1), unlock(m1), exit. Thread B performs wait(150),
 * lock(m2), unlock(m2), exit.
 *
 * <h2>Test Steps</h2>
 * - [5.4.1] Getting current thread priority P(0) and assigning to the
 *   threads A and B priorities +1 and +2.
 * - [5.4.2] Spawning threads A and B at priorities P(A) and P(B).
 * - [5.4.3] Locking the mutex M1 before thread A has a chance to lock
 *   it. The priority must not change because A has not yet reached
 *   chMtxLock(M1). the mutex is not locked.
 * - [5.4.4] Waiting 100mS, this makes thread A reach chMtxLock(M1) and
 *   get the mutex. This must boost the priority of the current thread
 *   at the same level of thread A.
 * - [5.4.5] Locking the mutex M2 before thread B has a chance to lock
 *   it. The priority must not change because B has not yet reached
 *   chMtxLock(M2). the mutex is not locked.
 * - [5.4.6] Waiting 100mS, this makes thread B reach chMtxLock(M2) and
 *   get the mutex. This must boost the priority of the current thread
 *   at the same level of thread B.
 * - [5.4.7] Unlocking M2, the priority should fall back to P(A).
 * - [5.4.8] Unlocking M1, the priority should fall back to P(0).
 * .
 */

static void test_005_004_setup(void) {
  chMtxObjectInit(&m1);
  chMtxObjectInit(&m2);
}

static void test_005_004_execute(void) {
  tprio_t p, pa, pb;

  /* [5.4.1] Getting current thread priority P(0) and assigning to the
     threads A and B priorities +1 and +2.*/
  test_set_step(1);
  {
    p = chThdGetPriorityX();
    pa = p + 1;
    pb = p + 2;
  }

  /* [5.4.2] Spawning threads A and B at priorities P(A) and P(B).*/
  test_set_step(2);
  {
    threads[0] = chThdCreateStatic(wa[0], WA_SIZE, pa, thread4A, "A");
    threads[1] = chThdCreateStatic(wa[1], WA_SIZE, pb, thread4B, "B");
  }

  /* [5.4.3] Locking the mutex M1 before thread A has a chance to lock
     it. The priority must not change because A has not yet reached
     chMtxLock(M1). the mutex is not locked.*/
  test_set_step(3);
  {
    chMtxLock(&m1);
    test_assert(chThdGetPriorityX() == p, "wrong priority level");
  }

  /* [5.4.4] Waiting 100mS, this makes thread A reach chMtxLock(M1) and
     get the mutex. This must boost the priority of the current thread
     at the same level of thread A.*/
  test_set_step(4);
  {
    chThdSleepMilliseconds(100);
    test_assert(chThdGetPriorityX() == pa, "wrong priority level");
  }

  /* [5.4.5] Locking the mutex M2 before thread B has a chance to lock
     it. The priority must not change because B has not yet reached
     chMtxLock(M2). the mutex is not locked.*/
  test_set_step(5);
  {
    chMtxLock(&m2);
    test_assert(chThdGetPriorityX() == pa, "wrong priority level");
  }

  /* [5.4.6] Waiting 100mS, this makes thread B reach chMtxLock(M2) and
     get the mutex. This must boost the priority of the current thread
     at the same level of thread B.*/
  test_set_step(6);
  {
    chThdSleepMilliseconds(100);
    test_assert(chThdGetPriorityX() == pb, "wrong priority level");
  }

  /* [5.4.7] Unlocking M2, the priority should fall back to P(A).*/
  test_set_step(7);
  {
    chMtxUnlock(&m2);
    test_assert(chThdGetPriorityX() == pa, "wrong priority level");
  }

  /* [5.4.8] Unlocking M1, the priority should fall back to P(0).*/
  test_set_step(8);
  {
    chMtxUnlock(&m1);
    test_assert(chThdGetPriorityX() == p, "wrong priority level");
  }
}

static const testcase_t test_005_004 = {
  "Priority return verification",
  test_005_004_setup,
  NULL,
  test_005_004_execute
};

/****************************************************************************
 * Exported data.
 ****************************************************************************/

/**
 * @brief   Mutexes, Condition Variables and Priority Inheritance.
 */
const testcase_t * const test_sequence_005[] = {
  &test_005_001,
  &test_005_002,
  &test_005_003,
  &test_005_004,
  NULL
};

#endif /* CH_CFG_USE_MUTEXES */