aboutsummaryrefslogtreecommitdiffstats
path: root/os/hal/ports/SAMA/LLD/SDMMCv1/ch_sdmmc_sd.c
blob: a27d0b819b79f8cbf616d392396e48f9c9113ae1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
#include <string.h>
#include "hal.h"

#if (HAL_USE_SDMMC == TRUE)
#include "sama_sdmmc_lld.h"
#include "ch_sdmmc_device.h"
#include "ch_sdmmc_cmds.h"
#include "ch_sdmmc_sd.h"
#include "ch_sdmmc_sdio.h"

static uint8_t PerformSingleTransfer(SdmmcDriver *driver,uint32_t address, uint8_t * pData, uint8_t isRead);
static uint8_t MoveToTransferState(SdmmcDriver *driver,uint32_t address,uint16_t * nbBlocks, uint8_t * pData, uint8_t isRead);
static uint8_t _StopCmd(SdmmcDriver *driver);
static uint8_t _WaitUntilReady(SdmmcDriver *driver, uint32_t last_dev_status);
static uint8_t SdGetTimingFunction(uint8_t mode);
static void SdSelectSlowerTiming(bool high_sig, uint8_t * mode);

#if SAMA_SDMMC_TRACE == 1
struct stringEntry_s
{
	const uint8_t key;
	const char *name;
};
const char sdmmcInvalidCode[] = "!Invalid!";
const struct stringEntry_s sdmmcRCodeNames[] = {
	{ SDMMC_OK,		"OK",			},
	{ SDMMC_LOCKED,		"ERR_LOCKED",		},
	{ SDMMC_BUSY,		"ERR_BUSY",		},
	{ SDMMC_NO_RESPONSE,	"ERR_NO_RESPONSE",	},
	{ SDMMC_CHANGED,		"OK_CHANGED",		},
	{ SDMMC_ERR,			"ERROR",		},
	{ SDMMC_ERR_IO,			"ERR_IO",		},
	{ SDMMC_ERR_RESP,		"ERR_RESP",		},
	{ SDMMC_NOT_INITIALIZED,	"ERR_NOT_INITIALIZED",	},
	{ SDMMC_PARAM,		"ERR_PARAM",		},
	{ SDMMC_STATE,		"ERR_STATE",		},
	{ SDMMC_USER_CANCEL,	"ERR_USER_CANCEL",	},
	{ SDMMC_NOT_SUPPORTED,	"ERR_NO_SUPPORT",	},
};

const struct stringEntry_s sdmmcIOCtrlNames[] = {
	{ SDMMC_IOCTL_BUSY_CHECK,	"BUSY_CHECK",		},
	{ SDMMC_IOCTL_POWER,		"POWER",		},
	{ SDMMC_IOCTL_CANCEL_CMD,	"CANCEL_CMD",		},
	{ SDMMC_IOCTL_RESET,		"RESET",		},
	{ SDMMC_IOCTL_SET_CLOCK,	"SET_CLOCK",		},
	{ SDMMC_IOCTL_SET_BUSMODE,	"SET_BUSMODE",		},
	{ SDMMC_IOCTL_SET_HSMODE,	"SET_HSMODE",		},
	{ SDMMC_IOCTL_SET_BOOTMODE,	"SET_BOOTMODE",		},
	{ SDMMC_IOCTL_SET_LENPREFIX,	"SET_LENPREFIX",	},
	{ SDMMC_IOCTL_GET_CLOCK,	"GET_CLOCK",		},
	{ SDMMC_IOCTL_GET_BUSMODE,	"GET_BUSMODE",		},
	{ SDMMC_IOCTL_GET_HSMODE,	"GET_HSMODE",		},
	{ SDMMC_IOCTL_GET_BOOTMODE,	"GET_BOOTMODE",		},
	{ SDMMC_IOCTL_GET_XFERCOMPL,	"GET_XFERCOMPL",	},
	{ SDMMC_IOCTL_GET_DEVICE,	"GET_DEVICE",		},
};

const char * SD_StringifyRetCode(uint32_t dwRCode)
{
	const uint8_t bound = ARRAY_SIZE(sdmmcRCodeNames);
	uint8_t ix;

	for (ix = 0; ix < bound; ix++) {
		if (dwRCode == (uint32_t)sdmmcRCodeNames[ix].key)
			return sdmmcRCodeNames[ix].name;
	}

	return sdmmcInvalidCode;
}

const char * SD_StringifyIOCtrl(uint32_t dwCtrl)
{
	const uint8_t bound = ARRAY_SIZE(sdmmcIOCtrlNames);
	uint8_t ix;

	for (ix = 0; ix < bound; ix++) {
		if (dwCtrl == (uint32_t)sdmmcIOCtrlNames[ix].key)
			return sdmmcIOCtrlNames[ix].name;
	}

	return sdmmcInvalidCode;
}
#endif


/**
 * Read Blocks of data in a buffer pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to read.
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 * \param length   Number of blocks to be read.
 * \param pCallback Pointer to callback function that invoked when read done.
 *                  0 to start a blocked read.
 * \param pArgs     Pointer to callback function arguments.
 */
uint8_t SD_Read(SdmmcDriver *driver,uint32_t address,void *pData, uint32_t length)
{
	uint8_t *out = NULL;
	uint32_t remaining, blk_no;
	uint16_t limited;
	uint8_t error = SDMMC_OK;


	for (blk_no = address, remaining = length, out = (uint8_t *)pData;
	    remaining != 0 && error == SDMMC_OK;
	    blk_no += limited, remaining -= limited,
	    out += (uint32_t)limited * (uint32_t)driver->card.wCurrBlockLen)
	{
		limited = (uint16_t)min_u32(remaining, 65535);
		error = MoveToTransferState(driver, blk_no, &limited, out, 1);
	}
	//debug
	TRACE_DEBUG_3("SDrd(%lu,%lu) %s\n\r", address, length, SD_StringifyRetCode(error));
	return error;
}

/**
 * Write Blocks of data in a buffer pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to write.
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 * \param length   Number of blocks to be write.
 * \param pCallback Pointer to callback function that invoked when write done.
 *                  0 to start a blocked write.
 * \param pArgs     Pointer to callback function arguments.
 */
uint8_t SD_Write(SdmmcDriver *driver,uint32_t address,const void *pData,uint32_t length)
{
	uint8_t *in = NULL;
	uint32_t remaining, blk_no;
	uint16_t limited;
	uint8_t error = SDMMC_OK;

//	assert(pSd != NULL);
//	assert(pData != NULL);

	for (blk_no = address, remaining = length, in = (uint8_t *)pData;
	    remaining != 0 && error == SDMMC_OK;
	    blk_no += limited, remaining -= limited,
	    in += (uint32_t)limited * (uint32_t)driver->card.wCurrBlockLen) {
		limited = (uint16_t)min_u32(remaining, 65535);
		error = MoveToTransferState(driver, blk_no, &limited, in, 0);
	}
	//debug
	TRACE_DEBUG_3("SDwr(%lu,%lu) %s\n\r", address, length, SD_StringifyRetCode(error));
	return error;
}

/**
 * Read Blocks of data in a buffer pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd  Pointer to a SD card driver instance.
 * \param address  Address of the block to read.
 * \param nbBlocks Number of blocks to be read.
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 */
uint8_t SD_ReadBlocks(SdmmcDriver *driver, uint32_t address, void *pData, uint32_t nbBlocks)
{
	uint8_t error = 0;
	uint8_t *pBytes = (uint8_t *) pData;


	//debug
	TRACE_DEBUG_2("RdBlks(%lu,%lu)\n\r", address, nbBlocks);

	while (nbBlocks--) {
		error = PerformSingleTransfer(driver, address, pBytes, 1);
		if (error)
			break;
		address += 1;
		pBytes = &pBytes[512];
	}
	return error;
}

/**
 * Write Block of data pointed by pData. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the read command.
 * \return 0 if successful; otherwise returns an \ref sdmmc_rc "error code".
 * \param pSd  Pointer to a SD card driver instance.
 * \param address  Address of block to write.
 * \param nbBlocks Number of blocks to be read
 * \param pData    Data buffer whose size is at least the block size. It shall
 * follow the peripheral and DMA alignment requirements.
 */
uint8_t SD_WriteBlocks(SdmmcDriver *driver, uint32_t address, const void *pData, uint32_t nbBlocks)
{
	uint8_t error = 0;
	uint8_t *pB = (uint8_t *) pData;


	//debug
	TRACE_DEBUG_2("WrBlks(%lu,%lu)\n\r", address, nbBlocks);

	while (nbBlocks--) {
		error = PerformSingleTransfer(driver, address, pB, 0);
		if (error)
			break;
		address += 1;
		pB = &pB[512];
	}
	return error;
}

uint8_t SD_GetStatus(SdmmcDriver *driver)
{
	uint32_t rc;

	const sSdCard * pSd = &driver->card;

	driver->control_param = 0;

	rc = sdmmc_device_control(driver,SDMMC_IOCTL_GET_DEVICE);

	if (rc != SDMMC_OK || !driver->control_param)
		return SDMMC_NOT_SUPPORTED;

	return pSd->bStatus == SDMMC_NOT_SUPPORTED ? SDMMC_ERR : pSd->bStatus;
}

uint8_t SdDecideBuswidth(SdmmcDriver *drv)
{
	uint8_t error, busWidth = 1;
	const uint8_t sd = (drv->card.bCardType & CARD_TYPE_bmSDMMC)  == CARD_TYPE_bmSD;
	const uint8_t io = (drv->card.bCardType & CARD_TYPE_bmSDIO) != 0;

	if (io)
		busWidth = 1;   /* SDIO => 1 bit only. TODO: assign CCCR. */
	else if (sd) {
		busWidth = 4;   /* default to 4-bit mode */
		error = HwSetBusWidth(drv, busWidth);
		if (error)
			busWidth = 1;
	}
	/* Switch to selected bus mode */
	if (sd && busWidth > 1)
		error = Acmd6(drv, busWidth);
	else
		error = HwSetBusWidth(drv, busWidth);
	if (error)
		return error;
	drv->card.bBusMode = busWidth;
	return 0;
}


uint8_t SdEnableHighSpeed(SdmmcDriver *drv)
{
	SdCmd6Arg request = {
		.acc_mode	= 0xf,
		.cmd_sys	= 0xf,
		.drv_strgth	= 0xf,
		.pwr_limit	= 0xf,
		.func_grp5	= 0xf,
		.func_grp6	= 0xf,
		.set		= 0,
	};
	uint32_t status;
	uint16_t mode_mask, val;
	uint8_t mode = drv->card.bCardSigLevel ? SDMMC_TIM_SD_DS : SDMMC_TIM_SD_SDR12;
	uint8_t error, mode_func, pwr_func = SD_SWITCH_ST_MAX_PWR_1_44W;
	const bool has_io = drv->card.bCardType & CARD_TYPE_bmSDIO ? true : false;
	const bool has_mem = drv->card.bCardType & CARD_TYPE_bmSD ? true : false;
	const bool has_switch = SD_CSD_CCC(drv->card.CSD) & 1 << 10 ? true : false;
	bool sfs_v1 = false;

	//assert(sizeof(pSd->sandbox1) >= 512 / 8);

#ifndef SDMMC_TRIM_SDIO
	/* TODO consider the UHS-I timing modes for SDIO devices too */
	if (has_io && !(has_mem && !has_switch)
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_HS)) {
		/* Check CIA.HS */
		status = 0;
		error = Cmd52(drv, 0, SDIO_CIA, 0, SDIO_HS_REG, &status);
		if (error)
			return SDMMC_ERR;
		if (status & SDIO_SHS) {
			/* Enable High Speed timing mode */
			status = SDIO_EHS;
			error = Cmd52(drv, 1, SDIO_CIA, 1, SDIO_HS_REG,
			    &status);
			if (error || !(status & SDIO_EHS))
				return SDMMC_ERR;
			mode = SDMMC_TIM_SD_HS;
		}
	}
#endif

	if (!has_mem || !has_switch)
		goto Apply;
	/* Search for the fastest supported timing mode */
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	sfs_v1 = SD_SWITCH_ST_DATA_STRUCT_VER(drv->card.sandbox1) >= 0x01;
	mode_mask = SD_SWITCH_ST_FUN_GRP1_INFO(drv->card.sandbox1);
	TRACE_DEBUG_1("Device timing functions: 0x%04x\n\r", mode_mask);
	if (has_io && mode == SDMMC_TIM_SD_HS
	    && !(mode_mask & 1 << SD_SWITCH_ST_ACC_HS))
		return SDMMC_NOT_SUPPORTED;
	else if (has_io) {
		/* Have SDMEM use the same timing mode as SDIO */
	} else if (mode_mask & 1 << SD_SWITCH_ST_ACC_SDR104
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_SDR104))
		mode = SDMMC_TIM_SD_SDR104;
	else if (mode_mask & 1 << SD_SWITCH_ST_ACC_DDR50
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_DDR50))
		mode = SDMMC_TIM_SD_DDR50;
	else if (mode_mask & 1 << SD_SWITCH_ST_ACC_SDR50
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_SDR50))
		mode = SDMMC_TIM_SD_SDR50;
	else if (mode_mask & 1 << SD_SWITCH_ST_ACC_HS
	    && HwIsTimingSupported(drv, SDMMC_TIM_SD_HS))
		mode = SDMMC_TIM_SD_HS;
	else
		mode = SDMMC_TIM_SD_DS;
	/* Verify current signaling level is the one expected by the device */
	if ((mode >= SDMMC_TIM_SD_SDR50 && drv->card.bCardSigLevel != 0)
	    || (mode < SDMMC_TIM_SD_SDR50 && drv->card.bCardSigLevel == 0))
		return SDMMC_STATE;
	/* Check the electrical power requirements of this device */
	val = SD_SWITCH_ST_FUN_GRP4_INFO(drv->card.sandbox1);
	TRACE_DEBUG_2("Device pwr & strength functions: 0x%04x & 0x%04x\n\r", val,
	    SD_SWITCH_ST_FUN_GRP3_INFO(drv->card.sandbox1));
	if (!(val & 1 << SD_SWITCH_ST_MAX_PWR_1_44W))
		pwr_func = SD_SWITCH_ST_MAX_PWR_0_72W;
	request.acc_mode = mode_func = SdGetTimingFunction(mode);
	request.drv_strgth = SD_SWITCH_ST_OUT_DRV_B;
	request.pwr_limit = SD_SWITCH_ST_MAX_PWR_0_72W;
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	val = SD_SWITCH_ST_MAX_CURR_CONSUMPTION(drv->card.sandbox1);
	TRACE_DEBUG_1("Device max current: %u mA\n\r", val);
	if (val == 0 || val > (1440 * 10) / 36)
		SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);
	else if (sfs_v1) {
		val = SD_SWITCH_ST_FUN_GRP4_BUSY(drv->card.sandbox1);
		if (val & 1 << SD_SWITCH_ST_MAX_PWR_1_44W)
			pwr_func = SD_SWITCH_ST_MAX_PWR_0_72W;
		val = SD_SWITCH_ST_FUN_GRP1_BUSY(drv->card.sandbox1);
		if (val & 1 << mode_func)
			SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);
	}

	/* Select device output Driver Type B, i.e. 50 ohm nominal output
	 * impedance.
	 * FIXME select the optimal device output Driver Type, which depends on
	 * board design. An oscilloscope should be used to observe signal
	 * integrity, then among the driver types that meet rise and fall time
	 * requirements, the weakest should be selected.
	 */
	request.acc_mode = 0xf;
	request.pwr_limit = 0xf;
	request.set = 1;
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	val = SD_SWITCH_ST_FUN_GRP3_RC(drv->card.sandbox1);
	if (val != request.drv_strgth)
		SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);

Switch:
	/* Now switch the memory device to the candidating mode */
	request.acc_mode = mode_func = SdGetTimingFunction(mode);
	request.cmd_sys = 0x0;
	request.drv_strgth = 0xf;
	request.pwr_limit = pwr_func;
	error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
	if (error || status & STATUS_SWITCH_ERROR)
		return SDMMC_ERR;
	val = SD_SWITCH_ST_FUN_GRP1_RC(drv->card.sandbox1);
	while (val != mode_func && val != SD_SWITCH_ST_FUN_GRP_RC_ERROR) {
		/* FIXME break upon timeout condition */
		request.acc_mode = 0xf;
		request.cmd_sys = 0xf;
		request.pwr_limit = 0xf;
		request.set = 0;
		error = SdCmd6(drv, &request, drv->card.sandbox1, &status);
		if (error || status & STATUS_SWITCH_ERROR)
			return SDMMC_ERR;
		val = SD_SWITCH_ST_FUN_GRP1_RC(drv->card.sandbox1);
		if (val != mode_func && sfs_v1
		    && !(SD_SWITCH_ST_FUN_GRP1_BUSY(drv->card.sandbox1)
		    & 1 << mode_func))
			break;
	}

	if (val != mode_func && (mode == SDMMC_TIM_SD_DS || mode == SDMMC_TIM_SD_SDR12))
		return SDMMC_ERR;
	else if (val != mode_func) {
		SdSelectSlowerTiming(drv->card.bCardSigLevel != 0, &mode);
		goto Switch;
	}

	val = SD_SWITCH_ST_FUN_GRP4_RC(drv->card.sandbox1);

	if (val != pwr_func) {
		TRACE_DEBUG_1("Device power limit 0x%x\n\r", val);
	}

Apply:
	error = HwSetHsMode(drv, mode);
	if (error == SDMMC_OK)
		drv->card.bSpeedMode = mode;
	else
		return SDMMC_ERR;
	return SDMMC_OK;
}


void SdGetExtInformation(SdmmcDriver *drv)
{
	uint32_t card_status;
	uint8_t error;

	error = Acmd51(drv, drv->card.SCR, &card_status);

	if (error == SDMMC_OK) {
		card_status &= ~STATUS_READY_FOR_DATA;
		if (card_status != (STATUS_APP_CMD | STATUS_TRAN)) {
			TRACE_DEBUG_1("SCR st %lx\n\r", card_status);
		}
	}

	error = Acmd13(drv, drv->card.SSR, &card_status);

	if (error == SDMMC_OK) {
		card_status &= ~STATUS_READY_FOR_DATA;
		if (card_status != (STATUS_APP_CMD | STATUS_TRAN)) {
			TRACE_DEBUG_1("SSR st %lx\n\r", card_status);
		}
	}
}



/**
 * Reset SD/MMC driver runtime parameters.
 */
void SdParamReset(sSdCard * pSd)
{
	pSd->dwTotalSize = 0;
	pSd->dwNbBlocks = 0;
	pSd->wBlockSize = 0;

	pSd->wCurrBlockLen = 0;
	pSd->dwCurrSpeed = 0;
	pSd->wAddress = 0;

	pSd->bCardType = 0;
	pSd->bCardSigLevel = 2;
	pSd->bSpeedMode = SDMMC_TIM_MMC_BC;
	pSd->bBusMode = 1;
	pSd->bStatus = SDMMC_NOT_INITIALIZED;
	pSd->bSetBlkCnt = 0;
	pSd->bStopMultXfer = 0;


	/* Clear our device register cache */
	memset(pSd->CID, 0, 16);
	memset(pSd->CSD, 0, 16);
	memset(pSd->EXT, 0, EXT_SIZE);
	memset(pSd->SSR, 0, SSR_SIZE);
	memset(pSd->SCR, 0, SCR_SIZE);
}



/**
 * From a wide-width device register extract the requested field.
 * \param reg  Contents of the register
 * \param reg_len  Length of the register, in bits
 * \param field_start  Offset (address of the least significant bit) of the
 * requested field, in bits
 * \param field_len  Length of the requested field, in bits
 * \return The value of the field.
 */
uint32_t SD_GetField(const uint8_t *reg, uint16_t reg_len, uint16_t field_start,
            uint8_t field_len)
{
	uint32_t val = 0;
	uint8_t byte, expected_bits = field_len, new_bits;

	//assert(reg);
	//assert(reg_len % 8 == 0);
	//assert(field_len != 0 && field_len <= 32 && field_len <= reg_len);
	//assert(field_start <= reg_len - field_len);

	reg += (reg_len - field_start - field_len) / 8;
	while (expected_bits) {
		byte = *reg;
		new_bits = (field_start + expected_bits) % 8;
		if (new_bits)
			byte &= (1 << new_bits) - 1;
		else
			new_bits = 8;
		if (new_bits <= expected_bits)
			val |= (uint32_t)byte << (expected_bits - new_bits);
		else {
			byte >>= new_bits - expected_bits;
			val |= byte;
			new_bits = expected_bits;
		}
		expected_bits -= new_bits;
		reg++;
	}
	//assert((val & ~0 << field_len) == 0);
	return val;
}

static uint8_t SdGetTimingFunction(uint8_t mode) {
	if (mode == SDMMC_TIM_SD_SDR104)
		return SD_SWITCH_ST_ACC_SDR104;
	else if (mode == SDMMC_TIM_SD_DDR50)
		return SD_SWITCH_ST_ACC_DDR50;
	else if (mode == SDMMC_TIM_SD_SDR50)
		return SD_SWITCH_ST_ACC_SDR50;
	else if (mode == SDMMC_TIM_SD_HS || mode == SDMMC_TIM_SD_SDR25)
		return SD_SWITCH_ST_ACC_HS;
	else
		return SD_SWITCH_ST_ACC_DS;
}

static void SdSelectSlowerTiming(bool high_sig, uint8_t * mode)
{
	if (high_sig)
		*mode = SDMMC_TIM_SD_DS;
	else if (*mode > SDMMC_TIM_SD_SDR50)
		*mode = SDMMC_TIM_SD_SDR50;
	else if (*mode > SDMMC_TIM_SD_SDR25)
		*mode = SDMMC_TIM_SD_SDR25;
	else
		*mode = SDMMC_TIM_SD_SDR12;
}

uint32_t SD_GetTotalSizeKB(const sSdCard * pSd)
{
	//assert(pSd != NULL);

	if (pSd->dwTotalSize == 0xFFFFFFFF)
		return (pSd->dwNbBlocks / 1024) * pSd->wBlockSize;
	else
		return pSd->dwTotalSize / 1024;
}


void SD_DumpStatus(const sSdCard *pSd)
{
	char text[40] = "";
	char mode[20] = "";
	char vers[7] = { ' ', 'v', '1', '.', '0', '\0', '\0' };

	//assert(pSd != NULL);

	if (pSd->bCardType & CARD_TYPE_bmHC)
		strcat(text, "High-capacity ");
	if (pSd->bCardType & CARD_TYPE_bmSDIO
	    && pSd->bCardType & CARD_TYPE_bmSD)
		strcat(text, "SDIO combo card");
	else if (pSd->bCardType & CARD_TYPE_bmSDIO)
		strcat(text, "SDIO device");
	else if (pSd->bCardType & CARD_TYPE_bmSD)
		strcat(text, "SD card");
#ifndef SDMMC_TRIM_MMC
	else if (pSd->bCardType & CARD_TYPE_bmMMC)
		strcat(text, "MMC device");
#endif
	else
		strcat(text, "unrecognized device");

	if (pSd->bCardType & CARD_TYPE_bmMMC) {
#ifndef SDMMC_TRIM_MMC
		const uint8_t csd = MMC_CSD_SPEC_VERS(pSd->CSD);
		const uint8_t ext = MMC_EXT_EXT_CSD_REV(pSd->EXT);

		if (csd == MMC_CSD_SPEC_VERS_1_4)
			vers[4] = '4';
		else if (csd == MMC_CSD_SPEC_VERS_2_0) {
			vers[2] = '2';
			vers[4] = 'x';
		}
		else if (csd == MMC_CSD_SPEC_VERS_3_1) {
			vers[2] = '3';
			vers[4] = 'x';
		}
		else if (csd == MMC_CSD_SPEC_VERS_4_0) {
			vers[2] = ext <= 6 ? '4' : '5';
			if (ext <= 4)
				vers[4] = '0' + ext;
			else if (ext == 5) {
				vers[4] = '4';
				vers[5] = '1';
			}
			else if (ext == 6) {
				vers[4] = '5';
				vers[5] = 'x';
			}
			else if (ext == 7)
				vers[5] = 'x';
			else if (ext == 8)
				vers[4] = '1';
			else
				vers[4] = 'x';
		}
		else if (csd != MMC_CSD_SPEC_VERS_1_0)
			vers[2] = vers[4] = '?';
		strcat(text, vers);
#endif
	}
	else if (pSd->bCardType & CARD_TYPE_bmSD
	    && SD_SCR_STRUCTURE(pSd->SCR) == SD_SCR_STRUCTURE_1_0) {
		if (SD_SCR_SD_SPEC(pSd->SCR) == SD_SCR_SD_SPEC_1_0)
			vers[5] = 'x';
		else if (SD_SCR_SD_SPEC(pSd->SCR) == SD_SCR_SD_SPEC_1_10) {
			vers[4] = '1';
			vers[5] = '0';
		}
		else if (SD_SCR_SD_SPEC(pSd->SCR) == SD_SCR_SD_SPEC_2_00) {
			if (SD_SCR_SD_SPEC4(pSd->SCR) == SD_SCR_SD_SPEC_4_X) {
				vers[2] = '4';
				vers[4] = vers[5] = 'x';
			}
			else if (SD_SCR_SD_SPEC3(pSd->SCR)
			    == SD_SCR_SD_SPEC_3_0) {
				vers[2] = '3';
				vers[5] = 'x';
			}
			else {
				vers[2] = '2';
				vers[5] = '0';
			}
		}
		else
			vers[2] = vers[4] = '?';
		strcat(text, vers);
	}

	if (pSd->bSpeedMode == SDMMC_TIM_MMC_BC)
		strcat(mode, "Backward-compatible");
#ifndef SDMMC_TRIM_MMC
	else if (pSd->bSpeedMode == SDMMC_TIM_MMC_HS_SDR)
		strcat(mode, "HS SDR");
	else if (pSd->bSpeedMode == SDMMC_TIM_MMC_HS_DDR)
		strcat(mode, "HS DDR");
	else if (pSd->bSpeedMode == SDMMC_TIM_MMC_HS200)
		strcat(mode, "HS200");
#endif
	else if (pSd->bSpeedMode == SDMMC_TIM_SD_DS)
		strcat(mode, "DS");
	else if (pSd->bSpeedMode == SDMMC_TIM_SD_HS)
		strcat(mode, "HS");
	else if (pSd->bSpeedMode >= SDMMC_TIM_SD_SDR12
	    && pSd->bSpeedMode <= SDMMC_TIM_SD_SDR104) {
		char uhs_mode[10] = "UHS-I SDR";

		if (pSd->bSpeedMode == SDMMC_TIM_SD_DDR50)
			uhs_mode[6] = 'D';
		strcat(mode, uhs_mode);
		if (pSd->bSpeedMode == SDMMC_TIM_SD_SDR12)
			strcat(mode, "12");
		else if (pSd->bSpeedMode == SDMMC_TIM_SD_SDR25)
			strcat(mode, "25");
		else if (pSd->bSpeedMode == SDMMC_TIM_SD_SDR50
		    || pSd->bSpeedMode == SDMMC_TIM_SD_DDR50)
			strcat(mode, "50");
		else
			strcat(mode, "104");
	}

	TRACE_DEBUG_4("%s, %u-bit data, in %s mode at %lu kHz\n\r", text, pSd->bBusMode, mode, (pSd->dwCurrSpeed / 1000UL) );

	if (pSd->bCardType & CARD_TYPE_bmSDMMC) {
		TRACE_DEBUG_3("Device memory size: %lu MiB, %lu * %uB\n\r", SD_GetTotalSizeKB(pSd) / 1024ul, pSd->dwNbBlocks,pSd->wBlockSize);

	}

}


/**
 * Display the content of the CID register
 * \param pSd  Pointer to SdCard instance.
 */
void SD_DumpCID(const sSdCard *pSd)
{
	const uint8_t sd_device = (pSd->bCardType & CARD_TYPE_bmSDMMC)  == CARD_TYPE_bmSD;

	/* Function-only SDIO devices have no CID register */
	if ((pSd->bCardType & CARD_TYPE_bmSDMMC) == CARD_TYPE_bmUNKNOWN)
		return;

	TRACE("Card IDentification\r\n");
	TRACE_1("MID 0x%02X\r\n", SD_CID_MID(pSd->CID));

	if (sd_device) {
		TRACE_2("OID %c%c\r\n", (char) SD_CID_OID1(pSd->CID),(char) SD_CID_OID0(pSd->CID));
		TRACE_5("PNM %c%c%c%c%c\r\n", (char) SD_CID_PNM4(pSd->CID),
		    (char) SD_CID_PNM3(pSd->CID), (char) SD_CID_PNM2(pSd->CID),
		    (char) SD_CID_PNM1(pSd->CID), (char) SD_CID_PNM0(pSd->CID));
		TRACE_2("PRV %u.%u\r\n", SD_CID_PRV1(pSd->CID),
		    SD_CID_PRV0(pSd->CID));
		TRACE_4("PSN 0x%02X%02X%02X%02X\r\n", SD_CID_PSN3(pSd->CID),
		    SD_CID_PSN2(pSd->CID), SD_CID_PSN1(pSd->CID),
		    SD_CID_PSN0(pSd->CID));
		TRACE_2("MDT %u/%02u\r\n", 2000 + SD_CID_MDT_Y(pSd->CID),
		    SD_CID_MDT_M(pSd->CID));
	}
#ifndef SDMMC_TRIM_MMC
	else {
		uint16_t year = 1997 + MMC_CID_MDT_Y(pSd->CID);

		if (MMC_EXT_EXT_CSD_REV(pSd->EXT) >= 3) {
			TRACE_1("CBX %u\r\n", eMMC_CID_CBX(pSd->CID));
			TRACE_1("OID 0x%02X\r\n", eMMC_CID_OID(pSd->CID));
		}
		else {
			TRACE_1("OID 0x%04X\r\n", MMC_CID_OID(pSd->CID));
		}
		TRACE_6("PNM %c%c%c%c%c%c\r\n",
		    (char) MMC_CID_PNM5(pSd->CID),
		    (char) MMC_CID_PNM4(pSd->CID),
		    (char) MMC_CID_PNM3(pSd->CID),
		    (char) MMC_CID_PNM2(pSd->CID),
		    (char) MMC_CID_PNM1(pSd->CID),
		    (char) MMC_CID_PNM0(pSd->CID));
		TRACE_2("PRV %u.%u\r\n", MMC_CID_PRV1(pSd->CID),
		    MMC_CID_PRV0(pSd->CID));
		TRACE_4("PSN 0x%02X%02X%02X%02X\r\n", MMC_CID_PSN3(pSd->CID),
		    MMC_CID_PSN2(pSd->CID), MMC_CID_PSN1(pSd->CID),
		    MMC_CID_PSN0(pSd->CID));
		if (MMC_EXT_EXT_CSD_REV(pSd->EXT) > 4 && year < 2010)
			year = year - 1997 + 2013;
		TRACE_2("MDT %u/%02u\r\n", year, MMC_CID_MDT_M(pSd->CID));
	}
#endif

	TRACE_1("CRC 0x%02X\r\n", SD_CID_CRC(pSd->CID));
}


/**
 * Display the content of the SCR register
 * \param pSCR  Pointer to SCR data.
 */
void SD_DumpSCR(const uint8_t *pSCR)
{
	(void)pSCR;

	_PrintTitle("SD Card Configuration");
	_PrintField("SCR_STRUCT 0x%X\r\n", SD_SCR_STRUCTURE(pSCR));
	_PrintField("SD_SPEC 0x%X\r\n", SD_SCR_SD_SPEC(pSCR));
	_PrintField("SD_SPEC3 %u\r\n", SD_SCR_SD_SPEC3(pSCR));
	_PrintField("SD_SPEC4 %u\r\n", SD_SCR_SD_SPEC4(pSCR));
	_PrintField("DATA_ST_AFTER_ER %u\r\n",
	    SD_SCR_DATA_STAT_AFTER_ERASE(pSCR));
	_PrintField("SD_SEC 0x%X\r\n", SD_SCR_SD_SECURITY(pSCR));
	_PrintField("EX_SEC 0x%X\r\n", SD_SCR_EX_SECURITY(pSCR));
	_PrintField("SD_BUS_WIDTHS 0x%X\r\n", SD_SCR_SD_BUS_WIDTHS(pSCR));
	_PrintField("CMD20 %u\r\n", SD_SCR_CMD20_SUPPORT(pSCR));
	_PrintField("CMD23 %u\r\n", SD_SCR_CMD23_SUPPORT(pSCR));
	_PrintField("CMD48/49 %u\r\n", SD_SCR_CMD48_SUPPORT(pSCR));
	_PrintField("CMD58/59 %u\r\n", SD_SCR_CMD58_SUPPORT(pSCR));
}

/**
 * Display the content of the SD Status Register
 * \param pSSR  Pointer to SSR data.
 */
void SD_DumpSSR(const uint8_t *pSSR)
{
	(void)pSSR;
	_PrintTitle("SD Status");
	_PrintField("DAT_BUS_WIDTH 0x%X\r\n", SD_SSR_DAT_BUS_WIDTH(pSSR));
	_PrintField("SEC_MODE %u\r\n", SD_SSR_SECURED_MODE(pSSR));
	_PrintField("SD_CARD_TYPE 0x%04X\r\n", SD_SSR_CARD_TYPE(pSSR));
	_PrintField("PAREA_SIZE %lu\r\n",
	    SD_SSR_SIZE_OF_PROTECTED_AREA(pSSR));
	_PrintField("SPD_CLASS 0x%02X\r\n", SD_SSR_SPEED_CLASS(pSSR));
	_PrintField("UHS_SPD_GRADE 0x%X\r\n", SD_SSR_UHS_SPEED_GRADE(pSSR));
	_PrintField("PE_MOVE %u MB/sec\r\n", SD_SSR_PERFORMANCE_MOVE(pSSR));
	_PrintField("AU_SIZE 0x%X\r\n", SD_SSR_AU_SIZE(pSSR));
	_PrintField("UHS_AU_SIZE 0x%X\r\n", SD_SSR_UHS_AU_SIZE(pSSR));
	_PrintField("ER_SIZE %u AU\r\n", SD_SSR_ERASE_SIZE(pSSR));
	_PrintField("ER_TIMEOUT %u sec\r\n", SD_SSR_ERASE_TIMEOUT(pSSR));
	_PrintField("ER_OFFS %u sec\r\n", SD_SSR_ERASE_OFFSET(pSSR));
}


/**
 * Display the content of the CSD register
 * \param pSd  Pointer to SdCard instance.
 */
void SD_DumpCSD(const sSdCard *pSd)
{
	const uint8_t sd_device = (pSd->bCardType & CARD_TYPE_bmSDMMC)
	    == CARD_TYPE_bmSD;
	const uint8_t sd_csd_v2 = sd_device
	    && SD_CSD_STRUCTURE(pSd->CSD) >= 0x1;

	_PrintTitle("Card-Specific Data");
	_PrintField("CSD_STRUCT 0x%X\r\n", SD_CSD_STRUCTURE(pSd->CSD));
#ifndef SDMMC_TRIM_MMC
	if (!sd_device) {
		_PrintField("SPEC_V 0x%X\r\n", MMC_CSD_SPEC_VERS(pSd->CSD));
	}
#endif
	_PrintField("TAAC 0x%X\r\n", SD_CSD_TAAC(pSd->CSD));
	_PrintField("NSAC 0x%X\r\n", SD_CSD_NSAC(pSd->CSD));
	_PrintField("TRAN_SPD 0x%X\r\n", SD_CSD_TRAN_SPEED(pSd->CSD));
	_PrintField("CCC 0x%X\r\n", SD_CSD_CCC(pSd->CSD));
	_PrintField("RD_BL_LEN 0x%X\r\n", SD_CSD_READ_BL_LEN(pSd->CSD));
	_PrintField("RD_BL_PART %u\r\n", SD_CSD_READ_BL_PARTIAL(pSd->CSD));
	_PrintField("WR_BL_MALIGN %u\r\n", SD_CSD_WRITE_BLK_MISALIGN(pSd->CSD));
	_PrintField("RD_BL_MALIGN %u\r\n", SD_CSD_READ_BLK_MISALIGN(pSd->CSD));
	_PrintField("DSR_IMP %u\r\n", SD_CSD_DSR_IMP(pSd->CSD));
	_PrintField("C_SIZE 0x%lX\r\n", sd_csd_v2 ? SD2_CSD_C_SIZE(pSd->CSD)
	    : SD_CSD_C_SIZE(pSd->CSD));
	if (!sd_csd_v2) {
		_PrintField("RD_CUR_MIN 0x%X\r\n",
		    SD_CSD_VDD_R_CURR_MIN(pSd->CSD));
		_PrintField("RD_CUR_MAX 0x%X\r\n",
		    SD_CSD_VDD_R_CURR_MAX(pSd->CSD));
		_PrintField("WR_CUR_MIN 0x%X\r\n",
		    SD_CSD_VDD_W_CURR_MIN(pSd->CSD));
		_PrintField("WR_CUR_MAX 0x%X\r\n",
		    SD_CSD_VDD_W_CURR_MAX(pSd->CSD));
		_PrintField("C_SIZE_MULT 0x%X\r\n",
		    SD_CSD_C_SIZE_MULT(pSd->CSD));
	}
	if (sd_device) {
		_PrintField("ER_BL_EN %u\r\n", SD_CSD_ERASE_BLK_EN(pSd->CSD));
		_PrintField("SECT_SIZE 0x%X\r\n", SD_CSD_SECTOR_SIZE(pSd->CSD));
	}
#ifndef SDMMC_TRIM_MMC
	else {
		_PrintField("ER_GRP_SIZE 0x%X\r\n",
		    MMC_CSD_ERASE_GRP_SIZE(pSd->CSD));
		_PrintField("ER_GRP_MULT 0x%X\r\n",
		    MMC_CSD_ERASE_GRP_MULT(pSd->CSD));
	}
#endif
#ifdef SDMMC_TRIM_MMC
	_PrintField("WP_GRP_SIZE 0x%X\r\n", SD_CSD_WP_GRP_SIZE(pSd->CSD));
#else
	_PrintField("WP_GRP_SIZE 0x%X\r\n", sd_device ?
	    SD_CSD_WP_GRP_SIZE(pSd->CSD) : MMC_CSD_WP_GRP_SIZE(pSd->CSD));
#endif
	_PrintField("WP_GRP_EN %u\r\n", SD_CSD_WP_GRP_ENABLE(pSd->CSD));
#ifndef SDMMC_TRIM_MMC
	if (!sd_device) {
		_PrintField("DEF_ECC 0x%X\r\n", MMC_CSD_DEFAULT_ECC(pSd->CSD));
	}
#endif
	_PrintField("R2W_FACT 0x%X\r\n", SD_CSD_R2W_FACTOR(pSd->CSD));
	_PrintField("WR_BL_LEN 0x%X\r\n", SD_CSD_WRITE_BL_LEN(pSd->CSD));
	_PrintField("WR_BL_PART %u\r\n", SD_CSD_WRITE_BL_PARTIAL(pSd->CSD));
	_PrintField("FILE_FMT_GRP %u\r\n", SD_CSD_FILE_FORMAT_GRP(pSd->CSD));
	_PrintField("COPY %u\r\n", SD_CSD_COPY(pSd->CSD));
	_PrintField("PERM_WP %u\r\n", SD_CSD_PERM_WRITE_PROTECT(pSd->CSD));
	_PrintField("TMP_WP %u\r\n", SD_CSD_TMP_WRITE_PROTECT(pSd->CSD));
	_PrintField("FILE_FMT 0x%X\r\n", SD_CSD_FILE_FORMAT(pSd->CSD));
#ifndef SDMMC_TRIM_MMC
	if (!sd_device) {
		_PrintField("ECC 0x%X\r\n", MMC_CSD_ECC(pSd->CSD));
	}
#endif
	_PrintField("CRC 0x%X\r\n", SD_CSD_CRC(pSd->CSD));
}

/**
 * Display the content of the EXT_CSD register
 * \param pExtCSD Pointer to extended CSD data.
 */
void SD_DumpExtCSD(const uint8_t *pExtCSD)
{
	(void)pExtCSD;
	_PrintTitle("Extended Device Specific Data");
	_PrintField("S_CMD_SET 0x%X\r\n", MMC_EXT_S_CMD_SET(pExtCSD));
	_PrintField("BOOT_INFO 0x%X\r\n", MMC_EXT_BOOT_INFO(pExtCSD));
	_PrintField("BOOT_SIZE_MULTI 0x%X\r\n",
	    MMC_EXT_BOOT_SIZE_MULTI(pExtCSD));
	_PrintField("ACC_SIZE 0x%X\r\n", MMC_EXT_ACC_SIZE(pExtCSD));
	_PrintField("HC_ER_GRP_SIZE 0x%X\r\n",
	    MMC_EXT_HC_ERASE_GRP_SIZE(pExtCSD));
	_PrintField("ER_TIMEOUT_MULT 0x%X\r\n",
	    MMC_EXT_ERASE_TIMEOUT_MULT(pExtCSD));
	_PrintField("REL_WR_SEC_C 0x%X\r\n", MMC_EXT_REL_WR_SEC_C(pExtCSD));
	_PrintField("HC_WP_GRP_SIZE 0x%X\r\n", MMC_EXT_HC_WP_GRP_SIZE(pExtCSD));
	_PrintField("S_C_VCC 0x%X\r\n", MMC_EXT_S_C_VCC(pExtCSD));
	_PrintField("S_C_VCCQ 0x%X\r\n", MMC_EXT_S_C_VCCQ(pExtCSD));
	_PrintField("S_A_TIMEOUT 0x%X\r\n", MMC_EXT_S_A_TIMEOUT(pExtCSD));
	_PrintField("SEC_CNT 0x%lX\r\n", MMC_EXT_SEC_COUNT(pExtCSD));
	_PrintField("MIN_PE_W_8_52 0x%X\r\n", MMC_EXT_MIN_PERF_W_8_52(pExtCSD));
	_PrintField("MIN_PE_R_8_52 0x%X\r\n", MMC_EXT_MIN_PERF_R_8_52(pExtCSD));
	_PrintField("MIN_PE_W_8_26_4_52 0x%X\r\n",
	    MMC_EXT_MIN_PERF_W_8_26_4_52(pExtCSD));
	_PrintField("MIN_PE_R_8_26_4_52 0x%X\r\n",
	    MMC_EXT_MIN_PERF_R_8_26_4_52(pExtCSD));
	_PrintField("MIN_PE_W_4_26 0x%X\r\n", MMC_EXT_MIN_PERF_W_4_26(pExtCSD));
	_PrintField("MIN_PE_R_4_26 0x%X\r\n", MMC_EXT_MIN_PERF_R_4_26(pExtCSD));
	_PrintField("PWR_CL_26_360 0x%X\r\n", MMC_EXT_PWR_CL_26_360(pExtCSD));
	_PrintField("PWR_CL_52_360 0x%X\r\n", MMC_EXT_PWR_CL_52_360(pExtCSD));
	_PrintField("PWR_CL_26_195 0x%X\r\n", MMC_EXT_PWR_CL_26_195(pExtCSD));
	_PrintField("PWR_CL_52_195 0x%X\r\n", MMC_EXT_PWR_CL_52_195(pExtCSD));
	_PrintField("DRV_STR 0x%X\r\n", MMC_EXT_DRV_STRENGTH(pExtCSD));
	_PrintField("CARD_TYPE 0x%X\r\n", MMC_EXT_CARD_TYPE(pExtCSD));
	_PrintField("CSD_STRUCT 0x%X\r\n", MMC_EXT_CSD_STRUCTURE(pExtCSD));
	_PrintField("EXT_CSD_REV 0x%X\r\n", MMC_EXT_EXT_CSD_REV(pExtCSD));
	_PrintField("CMD_SET 0x%X\r\n", MMC_EXT_CMD_SET(pExtCSD));
	_PrintField("CMD_SET_REV 0x%X\r\n", MMC_EXT_CMD_SET_REV(pExtCSD));
	_PrintField("PWR_CLASS 0x%X\r\n", MMC_EXT_POWER_CLASS(pExtCSD));
	_PrintField("HS_TIM 0x%X\r\n", MMC_EXT_HS_TIMING(pExtCSD));
	_PrintField("BUS_WIDTH 0x%X\r\n", MMC_EXT_BUS_WIDTH(pExtCSD));
	_PrintField("ER_MEM_CONT 0x%X\r\n", MMC_EXT_ERASED_MEM_CONT(pExtCSD));
	_PrintField("BOOT_CFG 0x%X\r\n", MMC_EXT_BOOT_CONFIG(pExtCSD));
	_PrintField("BOOT_BUS_WIDTH 0x%X\r\n", MMC_EXT_BOOT_BUS_WIDTH(pExtCSD));
	_PrintField("ER_GRP_DEF 0x%X\r\n", MMC_EXT_ERASE_GROUP_DEF(pExtCSD));
}



/**
 * Transfer a single data block.
 * The device shall be in its Transfer State already.
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to transfer.
 * \param pData    Data buffer, whose size is at least one block size.
 * \param isRead   Either 1 to read data from the device or 0 to write data.
 * \return a \ref sdmmc_rc result code.
 */
static uint8_t PerformSingleTransfer(SdmmcDriver *driver,uint32_t address, uint8_t * pData, uint8_t isRead)
{
	uint8_t result = SDMMC_OK, error;
	uint32_t sdmmc_address, status;

	/* Convert block address into device-expected unit */
	if (driver->card.bCardType & CARD_TYPE_bmHC)
		sdmmc_address = address;
	else if (address <= 0xfffffffful / driver->card.wCurrBlockLen)
		sdmmc_address = address * driver->card.wCurrBlockLen;
	else
		return SDMMC_PARAM;

	if (isRead)
		/* Read a single data block */
		error = Cmd17(driver, pData, sdmmc_address, &status);
	else
		/* Write a single data block */
		error = Cmd24(driver, pData, sdmmc_address, &status);

	if (!error) {
		status = status & (isRead ? STATUS_READ : STATUS_WRITE)
		    & ~STATUS_READY_FOR_DATA & ~STATUS_STATE;
		if (status) {
			//error
			TRACE_1("st %lx\n\r", status);
			error = SDMMC_ERR;
		}
	}
	if (error) {
		//error
		TRACE_ERROR_3("Cmd%u(0x%lx) %s\n\r", isRead ? 17 : 24,sdmmc_address, SD_StringifyRetCode(error));
		result = error;
		error = Cmd13(driver, &status);
		if (error) {
			driver->card.bStatus = error;
			return result;
		}
		error = _WaitUntilReady(driver, status);
		if (error) {
			driver->card.bStatus = error;
			return result;
		}
	}
	return result;
}

/**
 * Move SD card to transfer state. The buffer size must be at
 * least 512 byte long. This function checks the SD card status register and
 * address the card if required before sending the transfer command.
 * Returns 0 if successful; otherwise returns an code describing the error.
 * \param pSd      Pointer to a SD card driver instance.
 * \param address  Address of the block to transfer.
 * \param nbBlocks Pointer to count of blocks to transfer. Pointer to 0
 * for infinite transfer. Upon return, points to the count of blocks actually
 * transferred.
 * \param pData    Data buffer whose size is at least the block size.
 * \param isRead   1 for read data and 0 for write data.
 */
static uint8_t MoveToTransferState(SdmmcDriver *driver,uint32_t address,uint16_t * nbBlocks, uint8_t * pData, uint8_t isRead)
{
	uint8_t result = SDMMC_OK, error;
	uint32_t sdmmc_address, state, status;

	/* Convert block address into device-expected unit */
	if (driver->card.bCardType & CARD_TYPE_bmHC)
		sdmmc_address = address;
	else if (address <= 0xfffffffful / driver->card.wCurrBlockLen)
		sdmmc_address = address * driver->card.wCurrBlockLen;
	else
		return SDMMC_PARAM;

	if (driver->card.bSetBlkCnt) {
		error = Cmd23(driver, 0, *nbBlocks, &status);
		if (error)
			return error;
	}

	if (isRead)
		/* Move to Receiving data state */
		error = Cmd18(driver, nbBlocks, pData, sdmmc_address, &status);
	else
		/* Move to Sending data state */
		error = Cmd25(driver, nbBlocks, pData, sdmmc_address, &status);

	if (error == SDMMC_CHANGED)
		error = SDMMC_OK;

	if (!error) {
		status = status & (isRead ? STATUS_READ : STATUS_WRITE)
		    & ~STATUS_READY_FOR_DATA & ~STATUS_STATE;

		if (driver->card.bStopMultXfer)
			error = _StopCmd(driver);

		if (status) {
			//error
			TRACE_DEBUG_1("st %lx\n\r", status);
			/* TODO ignore STATUS_ADDR_OUT_OR_RANGE if the read
			 * operation is for the last block of memory area. */
			error = SDMMC_ERR;
		}
		/* FIXME when not using the STOP_TRANSMISSION command (using the
		 * SET_BLOCK_COUNT command instead), we should issue the
		 * SEND_STATUS command, eat and handle any Execution Mode
		 * exception. */
	}
	if (error) {
		//error
		TRACE_ERROR_4("Cmd%u(0x%lx, %u) %s\n\r", isRead ? 18 : 25,sdmmc_address, *nbBlocks, SD_StringifyRetCode(error));
		result = error;
		error = Cmd13(driver, &status);

		if (error) {
			driver->card.bStatus = error;
			return result;
		}

		state = status & STATUS_STATE;

		if (state == STATUS_DATA || state == STATUS_RCV) {

			error = Cmd12(driver, &status);

			if (error == SDMMC_OK) {
				//info
				TRACE_INFO_1("st %lx\n\r", status);

				if (status & (STATUS_ERASE_SEQ_ERROR
				    | STATUS_ERASE_PARAM | STATUS_UN_LOCK_FAILED
				    | STATUS_ILLEGAL_COMMAND
				    | STATUS_CIDCSD_OVERWRITE
				    | STATUS_ERASE_RESET | STATUS_SWITCH_ERROR))
					result = SDMMC_STATE;
				else if (status & (STATUS_COM_CRC_ERROR
				    | STATUS_CARD_ECC_FAILED | STATUS_ERROR))
					result = SDMMC_ERR_IO;
				else if (status & (STATUS_ADDR_OUT_OR_RANGE
				    | STATUS_ADDRESS_MISALIGN
				    | STATUS_BLOCK_LEN_ERROR
				    | STATUS_WP_VIOLATION
				    | STATUS_WP_ERASE_SKIP))
					result = SDMMC_PARAM;
				else if (status & STATUS_CC_ERROR)
					result = SDMMC_ERR;
			}
			else if (error == SDMMC_NO_RESPONSE)
				error = Cmd13(driver, &status);
			if (error) {
				driver->card.bStatus = error;
				return result;
			}
		}
		error = _WaitUntilReady(driver, status);

		if (error) {
			driver->card.bStatus = error;
			return result;
		}
	}
	return result;
}

/**
 * Stop TX/RX
 */
static uint8_t _StopCmd(SdmmcDriver *driver)
{
	uint32_t status, state = STATUS_RCV;
	uint32_t i;
	uint8_t err, count;
	/* When stopping a write operation, allow retrying several times */
	for (i = 0; i < 9 && state == STATUS_RCV; i++) {
		err = Cmd12(driver, &status);
		if (err)
			return err;
		/* TODO handle any exception, raised in status; report that
		 * the data transfer has failed. */

		/* Wait until ready. Allow 30 ms. */
		for (count = 0; count < 6; count++) {
			/* Wait for about 5 ms - which equals 5 system ticks */
			t_msleep(driver,5);
			err = Cmd13(driver, &status);
			if (err)
				return err;
			state = status & STATUS_STATE;

			/* Invalid state */
			if (state == STATUS_IDLE || state == STATUS_READY
			    || state == STATUS_IDENT || state == STATUS_STBY
			    || state == STATUS_DIS)
				return SDMMC_NOT_INITIALIZED;

			/* Ready? */
			if ((status & STATUS_READY_FOR_DATA) ==
			    STATUS_READY_FOR_DATA && state == STATUS_TRAN)
				return SDMMC_OK;
		}
	}
	return SDMMC_STATE;
}

static uint8_t _WaitUntilReady(SdmmcDriver *driver, uint32_t last_dev_status)
{
	uint32_t state, status = last_dev_status;
	uint8_t err, count;

	for (count = 0; count < 51; count++) {
		state = status & STATUS_STATE;
		if (state == STATUS_TRAN && status & STATUS_READY_FOR_DATA)
			return SDMMC_OK;
		/* Sending-data and Receive-data states may be encountered
		 * temporarily further to single-block data transfers. */
		/* FIXME state 15 "reserved for I/O mode" may be allowed */
		if (state != STATUS_TRAN && state != STATUS_PRG
		    && state != STATUS_DATA && state != STATUS_RCV)
			return SDMMC_NOT_INITIALIZED;
		/* Wait for about 10 ms - which equals 10 system ticks */
		t_msleep(driver,10);
		err = Cmd13(driver, &status);
		if (err)
			return err;
	}
	return SDMMC_BUSY;
}

#endif