aboutsummaryrefslogtreecommitdiffstats
path: root/os/hal/ports/SAMA/LLD/SDMMCv1/ch_sdmmc_pmc.c
blob: 0d4c2616b9f8296001b942a86ea1d5c866f53a89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
#include "hal.h"

#if (HAL_USE_SDMMC == TRUE)

#include "sama_sdmmc_lld.h"
#include "ch_sdmmc_pmc.h"


struct _pmc_main_osc {
	uint32_t rc_freq;
	uint32_t crystal_freq;
};



enum _slowclock_domain {
	SLOWCLOCK_DOMAIN_DEFAULT, /* Default slow clock, used as input for peripherals */
#ifdef CONFIG_HAVE_SLOWCLOCK_TIMING_DOMAIN
	SLOWCLOCK_DOMAIN_TIMING,  /* Timing Domain slow clock (RTC, RTT) */
#endif
};

static uint32_t _pmc_mck = 0;
static struct _pmc_main_osc _pmc_main_oscillators = {
	.rc_freq = MAIN_CLOCK_INT_OSC,
};

uint32_t pmc_get_slow_clock(void);
void pmc_disable_gck(uint32_t id);
int pmc_select_external_osc(bool bypass);
void pmc_enable_internal_osc(void);
void pmc_switch_mck_to_slck(void);
void pmc_select_internal_osc(void);
void pmc_disable_external_osc(void);
void pmc_disable_internal_osc(void);

static uint16_t _pmc_measure_main_osc_freq(bool external_xt)
{
	volatile uint32_t timeout = MAINFRDY_TIMEOUT;

#ifdef CKGR_MCFR_CCSS
	PMC->CKGR_MCFR = external_xt ? CKGR_MCFR_CCSS : 0;
#endif

#ifdef CKGR_MCFR_RCMEAS
	PMC->CKGR_MCFR |= CKGR_MCFR_RCMEAS;
#endif
	timeout = MAINFRDY_TIMEOUT;
	while (!(PMC->CKGR_MCFR & CKGR_MCFR_MAINFRDY) && --timeout > 0);

	return (timeout ?
		((PMC->CKGR_MCFR & CKGR_MCFR_MAINF_Msk) >> CKGR_MCFR_MAINF_Pos) :
		0u);
}

void pmc_switch_mck_to_new_source(uint32_t mckr_css)
{
	uint32_t mckr = PMC->PMC_MCKR;
	uint32_t mask = PMC_MCKR_CSS_Msk;

	if ((mckr ^ mckr_css) & mask) {
		PMC->PMC_MCKR = (mckr & ~mask) | (mckr_css & mask);
		while (!(PMC->PMC_SR & PMC_SR_MCKRDY));
	}

	_pmc_mck = 0;
}


uint32_t pmc_set_main_oscillator_freq(uint32_t freq)
{
	uint32_t mor, mckr, mckr_mask;
	uint16_t mainf_rc, mainf_xt = 0;

	_pmc_main_oscillators.crystal_freq = freq;

	if (freq > 0)
		return freq;
#if 1
	/*
	 * Save the current value of the CKGR_MCKR register then swith to
	 * the slow clock.
	 */
	mckr = PMC->PMC_MCKR;
	pmc_switch_mck_to_slck();
	mckr_mask = PMC_MCKR_MDIV_Msk | PMC_MCKR_PRES_Msk;
	PMC->PMC_MCKR &= ~mckr_mask;

	/* Save the current value of the CKGR_MOR register. */
	mor = PMC->CKGR_MOR;

	/* Measure the 12MHz RC frequency. */
	pmc_select_internal_osc();
	mainf_rc = _pmc_measure_main_osc_freq(false);

	/* Measure the crystal or by-pass frequency. */

	/* Try by-pass first. */
	if (pmc_select_external_osc(true) == 0)
		mainf_xt = _pmc_measure_main_osc_freq(true);

	/* Then try external crytal if no by-pass. */
	if (!mainf_xt) {
		if (pmc_select_external_osc(false) == 0)
			mainf_xt = _pmc_measure_main_osc_freq(true);
	}

	/* Switch back to internal 12MHz RC if it was selected initially */
	if (!(mor & CKGR_MOR_MOSCSEL))
		pmc_select_internal_osc();

#ifdef CKGR_MOR_MOSCRCEN
	/* Disable internal oscillator if it wasn't enabled initially */
	if (!(mor & CKGR_MOR_MOSCRCEN))
		pmc_disable_internal_osc();
#endif

	/* Switch back to the former MCK source. */
	PMC->PMC_MCKR = (PMC->PMC_MCKR & ~mckr_mask) | (mckr & mckr_mask);
	pmc_switch_mck_to_new_source(mckr & PMC_MCKR_CSS_Msk);

	/* Guess the external crystal frequency, if available. */
	if (mainf_rc && mainf_xt) {
		uint32_t ratio = (mainf_xt * 1000) / mainf_rc;

		// Use 10% low and high margins
		if (1800 <= ratio && ratio <= 2200) {
			// 24/12 => ratio = 2000
			_pmc_main_oscillators.crystal_freq = 24000000u;
		} else if (1200 <= ratio && ratio <= 1467) {
			// 16/12 => ratio = 1333
			_pmc_main_oscillators.crystal_freq = 16000000u;
		} else if (900 <= ratio && ratio <= 1100) {
			// 12/12 => ratio = 1000
			_pmc_main_oscillators.crystal_freq = 12000000u;
		} else if (600 <= ratio && ratio <= 733) {
			// 8/12 => ratio = 667
			_pmc_main_oscillators.crystal_freq = 8000000u;
		}
	}
#endif
	return _pmc_main_oscillators.crystal_freq;
}

bool pmc_is_peripheral_enabled(uint32_t id)
{
//	assert(id < ID_PERIPH_COUNT);

#ifdef PMC_CSR_PID0
	return (PMC->PMC_CSR[(id >> 5) & 3] & (1 << (id & 31))) != 0;
#else
	PMC->PMC_PCR = PMC_PCR_PID(id);
	volatile uint32_t pcr = PMC->PMC_PCR;

	return (pcr & PMC_PCR_EN) != 0;
#endif
}

void pmc_enable_peripheral(uint32_t id)
{
	osalDbgCheck(id < ID_PERIPH_COUNT);

	// select peripheral
	PMC->PMC_PCR = PMC_PCR_PID(id);

	volatile uint32_t pcr = PMC->PMC_PCR;
	PMC->PMC_PCR = pcr | PMC_PCR_CMD | PMC_PCR_EN;
}

void pmc_disable_peripheral(uint32_t id)
{
	osalDbgCheck(id < ID_PERIPH_COUNT);

	// select peripheral
	PMC->PMC_PCR = PMC_PCR_PID(id);

	// disable it but keep previous configuration
	PMC->PMC_PCR = (PMC->PMC_PCR & ~PMC_PCR_EN) | PMC_PCR_CMD;
}

Matrix* get_peripheral_matrix(uint32_t id)
{
	//int i;
	switch(id)
	{
	case ID_ARM_PMU: /*  2: Performance Monitor Unit (PMU) (ARM_PMU) */
	case ID_XDMAC0:  /*  6: DMA Controller 0 (XDMAC0) */
	case ID_XDMAC1:  /*  7: DMA Controller 1 (XDMAC1) */
	case ID_AES:     /*  9: Advanced Enion Standard (AES) */
	case ID_AESB:    /* 10: AES bridge (AESB) */
	case ID_SHA:     /* 12: SHA Signature (SHA) */
	case ID_MPDDRC:  /* 13: MPDDR controller (MPDDRC) */
	case ID_MATRIX0: /* 15: H64MX: 64-bit AHB Matrix (MATRIX0) */
	case ID_SDMMC0:  /* 31: Secure Digital Multimedia Card Controller 0 (SDMMC0) */
	case ID_SDMMC1:  /* 32: Secure Digital Multimedia Card Controller 1 (SDMMC1) */
	case ID_LCDC:    /* 45: LCD Controller (LCDC) */
	case ID_ISC:     /* 46: Camera Interface (ISC) */
	case ID_QSPI0:   /* 52: QSPI 0 (QSPI0) */
	case ID_QSPI1:   /* 53: QSPI 1 (QSPI1) */
	case ID_L2CC:    /* 63: L2 Cache Controller (L2CC) */
		return MATRIX0; // AHB 64-bit matrix
	default:
		return MATRIX1; // AHB 32-bit matrix
	};

}

uint32_t get_peripheral_clock_matrix_div(uint32_t id)
{
	Matrix* matrix = get_peripheral_matrix(id);

	if (matrix == MATRIX1) {
		if (PMC->PMC_MCKR & PMC_MCKR_H32MXDIV_H32MXDIV2)
			return 2;
		else
			return 1;
	}

	return 1;
}


uint32_t pmc_get_peripheral_clock(uint32_t id)
{
	osalDbgCheck(id < ID_PERIPH_COUNT);

	uint32_t div = get_peripheral_clock_matrix_div(id);
#ifdef CONFIG_HAVE_PMC_PERIPH_DIV
	PMC->PMC_PCR = PMC_PCR_PID(id);
	volatile uint32_t pcr = PMC->PMC_PCR;
	div *= 1 << ((pcr & PMC_PCR_DIV_Msk) >> PMC_PCR_DIV_Pos);
#endif

	return pmc_get_master_clock() / div;
}

bool slowclock_is_internal(enum _slowclock_domain domain)
{
	(void)domain;
	return (SCKC->SCKC_CR & SCKC_CR_OSCSEL) != SCKC_CR_OSCSEL;
}

uint32_t slowclock_get_clock(enum _slowclock_domain domain)
{
	if (slowclock_is_internal(domain))
		return 32000;
	else
		return 32768;
}

uint32_t pmc_get_slow_clock(void)
{
	return slowclock_get_clock(SLOWCLOCK_DOMAIN_DEFAULT);
}

uint32_t pmc_get_upll_clock(void)
{
	uint32_t upllclk;

#if defined(SFR_UTMICKTRIM_FREQ_Msk)
	uint32_t clktrim = SFR->SFR_UTMICKTRIM & SFR_UTMICKTRIM_FREQ_Msk;
	switch (clktrim) {
#ifdef SFR_UTMICKTRIM_FREQ_48
		case SFR_UTMICKTRIM_FREQ_48:
			upllclk = 10 * _pmc_main_oscillators.crystal_freq;
			break;
#endif
		case SFR_UTMICKTRIM_FREQ_24:
			upllclk = 20 * _pmc_main_oscillators.crystal_freq;
			break;
		case SFR_UTMICKTRIM_FREQ_16:
			upllclk = 30 * _pmc_main_oscillators.crystal_freq;
			break;
		default:
			upllclk = 40 * _pmc_main_oscillators.crystal_freq;
			break;
	}
#elif defined(UTMI_CKTRIM_FREQ_Msk)
	uint32_t clktrim = UTMI->UTMI_CKTRIM & UTMI_CKTRIM_FREQ_Msk;
	switch (clktrim) {
		case UTMI_CKTRIM_FREQ_XTAL16:
			upllclk = 30 * _pmc_main_oscillators.crystal_freq;
			break;
		default:
			upllclk = 40 * _pmc_main_oscillators.crystal_freq;
			break;
	}
#else
	upllclk = 40 * _pmc_main_oscillators.crystal_freq;
#endif

#ifdef CONFIG_HAVE_PMC_UPLLDIV2
	if (PMC->PMC_MCKR & PMC_MCKR_UPLLDIV2)
		upllclk >>= 1;
#endif

	return upllclk;
}

uint32_t pmc_get_main_clock(void)
{
	if (PMC->CKGR_MOR & CKGR_MOR_MOSCSEL)
		return _pmc_main_oscillators.crystal_freq; /* external crystal */
	else
		return _pmc_main_oscillators.rc_freq; /* on-chip main clock RC */
}

uint32_t pmc_get_plla_clock(void)
{
	uint32_t pllaclk, pllar, pllmula, plldiva;

	pllar = PMC->CKGR_PLLAR;
	pllmula = (pllar & CKGR_PLLAR_MULA_Msk) >> CKGR_PLLAR_MULA_Pos;
	plldiva = (pllar & CKGR_PLLAR_DIVA_Msk) >> CKGR_PLLAR_DIVA_Pos;
	if (plldiva == 0 || pllmula == 0)
		return 0;

	pllaclk = pmc_get_main_clock();
	pllaclk = pllaclk * (pllmula + 1) / plldiva;
#ifdef CONFIG_HAVE_PMC_PLLADIV2
	if (PMC->PMC_MCKR & PMC_MCKR_PLLADIV2)
		pllaclk >>= 1;
#endif
	return pllaclk;
}

uint32_t pmc_get_processor_clock(void)
{
	uint32_t procclk, mdiv;

	procclk = pmc_get_master_clock();

	mdiv = PMC->PMC_MCKR & PMC_MCKR_MDIV_Msk;
	switch (mdiv) {
	case PMC_MCKR_MDIV_EQ_PCK:
		break;
	case PMC_MCKR_MDIV_PCK_DIV2:
		procclk <<= 1; // multiply by 2
		break;
	case PMC_MCKR_MDIV_PCK_DIV3:
		procclk *= 3;  // multiply by 3
		break;
	case PMC_MCKR_MDIV_PCK_DIV4:
		procclk <<= 2; // multiply by 4
		break;
	default:
		/* should never get here... */
		break;
	}

	return procclk;
}



static void _pmc_compute_mck(void)
{
	uint32_t clk = 0;
	uint32_t mckr = PMC->PMC_MCKR;

	uint32_t css = mckr & PMC_MCKR_CSS_Msk;
	switch (css) {
	case PMC_MCKR_CSS_SLOW_CLK:
		clk = pmc_get_slow_clock();
		break;
	case PMC_MCKR_CSS_MAIN_CLK:
		clk = pmc_get_main_clock();
		break;
	case PMC_MCKR_CSS_PLLA_CLK:
		clk = pmc_get_plla_clock();
		break;
	case PMC_MCKR_CSS_UPLL_CLK:
		clk = pmc_get_upll_clock();
		break;
	default:
		/* should never get here... */
		break;
	}

	uint32_t pres = mckr & PMC_MCKR_PRES_Msk;
	switch (pres) {
	case PMC_MCKR_PRES_CLOCK:
		break;
	case PMC_MCKR_PRES_CLOCK_DIV2:
		clk >>= 1;
		break;
	case PMC_MCKR_PRES_CLOCK_DIV4:
		clk >>= 2;
		break;
	case PMC_MCKR_PRES_CLOCK_DIV8:
		clk >>= 3;
		break;
	case PMC_MCKR_PRES_CLOCK_DIV16:
		clk >>= 4;
		break;
	case PMC_MCKR_PRES_CLOCK_DIV32:
		clk >>= 5;
		break;
	case PMC_MCKR_PRES_CLOCK_DIV64:
		clk >>= 6;
		break;
#ifdef PMC_MCKR_PRES_CLOCK_DIV3
	case PMC_MCKR_PRES_CLOCK_DIV3:
		clk /= 3;
		break;
#endif
	default:
		/* should never get here... */
		break;
	}

	uint32_t mdiv = mckr & PMC_MCKR_MDIV_Msk;
	switch (mdiv) {
	case PMC_MCKR_MDIV_EQ_PCK:
		break;
	case PMC_MCKR_MDIV_PCK_DIV2:
		clk >>= 1; // divide by 2
		break;
	case PMC_MCKR_MDIV_PCK_DIV4:
		clk >>= 2; // divide by 4
		break;
	case PMC_MCKR_MDIV_PCK_DIV3:
		clk /= 3;  // divide by 3
		break;
	default:
		/* should never get here... */
		break;
	}

	_pmc_mck = clk;
}

uint32_t pmc_get_master_clock(void)
{
	if (!_pmc_mck)
		_pmc_compute_mck();
	return _pmc_mck;
}


void pmc_configure_gck(uint32_t id, uint32_t clock_source, uint32_t div)
{
	osalDbgCheck(id < ID_PERIPH_COUNT);
	osalDbgCheck(!(clock_source & ~PMC_PCR_GCKCSS_Msk));
	osalDbgCheck(div > 0);
	osalDbgCheck(!((div << PMC_PCR_GCKDIV_Pos) & ~PMC_PCR_GCKDIV_Msk));

	pmc_disable_gck(id);
	PMC->PMC_PCR = PMC_PCR_PID(id);
	volatile uint32_t pcr = PMC->PMC_PCR & ~(PMC_PCR_GCKCSS_Msk | PMC_PCR_GCKDIV_Msk);
	PMC->PMC_PCR = pcr | clock_source | PMC_PCR_CMD | PMC_PCR_GCKDIV(div - 1);
}


void pmc_enable_gck(uint32_t id)
{
	osalDbgCheck(id < ID_PERIPH_COUNT);

	PMC->PMC_PCR = PMC_PCR_PID(id);
	volatile uint32_t pcr = PMC->PMC_PCR;
	PMC->PMC_PCR = pcr | PMC_PCR_CMD | PMC_PCR_GCKEN;

#ifdef PMC_GCSR_PID0
	while ((PMC->PMC_GCSR[(id >> 5) & 3] & (1 << (id & 31))) == 0);
#else
	while (!(PMC->PMC_SR & PMC_SR_GCKRDY));
#endif
}

void pmc_disable_gck(uint32_t id)
{
	osalDbgCheck(id < ID_PERIPH_COUNT);

	PMC->PMC_PCR = PMC_PCR_PID(id);
	volatile uint32_t pcr = PMC->PMC_PCR;
	PMC->PMC_PCR = PMC_PCR_CMD | (pcr & ~PMC_PCR_GCKEN);
}

uint32_t pmc_get_gck_clock(uint32_t id)
{
	uint32_t clk = 0;
	osalDbgCheck(id < ID_PERIPH_COUNT);

	PMC->PMC_PCR = PMC_PCR_PID(id);
	volatile uint32_t pcr = PMC->PMC_PCR;

	switch (pcr & PMC_PCR_GCKCSS_Msk) {
	case PMC_PCR_GCKCSS_SLOW_CLK:
		clk = pmc_get_slow_clock();
		break;
	case PMC_PCR_GCKCSS_MAIN_CLK:
		clk = pmc_get_main_clock();
		break;
	case PMC_PCR_GCKCSS_PLLA_CLK:
		clk = pmc_get_plla_clock();
		break;
	case PMC_PCR_GCKCSS_UPLL_CLK:
		clk = pmc_get_upll_clock();
		break;
	case PMC_PCR_GCKCSS_MCK_CLK:
		clk = pmc_get_master_clock();
		break;
#ifdef CONFIG_HAVE_PMC_AUDIO_CLOCK
	case PMC_PCR_GCKCSS_AUDIO_CLK:
		clk = pmc_get_audio_pmc_clock();
		break;
#endif
	}

	uint32_t div = (pcr & PMC_PCR_GCKDIV_Msk) >> PMC_PCR_GCKDIV_Pos;
	return ROUND_INT_DIV(clk, div + 1);
}

void pmc_configure_peripheral(uint32_t id, const struct _pmc_periph_cfg* cfg, bool enable)
{
	osalDbgCheck(id < ID_PERIPH_COUNT);

	pmc_disable_peripheral(id);

	if (cfg != NULL) {

		if (cfg->gck.div > 0)
			pmc_configure_gck(id, cfg->gck.css, cfg->gck.div);

	} else {
		pmc_disable_gck(id);
	}

	/* Enable peripheral, gck or only configure it */
	if (enable) {
		if (cfg && cfg->gck.div > 0)
			pmc_enable_gck(id);

		pmc_enable_peripheral(id);
	}
}


void pmc_enable_upll_clock(void)
{
	uint32_t uckr = CKGR_UCKR_UPLLEN | CKGR_UCKR_UPLLCOUNT(0x3);
	uckr |= CKGR_UCKR_BIASCOUNT(0x1);


#if defined(SFR_UTMICKTRIM_FREQ_Msk)
	switch (_pmc_main_oscillators.crystal_freq) {
#ifdef SFR_UTMICKTRIM_FREQ_48
	case 48000000:
		SFR->SFR_UTMICKTRIM = (SFR->SFR_UTMICKTRIM & ~SFR_UTMICKTRIM_FREQ_Msk) | SFR_UTMICKTRIM_FREQ_48;
		break;
#endif
	case 24000000:
		SFR->SFR_UTMICKTRIM = (SFR->SFR_UTMICKTRIM & ~SFR_UTMICKTRIM_FREQ_Msk) | SFR_UTMICKTRIM_FREQ_24;
		break;
	case 16000000:
		SFR->SFR_UTMICKTRIM = (SFR->SFR_UTMICKTRIM & ~SFR_UTMICKTRIM_FREQ_Msk) | SFR_UTMICKTRIM_FREQ_16;
		break;
	default:
		SFR->SFR_UTMICKTRIM = (SFR->SFR_UTMICKTRIM & ~SFR_UTMICKTRIM_FREQ_Msk) | SFR_UTMICKTRIM_FREQ_12;
	}
#elif defined(UTMI_CKTRIM_FREQ_Msk)
	switch (_pmc_main_oscillators.crystal_freq) {
	case 16000000:
		UTMI->UTMI_CKTRIM = (UTMI->UTMI_CKTRIM & ~UTMI_CKTRIM_FREQ_Msk) | UTMI_CKTRIM_FREQ_XTAL16;
		break;
	default:
		UTMI->UTMI_CKTRIM = (UTMI->UTMI_CKTRIM & ~UTMI_CKTRIM_FREQ_Msk) | UTMI_CKTRIM_FREQ_XTAL12;
	}
#endif

	/* enable the 480MHz UTMI PLL  */
	PMC->CKGR_UCKR = uckr;

	/* wait until UPLL is locked */
	while (!(PMC->PMC_SR & PMC_SR_LOCKU));
}


void pmc_enable_upll_bias(void)
{
	PMC->CKGR_UCKR |= CKGR_UCKR_BIASEN;
}

void pmc_disable_upll_bias(void)
{
	PMC->CKGR_UCKR &= ~CKGR_UCKR_BIASEN;
}

void pmc_switch_mck_to_slck(void)
{
	/* Select Slow Clock as input clock for PCK and MCK */
	PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_CSS_Msk) | PMC_MCKR_CSS_SLOW_CLK;
	while (!(PMC->PMC_SR & PMC_SR_MCKRDY));

	_pmc_mck = 0;
}

void pmc_select_internal_osc(void)
{
	pmc_enable_internal_osc();

	/* switch MAIN clock to internal 12MHz RC */
	PMC->CKGR_MOR = (PMC->CKGR_MOR & ~(CKGR_MOR_MOSCSEL | CKGR_MOR_KEY_Msk)) | CKGR_MOR_KEY_PASSWD;

	/* in case where MCK is running on MAIN CLK */
	if ((PMC->PMC_MCKR & PMC_MCKR_CSS_PLLA_CLK) || (PMC->PMC_MCKR & PMC_MCKR_CSS_MAIN_CLK))
		while (!(PMC->PMC_SR & PMC_SR_MCKRDY));

	/* disable external OSC 12 MHz to save power*/
	pmc_disable_external_osc();
}

int pmc_enable_external_osc(bool bypass)
{
	uint32_t cgmor = PMC->CKGR_MOR;
	uint32_t mask = CKGR_MOR_MOSCXTEN;
	volatile uint32_t timeout;

	if (bypass)
		mask = CKGR_MOR_MOSCXTBY;

	/* Enable Crystal Oscillator if needed */
	if ((cgmor & mask) != mask) {
		cgmor &= ~CKGR_MOR_KEY_Msk;
		cgmor |= CKGR_MOR_KEY_PASSWD;

		if (bypass) {
			/* Disable Crystal Oscillator */
			cgmor &= ~CKGR_MOR_MOSCXTEN;
			PMC->CKGR_MOR = cgmor;

			/* Wait Main Oscillator not ready */
			while (PMC->PMC_SR & PMC_SR_MOSCXTS);

			/* Enable Crystal Oscillator Bypass */
			cgmor |= CKGR_MOR_MOSCXTBY;
			PMC->CKGR_MOR = cgmor;
		} else {
			/* Disable Crystal Oscillator Bypass */
			cgmor &= ~CKGR_MOR_MOSCXTBY;
			PMC->CKGR_MOR = cgmor;

			/* Wait Main Oscillator not ready */
			while (PMC->PMC_SR & PMC_SR_MOSCXTS);

			/* Set Oscillator Startup Time */
			cgmor &= ~CKGR_MOR_MOSCXTST_Msk;
			cgmor |= CKGR_MOR_MOSCXTST(18);
			PMC->CKGR_MOR = cgmor;

			/* Enable Crystal Oscillator */
			cgmor |= CKGR_MOR_MOSCXTEN;
			PMC->CKGR_MOR = cgmor;
		}

		/* Wait Main Oscillator ready */
		timeout = MOSCXTS_TIMEOUT;
		while (!(PMC->PMC_SR & PMC_SR_MOSCXTS) && --timeout > 0);

		/* Return true if oscillator ready before timeout */
		return timeout == 0 ? -1 : 0;
	} else {
		/* Crystal Oscillator already selected, just check if ready */
		if (PMC->PMC_SR & PMC_SR_MOSCXTS)
			return 0;
		else
			return -2;
	}
}

void pmc_disable_external_osc(void)
{
	/* disable external OSC */
	PMC->CKGR_MOR = (PMC->CKGR_MOR & ~(CKGR_MOR_MOSCSEL | CKGR_MOR_KEY_Msk)) | CKGR_MOR_KEY_PASSWD;
	PMC->CKGR_MOR = (PMC->CKGR_MOR & ~(CKGR_MOR_MOSCXTEN | CKGR_MOR_MOSCXTBY | CKGR_MOR_KEY_Msk)) | CKGR_MOR_KEY_PASSWD;
}
int pmc_select_external_osc(bool bypass)
{
	int err;
	volatile uint32_t timeout;

	/* Return if external oscillator had been selected */
	if ((PMC->CKGR_MOR & CKGR_MOR_MOSCSEL) == CKGR_MOR_MOSCSEL) {
		uint32_t mask = bypass ? CKGR_MOR_MOSCXTBY : CKGR_MOR_MOSCXTEN;
		if ((PMC->CKGR_MOR & mask) == mask)
			return 0;
	}

	/*
	 * When switching the source of the main clock between the RC oscillator and the crystal
	 * oscillator, both oscillators must be enabled. After completion of the switch, the
	 * unused oscillator can be disabled.
	 */
	pmc_enable_internal_osc();
	err = pmc_enable_external_osc(bypass);
	if (err < 0)
		return err;

	/* switch MAIN clock to external oscillator */
	PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_KEY_Msk) | CKGR_MOR_MOSCSEL
	    | CKGR_MOR_KEY_PASSWD;

	/* wait for the command to be taken into account */
	while ((PMC->CKGR_MOR & CKGR_MOR_MOSCSEL) != CKGR_MOR_MOSCSEL);

	/* wait MAIN clock status change for external oscillator selection */
	timeout = MOSCSELS_TIMEOUT;
	while (!(PMC->PMC_SR & PMC_SR_MOSCSELS) && --timeout > 0);
	if (!timeout) {
		PMC->CKGR_MOR &= ~CKGR_MOR_MOSCSEL;
		return -1;
	}

	/* in case where MCK is running on MAIN CLK */
	if ((PMC->PMC_MCKR & PMC_MCKR_CSS_PLLA_CLK) || (PMC->PMC_MCKR & PMC_MCKR_CSS_MAIN_CLK))
		while (!(PMC->PMC_SR & PMC_SR_MCKRDY));

	/* disable internal 12MHz RC to save power */
	pmc_disable_internal_osc();

	return 0;
}


void pmc_enable_internal_osc(void)
{
#ifdef CKGR_MOR_MOSCRCEN
	/* Enable internal 12MHz RC when needed */
	if ((PMC->CKGR_MOR & CKGR_MOR_MOSCRCEN) != CKGR_MOR_MOSCRCEN) {
		PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_KEY_Msk) | CKGR_MOR_MOSCRCEN | CKGR_MOR_KEY_PASSWD;
		/* Wait internal 12MHz RC Startup Time for clock stabilization */
		while (!(PMC->PMC_SR & PMC_SR_MOSCRCS));
	}
#endif
}

void pmc_switch_mck_to_pll(void)
{
	/* Select PLL as input clock for PCK and MCK */
	PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_CSS_Msk) | PMC_MCKR_CSS_PLLA_CLK;
	while (!(PMC->PMC_SR & PMC_SR_MCKRDY));

	_pmc_mck = 0;
}

void pmc_set_mck_prescaler(uint32_t prescaler)
{
	//assert(!(prescaler & ~PMC_MCKR_PRES_Msk));

	/* Change MCK Prescaler divider in PMC_MCKR register */
	PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_PRES_Msk) | prescaler;
	while (!(PMC->PMC_SR & PMC_SR_MCKRDY));
}


#ifdef CONFIG_HAVE_PMC_H32MXDIV
void pmc_set_mck_h32mxdiv(bool div2)
{
	uint32_t mckr = PMC->PMC_MCKR;
	if (div2) {
		if ((mckr & PMC_MCKR_H32MXDIV) != PMC_MCKR_H32MXDIV_H32MXDIV2)
			PMC->PMC_MCKR = (mckr & ~PMC_MCKR_H32MXDIV) | PMC_MCKR_H32MXDIV_H32MXDIV2;
	} else {
		if ((mckr & PMC_MCKR_H32MXDIV) != PMC_MCKR_H32MXDIV_H32MXDIV1)
			PMC->PMC_MCKR = (mckr & ~PMC_MCKR_H32MXDIV) | PMC_MCKR_H32MXDIV_H32MXDIV1;
	}
	while (!(PMC->PMC_SR & PMC_SR_MCKRDY));
}
#endif /* CONFIG_HAVE_PMC_H32MXDIV */

#ifdef CONFIG_HAVE_PMC_PLLADIV2
void pmc_set_mck_plladiv2(bool div2)
{
	uint32_t mckr = PMC->PMC_MCKR;
	if (div2) {
		if ((mckr & PMC_MCKR_PLLADIV2) != PMC_MCKR_PLLADIV2)
			PMC->PMC_MCKR = mckr | PMC_MCKR_PLLADIV2;
	} else {
		if ((mckr & PMC_MCKR_PLLADIV2) == PMC_MCKR_PLLADIV2)
			PMC->PMC_MCKR = mckr & ~PMC_MCKR_PLLADIV2;
	}
	while (!(PMC->PMC_SR & PMC_SR_MCKRDY));
}
#endif

void pmc_set_mck_divider(uint32_t divider)
{
	//assert(!(divider & ~PMC_MCKR_MDIV_Msk));

	/* change MCK Prescaler divider in PMC_MCKR register */
	PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_MDIV_Msk) | divider;
	while (!(PMC->PMC_SR & PMC_SR_MCKRDY));
}

void pmc_configure_plla(const struct _pmc_plla_cfg* plla)
{
	uint32_t pllar = 0;

#ifdef CKGR_PLLAR_ONE
	pllar |= CKGR_PLLAR_ONE;
#endif
	pllar |= CKGR_PLLAR_MULA(plla->mul);
	pllar |= CKGR_PLLAR_DIVA(plla->div);
	pllar |= CKGR_PLLAR_PLLACOUNT(plla->count);
	PMC->CKGR_PLLAR = pllar;

#ifdef CONFIG_HAVE_PMC_PLLA_CHARGEPUMP
	PMC->PMC_PLLICPR = plla->icp & PMC_PLLICPR_ICP_PLLA_Msk;
#endif /* CONFIG_HAVE_PMC_PLLA_CHARGEPUMP */

	if (plla->mul > 0)
		while (!(PMC->PMC_SR & PMC_SR_LOCKA));
}

void pmc_disable_plla(void)
{
	PMC->CKGR_PLLAR = (PMC->CKGR_PLLAR & ~CKGR_PLLAR_MULA_Msk) | CKGR_PLLAR_MULA(0);
}






void pmc_disable_internal_osc(void)
{
#ifdef CKGR_MOR_MOSCRCEN
	/* disable internal 12MHz RC */
	PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_MOSCRCEN & ~CKGR_MOR_KEY_Msk) | CKGR_MOR_KEY_PASSWD;
#endif
}


#endif