aboutsummaryrefslogtreecommitdiffstats
path: root/demos
diff options
context:
space:
mode:
authorgdisirio <gdisirio@35acf78f-673a-0410-8e92-d51de3d6d3f4>2010-10-18 07:18:20 +0000
committergdisirio <gdisirio@35acf78f-673a-0410-8e92-d51de3d6d3f4>2010-10-18 07:18:20 +0000
commitc88c5882d1e10d22a27e4c48ee65bebaa5592e20 (patch)
treef3fc4182054055e5e9d62afce6df5d5753a250f8 /demos
parentb7e7258008897b11c6c8bbdc3220a49f3eaed949 (diff)
downloadChibiOS-c88c5882d1e10d22a27e4c48ee65bebaa5592e20.tar.gz
ChibiOS-c88c5882d1e10d22a27e4c48ee65bebaa5592e20.tar.bz2
ChibiOS-c88c5882d1e10d22a27e4c48ee65bebaa5592e20.zip
Fixed bug 3089567.
git-svn-id: svn://svn.code.sf.net/p/chibios/svn/trunk@2267 35acf78f-673a-0410-8e92-d51de3d6d3f4
Diffstat (limited to 'demos')
0 files changed, 0 insertions, 0 deletions
'n103' href='#n103'>103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
--  Iir to ortho translator.
--  Copyright (C) 2002 - 2014 Tristan Gingold
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Files_Map;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Evaluation; use Vhdl.Evaluation;
with Vhdl.Std_Package;

with Trans.Chap3;
with Trans.Chap7;
with Trans.Chap14;
with Trans.Helpers2; use Trans.Helpers2;
with Trans_Decls; use Trans_Decls;

package body Trans.Chap6 is
   use Trans.Helpers;

   function Get_Array_Bound_Length
     (Arr : Mnode; Arr_Type : Iir; Dim : Natural) return O_Enode
   is
      Tinfo : constant Type_Info_Acc := Get_Info (Arr_Type);
      Index_Type, Constraint : Iir;
   begin
      if Tinfo.Type_Locally_Constrained then
         Index_Type := Get_Index_Type (Arr_Type, Dim - 1);
         Constraint := Get_Range_Constraint (Index_Type);
         return New_Lit (Chap7.Translate_Static_Range_Length (Constraint));
      else
         return M2E
           (Chap3.Range_To_Length
              (Chap3.Get_Array_Range (Arr, Arr_Type, Dim)));
      end if;
   end Get_Array_Bound_Length;

   procedure Gen_Bound_Error (Loc : Iir)
   is
      Constr    : O_Assoc_List;
      Name      : Name_Id;
      Line, Col : Natural;
   begin
      Files_Map.Location_To_Position (Get_Location (Loc), Name, Line, Col);

      Start_Association (Constr, Ghdl_Bound_Check_Failed);
      Assoc_Filename_Line (Constr, Line);
      New_Procedure_Call (Constr);
   end Gen_Bound_Error;

   procedure Gen_Direction_Error (Loc : Iir)
   is
      Constr    : O_Assoc_List;
      Name      : Name_Id;
      Line, Col : Natural;
   begin
      Files_Map.Location_To_Position (Get_Location (Loc), Name, Line, Col);

      Start_Association (Constr, Ghdl_Direction_Check_Failed);
      Assoc_Filename_Line (Constr, Line);
      New_Procedure_Call (Constr);
   end Gen_Direction_Error;

   procedure Gen_Program_Error (Loc : Iir; Code : Natural)
   is
      Assoc : O_Assoc_List;
   begin
      Start_Association (Assoc, Ghdl_Program_Error);

      if Current_Filename_Node = O_Dnode_Null then
         New_Association (Assoc, New_Lit (New_Null_Access (Char_Ptr_Type)));
         New_Association (Assoc,
                          New_Lit (New_Signed_Literal (Ghdl_I32_Type, 0)));
      else
         Assoc_Filename_Line (Assoc, Get_Line_Number (Loc));
      end if;
      New_Association
        (Assoc, New_Lit (New_Unsigned_Literal (Ghdl_Index_Type,
         Unsigned_64 (Code))));
      New_Procedure_Call (Assoc);
   end Gen_Program_Error;

   --  Generate code to emit a failure if COND is TRUE, indicating an
   --  index violation for dimension DIM of an array.  LOC is usually
   --  the expression which has computed the index and is used only for
   --  its location.
   procedure Check_Bound_Error (Cond : O_Enode; Loc : Iir)
   is
      If_Blk : O_If_Block;
   begin
      Start_If_Stmt (If_Blk, Cond);
      Gen_Bound_Error (Loc);
      Finish_If_Stmt (If_Blk);
   end Check_Bound_Error;

   procedure Check_Direction_Error (Cond : O_Enode; Loc : Iir)
   is
      If_Blk : O_If_Block;
   begin
      Start_If_Stmt (If_Blk, Cond);
      Gen_Direction_Error (Loc);
      Finish_If_Stmt (If_Blk);
   end Check_Direction_Error;

   --  Return TRUE if an array whose index type is RNG_TYPE indexed by
   --  an expression of type EXPR_TYPE needs a bound check.
   function Need_Index_Check (Expr_Type : Iir; Rng_Type : Iir)
                                 return Boolean
   is
      Rng : Iir;
   begin
      --  Do checks if type of the expression is not a subtype.
      --  FIXME: EXPR_TYPE shound not be NULL_IIR (generate stmt)
      if Expr_Type = Null_Iir then
         return True;
      end if;
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Integer_Subtype_Definition
            | Iir_Kind_Enumeration_Subtype_Definition
            | Iir_Kind_Enumeration_Type_Definition =>
            null;
         when others =>
            return True;
      end case;

      --  No check if the expression has the type of the index.
      if Expr_Type = Rng_Type then
         return False;
      end if;

      --  No check for 'Range or 'Reverse_Range.
      Rng := Get_Range_Constraint (Expr_Type);
      if (Get_Kind (Rng) = Iir_Kind_Range_Array_Attribute
          or Get_Kind (Rng) = Iir_Kind_Reverse_Range_Array_Attribute)
        and then Get_Type (Rng) = Rng_Type
      then
         return False;
      end if;

      return True;
   end Need_Index_Check;

   procedure Get_Deep_Range_Expression
     (Atype : Iir; Rng : out Iir; Is_Reverse : out Boolean)
   is
      T : Iir;
      R : Iir;
   begin
      Is_Reverse := False;

      --  T is an integer/enumeration subtype.
      T := Atype;
      loop
         case Get_Kind (T) is
            when Iir_Kind_Integer_Subtype_Definition
               | Iir_Kind_Enumeration_Subtype_Definition
               | Iir_Kind_Enumeration_Type_Definition =>
               --  These types have a range.
               null;
            when others =>
               Error_Kind ("get_deep_range_expression(1)", T);
         end case;

         R := Get_Range_Constraint (T);
         case Get_Kind (R) is
            when Iir_Kind_Range_Expression =>
               Rng := R;
               return;
            when Iir_Kind_Range_Array_Attribute =>
               null;
            when Iir_Kind_Reverse_Range_Array_Attribute =>
               Is_Reverse := not Is_Reverse;
            when others =>
               Error_Kind ("get_deep_range_expression(2)", R);
         end case;
         T := Get_Index_Subtype (R);
         if T = Null_Iir then
            Rng := Null_Iir;
            return;
         end if;
      end loop;
   end Get_Deep_Range_Expression;

   --  Give a nice error message when the index is an integer
   --  (with the bounds and the index).
   --  This is a special case that would handle more than 95% of
   --  the user cases.
   procedure Check_Integer_Bound_Error
     (Cond : O_Enode; Index : Mnode; Rng : Mnode; Loc : Iir)
   is
      If_Blk       : O_If_Block;
      Constr       : O_Assoc_List;
      Name         : Name_Id;
      Line, Col    : Natural;
   begin
      Start_If_Stmt (If_Blk, Cond);

      Files_Map.Location_To_Position  (Get_Location (Loc), Name, Line, Col);

      Start_Association (Constr, Ghdl_Integer_Index_Check_Failed);
      Assoc_Filename_Line (Constr, Line);
      New_Association (Constr, M2E (Index));
      New_Association (Constr, M2Addr (Rng));
      New_Procedure_Call (Constr);

      Finish_If_Stmt (If_Blk);
   end Check_Integer_Bound_Error;

   function Translate_Index_To_Offset (Rng        : Mnode;
                                       Index      : Mnode;
                                       Index_Expr : Iir;
                                       Range_Type : Iir;
                                       Loc        : Iir)
                                       return O_Enode
   is
      Range_Btype  : constant Iir := Get_Base_Type (Range_Type);
      Index_Tinfo  : constant Type_Info_Acc := Get_Info (Range_Btype);
      Index_Tnode  : constant O_Tnode := Index_Tinfo.Ortho_Type (Mode_Value);
      Is_Integer   : constant Boolean :=
        Range_Btype = Vhdl.Std_Package.Integer_Type_Definition;
      Index1       : Mnode;
      Need_Check   : Boolean;
      If_Blk       : O_If_Block;
      Res          : O_Dnode;
      Off          : O_Dnode;
      Bound        : Mnode;
      Deep_Rng     : Iir;
      Deep_Reverse : Boolean;
   begin
      Index1 := Stabilize (Index, True);
      pragma Unreferenced (Index);

      if Index_Expr = Null_Iir then
         --  Unconstrained range so the direction of the range is not known.
         Need_Check := True;
         Deep_Rng := Null_Iir;
         Deep_Reverse := False;
      else
         --  Extract the direction of the range.
         Need_Check := Need_Index_Check (Get_Type (Index_Expr), Range_Type);
         Get_Deep_Range_Expression (Range_Type, Deep_Rng, Deep_Reverse);
      end if;

      Res := Create_Temp (Ghdl_Index_Type);

      Open_Temp;

      Off := Create_Temp (Index_Tinfo.Ortho_Type (Mode_Value));

      Bound := Chap3.Range_To_Left (Rng);

      if Deep_Rng /= Null_Iir then
         if Get_Direction (Deep_Rng) = Dir_To xor Deep_Reverse then
            --  Direction TO:  INDEX - LEFT.
            New_Assign_Stmt
              (New_Obj (Off),
               New_Dyadic_Op (ON_Sub_Ov, M2E (Index1), M2E (Bound)));
         else
            --  Direction DOWNTO: LEFT - INDEX.
            New_Assign_Stmt
              (New_Obj (Off),
               New_Dyadic_Op (ON_Sub_Ov, M2E (Bound), M2E (Index1)));
         end if;
      else
         Stabilize (Bound);

         --  Non-static direction.
         Start_If_Stmt (If_Blk,
                        New_Compare_Op (ON_Eq, M2E (Chap3.Range_To_Dir (Rng)),
                          New_Lit (Ghdl_Dir_To_Node),
                          Ghdl_Bool_Type));
         --  Direction TO:  INDEX - LEFT.
         New_Assign_Stmt
           (New_Obj (Off),
            New_Dyadic_Op (ON_Sub_Ov, M2E (Index1), M2E (Bound)));
         New_Else_Stmt (If_Blk);
         --  Direction DOWNTO: LEFT - INDEX.
         New_Assign_Stmt
           (New_Obj (Off),
            New_Dyadic_Op (ON_Sub_Ov, M2E (Bound), M2E (Index1)));
         Finish_If_Stmt (If_Blk);
      end if;

      --  Get the offset.
      New_Assign_Stmt
        (New_Obj (Res), New_Convert (New_Obj_Value (Off), Ghdl_Index_Type));

      --  Check bounds.
      if Need_Check then
         declare
            Cond1, Cond2 : O_Enode;
            Cond         : O_Enode;
            Lo           : O_Cnode;
         begin
            --  Special case for enumerations
            if Get_Kind (Range_Btype) = Iir_Kind_Enumeration_Type_Definition
            then
               Lo := Chap7.Translate_Static_Range_Left
                 (Get_Range_Constraint (Range_Btype));
            else
               Lo := New_Signed_Literal (Index_Tnode, 0);
            end if;

            Cond1 := New_Compare_Op
              (ON_Lt,
               New_Obj_Value (Off),
               New_Lit (Lo),
               Ghdl_Bool_Type);

            Cond2 := New_Compare_Op
              (ON_Ge,
               New_Obj_Value (Res),
               M2E (Chap3.Range_To_Length (Rng)),
               Ghdl_Bool_Type);
            Cond := New_Dyadic_Op (ON_Or, Cond1, Cond2);
            if Is_Integer then
               Check_Integer_Bound_Error (Cond, Index1, Rng, Loc);
            else
               Check_Bound_Error (Cond, Loc);
            end if;
         end;
      end if;

      Close_Temp;

      return New_Obj_Value (Res);
   end Translate_Index_To_Offset;

   --  Translate index EXPR in dimension DIM of thin array into an
   --  offset.
   --  This checks bounds.
   function Translate_Thin_Index_Offset
     (Index_Type : Iir; Expr : Iir; Rng : Mnode) return O_Enode
   is
      Index_Range     : constant Iir := Get_Range_Constraint (Index_Type);
      Obound          : O_Cnode;
      Res             : O_Dnode;
      Cond2           : O_Enode;
      Index           : Mnode;
      Off             : O_Enode;
      Index_Base_Type : Iir;
      V               : Int64;
      B               : Int64;
      Expr1 : Iir;
   begin
      B := Eval_Pos (Get_Left_Limit (Index_Range));

      if Get_Expr_Staticness (Expr) = Locally then
         --  Both range and index are static.
         Expr1 := Eval_Static_Expr (Expr);
         if not Eval_Is_In_Bound (Expr1, Index_Type) then
            Gen_Bound_Error (Expr1);
            return New_Lit (New_Index_Lit (0));
         end if;

         V := Eval_Pos (Expr1);
         if Get_Direction (Index_Range) = Dir_To then
            B := V - B;
         else
            B := B - V;
         end if;
         return New_Lit (New_Index_Lit (Unsigned_64 (B)));
      end if;

      Index_Base_Type := Get_Base_Type (Index_Type);
      Index := Chap7.Translate_Expression (Expr, Index_Base_Type);
      Index := Stabilize (Index, True);

      if Get_Direction (Index_Range) = Dir_To then
         --  Direction TO:  INDEX - LEFT.
         if B /= 0 then
            Obound := Chap7.Translate_Static_Range_Left
              (Index_Range, Index_Base_Type);
            Off := New_Dyadic_Op (ON_Sub_Ov, M2E (Index), New_Lit (Obound));
         else
            Off := M2E (Index);
         end if;
      else
         --  Direction DOWNTO:  LEFT - INDEX.
         Obound := Chap7.Translate_Static_Range_Left
           (Index_Range, Index_Base_Type);
         Off := New_Dyadic_Op (ON_Sub_Ov, New_Lit (Obound), M2E (Index));
      end if;

      --  Get the offset.
      Off := New_Convert (Off, Ghdl_Index_Type);

      --  Since the value is unsigned, both left and right bounds are
      --  checked in the same time.
      if Get_Type (Expr) /= Index_Type then
         Res := Create_Temp_Init (Ghdl_Index_Type, Off);

         Cond2 := New_Compare_Op
           (ON_Ge, New_Obj_Value (Res),
            New_Lit (Chap7.Translate_Static_Range_Length (Index_Range)),
            Ghdl_Bool_Type);
         if Index_Base_Type = Vhdl.Std_Package.Integer_Type_Definition then
            Check_Integer_Bound_Error (Cond2, Index, Rng, Expr);
         else
            Check_Bound_Error (Cond2, Expr);
         end if;
         Off := New_Obj_Value (Res);
      end if;

      return Off;
   end Translate_Thin_Index_Offset;

   function Stabilize_If_Unbounded (Val : Mnode) return Mnode is
   begin
      case Get_Type_Info (Val).Type_Mode is
         when Type_Mode_Unbounded_Array
           | Type_Mode_Unbounded_Record =>
            return Stabilize (Val);
         when others =>
            return Val;
      end case;
   end Stabilize_If_Unbounded;

   --  Note: PREFIX must be stabilized if unbounded.
   function Translate_Indexed_Name_Offset (Prefix : Mnode; Expr : Iir)
                                          return O_Dnode
   is
      Prefix_Type : constant Iir := Get_Type (Get_Prefix (Expr));
      Prefix_Info : constant Type_Info_Acc := Get_Info (Prefix_Type);
      Index_List  : constant Iir_Flist := Get_Index_List (Expr);
      Type_List   : constant Iir_Flist := Get_Index_Subtype_List (Prefix_Type);
      Nbr_Dim     : constant Natural := Get_Nbr_Elements (Index_List);
      Index       : Iir;
      Offset      : O_Dnode;
      R           : O_Enode;
      Length      : O_Enode;
      Itype       : Iir;
      Ibasetype   : Iir;
      Range_Ptr   : Mnode;
   begin
      Offset := Create_Temp (Ghdl_Index_Type);
      for Dim in 1 .. Nbr_Dim loop
         Index := Get_Nth_Element (Index_List, Dim - 1);
         Itype := Get_Index_Type (Type_List, Dim - 1);
         Ibasetype := Get_Base_Type (Itype);
         Open_Temp;
         --  Compute index for the current dimension.
         case Prefix_Info.Type_Mode is
            when Type_Mode_Unbounded_Array =>
               Range_Ptr := Stabilize
                 (Chap3.Get_Array_Range (Prefix, Prefix_Type, Dim));
               R := Translate_Index_To_Offset
                 (Range_Ptr,
                  Chap7.Translate_Expression (Index, Ibasetype),
                  Null_Iir, Itype, Index);
            when Type_Mode_Bounded_Arrays =>
               --  Manually extract range since there is no infos for
               --   index subtype.
               Range_Ptr := Chap3.Bounds_To_Range
                 (Chap3.Get_Composite_Type_Bounds (Prefix_Type),
                  Prefix_Type, Dim);
               if Prefix_Info.Type_Locally_Constrained then
                  R := Translate_Thin_Index_Offset (Itype, Index, Range_Ptr);
               else
                  Stabilize (Range_Ptr);
                  R := Translate_Index_To_Offset
                    (Range_Ptr,
                     Chap7.Translate_Expression (Index, Ibasetype),
                     Index, Itype, Index);
               end if;
            when others =>
               raise Internal_Error;
         end case;
         if Dim = 1 then
            --  First dimension.
            New_Assign_Stmt (New_Obj (Offset), R);
         else
            --  If there are more dimension(s) to follow, then multiply
            --  the current offset by the length of the current dimension.
            if Prefix_Info.Type_Locally_Constrained then
               Length := New_Lit (Chap7.Translate_Static_Range_Length
                                  (Get_Range_Constraint (Itype)));
            else
               Length := M2E (Chap3.Range_To_Length (Range_Ptr));
            end if;
            New_Assign_Stmt
              (New_Obj (Offset),
               New_Dyadic_Op (ON_Add_Ov,
                              New_Dyadic_Op (ON_Mul_Ov,
                                             New_Obj_Value (Offset),
                                             Length),
                              R));
         end if;
         Close_Temp;
      end loop;

      return Offset;
   end Translate_Indexed_Name_Offset;

   function Translate_Indexed_Name_By_Offset
     (Prefix : Mnode; Prefix_Type : Iir; Offset : O_Dnode) return Mnode
   is
      El_Type  : constant Iir := Get_Element_Subtype (Prefix_Type);
      El_Tinfo : constant Type_Info_Acc := Get_Info (El_Type);
      Kind     : constant Object_Kind_Type := Get_Object_Kind (Prefix);
      Fat_Res : Mnode;
      Base : Mnode;
      Bounds : Mnode;
   begin
      Base := Chap3.Index_Array (Prefix, Prefix_Type, New_Obj_Value (Offset));

      if Is_Unbounded_Type (El_Tinfo) then
         Fat_Res := Create_Temp (El_Tinfo, Kind);
         Bounds := Chap3.Get_Composite_Bounds (Prefix);
         Bounds := Chap3.Array_Bounds_To_Element_Bounds (Bounds, Prefix_Type);

         --  Assignment to M2Lp works as this is not a copy.
         New_Assign_Stmt (M2Lp (Chap3.Get_Composite_Bounds (Fat_Res)),
                          M2Addr (Bounds));
         New_Assign_Stmt (M2Lp (Chap3.Get_Composite_Base (Fat_Res)),
                          M2Addr (Base));
         return Fat_Res;
      else
         return Base;
      end if;
   end Translate_Indexed_Name_By_Offset;

   function Translate_Indexed_Name (Prefix : Mnode; Expr : Iir) return Mnode
   is
      Offset : O_Dnode;
      Stable_Prefix : Mnode;
   begin
      Stable_Prefix := Stabilize_If_Unbounded (Prefix);
      Offset := Translate_Indexed_Name_Offset (Stable_Prefix, Expr);
      return Translate_Indexed_Name_By_Offset
        (Stable_Prefix, Get_Type (Get_Prefix (Expr)), Offset);
   end Translate_Indexed_Name;

   type Slice_Name_Data is record
      Off    : Unsigned_64;
      Is_Off : Boolean;

      Unsigned_Diff : O_Dnode;

      --  Variable pointing to the prefix.
      Prefix_Var : Mnode;

      --  Variable pointing to slice.
      Slice_Range : Mnode;
   end record;

   procedure Translate_Slice_Name_Init
     (Prefix : Mnode; Expr : Iir_Slice_Name; Data : out Slice_Name_Data)
   is
      --  Type of the prefix.
      Prefix_Type : constant Iir := Get_Type (Get_Prefix (Expr));

      --  Type info of the prefix.
      Prefix_Info : Type_Info_Acc;

      --  Type of the first (and only) index of the prefix array type.
      Index_Type : constant Iir := Get_Index_Type (Prefix_Type, 0);

      --  Type of the slice.
      Slice_Type : constant Iir := Get_Type (Expr);
      Slice_Info : Type_Info_Acc;

      --  Element type.
      El_Type    : Iir;
      El_Tinfo   : Type_Info_Acc;

      --  Suffix of the slice (discrete range).
      Expr_Range : constant Iir := Get_Suffix (Expr);

      --  True iff the direction of the slice is known at compile time.
      Static_Range : Boolean;

      --  Variable pointing to the prefix.
      Prefix_Var : Mnode;

      --  Type info of the range base type.
      Index_Info : Type_Info_Acc;

      --  Variables pointing to slice and prefix ranges.
      Slice_Range  : Mnode;
      Prefix_Range : Mnode;

      Diff_Type       : O_Tnode;
      Diff            : O_Dnode;
      Unsigned_Diff   : O_Dnode;
      If_Blk, If_Blk1 : O_If_Block;
   begin
      pragma Assert (Get_Info (Prefix_Type) /= null);

      --  Evaluate slice bounds.
      Chap3.Create_Composite_Subtype (Slice_Type, False);
      --  The info may have just been created.
      Prefix_Info := Get_Info (Prefix_Type);

      Prefix_Var := Prefix;

      El_Type := Chap3.Get_Element_Subtype_For_Info (Slice_Type);
      El_Tinfo := Get_Info (El_Type);

      if Is_Unbounded_Type (El_Tinfo) then
         --  Copy layout of element before building the bounds
--         pragma Assert (Is_Unbounded_Type (Prefix_Info));
         Stabilize (Prefix_Var);
         Gen_Memcpy
           (M2Addr (Chap3.Array_Bounds_To_Element_Layout
                      (Chap3.Get_Composite_Type_Bounds (Slice_Type),
                       Slice_Type)),
            M2Addr (Chap3.Array_Bounds_To_Element_Layout
                      (Chap3.Get_Composite_Bounds (Prefix_Var),
                       Prefix_Type)),
            New_Lit (New_Sizeof (El_Tinfo.B.Layout_Type,
                                 Ghdl_Index_Type)));
      end if;
      Chap3.Elab_Array_Subtype (Slice_Type);

      --  The info may have just been created.
      Slice_Info := Get_Info (Slice_Type);

      if Slice_Info.Type_Mode = Type_Mode_Static_Array
        and then Slice_Info.Type_Locally_Constrained
        and then Prefix_Info.Type_Mode = Type_Mode_Static_Array
        and then Prefix_Info.Type_Locally_Constrained
      then
         Data.Is_Off := True;
         Data.Prefix_Var := Prefix;

         --  Both prefix and result are constrained array.
         declare
            Index_Range : constant Iir := Get_Range_Constraint (Index_Type);
            Slice_Index_Type : constant Iir := Get_Index_Type (Slice_Type, 0);
            Slice_Range : constant Iir :=
              Get_Range_Constraint (Slice_Index_Type);
            Prefix_Left, Slice_Left : Int64;
            Off                     : Int64;
            Slice_Length            : Int64;
         begin
            Prefix_Left := Eval_Pos (Get_Left_Limit (Index_Range));
            Slice_Left := Eval_Pos (Get_Left_Limit (Slice_Range));
            Slice_Length := Eval_Discrete_Range_Length (Slice_Range);
            if Slice_Length = 0 then
               --  Null slice.
               Data.Off := 0;
               return;
            end if;
            if Get_Direction (Index_Range) /= Get_Direction (Slice_Range)
            then
               --  This is allowed with vhdl87
               Off := 0;
               Slice_Length := 0;
            else
               --  Both prefix and slice are thin array.
               case Get_Direction (Index_Range) is
                  when Dir_To =>
                     Off := Slice_Left - Prefix_Left;
                  when Dir_Downto =>
                     Off := Prefix_Left - Slice_Left;
               end case;
               if Off < 0 then
                  Gen_Bound_Error (Index_Range);
                  Off := 0;
                  Slice_Length := 0;
               end if;
               if Off + Slice_Length
                 > Eval_Discrete_Range_Length (Index_Range)
               then
                  Gen_Bound_Error (Index_Range);
                  Off := 0;
                  Slice_Length := 0;
               end if;
            end if;
            Data.Off := Unsigned_64 (Off);

            return;
         end;
      end if;

      Data.Is_Off := False;

      --  Save prefix.
      Stabilize (Prefix_Var);

      Index_Info := Get_Info (Get_Base_Type (Index_Type));

      --  Save prefix bounds.
      Prefix_Range := Stabilize
        (Chap3.Get_Array_Range (Prefix_Var, Prefix_Type, 1));

      --  Save slice bounds.
      Slice_Range := Stabilize
        (Chap3.Bounds_To_Range (Chap3.Get_Composite_Type_Bounds (Slice_Type),
         Slice_Type, 1));

      --  TRUE if the direction of the slice is known.
      Static_Range := Get_Kind (Expr_Range) = Iir_Kind_Range_Expression;

      --  Check direction against same direction, error if different.
      --  FIXME: what about v87 -> if different then null slice
      if not Static_Range
        or else not Get_Index_Constraint_Flag (Prefix_Type)
      then
         --  Check same direction.
         Check_Direction_Error
           (New_Compare_Op (ON_Neq,
                            M2E (Chap3.Range_To_Dir (Prefix_Range)),
                            M2E (Chap3.Range_To_Dir (Slice_Range)),
                            Ghdl_Bool_Type),
            Expr);
      end if;

      Unsigned_Diff := Create_Temp (Ghdl_Index_Type);

      --  Check if not a null slice.
      --  The bounds of a null slice may be out of range.  So DIFF cannot
      --  be computed by substraction.
      Start_If_Stmt
        (If_Blk, New_Compare_Op (ON_Eq,
                                 M2E (Chap3.Range_To_Length (Slice_Range)),
                                 New_Lit (Ghdl_Index_0),
                                 Ghdl_Bool_Type));
      New_Assign_Stmt (New_Obj (Unsigned_Diff), New_Lit (Ghdl_Index_0));
      New_Else_Stmt (If_Blk);

      --  Use a signed intermediate type to do the substraction.  This is
      --  required for enum types.
      case Type_Mode_Discrete (Index_Info.Type_Mode) is
         when Type_Mode_B1
           | Type_Mode_E8
           | Type_Mode_E32
           | Type_Mode_I32 =>
            Diff_Type := Ghdl_I32_Type;
         when Type_Mode_I64 =>
            Diff_Type := Ghdl_I64_Type;
      end case;

      Diff := Create_Temp (Diff_Type);

      --  Compute the offset in the prefix.
      if not Static_Range then
         Start_If_Stmt
           (If_Blk1, New_Compare_Op (ON_Eq,
                                     M2E (Chap3.Range_To_Dir (Slice_Range)),
                                     New_Lit (Ghdl_Dir_To_Node),
                                     Ghdl_Bool_Type));
      end if;
      if not Static_Range or else Get_Direction (Expr_Range) = Dir_To then
         --  Diff = slice - bounds.
         New_Assign_Stmt
           (New_Obj (Diff),
            New_Dyadic_Op
              (ON_Sub_Ov,
               New_Convert_Ov (M2E (Chap3.Range_To_Left (Slice_Range)),
                               Diff_Type),
               New_Convert_Ov (M2E (Chap3.Range_To_Left (Prefix_Range)),
                               Diff_Type)));
      end if;
      if not Static_Range then
         New_Else_Stmt (If_Blk1);
      end if;
      if not Static_Range or else Get_Direction (Expr_Range) = Dir_Downto
      then
         --  Diff = bounds - slice.
         New_Assign_Stmt
           (New_Obj (Diff),
            New_Dyadic_Op
              (ON_Sub_Ov,
               New_Convert_Ov (M2E (Chap3.Range_To_Left (Prefix_Range)),
                               Diff_Type),
               New_Convert_Ov (M2E (Chap3.Range_To_Left (Slice_Range)),
                               Diff_Type)));
      end if;
      if not Static_Range then
         Finish_If_Stmt (If_Blk1);
      end if;

      --  Note: this also check for overflow.
      New_Assign_Stmt
        (New_Obj (Unsigned_Diff),
         New_Convert_Ov (New_Obj_Value (Diff), Ghdl_Index_Type));

      --  Check bounds.
      declare
         Err_1 : O_Enode;
         Err_2 : O_Enode;
      begin
         --  Bounds error if left of slice is before left of prefix.
         Err_1 := New_Compare_Op
           (ON_Lt,
            New_Obj_Value (Diff),
            New_Lit (New_Signed_Literal (Diff_Type, 0)),
            Ghdl_Bool_Type);
         --  Bounds error if right of slice is after right of prefix.
         Err_2 := New_Compare_Op
           (ON_Gt,
            New_Dyadic_Op (ON_Add_Ov,
                           New_Obj_Value (Unsigned_Diff),
                           M2E (Chap3.Range_To_Length (Slice_Range))),
            M2E (Chap3.Range_To_Length (Prefix_Range)),
            Ghdl_Bool_Type);
         Check_Bound_Error (New_Dyadic_Op (ON_Or, Err_1, Err_2), Expr);
      end;
      Finish_If_Stmt (If_Blk);

      Data := (Slice_Range => Slice_Range,
               Prefix_Var => Prefix_Var,
               Unsigned_Diff => Unsigned_Diff,
               Is_Off => False,
               Off => 0);
   end Translate_Slice_Name_Init;

   function Translate_Slice_Name_Finish
     (Prefix : Mnode; Expr : Iir_Slice_Name; Data : Slice_Name_Data)
         return Mnode
   is
      --  Type of the slice.
      Slice_Type  : constant Iir := Get_Type (Expr);
      Slice_Tinfo : constant Type_Info_Acc := Get_Info (Slice_Type);

      El_Type  : constant Iir :=
        Chap3.Get_Element_Subtype_For_Info (Slice_Type);
      El_Tinfo : constant Type_Info_Acc := Get_Info (El_Type);

      --  Object kind of the prefix.
      Kind : constant Object_Kind_Type := Get_Object_Kind (Prefix);

      Off : O_Enode;
      El_Size : O_Enode;

      Res_Base : Mnode;
      Res_D : O_Dnode;
   begin
      if Is_Unbounded_Type (El_Tinfo) then
         --  pragma Assert (Is_Unbounded_Type (Slice_Tinfo));
         El_Size := New_Value
           (Chap3.Layout_To_Size
              (Chap3.Array_Bounds_To_Element_Layout
                 (Chap3.Get_Composite_Bounds (Data.Prefix_Var), Slice_Type),
               Kind));
      elsif Is_Complex_Type (El_Tinfo) then
         El_Size := Chap3.Get_Subtype_Size (El_Type, Mnode_Null, Kind);
      else
         pragma Assert (Is_Static_Type (El_Tinfo));
         El_Size := O_Enode_Null;
      end if;

      if Data.Is_Off then
         Off := New_Lit (New_Index_Lit (Data.Off));
      else
         Off := New_Obj_Value (Data.Unsigned_Diff);
      end if;

      Res_Base := Chap3.Slice_Base
        (Chap3.Get_Composite_Base (Prefix), Slice_Type, Off, El_Size);

      case Type_Mode_Arrays (Slice_Tinfo.Type_Mode) is
         when Type_Mode_Unbounded_Array =>
            --  Create the result (fat array) and assign the bounds field.
            Res_D := Create_Temp (Slice_Tinfo.Ortho_Type (Kind));
            New_Assign_Stmt
              (New_Selected_Element (New_Obj (Res_D),
                                     Slice_Tinfo.B.Base_Field (Kind)),
               M2E (Res_Base));
            New_Assign_Stmt
              (New_Selected_Element (New_Obj (Res_D),
                                     Slice_Tinfo.B.Bounds_Field (Kind)),
               New_Value (M2Lp (Data.Slice_Range)));
            raise Internal_Error;
            --return Dv2M (Res_D, Slice_Tinfo, Kind);
         when Type_Mode_Bounded_Arrays =>
            return Res_Base;
      end case;
   end Translate_Slice_Name_Finish;

   function Translate_Slice_Name (Prefix : Mnode; Expr : Iir_Slice_Name)
                                     return Mnode
   is
      Data : Slice_Name_Data;
   begin
      Translate_Slice_Name_Init (Prefix, Expr, Data);
      return Translate_Slice_Name_Finish (Data.Prefix_Var, Expr, Data);
   end Translate_Slice_Name;

   function Translate_Interface_Name
     (Inter : Iir; Info : Ortho_Info_Acc; Mode : Object_Kind_Type)
     return Mnode
   is
      Type_Info : constant Type_Info_Acc := Get_Info (Get_Type (Inter));
   begin
      case Info.Kind is
         when Kind_Object =>
            --  For a generic.
            pragma Assert (Mode = Mode_Value);
            return Get_Var (Info.Object_Var, Type_Info, Mode);
         when Kind_Signal =>
            --  For a port.
            if Mode = Mode_Signal then
               return Get_Var (Info.Signal_Sig, Type_Info, Mode_Signal);
            else
               pragma Assert (Info.Signal_Valp /= Null_Var);
               if Type_Info.Type_Mode in Type_Mode_Unbounded then
                  return Get_Var (Info.Signal_Valp, Type_Info, Mode_Value);
               else
                  return Get_Varp (Info.Signal_Valp, Type_Info, Mode_Value);
               end if;
            end if;
         when Kind_Interface =>
            --  For a parameter.
            if Info.Interface_Field (Mode) = O_Fnode_Null then
               --  Normal case: the parameter was translated as an ortho
               --  interface.
               case Info.Interface_Mechanism (Mode) is
                  when Pass_By_Copy =>
                     return Dv2M (Info.Interface_Decl (Mode), Type_Info, Mode);
                  when Pass_By_Address =>
                     --  Parameter is passed by reference.
                     return Dp2M (Info.Interface_Decl (Mode), Type_Info, Mode);
               end case;
            else
               --  The parameter was put somewhere else.
               declare
                  Subprg      : constant Iir := Get_Parent (Inter);
                  Subprg_Info : constant Subprg_Info_Acc :=
                    Get_Info (Subprg);
                  Linter      : O_Lnode;
               begin
                  if Info.Interface_Decl (Mode) = O_Dnode_Null then
                     --  The parameter is passed via a field of the PARAMS
                     --  record parameter.
                     if Subprg_Info.Subprg_Params_Var = Null_Var then
                        --  Direct access to the parameter.
                        Linter := New_Obj (Subprg_Info.Res_Interface);
                     else
                        --  Unnesting case: upscope access.
                        Linter := Get_Var (Subprg_Info.Subprg_Params_Var);
                     end if;
                     Linter := New_Selected_Element
                       (New_Acc_Value (Linter), Info.Interface_Field (Mode));
                  else
                     --  Unnesting case: the parameter was copied in the
                     --  subprogram frame so that nested subprograms can
                     --  reference it.  Use field in FRAME.
                     Linter := New_Selected_Element
                       (Get_Instance_Ref (Subprg_Info.Subprg_Frame_Scope),
                        Info.Interface_Field (Mode));
                  end if;
                  case Info.Interface_Mechanism (Mode) is
                     when Pass_By_Copy =>
                        return Lv2M (Linter, Type_Info, Mode);
                     when Pass_By_Address =>
                        return Lp2M (Linter, Type_Info, Mode);
                  end case;
               end;
            end if;
         when others =>
            raise Internal_Error;
      end case;
   end Translate_Interface_Name;

   function Translate_Selected_Element
     (Prefix : Mnode; El : Iir_Element_Declaration) return Mnode
   is
      --  Note: EL can be an element_declaration or a record_element_constraint
      --  It can be an element_declaration even if the prefix is of a record
      --   subtype with a constraint on EL.
      Prefix_Tinfo  : constant Type_Info_Acc := Get_Type_Info (Prefix);
      Kind          : constant Object_Kind_Type := Get_Object_Kind (Prefix);
      Pos           : constant Iir_Index32 := Get_Element_Position (El);
      Res_Type      : constant Iir := Get_Type (El);
      Res_Tinfo     : constant Type_Info_Acc := Get_Info (Res_Type);
      Unbounded     : constant Boolean := Is_Unbounded_Type (Res_Tinfo);
      El_Tinfo      : Type_Info_Acc;
      Stable_Prefix : Mnode;
      Base          : Mnode;
      Res, Fat_Res  : Mnode;
      Res_Lnode     : O_Lnode;
      Res_Addr      : O_Enode;
      Rec_Layout    : Mnode;
      El_Descr      : Mnode;
      F             : O_Fnode;
   begin
      --  RES_TINFO is the type info of the result.
      --  EL_TINFO is the type info of the field.
      --  They can be different when the record subtype is partially
      --  constrained or is complex.
      if Prefix_Tinfo.S.Rec_Fields /= null then
         F := Prefix_Tinfo.S.Rec_Fields (Pos).Fields (Kind);
         El_Tinfo := Prefix_Tinfo.S.Rec_Fields (Pos).Tinfo;
         pragma Assert (El_Tinfo = Res_Tinfo);
      else
         --  Use the base element.
         declare
            Bel : constant Iir := Get_Base_Element_Declaration (El);
            Bel_Info : constant Field_Info_Acc := Get_Info (Bel);
         begin
            F := Bel_Info.Field_Node (Kind);
            El_Tinfo := Get_Info (Get_Type (Bel));
         end;
      end if;

      if Unbounded then
         Stable_Prefix := Stabilize (Prefix);

         --  Result is a fat pointer, create it and set bounds.
         --  FIXME: layout for record, bounds for array!
         Fat_Res := Create_Temp (Res_Tinfo, Kind);
         El_Descr := Chap3.Record_Layout_To_Element_Layout
           (Chap3.Get_Composite_Bounds (Stable_Prefix), El);
         case Res_Tinfo.Type_Mode is
            when Type_Mode_Unbounded_Record =>
               null;
            when Type_Mode_Unbounded_Array =>
               El_Descr := Chap3.Layout_To_Bounds (El_Descr);
            when others =>
               raise Internal_Error;
         end case;
         New_Assign_Stmt (M2Lp (Chap3.Get_Composite_Bounds (Fat_Res)),
                          M2Addr (El_Descr));
      else
         Stable_Prefix := Prefix;
      end if;

      --  Get the base.
      Base := Chap3.Get_Composite_Base (Stable_Prefix);

      if Prefix_Tinfo.Type_Mode = Type_Mode_Static_Record
        or else Is_Static_Type (El_Tinfo)
      then
         --  If the base element type is static or if the prefix is static,
         --  then the element can directly be accessed.
         Res := Lv2M (New_Selected_Element (M2Lv (Base), F), El_Tinfo, Kind);
         if not Unbounded then
            return Res;
         end if;
         Res_Addr := New_Convert_Ov
           (M2Addr (Res), Res_Tinfo.B.Base_Ptr_Type (Kind));
      else
         --  Unbounded or complex element.
         Stabilize (Base);

         --  The element is complex: it's an offset.
         Rec_Layout := Chap3.Get_Composite_Bounds (Stable_Prefix);
         Res_Lnode := New_Slice
           (New_Access_Element
              (New_Unchecked_Address (M2Lv (Base), Char_Ptr_Type)),
            Chararray_Type,
            New_Value (Chap3.Record_Layout_To_Element_Offset
                         (Rec_Layout, El, Kind)));

         if not Unbounded then
            Res_Addr := New_Unchecked_Address
              (Res_Lnode, Res_Tinfo.Ortho_Ptr_Type (Kind));
            return Lv2M (New_Access_Element (Res_Addr), Res_Tinfo, Kind);
         end if;

         Res_Addr := New_Unchecked_Address
           (Res_Lnode, Res_Tinfo.B.Base_Ptr_Type (Kind));
      end if;

      pragma Assert (Unbounded);
      --  Ok, we know that Get_Composite_Base doesn't return a copy.
      New_Assign_Stmt
        (M2Lp (Chap3.Get_Composite_Base (Fat_Res)), Res_Addr);
      return Fat_Res;
   end Translate_Selected_Element;

   function Translate_Object_Alias_Name (Name : Iir; Mode : Object_Kind_Type)
                                        return Mnode
   is
      Name_Type : constant Iir := Get_Type (Name);
      Name_Info : constant Ortho_Info_Acc := Get_Info (Name);
      Type_Info : constant Type_Info_Acc := Get_Info (Name_Type);
      R : O_Lnode;
      pragma Assert (Mode <= Name_Info.Alias_Kind);
   begin
      --  Alias_Var is not like an object variable, since it is
      --  always a pointer to the aliased object.
      case Type_Info.Type_Mode is
         when Type_Mode_Unbounded_Array =>
            --  Get_Var for Mnode is ok here as an unbounded object is always
            --  a pointer (and so is an alias).
            return Get_Var (Name_Info.Alias_Var (Mode), Type_Info, Mode);
         when Type_Mode_Bounded_Arrays
           | Type_Mode_Bounded_Records
           | Type_Mode_Acc
           | Type_Mode_Bounds_Acc =>
            R := Get_Var (Name_Info.Alias_Var (Mode));
            return Lp2M (R, Type_Info, Mode);
         when Type_Mode_Scalar =>
            R := Get_Var (Name_Info.Alias_Var (Mode));
            if Mode = Mode_Signal then
               return Lv2M (R, Type_Info, Mode_Signal);
            else
               return Lp2M (R, Type_Info, Mode_Value);
            end if;
         when others =>
            raise Internal_Error;
      end case;
   end Translate_Object_Alias_Name;

   function Translate_Dereferenced_Name (Name : Iir) return Mnode
   is
      Name_Type : constant Iir := Get_Type (Name);
      Type_Info : constant Type_Info_Acc := Get_Info (Name_Type);
      Prefix : constant Iir := Get_Prefix (Name);
      Prefix_Type : constant Iir := Get_Type (Prefix);
      Pt_Info : constant Type_Info_Acc := Get_Info (Prefix_Type);
      Pfx : O_Enode;
      Pfx_Var : O_Dnode;
      If_Blk : O_If_Block;
      Constr    : O_Assoc_List;
   begin
      Pfx := Chap7.Translate_Expression (Prefix);
      if Pt_Info.Type_Mode = Type_Mode_Bounds_Acc then
         Pfx_Var := Create_Temp_Init (Pt_Info.Ortho_Type (Mode_Value), Pfx);

         --  Check null access
         --  There is no dereference (so no SEGV) for unbounded access, so
         --  we need to add an explicit check.
         --  Also, an implicit dereference is immediately followed by an
         --  access, so check only in case of explicit dereference.
         --  We could try to do a manual dereference but some backends (llvm)
         --  optimize this check.
         if Get_Kind (Name) = Iir_Kind_Dereference then
            Start_If_Stmt
              (If_Blk,
               New_Compare_Op
                 (ON_Eq, New_Obj_Value (Pfx_Var),
                  New_Lit (New_Null_Access (Pt_Info.Ortho_Type (Mode_Value))),
                  Ghdl_Bool_Type));
            Start_Association (Constr, Ghdl_Access_Check_Failed);
            New_Procedure_Call (Constr);
            Finish_If_Stmt (If_Blk);
         end if;

         return Chap7.Bounds_Acc_To_Fat_Pointer (Pfx_Var, Prefix_Type);
      else
         return Lv2M (New_Access_Element
                        (New_Convert_Ov
                           (Pfx, Type_Info.Ortho_Ptr_Type (Mode_Value))),
                      Type_Info, Mode_Value);
      end if;
   end Translate_Dereferenced_Name;

   function Translate_Name (Name : Iir; Mode : Object_Kind_Type) return Mnode
   is
      Name_Type : constant Iir := Get_Type (Name);
      Name_Info : constant Ortho_Info_Acc := Get_Info (Name);
      Type_Info : constant Type_Info_Acc := Get_Info (Name_Type);
   begin
      case Get_Kind (Name) is
         when Iir_Kind_Constant_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_File_Declaration =>
            pragma Assert (Mode = Mode_Value);
            return Get_Var (Name_Info.Object_Var, Type_Info, Mode_Value);

         when Iir_Kind_Attribute_Name =>
            return Translate_Name (Get_Named_Entity (Name), Mode);
         when Iir_Kind_Attribute_Value =>
            pragma Assert (Mode = Mode_Value);
            declare
               Attr : constant Iir := Get_Attribute_Specification (Name);
               Val : Iir;
            begin
               if Get_Expr_Staticness (Get_Expression (Attr)) = None then
                  Val := Name;
               else
                  --  If the expression is static, an object is created only
                  --  for the first value.
                  Val := Get_Attribute_Value_Spec_Chain (Attr);
               end if;
               return Get_Var (Get_Info (Val).Object_Var,
                               Type_Info, Mode_Value);
            end;

         when Iir_Kind_Object_Alias_Declaration =>
            --  Alias_Var is not like an object variable, since it is
            --  always a pointer to the aliased object.
            declare
               R : O_Lnode;
            begin
               pragma Assert (Mode <= Name_Info.Alias_Kind);
               case Type_Info.Type_Mode is
                  when Type_Mode_Unbounded_Array
                     | Type_Mode_Unbounded_Record =>
                     return Get_Var (Name_Info.Alias_Var (Mode), Type_Info,
                                     Mode);
                  when Type_Mode_Bounded_Arrays
                     | Type_Mode_Bounded_Records
                     | Type_Mode_Acc
                     | Type_Mode_Bounds_Acc =>
                     R := Get_Var (Name_Info.Alias_Var (Mode));
                     return Lp2M (R, Type_Info, Mode);
                  when Type_Mode_Scalar =>
                     R := Get_Var (Name_Info.Alias_Var (Mode));
                     if Mode = Mode_Signal then
                        return Lv2M (R, Type_Info, Mode_Signal);
                     else
                        return Lp2M (R, Type_Info, Mode_Value);
                     end if;
                  when others =>
                     raise Internal_Error;
               end case;
            end;

         when Iir_Kind_Signal_Declaration
           | Iir_Kind_Stable_Attribute
           | Iir_Kind_Quiet_Attribute
           | Iir_Kind_Delayed_Attribute
           | Iir_Kind_Transaction_Attribute
           | Iir_Kind_Guard_Signal_Declaration =>
            if Mode = Mode_Signal then
               return Get_Var (Name_Info.Signal_Sig, Type_Info, Mode_Signal);
            else
               return Get_Var (Name_Info.Signal_Val, Type_Info, Mode_Value);
            end if;

         when Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Interface_File_Declaration
           | Iir_Kind_Interface_Variable_Declaration =>
            pragma Assert (Mode = Mode_Value);
            return Translate_Interface_Name (Name, Name_Info, Mode_Value);

         when Iir_Kind_Interface_Signal_Declaration =>
            return Translate_Interface_Name (Name, Name_Info, Mode);

         when Iir_Kind_Indexed_Name =>
            return Translate_Indexed_Name
              (Translate_Name (Get_Prefix (Name), Mode), Name);

         when Iir_Kind_Slice_Name =>
            return Translate_Slice_Name
              (Translate_Name (Get_Prefix (Name), Mode), Name);

         when Iir_Kind_Dereference
           | Iir_Kind_Implicit_Dereference =>
            pragma Assert (Mode = Mode_Value);
            return Translate_Dereferenced_Name (Name);

         when Iir_Kind_Selected_Element =>
            return Translate_Selected_Element
              (Translate_Name (Get_Prefix (Name), Mode),
               Get_Named_Entity (Name));

         when Iir_Kind_Function_Call =>
            pragma Assert (Mode = Mode_Value);
            --  This can appear as a prefix of a name, therefore, the
            --  result is always a composite type or an access type.
            return Chap7.Translate_Expression (Name);

         when Iir_Kind_Image_Attribute =>
            pragma Assert (Mode = Mode_Value);
            --  Can appear as a prefix.
            return E2M (Chap14.Translate_Image_Attribute (Name),
                        Type_Info, Mode_Value);

         when Iir_Kind_Simple_Name
            | Iir_Kind_Selected_Name =>
            return Translate_Name (Get_Named_Entity (Name), Mode);

         when others =>
            Error_Kind ("translate_name", Name);
      end case;
   end Translate_Name;

   function Get_Signal_Direct_Driver (Sig : Iir) return Mnode
   is
      Info : constant Ortho_Info_Acc := Get_Info (Sig);
      Type_Info : constant Type_Info_Acc := Get_Info (Get_Type (Sig));
   begin
      return Get_Var (Info.Signal_Driver, Type_Info, Mode_Value);
   end Get_Signal_Direct_Driver;

   function Get_Port_Init_Value (Port : Iir) return Mnode
   is
      Info : constant Ortho_Info_Acc := Get_Info (Port);
      Type_Info : constant Type_Info_Acc := Get_Info (Get_Type (Port));
   begin
      return Get_Var (Info.Signal_Val, Type_Info, Mode_Value);
   end Get_Port_Init_Value;

   generic
      with procedure Translate_Signal_Base
        (Name : Iir; Sig : out Mnode; Drv : out Mnode);