aboutsummaryrefslogtreecommitdiffstats
path: root/demos/STM32/RT-STM32F103-STM3210E_EVAL-FATFS-USB
diff options
context:
space:
mode:
authorGiovanni Di Sirio <gdisirio@gmail.com>2017-10-31 08:32:16 +0000
committerGiovanni Di Sirio <gdisirio@gmail.com>2017-10-31 08:32:16 +0000
commit4b17048a2e72369f95bd374dfa3368843ff36d8f (patch)
treedf8aa79672ff2a46a6a9ebbb478bc4a63b45a6db /demos/STM32/RT-STM32F103-STM3210E_EVAL-FATFS-USB
parent174883e28f50a98fe0b3c099f083066896f4c6df (diff)
downloadChibiOS-4b17048a2e72369f95bd374dfa3368843ff36d8f.tar.gz
ChibiOS-4b17048a2e72369f95bd374dfa3368843ff36d8f.tar.bz2
ChibiOS-4b17048a2e72369f95bd374dfa3368843ff36d8f.zip
Fixed bug #899.
git-svn-id: svn://svn.code.sf.net/p/chibios/svn/trunk@10911 35acf78f-673a-0410-8e92-d51de3d6d3f4
Diffstat (limited to 'demos/STM32/RT-STM32F103-STM3210E_EVAL-FATFS-USB')
0 files changed, 0 insertions, 0 deletions
='n129' href='#n129'>129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
## gMock for Dummies {#GMockForDummies}

<!-- GOOGLETEST_CM0013 DO NOT DELETE -->

### What Is gMock?

When you write a prototype or test, often it's not feasible or wise to rely on
real objects entirely. A **mock object** implements the same interface as a real
object (so it can be used as one), but lets you specify at run time how it will
be used and what it should do (which methods will be called? in which order? how
many times? with what arguments? what will they return? etc).

**Note:** It is easy to confuse the term *fake objects* with mock objects. Fakes
and mocks actually mean very different things in the Test-Driven Development
(TDD) community:

*   **Fake** objects have working implementations, but usually take some
    shortcut (perhaps to make the operations less expensive), which makes them
    not suitable for production. An in-memory file system would be an example of
    a fake.
*   **Mocks** are objects pre-programmed with *expectations*, which form a
    specification of the calls they are expected to receive.

If all this seems too abstract for you, don't worry - the most important thing
to remember is that a mock allows you to check the *interaction* between itself
and code that uses it. The difference between fakes and mocks shall become much
clearer once you start to use mocks.

**gMock** is a library (sometimes we also call it a "framework" to make it sound
cool) for creating mock classes and using them. It does to C++ what
jMock/EasyMock does to Java (well, more or less).

When using gMock,

1.  first, you use some simple macros to describe the interface you want to
    mock, and they will expand to the implementation of your mock class;
2.  next, you create some mock objects and specify its expectations and behavior
    using an intuitive syntax;
3.  then you exercise code that uses the mock objects. gMock will catch any
    violation to the expectations as soon as it arises.

### Why gMock?

While mock objects help you remove unnecessary dependencies in tests and make
them fast and reliable, using mocks manually in C++ is *hard*:

*   Someone has to implement the mocks. The job is usually tedious and
    error-prone. No wonder people go great distance to avoid it.
*   The quality of those manually written mocks is a bit, uh, unpredictable. You
    may see some really polished ones, but you may also see some that were
    hacked up in a hurry and have all sorts of ad hoc restrictions.
*   The knowledge you gained from using one mock doesn't transfer to the next
    one.

In contrast, Java and Python programmers have some fine mock frameworks (jMock,
EasyMock, [Mox](http://wtf/mox), etc), which automate the creation of mocks. As
a result, mocking is a proven effective technique and widely adopted practice in
those communities. Having the right tool absolutely makes the difference.

gMock was built to help C++ programmers. It was inspired by jMock and EasyMock,
but designed with C++'s specifics in mind. It is your friend if any of the
following problems is bothering you:

*   You are stuck with a sub-optimal design and wish you had done more
    prototyping before it was too late, but prototyping in C++ is by no means
    "rapid".
*   Your tests are slow as they depend on too many libraries or use expensive
    resources (e.g. a database).
*   Your tests are brittle as some resources they use are unreliable (e.g. the
    network).
*   You want to test how your code handles a failure (e.g. a file checksum
    error), but it's not easy to cause one.
*   You need to make sure that your module interacts with other modules in the
    right way, but it's hard to observe the interaction; therefore you resort to
    observing the side effects at the end of the action, but it's awkward at
    best.
*   You want to "mock out" your dependencies, except that they don't have mock
    implementations yet; and, frankly, you aren't thrilled by some of those
    hand-written mocks.

We encourage you to use gMock as

*   a *design* tool, for it lets you experiment with your interface design early
    and often. More iterations lead to better designs!
*   a *testing* tool to cut your tests' outbound dependencies and probe the
    interaction between your module and its collaborators.

### Getting Started

gMock is bundled with googletest.

### A Case for Mock Turtles

Let's look at an example. Suppose you are developing a graphics program that
relies on a [LOGO](http://en.wikipedia.org/wiki/Logo_programming_language)-like
API for drawing. How would you test that it does the right thing? Well, you can
run it and compare the screen with a golden screen snapshot, but let's admit it:
tests like this are expensive to run and fragile (What if you just upgraded to a
shiny new graphics card that has better anti-aliasing? Suddenly you have to
update all your golden images.). It would be too painful if all your tests are
like this. Fortunately, you learned about
[Dependency Injection](http://en.wikipedia.org/wiki/Dependency_injection) and know the right thing
to do: instead of having your application talk to the system API directly, wrap
the API in an interface (say, `Turtle`) and code to that interface:

```cpp
class Turtle {
  ...
  virtual ~Turtle() {};
  virtual void PenUp() = 0;
  virtual void PenDown() = 0;
  virtual void Forward(int distance) = 0;
  virtual void Turn(int degrees) = 0;
  virtual void GoTo(int x, int y) = 0;
  virtual int GetX() const = 0;
  virtual int GetY() const = 0;
};
```

(Note that the destructor of `Turtle` **must** be virtual, as is the case for
**all** classes you intend to inherit from - otherwise the destructor of the
derived class will not be called when you delete an object through a base
pointer, and you'll get corrupted program states like memory leaks.)

You can control whether the turtle's movement will leave a trace using `PenUp()`
and `PenDown()`, and control its movement using `Forward()`, `Turn()`, and
`GoTo()`. Finally, `GetX()` and `GetY()` tell you the current position of the
turtle.

Your program will normally use a real implementation of this interface. In
tests, you can use a mock implementation instead. This allows you to easily
check what drawing primitives your program is calling, with what arguments, and
in which order. Tests written this way are much more robust (they won't break
because your new machine does anti-aliasing differently), easier to read and
maintain (the intent of a test is expressed in the code, not in some binary
images), and run *much, much faster*.

### Writing the Mock Class

If you are lucky, the mocks you need to use have already been implemented by
some nice people. If, however, you find yourself in the position to write a mock
class, relax - gMock turns this task into a fun game! (Well, almost.)

#### How to Define It

Using the `Turtle` interface as example, here are the simple steps you need to
follow:

*   Derive a class `MockTurtle` from `Turtle`.
*   Take a *virtual* function of `Turtle` (while it's possible to
    [mock non-virtual methods using templates](cook_book.md#MockingNonVirtualMethods),
    it's much more involved).
*   In the `public:` section of the child class, write `MOCK_METHOD();`
*   Now comes the fun part: you take the function signature, cut-and-paste it
    into the macro, and add two commas - one between the return type and the
    name, another between the name and the argument list.
*   If you're mocking a const method, add a 4th parameter containing `(const)`
    (the parentheses are required).
*   Since you're overriding a virtual method, we suggest adding the `override`
    keyword. For const methods the 4th parameter becomes `(const, override)`,
    for non-const methods just `(override)`. This isn't mandatory.
*   Repeat until all virtual functions you want to mock are done. (It goes
    without saying that *all* pure virtual methods in your abstract class must
    be either mocked or overridden.)

After the process, you should have something like:

```cpp
#include "gmock/gmock.h"  // Brings in gMock.

class MockTurtle : public Turtle {
 public:
  ...
  MOCK_METHOD(void, PenUp, (), (override));
  MOCK_METHOD(void, PenDown, (), (override));
  MOCK_METHOD(void, Forward, (int distance), (override));
  MOCK_METHOD(void, Turn, (int degrees), (override));
  MOCK_METHOD(void, GoTo, (int x, int y), (override));
  MOCK_METHOD(int, GetX, (), (const, override));
  MOCK_METHOD(int, GetY, (), (const, override));
};
```

You don't need to define these mock methods somewhere else - the `MOCK_METHOD`
macro will generate the definitions for you. It's that simple!

#### Where to Put It

When you define a mock class, you need to decide where to put its definition.
Some people put it in a `_test.cc`. This is fine when the interface being mocked
(say, `Foo`) is owned by the same person or team. Otherwise, when the owner of
`Foo` changes it, your test could break. (You can't really expect `Foo`'s
maintainer to fix every test that uses `Foo`, can you?)

So, the rule of thumb is: if you need to mock `Foo` and it's owned by others,
define the mock class in `Foo`'s package (better, in a `testing` sub-package
such that you can clearly separate production code and testing utilities), put
it in a `.h` and a `cc_library`. Then everyone can reference them from their
tests. If `Foo` ever changes, there is only one copy of `MockFoo` to change, and
only tests that depend on the changed methods need to be fixed.

Another way to do it: you can introduce a thin layer `FooAdaptor` on top of
`Foo` and code to this new interface. Since you own `FooAdaptor`, you can absorb
changes in `Foo` much more easily. While this is more work initially, carefully
choosing the adaptor interface can make your code easier to write and more
readable (a net win in the long run), as you can choose `FooAdaptor` to fit your
specific domain much better than `Foo` does.

<!-- GOOGLETEST_CM0029 DO NOT DELETE -->

### Using Mocks in Tests

Once you have a mock class, using it is easy. The typical work flow is:

1.  Import the gMock names from the `testing` namespace such that you can use
    them unqualified (You only have to do it once per file). Remember that
    namespaces are a good idea.
2.  Create some mock objects.
3.  Specify your expectations on them (How many times will a method be called?
    With what arguments? What should it do? etc.).
4.  Exercise some code that uses the mocks; optionally, check the result using
    googletest assertions. If a mock method is called more than expected or with
    wrong arguments, you'll get an error immediately.
5.  When a mock is destructed, gMock will automatically check whether all
    expectations on it have been satisfied.

Here's an example:

```cpp
#include "path/to/mock-turtle.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"

using ::testing::AtLeast;                         // #1

TEST(PainterTest, CanDrawSomething) {
  MockTurtle turtle;                              // #2
  EXPECT_CALL(turtle, PenDown())                  // #3
      .Times(AtLeast(1));

  Painter painter(&turtle);                       // #4

  EXPECT_TRUE(painter.DrawCircle(0, 0, 10));      // #5
}
```

As you might have guessed, this test checks that `PenDown()` is called at least
once. If the `painter` object didn't call this method, your test will fail with
a message like this:

```text
path/to/my_test.cc:119: Failure
Actual function call count doesn't match this expectation:
Actually: never called;
Expected: called at least once.
Stack trace:
...
```

**Tip 1:** If you run the test from an Emacs buffer, you can hit <Enter> on the
line number to jump right to the failed expectation.

**Tip 2:** If your mock objects are never deleted, the final verification won't
happen. Therefore it's a good idea to turn on the heap checker in your tests
when you allocate mocks on the heap. You get that automatically if you use the
`gtest_main` library already.

**Important note:** gMock requires expectations to be set **before** the mock
functions are called, otherwise the behavior is **undefined**. In particular,
you mustn't interleave `EXPECT_CALL()s` and calls to the mock functions.

This means `EXPECT_CALL()` should be read as expecting that a call will occur
*in the future*, not that a call has occurred. Why does gMock work like that?
Well, specifying the expectation beforehand allows gMock to report a violation
as soon as it rises, when the context (stack trace, etc) is still available.
This makes debugging much easier.

Admittedly, this test is contrived and doesn't do much. You can easily achieve
the same effect without using gMock. However, as we shall reveal soon, gMock
allows you to do *so much more* with the mocks.

### Setting Expectations

The key to using a mock object successfully is to set the *right expectations*
on it. If you set the expectations too strict, your test will fail as the result
of unrelated changes. If you set them too loose, bugs can slip through. You want
to do it just right such that your test can catch exactly the kind of bugs you
intend it to catch. gMock provides the necessary means for you to do it "just
right."

#### General Syntax

In gMock we use the `EXPECT_CALL()` macro to set an expectation on a mock
method. The general syntax is:

```cpp
EXPECT_CALL(mock_object, method(matchers))
    .Times(cardinality)
    .WillOnce(action)
    .WillRepeatedly(action);
```

The macro has two arguments: first the mock object, and then the method and its
arguments. Note that the two are separated by a comma (`,`), not a period (`.`).
(Why using a comma? The answer is that it was necessary for technical reasons.)
If the method is not overloaded, the macro can also be called without matchers:

```cpp
EXPECT_CALL(mock_object, non-overloaded-method)
    .Times(cardinality)
    .WillOnce(action)
    .WillRepeatedly(action);
```

This syntax allows the test writer to specify "called with any arguments"
without explicitly specifying the number or types of arguments. To avoid
unintended ambiguity, this syntax may only be used for methods which are not
overloaded

Either form of the macro can be followed by some optional *clauses* that provide
more information about the expectation. We'll discuss how each clause works in
the coming sections.

This syntax is designed to make an expectation read like English. For example,
you can probably guess that

```cpp
using ::testing::Return;
...
EXPECT_CALL(turtle, GetX())
    .Times(5)
    .WillOnce(Return(100))
    .WillOnce(Return(150))
    .WillRepeatedly(Return(200));
```

says that the `turtle` object's `GetX()` method will be called five times, it
will return 100 the first time, 150 the second time, and then 200 every time.
Some people like to call this style of syntax a Domain-Specific Language (DSL).

**Note:** Why do we use a macro to do this? Well it serves two purposes: first
it makes expectations easily identifiable (either by `gsearch` or by a human
reader), and second it allows gMock to include the source file location of a
failed expectation in messages, making debugging easier.

#### Matchers: What Arguments Do We Expect?

When a mock function takes arguments, we may specify what arguments we are
expecting, for example:

```cpp
// Expects the turtle to move forward by 100 units.
EXPECT_CALL(turtle, Forward(100));
```

Oftentimes you do not want to be too specific. Remember that talk about tests
being too rigid? Over specification leads to brittle tests and obscures the
intent of tests. Therefore we encourage you to specify only what's necessary—no
more, no less. If you aren't interested in the value of an argument, write `_`
as the argument, which means "anything goes":

```cpp
using ::testing::_;
...
// Expects that the turtle jumps to somewhere on the x=50 line.
EXPECT_CALL(turtle, GoTo(50, _));
```

`_` is an instance of what we call **matchers**. A matcher is like a predicate
and can test whether an argument is what we'd expect. You can use a matcher
inside `EXPECT_CALL()` wherever a function argument is expected. `_` is a
convenient way of saying "any value".

In the above examples, `100` and `50` are also matchers; implicitly, they are
the same as `Eq(100)` and `Eq(50)`, which specify that the argument must be
equal (using `operator==`) to the matcher argument. There are many
[built-in matchers](#MatcherList) for common types (as well as
[custom matchers](cook_book.md#NewMatchers)); for example:

```cpp
using ::testing::Ge;
...
// Expects the turtle moves forward by at least 100.
EXPECT_CALL(turtle, Forward(Ge(100)));
```

If you don't care about *any* arguments, rather than specify `_` for each of
them you may instead omit the parameter list:

```cpp
// Expects the turtle to move forward.
EXPECT_CALL(turtle, Forward);
// Expects the turtle to jump somewhere.
EXPECT_CALL(turtle, GoTo);
```

This works for all non-overloaded methods; if a method is overloaded, you need
to help gMock resolve which overload is expected by specifying the number of
arguments and possibly also the
[types of the arguments](cook_book.md#SelectOverload).

#### Cardinalities: How Many Times Will It Be Called?

The first clause we can specify following an `EXPECT_CALL()` is `Times()`. We
call its argument a **cardinality** as it tells *how many times* the call should
occur. It allows us to repeat an expectation many times without actually writing
it as many times. More importantly, a cardinality can be "fuzzy", just like a
matcher can be. This allows a user to express the intent of a test exactly.

An interesting special case is when we say `Times(0)`. You may have guessed - it
means that the function shouldn't be called with the given arguments at all, and
gMock will report a googletest failure whenever the function is (wrongfully)
called.

We've seen `AtLeast(n)` as an example of fuzzy cardinalities earlier. For the
list of built-in cardinalities you can use, see
[here](cheat_sheet.md#CardinalityList).

The `Times()` clause can be omitted. **If you omit `Times()`, gMock will infer
the cardinality for you.** The rules are easy to remember:

*   If **neither** `WillOnce()` **nor** `WillRepeatedly()` is in the
    `EXPECT_CALL()`, the inferred cardinality is `Times(1)`.
*   If there are *n* `WillOnce()`'s but **no** `WillRepeatedly()`, where *n* >=
    1, the cardinality is `Times(n)`.
*   If there are *n* `WillOnce()`'s and **one** `WillRepeatedly()`, where *n* >=
    0, the cardinality is `Times(AtLeast(n))`.

**Quick quiz:** what do you think will happen if a function is expected to be
called twice but actually called four times?

#### Actions: What Should It Do?

Remember that a mock object doesn't really have a working implementation? We as
users have to tell it what to do when a method is invoked. This is easy in
gMock.

First, if the return type of a mock function is a built-in type or a pointer,
the function has a **default action** (a `void` function will just return, a
`bool` function will return `false`, and other functions will return 0). In
addition, in C++ 11 and above, a mock function whose return type is
default-constructible (i.e. has a default constructor) has a default action of
returning a default-constructed value. If you don't say anything, this behavior
will be used.

Second, if a mock function doesn't have a default action, or the default action
doesn't suit you, you can specify the action to be taken each time the
expectation matches using a series of `WillOnce()` clauses followed by an
optional `WillRepeatedly()`. For example,

```cpp
using ::testing::Return;
...
EXPECT_CALL(turtle, GetX())
     .WillOnce(Return(100))
     .WillOnce(Return(200))
     .WillOnce(Return(300));
```

says that `turtle.GetX()` will be called *exactly three times* (gMock inferred
this from how many `WillOnce()` clauses we've written, since we didn't
explicitly write `Times()`), and will return 100, 200, and 300 respectively.

```cpp
using ::testing::Return;
...
EXPECT_CALL(turtle, GetY())
     .WillOnce(Return(100))
     .WillOnce(Return(200))
     .WillRepeatedly(Return(300));
```

says that `turtle.GetY()` will be called *at least twice* (gMock knows this as