From 3f2546b2ef55b661fd8dd69682b38992225e86f6 Mon Sep 17 00:00:00 2001 From: fishsoupisgood Date: Mon, 29 Apr 2019 01:17:54 +0100 Subject: Initial import of qemu-2.4.1 --- hw/arm/boot.c | 805 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 805 insertions(+) create mode 100644 hw/arm/boot.c (limited to 'hw/arm/boot.c') diff --git a/hw/arm/boot.c b/hw/arm/boot.c new file mode 100644 index 00000000..5b969cda --- /dev/null +++ b/hw/arm/boot.c @@ -0,0 +1,805 @@ +/* + * ARM kernel loader. + * + * Copyright (c) 2006-2007 CodeSourcery. + * Written by Paul Brook + * + * This code is licensed under the GPL. + */ + +#include "config.h" +#include "hw/hw.h" +#include "hw/arm/arm.h" +#include "sysemu/sysemu.h" +#include "hw/boards.h" +#include "hw/loader.h" +#include "elf.h" +#include "sysemu/device_tree.h" +#include "qemu/config-file.h" +#include "exec/address-spaces.h" + +/* Kernel boot protocol is specified in the kernel docs + * Documentation/arm/Booting and Documentation/arm64/booting.txt + * They have different preferred image load offsets from system RAM base. + */ +#define KERNEL_ARGS_ADDR 0x100 +#define KERNEL_LOAD_ADDR 0x00010000 +#define KERNEL64_LOAD_ADDR 0x00080000 + +typedef enum { + FIXUP_NONE = 0, /* do nothing */ + FIXUP_TERMINATOR, /* end of insns */ + FIXUP_BOARDID, /* overwrite with board ID number */ + FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ + FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ + FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ + FIXUP_BOOTREG, /* overwrite with boot register address */ + FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ + FIXUP_MAX, +} FixupType; + +typedef struct ARMInsnFixup { + uint32_t insn; + FixupType fixup; +} ARMInsnFixup; + +static const ARMInsnFixup bootloader_aarch64[] = { + { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ + { 0xaa1f03e1 }, /* mov x1, xzr */ + { 0xaa1f03e2 }, /* mov x2, xzr */ + { 0xaa1f03e3 }, /* mov x3, xzr */ + { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ + { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ + { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ + { 0 }, /* .word @DTB Higher 32-bits */ + { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ + { 0 }, /* .word @Kernel Entry Higher 32-bits */ + { 0, FIXUP_TERMINATOR } +}; + +/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ +static const ARMInsnFixup bootloader[] = { + { 0xe3a00000 }, /* mov r0, #0 */ + { 0xe59f1004 }, /* ldr r1, [pc, #4] */ + { 0xe59f2004 }, /* ldr r2, [pc, #4] */ + { 0xe59ff004 }, /* ldr pc, [pc, #4] */ + { 0, FIXUP_BOARDID }, + { 0, FIXUP_ARGPTR }, + { 0, FIXUP_ENTRYPOINT }, + { 0, FIXUP_TERMINATOR } +}; + +/* Handling for secondary CPU boot in a multicore system. + * Unlike the uniprocessor/primary CPU boot, this is platform + * dependent. The default code here is based on the secondary + * CPU boot protocol used on realview/vexpress boards, with + * some parameterisation to increase its flexibility. + * QEMU platform models for which this code is not appropriate + * should override write_secondary_boot and secondary_cpu_reset_hook + * instead. + * + * This code enables the interrupt controllers for the secondary + * CPUs and then puts all the secondary CPUs into a loop waiting + * for an interprocessor interrupt and polling a configurable + * location for the kernel secondary CPU entry point. + */ +#define DSB_INSN 0xf57ff04f +#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ + +static const ARMInsnFixup smpboot[] = { + { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ + { 0xe59f0028 }, /* ldr r0, bootreg_addr */ + { 0xe3a01001 }, /* mov r1, #1 */ + { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ + { 0xe3a010ff }, /* mov r1, #0xff */ + { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ + { 0, FIXUP_DSB }, /* dsb */ + { 0xe320f003 }, /* wfi */ + { 0xe5901000 }, /* ldr r1, [r0] */ + { 0xe1110001 }, /* tst r1, r1 */ + { 0x0afffffb }, /* beq */ + { 0xe12fff11 }, /* bx r1 */ + { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ + { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ + { 0, FIXUP_TERMINATOR } +}; + +static void write_bootloader(const char *name, hwaddr addr, + const ARMInsnFixup *insns, uint32_t *fixupcontext) +{ + /* Fix up the specified bootloader fragment and write it into + * guest memory using rom_add_blob_fixed(). fixupcontext is + * an array giving the values to write in for the fixup types + * which write a value into the code array. + */ + int i, len; + uint32_t *code; + + len = 0; + while (insns[len].fixup != FIXUP_TERMINATOR) { + len++; + } + + code = g_new0(uint32_t, len); + + for (i = 0; i < len; i++) { + uint32_t insn = insns[i].insn; + FixupType fixup = insns[i].fixup; + + switch (fixup) { + case FIXUP_NONE: + break; + case FIXUP_BOARDID: + case FIXUP_ARGPTR: + case FIXUP_ENTRYPOINT: + case FIXUP_GIC_CPU_IF: + case FIXUP_BOOTREG: + case FIXUP_DSB: + insn = fixupcontext[fixup]; + break; + default: + abort(); + } + code[i] = tswap32(insn); + } + + rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr); + + g_free(code); +} + +static void default_write_secondary(ARMCPU *cpu, + const struct arm_boot_info *info) +{ + uint32_t fixupcontext[FIXUP_MAX]; + + fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; + fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; + if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { + fixupcontext[FIXUP_DSB] = DSB_INSN; + } else { + fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; + } + + write_bootloader("smpboot", info->smp_loader_start, + smpboot, fixupcontext); +} + +static void default_reset_secondary(ARMCPU *cpu, + const struct arm_boot_info *info) +{ + CPUState *cs = CPU(cpu); + + address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr, + 0, MEMTXATTRS_UNSPECIFIED, NULL); + cpu_set_pc(cs, info->smp_loader_start); +} + +static inline bool have_dtb(const struct arm_boot_info *info) +{ + return info->dtb_filename || info->get_dtb; +} + +#define WRITE_WORD(p, value) do { \ + address_space_stl_notdirty(&address_space_memory, p, value, \ + MEMTXATTRS_UNSPECIFIED, NULL); \ + p += 4; \ +} while (0) + +static void set_kernel_args(const struct arm_boot_info *info) +{ + int initrd_size = info->initrd_size; + hwaddr base = info->loader_start; + hwaddr p; + + p = base + KERNEL_ARGS_ADDR; + /* ATAG_CORE */ + WRITE_WORD(p, 5); + WRITE_WORD(p, 0x54410001); + WRITE_WORD(p, 1); + WRITE_WORD(p, 0x1000); + WRITE_WORD(p, 0); + /* ATAG_MEM */ + /* TODO: handle multiple chips on one ATAG list */ + WRITE_WORD(p, 4); + WRITE_WORD(p, 0x54410002); + WRITE_WORD(p, info->ram_size); + WRITE_WORD(p, info->loader_start); + if (initrd_size) { + /* ATAG_INITRD2 */ + WRITE_WORD(p, 4); + WRITE_WORD(p, 0x54420005); + WRITE_WORD(p, info->initrd_start); + WRITE_WORD(p, initrd_size); + } + if (info->kernel_cmdline && *info->kernel_cmdline) { + /* ATAG_CMDLINE */ + int cmdline_size; + + cmdline_size = strlen(info->kernel_cmdline); + cpu_physical_memory_write(p + 8, info->kernel_cmdline, + cmdline_size + 1); + cmdline_size = (cmdline_size >> 2) + 1; + WRITE_WORD(p, cmdline_size + 2); + WRITE_WORD(p, 0x54410009); + p += cmdline_size * 4; + } + if (info->atag_board) { + /* ATAG_BOARD */ + int atag_board_len; + uint8_t atag_board_buf[0x1000]; + + atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; + WRITE_WORD(p, (atag_board_len + 8) >> 2); + WRITE_WORD(p, 0x414f4d50); + cpu_physical_memory_write(p, atag_board_buf, atag_board_len); + p += atag_board_len; + } + /* ATAG_END */ + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); +} + +static void set_kernel_args_old(const struct arm_boot_info *info) +{ + hwaddr p; + const char *s; + int initrd_size = info->initrd_size; + hwaddr base = info->loader_start; + + /* see linux/include/asm-arm/setup.h */ + p = base + KERNEL_ARGS_ADDR; + /* page_size */ + WRITE_WORD(p, 4096); + /* nr_pages */ + WRITE_WORD(p, info->ram_size / 4096); + /* ramdisk_size */ + WRITE_WORD(p, 0); +#define FLAG_READONLY 1 +#define FLAG_RDLOAD 4 +#define FLAG_RDPROMPT 8 + /* flags */ + WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); + /* rootdev */ + WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ + /* video_num_cols */ + WRITE_WORD(p, 0); + /* video_num_rows */ + WRITE_WORD(p, 0); + /* video_x */ + WRITE_WORD(p, 0); + /* video_y */ + WRITE_WORD(p, 0); + /* memc_control_reg */ + WRITE_WORD(p, 0); + /* unsigned char sounddefault */ + /* unsigned char adfsdrives */ + /* unsigned char bytes_per_char_h */ + /* unsigned char bytes_per_char_v */ + WRITE_WORD(p, 0); + /* pages_in_bank[4] */ + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); + WRITE_WORD(p, 0); + /* pages_in_vram */ + WRITE_WORD(p, 0); + /* initrd_start */ + if (initrd_size) { + WRITE_WORD(p, info->initrd_start); + } else { + WRITE_WORD(p, 0); + } + /* initrd_size */ + WRITE_WORD(p, initrd_size); + /* rd_start */ + WRITE_WORD(p, 0); + /* system_rev */ + WRITE_WORD(p, 0); + /* system_serial_low */ + WRITE_WORD(p, 0); + /* system_serial_high */ + WRITE_WORD(p, 0); + /* mem_fclk_21285 */ + WRITE_WORD(p, 0); + /* zero unused fields */ + while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { + WRITE_WORD(p, 0); + } + s = info->kernel_cmdline; + if (s) { + cpu_physical_memory_write(p, s, strlen(s) + 1); + } else { + WRITE_WORD(p, 0); + } +} + +/** + * load_dtb() - load a device tree binary image into memory + * @addr: the address to load the image at + * @binfo: struct describing the boot environment + * @addr_limit: upper limit of the available memory area at @addr + * + * Load a device tree supplied by the machine or by the user with the + * '-dtb' command line option, and put it at offset @addr in target + * memory. + * + * If @addr_limit contains a meaningful value (i.e., it is strictly greater + * than @addr), the device tree is only loaded if its size does not exceed + * the limit. + * + * Returns: the size of the device tree image on success, + * 0 if the image size exceeds the limit, + * -1 on errors. + * + * Note: Must not be called unless have_dtb(binfo) is true. + */ +static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, + hwaddr addr_limit) +{ + void *fdt = NULL; + int size, rc; + uint32_t acells, scells; + + if (binfo->dtb_filename) { + char *filename; + filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); + if (!filename) { + fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); + goto fail; + } + + fdt = load_device_tree(filename, &size); + if (!fdt) { + fprintf(stderr, "Couldn't open dtb file %s\n", filename); + g_free(filename); + goto fail; + } + g_free(filename); + } else { + fdt = binfo->get_dtb(binfo, &size); + if (!fdt) { + fprintf(stderr, "Board was unable to create a dtb blob\n"); + goto fail; + } + } + + if (addr_limit > addr && size > (addr_limit - addr)) { + /* Installing the device tree blob at addr would exceed addr_limit. + * Whether this constitutes failure is up to the caller to decide, + * so just return 0 as size, i.e., no error. + */ + g_free(fdt); + return 0; + } + + acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells"); + scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells"); + if (acells == 0 || scells == 0) { + fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); + goto fail; + } + + if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { + /* This is user error so deserves a friendlier error message + * than the failure of setprop_sized_cells would provide + */ + fprintf(stderr, "qemu: dtb file not compatible with " + "RAM size > 4GB\n"); + goto fail; + } + + rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", + acells, binfo->loader_start, + scells, binfo->ram_size); + if (rc < 0) { + fprintf(stderr, "couldn't set /memory/reg\n"); + goto fail; + } + + if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { + rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", + binfo->kernel_cmdline); + if (rc < 0) { + fprintf(stderr, "couldn't set /chosen/bootargs\n"); + goto fail; + } + } + + if (binfo->initrd_size) { + rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", + binfo->initrd_start); + if (rc < 0) { + fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); + goto fail; + } + + rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", + binfo->initrd_start + binfo->initrd_size); + if (rc < 0) { + fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); + goto fail; + } + } + + if (binfo->modify_dtb) { + binfo->modify_dtb(binfo, fdt); + } + + qemu_fdt_dumpdtb(fdt, size); + + /* Put the DTB into the memory map as a ROM image: this will ensure + * the DTB is copied again upon reset, even if addr points into RAM. + */ + rom_add_blob_fixed("dtb", fdt, size, addr); + + g_free(fdt); + + return size; + +fail: + g_free(fdt); + return -1; +} + +static void do_cpu_reset(void *opaque) +{ + ARMCPU *cpu = opaque; + CPUState *cs = CPU(cpu); + CPUARMState *env = &cpu->env; + const struct arm_boot_info *info = env->boot_info; + + cpu_reset(cs); + if (info) { + if (!info->is_linux) { + /* Jump to the entry point. */ + uint64_t entry = info->entry; + + if (!env->aarch64) { + env->thumb = info->entry & 1; + entry &= 0xfffffffe; + } + cpu_set_pc(cs, entry); + } else { + /* If we are booting Linux then we need to check whether we are + * booting into secure or non-secure state and adjust the state + * accordingly. Out of reset, ARM is defined to be in secure state + * (SCR.NS = 0), we change that here if non-secure boot has been + * requested. + */ + if (arm_feature(env, ARM_FEATURE_EL3)) { + /* AArch64 is defined to come out of reset into EL3 if enabled. + * If we are booting Linux then we need to adjust our EL as + * Linux expects us to be in EL2 or EL1. AArch32 resets into + * SVC, which Linux expects, so no privilege/exception level to + * adjust. + */ + if (env->aarch64) { + if (arm_feature(env, ARM_FEATURE_EL2)) { + env->pstate = PSTATE_MODE_EL2h; + } else { + env->pstate = PSTATE_MODE_EL1h; + } + } + + /* Set to non-secure if not a secure boot */ + if (!info->secure_boot) { + /* Linux expects non-secure state */ + env->cp15.scr_el3 |= SCR_NS; + } + } + + if (cs == first_cpu) { + cpu_set_pc(cs, info->loader_start); + + if (!have_dtb(info)) { + if (old_param) { + set_kernel_args_old(info); + } else { + set_kernel_args(info); + } + } + } else { + info->secondary_cpu_reset_hook(cpu, info); + } + } + } +} + +/** + * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified + * by key. + * @fw_cfg: The firmware config instance to store the data in. + * @size_key: The firmware config key to store the size of the loaded + * data under, with fw_cfg_add_i32(). + * @data_key: The firmware config key to store the loaded data under, + * with fw_cfg_add_bytes(). + * @image_name: The name of the image file to load. If it is NULL, the + * function returns without doing anything. + * @try_decompress: Whether the image should be decompressed (gunzipped) before + * adding it to fw_cfg. If decompression fails, the image is + * loaded as-is. + * + * In case of failure, the function prints an error message to stderr and the + * process exits with status 1. + */ +static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, + uint16_t data_key, const char *image_name, + bool try_decompress) +{ + size_t size = -1; + uint8_t *data; + + if (image_name == NULL) { + return; + } + + if (try_decompress) { + size = load_image_gzipped_buffer(image_name, + LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); + } + + if (size == (size_t)-1) { + gchar *contents; + gsize length; + + if (!g_file_get_contents(image_name, &contents, &length, NULL)) { + fprintf(stderr, "failed to load \"%s\"\n", image_name); + exit(1); + } + size = length; + data = (uint8_t *)contents; + } + + fw_cfg_add_i32(fw_cfg, size_key, size); + fw_cfg_add_bytes(fw_cfg, data_key, data, size); +} + +static void arm_load_kernel_notify(Notifier *notifier, void *data) +{ + CPUState *cs; + int kernel_size; + int initrd_size; + int is_linux = 0; + uint64_t elf_entry, elf_low_addr, elf_high_addr; + int elf_machine; + hwaddr entry, kernel_load_offset; + int big_endian; + static const ARMInsnFixup *primary_loader; + ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, + notifier, notifier); + ARMCPU *cpu = n->cpu; + struct arm_boot_info *info = + container_of(n, struct arm_boot_info, load_kernel_notifier); + + /* Load the kernel. */ + if (!info->kernel_filename || info->firmware_loaded) { + + if (have_dtb(info)) { + /* If we have a device tree blob, but no kernel to supply it to (or + * the kernel is supposed to be loaded by the bootloader), copy the + * DTB to the base of RAM for the bootloader to pick up. + */ + if (load_dtb(info->loader_start, info, 0) < 0) { + exit(1); + } + } + + if (info->kernel_filename) { + FWCfgState *fw_cfg; + bool try_decompressing_kernel; + + fw_cfg = fw_cfg_find(); + try_decompressing_kernel = arm_feature(&cpu->env, + ARM_FEATURE_AARCH64); + + /* Expose the kernel, the command line, and the initrd in fw_cfg. + * We don't process them here at all, it's all left to the + * firmware. + */ + load_image_to_fw_cfg(fw_cfg, + FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, + info->kernel_filename, + try_decompressing_kernel); + load_image_to_fw_cfg(fw_cfg, + FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, + info->initrd_filename, false); + + if (info->kernel_cmdline) { + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, + strlen(info->kernel_cmdline) + 1); + fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, + info->kernel_cmdline); + } + } + + /* We will start from address 0 (typically a boot ROM image) in the + * same way as hardware. + */ + return; + } + + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + primary_loader = bootloader_aarch64; + kernel_load_offset = KERNEL64_LOAD_ADDR; + elf_machine = EM_AARCH64; + } else { + primary_loader = bootloader; + kernel_load_offset = KERNEL_LOAD_ADDR; + elf_machine = EM_ARM; + } + + info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); + + if (!info->secondary_cpu_reset_hook) { + info->secondary_cpu_reset_hook = default_reset_secondary; + } + if (!info->write_secondary_boot) { + info->write_secondary_boot = default_write_secondary; + } + + if (info->nb_cpus == 0) + info->nb_cpus = 1; + +#ifdef TARGET_WORDS_BIGENDIAN + big_endian = 1; +#else + big_endian = 0; +#endif + + /* We want to put the initrd far enough into RAM that when the + * kernel is uncompressed it will not clobber the initrd. However + * on boards without much RAM we must ensure that we still leave + * enough room for a decent sized initrd, and on boards with large + * amounts of RAM we must avoid the initrd being so far up in RAM + * that it is outside lowmem and inaccessible to the kernel. + * So for boards with less than 256MB of RAM we put the initrd + * halfway into RAM, and for boards with 256MB of RAM or more we put + * the initrd at 128MB. + */ + info->initrd_start = info->loader_start + + MIN(info->ram_size / 2, 128 * 1024 * 1024); + + /* Assume that raw images are linux kernels, and ELF images are not. */ + kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, + &elf_low_addr, &elf_high_addr, big_endian, + elf_machine, 1); + if (kernel_size > 0 && have_dtb(info)) { + /* If there is still some room left at the base of RAM, try and put + * the DTB there like we do for images loaded with -bios or -pflash. + */ + if (elf_low_addr > info->loader_start + || elf_high_addr < info->loader_start) { + /* Pass elf_low_addr as address limit to load_dtb if it may be + * pointing into RAM, otherwise pass '0' (no limit) + */ + if (elf_low_addr < info->loader_start) { + elf_low_addr = 0; + } + if (load_dtb(info->loader_start, info, elf_low_addr) < 0) { + exit(1); + } + } + } + entry = elf_entry; + if (kernel_size < 0) { + kernel_size = load_uimage(info->kernel_filename, &entry, NULL, + &is_linux, NULL, NULL); + } + /* On aarch64, it's the bootloader's job to uncompress the kernel. */ + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { + entry = info->loader_start + kernel_load_offset; + kernel_size = load_image_gzipped(info->kernel_filename, entry, + info->ram_size - kernel_load_offset); + is_linux = 1; + } + if (kernel_size < 0) { + entry = info->loader_start + kernel_load_offset; + kernel_size = load_image_targphys(info->kernel_filename, entry, + info->ram_size - kernel_load_offset); + is_linux = 1; + } + if (kernel_size < 0) { + fprintf(stderr, "qemu: could not load kernel '%s'\n", + info->kernel_filename); + exit(1); + } + info->entry = entry; + if (is_linux) { + uint32_t fixupcontext[FIXUP_MAX]; + + if (info->initrd_filename) { + initrd_size = load_ramdisk(info->initrd_filename, + info->initrd_start, + info->ram_size - + info->initrd_start); + if (initrd_size < 0) { + initrd_size = load_image_targphys(info->initrd_filename, + info->initrd_start, + info->ram_size - + info->initrd_start); + } + if (initrd_size < 0) { + fprintf(stderr, "qemu: could not load initrd '%s'\n", + info->initrd_filename); + exit(1); + } + } else { + initrd_size = 0; + } + info->initrd_size = initrd_size; + + fixupcontext[FIXUP_BOARDID] = info->board_id; + + /* for device tree boot, we pass the DTB directly in r2. Otherwise + * we point to the kernel args. + */ + if (have_dtb(info)) { + hwaddr align; + hwaddr dtb_start; + + if (elf_machine == EM_AARCH64) { + /* + * Some AArch64 kernels on early bootup map the fdt region as + * + * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] + * + * Let's play safe and prealign it to 2MB to give us some space. + */ + align = 2 * 1024 * 1024; + } else { + /* + * Some 32bit kernels will trash anything in the 4K page the + * initrd ends in, so make sure the DTB isn't caught up in that. + */ + align = 4096; + } + + /* Place the DTB after the initrd in memory with alignment. */ + dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); + if (load_dtb(dtb_start, info, 0) < 0) { + exit(1); + } + fixupcontext[FIXUP_ARGPTR] = dtb_start; + } else { + fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; + if (info->ram_size >= (1ULL << 32)) { + fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" + " Linux kernel using ATAGS (try passing a device tree" + " using -dtb)\n"); + exit(1); + } + } + fixupcontext[FIXUP_ENTRYPOINT] = entry; + + write_bootloader("bootloader", info->loader_start, + primary_loader, fixupcontext); + + if (info->nb_cpus > 1) { + info->write_secondary_boot(cpu, info); + } + } + info->is_linux = is_linux; + + for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { + ARM_CPU(cs)->env.boot_info = info; + } +} + +void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) +{ + CPUState *cs; + + info->load_kernel_notifier.cpu = cpu; + info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; + qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); + + /* CPU objects (unlike devices) are not automatically reset on system + * reset, so we must always register a handler to do so. If we're + * actually loading a kernel, the handler is also responsible for + * arranging that we start it correctly. + */ + for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { + qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); + } +} -- cgit v1.2.3