Datalink Wristapp Programmer’s
Reference

John A. Toebes, VI

© 1997 John A. Toebes, VIII
All Rights Reserved

Jjtoebes@geocities.com

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Table of Contents

ADOUL the DALALINKeoivieiiieitieiiie sttt 6
S0, What is @ DatalinK?........cccvveieiie et 7
There are three basic models of the Datalink.............ccccocevininiininnnen, 8
What programs can | load in the 150/150S7?........ccccoviverieerceesienenne e 8

Datalink Technical DetallSccooeeieirieiieiie e 10
DoWNIload ProtOCOL..........coieiiiiiiiiie e 11
SYNChroNiZation PrOCESS.......ccuiriiiiiiiirie et 11
SYNC BIES ..ttt e 11
PacKet FOMMAL.........coiiiiiiiiesie s 12
$20 - CPACKET _START ..ottt sie e es st se e snens 12
$21 - CPACKET _SKIP ..ooiiieeet sttt 12
$23 - CPACKET_JIMPMEMccoiiiiiieisirsienieesie et seens 12
$90 - CPACKET _SECT ..iiiicieesie ettt saens 13
$O1 - CPACKET _DATA ..ottt s 13
$92 - CPACKET _END.....oiiieeeeisiesieeeie e se e es et se s e snens 14
$93 - CPACKET _CLEAR ..ottt 14
$50 - CPACKET_ALARM ...ttt sie ettt seens 14
$32 - CPACKET_TIMEttieeeesiesieeeeste e see et seenas 14
$70 - CPACKET _MEM ...ouiiiiieieiiesieiee e steseee e saees et saees e s nsens 15
$71 - CPACKET _BEEPS ...ttt 15
THE DISPIAY ..ttt b e 16
The TOP/MIDDLE Character Set.........cccocvevienieneenieeieee e 16
The Bottom Character Set.........cccovieiiiiieie e 18
MEMOIY IMAPD ...ttt 28

Datalink Overview Memory Mapcoceeieereenieneenieneesee e 28

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Differences between the 150 and 150S...........cccccevrvrineeieneneneeeenenes 29
Dealing with the DifferenCes..........cooceviiiiinici 29
Accessing the EEPROM ...t 30
SOUNT HAMAWAE ..ottt 31
HArAWAre TONES.c.ueeiieiitieieere ettt 31
IMPOMANT TEIMS:ot 31
The format of @ SoUNd SChEME..........ccciiiiiiiii e 33
SOUN FlES ...t 35
Wristapp Programming Referencecoccvevviiiiieinei e 37
THE PIOCESSONcotiitieitie sttt sttt sttt bbb 38
TOOIS <.t 39
ASMB805 (2 MONLhS 1ALEF)cvveviiiiiie e 40
The .ZSM file FOIMAL........cooiiiiiiiiei s 41
System Routine DefiNitioNSccovveeiieieeieenienee e 42
Program Layout BASICSccoveiiirienieieenie et 43
Wristapp INterface ENIESooviieiiiiiierie e e 43
SUINGS AN DALcoveeiiieiieeiierieee e 44
ZAP Fle FOMALcoiiiiiiiiiieeee e e 44
GettiNg SLAMEdooveeiiesiee e 46
The State TabIe.......cooii s 47
Special State TabIESccooviiiiiiierie e 47
=TS (=0 Y o oL TP TRTRR 47
BULLON BEVENTS ... 48
TIMEE EVENTS ..ottt 48
Oher EVENLSviiiieiee ettt sttt nre e 48
EVENE CONSEANTSeviieiiieciieestee e 48

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

State Table VAIUES..........cooeiiiie e 48
TIMEr CONSIANTS.....ccvieitieitiete et 49
Classes of Callable FUNCHONS...........cccoiiiiiiiiineee e 51
ANNIVersary SUPPOIT FOULINES..........coieereereereeriee e sieesieesieestee e sieeseeens 51
SCANNING SUPPOIT ...ttt e 52
APPOINTMENE SUPPOIT.....veeteeitieitiesiee sttt sttt sre e st sreeseeens 53
INEEINAL ...t 55
INAIGIO SUPPOIT....coiiitieitie e 55
10 8016 ST N o] 0 o] £ SRR 56
EVENT SUPPOIT ...t 56
Packet/EEPIOM SUPPOM........ccciiiiieiieriesiee et 57
INST SUPPOIT ...ttt 58
SCrOllING MESSAGESeeiveiiiiitieriee sttt 60
BlINKING FOULINEScovieitieitiesiie ettt 60
Update fUNCHONScoviiiiieieie ettt 62
FOrmMat ROULINES.......ccueiiiiiitieiiie ettt 62
LINE FOULINES....cotiiitieitie sttt 63
INStalling @ WIISTAPP ...cccveerteestee ettt 76
MY WIISTAPIIS .. vttt sttt ettt sttt sttt s b e bbb e e sbeesbeesbeenbeen 78
Other People’s WIISIAPPSoovvreiiiiiieiie e 79
Plans fOr WHSTAPPSeeiveeieieiiesiee sttt 80
Wristapp Programming TUEONAL...........coveieeiieiiee e 82
A First Wristapp - Hello WOrldc.cooiiiiiiiiieeeenee e 83
GELING INPUL. ...t e 86
Better INPUt - UPALe........cceeiiiiiiiieiieieere s 89

Showing Selection - BliNK rOULINESccoovriiiiiiirce e 93

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Entering Digits - PASSWD SampIeccccooieiiinieiieeee e 97
Getting time and Input - DAYFIND samplecccvviviiniinieeieee 103
Playing With Sound - TestSnd example...........cccocvveiiinnnninnieneenn 112
Using Callbacks - Endoff examplecccoovriininninneincneeneeeenn 116
Using 3 States - HexDump example ..., 120
Dumping the EEPROM - promdump example...........cocevevneenenneennnn 128
Tracking Money - Spend Watch exampleccoccvevceevcievcensnee e, 136
Creating a Sound Scheme - Soundl example..........cccoccvvierieniieninennn 151
Random Numbers and Marquis - 3Ball exampleccccovvevrevrennnnn. 153
Playing Hourly Chimes - Ships Bells examplecccccooeevevceerciennnne. 157

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

About the DatalLink

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

So, What is a Datalink?

The Datalink is a pretty neat watch that Timex created which allows you to download information just by pointing the
watch at the display screen. You have probably seen the commercials where the dog and cat play around with
reprogramming the appointments on the watch.

What makes the watch interesting to me is that you can actually write programs for it. Although Timex did not
document how to do this, it turned out not to be too difficult to figure out how to write code for the watch. Of course
explaining how to do that is a bit more difficult, but that is what this document is all about.

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

There are four basic models of the Datalink

The original 75 model which allowed you to download phone numbers, alarms, lists, anniversaries, and
appointments.

The updated 150 model which doubled the download speed and increased the amount of memory for
storing those phone numbers, alarms, lists, anniversaries, and appointments. Timex also was kind enough
to give us the ability to download wristApps to extend the functionality of the watch.

The smaller 150s model which is nearly identical to the 150 in capabilities. This was introduced for the
1996 Christmas season as a lady’s watch.

The Ironman Datalink watch. Some people called this the 150r, but that is not the correct designation.
While this watch is similar to the 150 and 150s with respect to capacity, it does not support downloading of
wristapps.

What programs can | load in the 150/150s?

Timex ships several useful Wristapps with the 150 in the box:

Note - Used for copying up to 255 characters of text (30-40 words) to the watch. It is useful for storing
directions, etc. that need to be readily accessible.

Melody Tester - Used for testing Watch Tones on the watch. It sure beats waiting around for the
appointment beep to go off.

Stopwatch - A chronograph that times events by starting from zero and counting up.

Adjustable Timer - Allows setting of a time to be counted from 1 minute to 100 hours, in 1 minute
increments.

Preset Timer - The Preset Countdown Timer that allows for quick selection of the following preset times: 5,
10, 15 20, 30, 45, or 60 minutes.

Week of the Year (U.S.) - Displays what week of the year it is, what day of the year it is, and how many
days are left in the year.

Week of the Year (International) - Displays what week of the year it is, what day of the year it is, and how
many days are left in the year.

You can also purchase the optional Wristapps, which give you a few other useful wristapps:

Golf - A golfer’s electronic scorecard. Enter the number of strokes per hole and let the watch calculate the
total for the round and the front and back nine. You can recall your totals or hole scores at any time.

CopyMe Game - A memory game. The watch displays a sequence of 0's that you must duplicate using the
watch’s buttons. If you are successful, the watch adds another step to the sequence. Make it through 15
steps and you win!

Pulse - Gives you a quick estimate of your pulse rate. Feel for your pulse. When the watch beeps, start
counting beats. When you count ten, press a button, and the watch calculates your pulse. It's a great
workout companion.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

World Time - Displays the time in each of the 24 time zones around the world.

Conversion - Gives you a table for converting values from one unit to another.

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Datalink Technical Details

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Download Protocol
Synchronization Process

Before you can start sending any data to the DataLink, you have to send a series of sync bytes:

$55 (the watch has to see 4 in a row to be happy about it)
Once the watch has gotten the Sync bytes, it will look for a series of at least four $aa or $BF bytes to go into an
initialization mode.

Once in initialization mode, it will start looking for the data bytes. If it sees a $Er, it will treat that as an escape byte
and read in the next byte regardless of what it is (this allows the first byte of the packet to be a $55, $AA, $BF Or even
$EF).

Once it has gone into data transfer mode, it expects a series of 2 byte groups where the low bit of the first byte and
the high bit of the second byte (I call these middle bits) must match to be sync bits. It expects these sync bits to
alternate between 0 and 1. Any 2-byte group that does not match this will be thrown out. Also, if no valid bytes are
received within 1/5 second, the transfer operation is aborted.

Sync Bits
With these sync bits, you can only transfer 14 bits of data for every 16 bits sent. (There are actually 2 extra sync bits

on the screen to act as start and stop bits). If you look at it, that means that you can get 7 bytes transferred for every
8 bytes sent. The organization of these bits is:

Alblc|d|e|f|lg]- - lilj k|l [m[n|h
Qlr|s|tlujo|p]|+ +lz|y|A|B|Vv]w]|X
G|H|I [C|D|E|F]|- -|O|P|J|K|L|M[N
W QIR|S|TJU|V]+ + | X|Y|Z[1]2]|3]|4

Where - and + represent the sync bits (zero and one) in the byte pairs. If you decode these bits into the
corresponding bytes, you get:

Alb|c|d|e|f|g]|h
Il lj k|l |m|njo]|p
Qlr|s|tjlu|v] w]|Xx
Y|z|A|B|C|D|E|F
G|H[Il [J|K|[L|M|N
O|P|Q|R|S|T|U|V
W X|Y|]Z]|]1]|2]|3]|4

Note that you always have to send in byte pairs, but the code is smart enough to throw away an extra byte which
does not fit in a packet. All packets end with a 2 byte 16-Bit CRC.

| think that the most interesting packet of all of this is the CPACKET JMPMEM. It is possible to reset the watch by
just sending this packet in the stream:

{09 [23 o4 [3e |18 |94 |81 f<crc-16>

What this does is tells it to jump to location 04 3e which happens to be the address of where the 4" byte in the
packet is stored. The code executes the 18 94 which is a BSET 4, TI MER_FLAGS followed by an 81 = RTS. When the
watch sees that 4, TI MER_FLAGS has been set, it will run the watch through a complete reset cycle. There are a lot of

-11-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

other fun things that you can do. For example, you can play a tune during the download by storing new values at
location 0335. So the packet:

{oc [23 Jo4 [3e [a6 |01 |c7 f03 [35 [81 |<crc-16> |
Would change the download tone to be a LOW C. Replace the 01 with any value up to Of and you can actually play
atune as it is downloading. (The note at $0335 is played after each packet).

You can also use this code to indicate a status on the watch by setting the individual segments on the bottom:

{od [23 Jo4 [3e [a6 [48 o7 [1d |19 [1e |81 f<crc-16> |
Would turn on the AM indicator. Of course since you can't look at the watch while it is downloading, it would be little

silly. However, this can be a great debug aid for someone working on the download protocol since the symbols are
not cleared out once the download process starts.

The CPACKET_MEM packet is also pretty useful. You can use it to set any of the locations in ram to a particular
value. This might be useful if you know that you have a certain Wristapp already loaded and you want to change
some data stored in the wristapp. All you need is the address to store the data in and the data that you want to put
there.

Packet Format

$20 - CPACKET_START

Packet Length

$20 - CPACKET_START

$00

$00

Version: 3=V2.0 for the 150, 4=V2.1 for the 150s
CRC-16 High

CRC-16 Low

$21 - CPACKET_SKIP

AN =

This skip packet does get sent to the Datalink, but its contents are completely ignored.

0 |Packet Length

1]$21 — CPACKET_SKIP
2 |<ignored>
3
4

CRC-16 High
CRC-16 Low
$23 - CPACKET_JMPMEM

This IMPMEM packet is useful for jumping to/calling specific locations in memory during the download process.

0 |Packet Length

1]$23 - CPACKET_JMPMEM
2 JAddress High to jump to
3
4

Address low to jump to
CRC-16 High

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

|5|CRC-16 Low
$90 - CPACKET_SECT

This is the Initialization packet to start loading a section. There are three formats based on the section to be loaded.

$90 - CPACKET_SECT - Format 1

Packet Length

$90 — CPACKET _SECT

$01 - CLOAD_EEPROM - Load up EEProm data
Number of CPACKET_DATA packets to follow
CRC-16 High

CRC-16 Low

Q| W|IN|F]|O

$90 - CPACKET_SECT - Format 2

Packet Length

$90 — CPACKET_SECT

$02 — CLOAD_WRISTAPP - Load a new Wristapp
Number of CPACKET_DATA packets to follow
Value to be stored in COMM_010e

CRC-16 High

CRC-16 Low

OO BH|W[N|F|O

$90 - CPACKET_SECT - Format 3

0|Packet Length

1|$90 — CPACKET_SECT

2|$03 - CLOAD_SOUND - Load a new sound scheme
3|Number of CPACKET_DATA packets to follow
4
5
6

Base offset for the sound (should be $100-length of the sound)
CRC-16 High

CRC-16 Low

$91 - CPACKET_DATA

This is the data packet sent after a CPACKET_SECT. The number of packets sent will be dependent on the section
and is indicated in the CPACKET_SECT packet. Once these packets start getting sent, there should be no other
packets until a CPACKET_END is encountered (although there is really no error checking done on it). If the
download is terminated without the last CPACKET_END being seen or the right number of CPACKET_DATA
packets, the entire section is ignored.

Packet Length

$91 - CPACKET_DATA
<ignored> (probably address high)
<ignored> (probably address low)
.. N+4 n Databytes to be stored

n+5 CRC-16 High

AlW|IN|F]|O

-13-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

[n+6 |CRC-16 Low
$92 - CPACKET_END

This packet marks the end of a section.

0|Packet Length

1{$92 - CPACKET_END

2|Section (1=CLOAD_EEPROM, 2=CLOAD_WRISTAPP, 3=CLOAD_SOUND)
3

4

CRC-16 High
CRC-16 Low
$93 - CPACKET_CLEAR

This Packet is used to clear out a section.

0|Packet Length

1|$93 - CPACKET_CLEAR

2|Section to clear (CLOAD_EEPROM, CLOAD_WRISTAPP, CLOAD_SOUND)
3

4

CRC-16 High
CRC-16 Low
$50 - CPACKET_ALARM

This packet is used to set the alarm information for a single alarm.

0 |Packet Length

1 |$50 - CPACKET_ALARM
2 |Alarm Number (1-5)

3 |Alarm Hour (0-23)

4 |Alarm Minute (0-59)

5 |<ignored>

6 |<ignored>

7 |Alarm String character 1
8 |Alarm String character 2
9 |Alarm String character 3
10 JAlarm String character 4
11 JAlarm String character 5
12 JAlarm String character 6
13 JAlarm String character 7
14 JAlarm String character 8
15 |Alarm enable O=disable, non-zero=enable
16 |CRC-16 High

17 |CRC-16 Low

$32 - CPACKET_TIME

This single packet is used to set the time. It should be sent early in the process in ensure the best synchronization
with the CPU clock time.

[0 |Packet Length |

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

$32 — CPACKET_TIME

Time zone selector (1=Time zone 1)
Seconds (0-59)

Hour (0-23)

Minute (0-59)

Month of the year (1-12)

Day of the month (1-31)

Current year (mod 1900)

Time Zone Name character 1

Time Zone Name character 2

Time Zone Name character 3

Day of the week (0O=Monday...6=Sunday)
12/24 hour selector (1=12 Hour format, anything other than 1=24 hour format)
Time zone date format

CRC-16 High

16 |CRC-16 Low

$70 - CPACKET_MEM

OO|IN|O|OBR[W|IN]|F-

=
o

=Y
=Y

=
N

[y
w

[y
N

[y
;]

This packet is used to store a number of bytes into memory at a fixed location. Note that it is not used for loading up
a wristapp because other information has to be reset when a wristapp has been loaded.

Packet Length

$70 — CPACKET_MEM

High byte of memory address
Low byte of memory address
4..n+3 |Data to be stored into memory
n+4 CRC-16 High

n+5 CRC-16 Low

$71 - CPACKET_BEEPS

WIN[F]|O

This packet is used to control the hourly chimes and button beep flags.

0 [Packet Length

1]$71 - CPACKET_BEEPS

2 |Enable Hourly chimes flag (O=Disable, Non-Zero=Enable)
3 |Enable Button beep flag (O=Disable, Non-Zero=Enable)
4
5

CRC-16 High
CRC-16 Low

-15-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

The Display
The DatalLink display has 4 basic areas when it comes to programming. For convenience, | call them simply:

1. TOP - The top 6 digits. Each of these digits are represented by 9 segments which can be individually
controlled. There are dash and period separators between the second/third and the forth/ffifth digits for
displaying dates. There is also a dash separator between the third and forth digits which is used for
telephone numbers. It also has a tic mark before the first digit as a shorthand for the first two digits of the
year.

2. SYMBOLS - The AM/PM, Reminder, Night Mode, Alarm, and Note symbols. These tend to only be used by
the Time app.

3. MIDDLE - Like the TOP area, the Middle area also consists of 6 digits each made up of 9 segments. For
separators between the second and third digits, you can use a colon, period, or a dash. The fourth and fifth
digits can be separated by a dash or a period.

4. BOTTOM - The bottom 8 digits which are each represented by a 5 by 5 matrix of pixels that can be
individually addressed. The ROMs also support a series of scrolling routines to allow a message to be
scrolled across the bottom at a nice even rate.

What is really nice about the watch is that every segment on the display is individually addressable. For
convenience, we use a notation of BIT:OFFSET to indicate how to address the segment. What this means is that
you need to set DISP_ROW ($001d) to the OFFSET value and then set/clear the BIT in DISP_COL ($001e) to turn
on/off the corresponding segment. For example, if you wanted to turn on the AM indicator on the 150 which is
referred to as 4: 48, you would do:

LDA #%$48

STA DI SP_ROW

BSET 4, D SP_COL

Here's a quick overview of the display. All of the segments are clickable so that you can determine the way to
set/clear that segment. This is a Java applet, so if your browser is not capable of supporting Java, you won't be able
to see it. When you click on the segment, it will hi-light in red and display the appropriate set values on the status
bar. Valuel will be what you use for the 150 and Value2 will be for the 1508S.

The TOP/MIDDLE Character Set

The TOP and MIDDLE lines only allow for 32 different characters to be displayed (unless of course you do it all
yourself). For convenience, we refer to this character set as the TIMEX6 character set. All of the Wristapps that are
written use the TIMEX6 macro to convert ASCII strings to this set. Because you have to use the number zero for the
letter O and the number five for the letter S, the TIMEX6 macro will handle the conversion for you. The characters
that can't easily be displayed are: J K Q V X Y. Fortunately, they aren't used in a lot of words (except of course my
first name :-).

The TIMEX6 character set does allow for the names of all the internal Apps to be displayed. It is important to be
aware of this limited character set when choosing the name of your Wristapp, otherwise you won't be able to display
it easily when someone switches to the app.

$00 | $01 | $02 | $03 | $04 | $05 | $06 | $07 | $08 | $09 | $0a | $Ob | $Oc | $0d | $0e | $Of
0 1 2 3 4 5 6 7 8 9 A B C D E F

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

$10 | $11

$12

$13

$14

$15

$16

$17

$18

$19

$la

$1b

$1c

$1d

$le

$1f

G

H

L

M

N

P

R

T

U

\

Y

=

1+

PUT6TOP 2?7
PUT6M D 277
PUTVBGL 277
PUTVER2 2?7
CLEARTCP 2?7
CLEARM D 2?7
CLEARTOP12 2?77
CLEARTOP34 ??7?
CLEARTOP56 2?7
CLEARM D12 2?77
CLEARM D34 277
CLEARM D56 ?2?7?
PUTLI NE1 2?77?
PUTLI NE2 277
PUTTOP12 2?77
PUTTOP34 2?77
PUTTOP56 277
PUTM D12 2?77
PUTM D34 277
PUTM D56 ?2?7?

You can see what all of these are displayed as below.

$00 -0 $01-1 $02 - 2 $03 -3
| :::::l | :::::l :::::l
| | | | |
| | | | |
| | | :::::l :::::l
| | | | |
| | | | |
| :::::l | | =—==== :::::l

$04 - 4 $05 - 5 $06 - 6 $07 -7
| | | =—==== | =—==== :::::l
:::::l	=—====	=—====	
:::::l	:::::l		

$08 - 8 $09-9 $0a - A $0b - B
| :::::l | :::::l | :::::l :::::l
| | | | | | [
| | | | | | [
| :::::l | :::::l | :::::l :::::l
| | | | | [
| | | | | ||

The routines which are useful for putting strings on the top and middle lines are:

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

I

$0c - C $0d - D $0e - E $Of - F
| —==== :::::l | =—==== | =—====
| [| |
| [| |
| | | —==== | —====
[
[
—==== :::::l	=—====
$10-G $11-H $12 -1 $13-L	
=====	
	:::::l
:::::l	
$14-M $15-N $16-P $17-R	
:::::l	:::::l
[
[
$18-T $19-U $la-W $lb-Y	
—=—===	
:::::l	:::::l
$lc-r $1d - $le-- $1f - +	
—====	

The Bottom Character set

The BOTTOM line has a slightly richer character set which we call the TIMEX character set. It allows for 64 different
characters, includes the entire upper case alphabet and quite a few special symbols. All of these characters are

drawn on a 5x5 dot matrix.

$00 | $01

$02 | $03

$04

$05 | $06

$07 | $08

$09

$0a

$0b

$0c

$0d

$0e

$0f

0 1

2

3

4

8] 6

7 8

9

A

B

C

D

E

F

$10 | $11

$12 | $13

$14

$15 | $16

$17 | $18

$19

$la

$1b

$1c

$1d

$le

$1f

[@)
IT

=<

=
=

=4
(@)

IO

[Py]

[%)

—

IcC

<

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

9-

$20 | $21 | $22 | $23 | $24 | $25 | $26 | $27 | $28 | $29 | $2a | $2b | $2c | $2d | $2e | P2f
VAV - A4 Z _ ! - li > % J& | () N +
$30 | $31 | $32 | $33 | $34 | $35 | $36 | $37 | $38 | $39 | $3a | $3b | $3c | $3d $3e $3f

A - A / : \ DIV |= BELL |? _ CHK |PREV |NEXT |BLOCK |SEP
The routines which are useful for putting strings on the top and middle lines are:
BANNERS 277
PUTMBGXBOT 277
PUTMSGBOT ?7?
PUTBOT678 277
PUTLI NE3 277
PUT_LETTERX 277
PUTSCROLLMSG ?7?
SCROLLNBG 2?77
SCROLLMSG_CONT 277

$00-0 $01-1 $02-2 $03-3 $04-4 $05-5 $06-6 $07-7
@ @ @R @R @ @ @oooD _@one @ooen
@ @ @@ @ @ @ @ @ @ @
@ @ @ @@ @@ Cezee) @R @@en. @
@ _@ @ @ @ @ ___@ @_@ @
@R @ _ @EoEe @@en. @ @Een. @@ @ _

$08-8 $09-9 $0a-A $0b-B $0c-C $0d-D $0e-E $Of-F
_@on. _@an. _@an. @R _@oge @R @ooEe @ooEe
@_@ @_@ @_@ @_@ @ @ @ @ @
_@on. _@oEe Cezee) @R @ @ @ @@en. @@en.
@_@ ___@ @ @ @_@ @ @_@ @ @
_@oe @@en. @ @ @@en. _@oEe @@en. @ooER @ _

$10-G $11-H $12-| $13-J $14-K $15-L $16-M $17-N
_@oge @ @ @@ @@ @ @ @ @ @ @ @
@ _ @_@ @ @ @ @ @ @@ @@ @ @
@ @@ Cezee) @ @ @@ _ @ @@ @@
@_@ @ @ __@ @ @ @@ @ _ @@ @ @@
_@oEe @ @ @@ | @ _ @ @ @ooon @ @ @ @

$18-0 $19-P $1a-Q $1b-R $1c-S $1d-T $le-U $1f-V
@@ @R @@ @R _@oge @ooEe @ @ @ @
@ @ @ _@ @ _@ @ _@ @ @ @ @ @ @
@ @ @@eR. @@ @R @@ @ @ @ @ @
@_@ @ @@ @ @ @ @ @_@ @@
@@ @ _@@ @ @ @ @@en. @ _ @@ __@_

$20-W $21-X $22-Y $23-7 $24- $25-! $26- $27-#
@ @ @ @ @ @ @ooEe @ @@ @@
@_ @ @@ @@ @ I @ @@ @oaER
@@ @ @ @ I @ I @@
@@ @@ @ @ Cezee)
@@ @ @ @_ @EoEe __ @ _ I @@

-1

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

$28-$ $29-% $2a-& $2b- $2¢-($2d-) $2e-* $2f-+
|_@oop @ @ @ _ @ _ @ _ @ @Q@@ _ @
@@ _ _ @ @@ _ @ @ @ (@ze] _ @
(@z2) _ @ @D @ _ @ @ coEEn @2eze)
__ @@ @ @ @ I @ @ @ze] _ @
@aaR @ _@@ @ @ _ __ @ __ @ @@@ __ @

$30-, $31-- $32-. $33-/ $34-; $35-\ $36- $37-=

@ @ _ @
_ @ _ @ @ (@ees)

_ (@ees) _ _ @ _ _ @ (@ees)
_ @ @ _ @ @ (@ees)
_ @ _ @ @ @ __ @

$38-> $39-? $3a-_ $3b- $3c- $3d- $3e- $3f-
_ @ _ @@ @ @ @ @) _
@R @ @ _ @ @@ @@ (@eea) @R
_ @R _ @ I @@ coEEn (@ees) @2eze) _@on
@zeze) @ @@ @@ (@eea) _@an
__ @ @ coEEn CooER @ @ @ees) _
Alarm 4:1C 4:1A
AM 4.48 4.46
M1A 4.42 4:40
M1B 3:40 3:3E
M1C 2:40 2:3E
M1D 2:46 2:44
M1E 3:46 3:44
M1F 4.46 4.44
M1G 3:44 3:42
M1H 4:44 4:42
M1l 2:44 2:42
M2A 4:3A 4:38
M2B 3:38 3:36
M2C 2:38 2:36
M2D 2:3E 2:3C
M2E 3:3E 3:3C
M2F 4.3E 4:3C
M2G 3:3C 3:3A
M2H 4:3C 4:3A
M2I 2:3C 2:3A
M3A 4:30 4.2E
M3B 3:2E 3:2C
M3C 2:2E 2:2C
M3D 2:34 2:32
M3E 3:34 3:32
M3F 4:.34 4.32
M3G 3:32 3:30
M3H 4.32 4:30

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

M3l 2:32 2:30
M4A 4.28 4.26
M4B 3:26 3:24
M4C 2:26 2:24
M4D 2:2C 2:2A
M4E 3:2C 3:2A
M4F 4.2C 4:2A
M4G 3:2A 3:28
M4H 4:2A 4.28
M4l 2:2A 2:28
M5A 4.1E 4:1C
M5B 3:1C 3:1A
M5C 2:1C 2:1A
M5D 2:22 2:20
M5E 3:22 3:20
M5F 4.22 4.20
M5G 3:20 3:1E
M5H 4:20 4.1E
M5| 2:20 2:1E
M6A 4:10 4.0E
M6B 3.0E 3:.0C
M6eC 2:.0E 2:.0C
M6D 2:14 2:12
M6E 3:14 3:12
M6F 4.14 4.12
M6G 3:12 3:10
M6H 4:12 4:10
Mé6I 2:12 2:10
MC23 3:36 3:34
MD45 3:24 3:22
MP23 2:36 2:34
MP45 2:24 2:22
Night 4:26 4:24
Note 4.0e 4.0C
PM 4.40 4.3E
Remind 4.38 4.36
S1A1 2:47

S1A2 2:45

S1A3 2:43

S1A4 2:41

S1A5 2:3F

S1B1 3:47

S1B2 3:45

S1B3 3:43

S1B4 341

-21-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

S1B5 3:3F
S1C1 4:47
S1C2 4:45
S1C3 4:43
S1C4 4:41
S1C5 4:3F
S1D1 0:47
S1D2 0:45
S1D3 0:43
S1D4 0:41
S1D5 0:3F
S1E1 1:47
S1E2 1:45
S1E3 1:43
S1E4 1:41
S1E5 1:3F
S2A1 2:3D
S2A2 2:3B
S2A3 2:39
S2A4 2:37
S2A5 2:35
S2B1 3:3D
S2B2 3:3B
S2B3 3:39
S2B4 3:37
S2B5 3:35
S2C1 4:3D
S2C2 4:3B
S2C3 4:39
S2C4 4:37
S2C5 4:35
S2D1 0:3D
S2D2 0:3B
S2D3 0:39
S2D4 0:37
S2D5 0:35
S2E1 1:3D
S2E2 1:3B
S2E3 1:39
S2E4 1:37
S2E5 1:35
S3Al 2:33
S3A2 2:31
S3A3 2:2F
S3A4 2:2D

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

S3A5 2:2B
S3B1 3:33
S3B2 3:31
S3B3 3:2F
S3B4 3:2D
S3B5 3:2B
S3C1 4:33
S3C2 4:31
S3C3 4:2F
S3C4 4:2D
S3C5 4:2B
S3D1 0:33
S3D2 0:31
S3D3 0:2F
S3D4 0:2D
S3D5 0:2B
S3E1 1:33
S3E2 1:31
S3E3 1:2F
S3E4 1:2D
S3ES5 1:2B
S4A1 2:27
S4A2 2:25
S4A3 2:23
S4A4 2:21
S4A5 2:1F
S4B1 3:27
S4B2 3:25
S4B3 3:23
S4B4 3:21
S4B5 3:1F
S4C1 4:27
S4C2 4:25
S4C3 4:23
S4C4 4:21
S4C5 4:1F
S4D1 0:27
S4D2 0:25
S4D3 0:23
S4D4 0:21
S4D5 0:1F
S4E1 1:27
S4E2 1:25
S4E3 1:23
S4E4 1:21

-23-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

S4E5 1:1F
S5A1 2:1D
S5A2 2:1B
S5A3 2:19
S5A4 2:17
S5A5 2:15
S5B1 3:1D
S5B2 3:1B
S5B3 3:19
S5B4 3:17
S5B5 3:15
S5C1 4:1D
S5C2 4:1B
S5C3 4:19
S5C4 4:17
S5C5 4:15
S5D1 0:1D
S5D2 0:1B
S5D3 0:19
S5D4 0:17
S5D5 0:15
S5E1 1:1D
S5E2 1:1B
S5E3 1:19
S5E4 1:17
S5ES 1:15
S6A1 2:13
S6A2 2:11
S6A3 2:0F
S6A4 2:.0D
S6AS 2:.0B
S6B1 3:13
S6B2 311
S6B3 3:0F
S6B4 3:0D
S6B5 3:.0B
S6C1 4:13
S6C2 4:11
S6C3 4:0F
S6C4 4:0D
S6C5 4.0B
S6D1 0:13
S6D2 0:11
S6D3 0:0F
S6D4 0:0D

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

S6D5 0:0B
S6E1 1:13
S6E2 1:11
S6E3 1:0F
S6E4 1:0D
S6ES 1:0B
S7Al 2:09
S7A2 2:07
S7A3 2:05
S7A4 2:03
S7A5 2:01
S7B1 3:09
S7B2 3:07
S7B3 3:05
S7B4 3:03
S7B5 3.01
S7C1 4:09
S7C2 4.07
S7C3 4:05
S7C4 4:03
S7C5 4.01
S7D1 0:09
S7D2 0:07
S7D3 0:05
S7D4 0:03
S7D5 0:01
S7E1 1:09
S7E2 1:07
S7E3 1:05
S7E4 1:03
S7ES 1:01
S8A1 2:02
S8A2 2:04
S8A3 2:06
S8A4 2:08
S8AS 2:0a
S8B1 3:02
S8B2 3:.04
S8B3 3:06
S8B4 3:08
S8B5 3:0a
S8C1 402
S8C2 4.04
S8C3 4:06
S8C4 4:08

_25-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

S8C5 4:0a

S8D1 1:02

S8D2 1:04

S8D3 1:06

S8D4 1:08

S8D5 1:0a

S8E1 0:02

S8E2 0:04

S8E3 0:06

S8E4 0:08

S8ES 0:0a

T1A 2:42 2:40
T1B 1:40 1:3E
T1C 0:40 0:3E
T1D 0:42 0:40
T1E 0:46 0:44
T1F 1:46 1:44
T1G 1:42 1:40
T1H 1:44 1:42
T1I 0:44 0:42
T2A 2:3A 2:38
T2B 1:38 1:36
T2C 0:38 0:36
T2D 0:3A 0:38
T2E 0:3E 0:3C
T2F 1:3E 1:3C
T2G 1:3A 1:38
T2H 1:3C 1:3A
T2l 0:3C 0:3A
T3A 2:30 2:2E
T3B 1:2E 1:2C
T3C 0:2E 0:2C
T3D 0:30 0:2E
T3E 0:34 0:32
T3F 1:34 1:32
T3G 1:30 1:2E
T3H 1:32 1:30
T3l 0:32 0:30
T4A 2:28 2:26
T4B 1:26 1:24
TAC 0:26 0:24
T4D 0:28 0:26
TAE 0:2C 0:2A
TAF 1:2C 1:2A
TAG 1:28 1:26

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

T4H 1.2A 1:28
T4l 0:2A 0:28
T5A 2:1E 2:1C
T5B 1l:1c 1:1A
T5C 0:1c 0:1A
T5D O:1le 0:1C
TS5E 0:22 0:20
T5F 1:22 1:20
T5G 1.1E 1:1C
T5H 1:20 1.1E
T5I 0:20 0:1E
T6A 2:10 2:.0E
T6B 1.0e 1.0C
T6C 0:0e 0:0C
T6D 0:10 0:.0E
T6E 0:14 0:12
T6F 1:14 1:12
T6G 1:10 1.0
T6H 1:12 1:10
T6I 0:12 0:10
TD23 1:36 1:34
TD34 4.2E 4:2C
TD45 1:24 1:.22
TP23 0:36 0:34
TPA45 0:24 0:22

-27 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Memory Map

The Datalink is controlled by a custom 6805 which has 16K of ROM, 1.25K of Ram and 2.0K of EEProm. Because
the 6805 has a 15 bit address bus, all accesses wrap at 0800 to 0000 and repeat once again. The EEProm is
a serial device and does not appear in the accessible address space for the 6805.

Datalink Overview Memory Map

0000- 002A 16805 Hardware registers

002B- 004F |Unused ram (probably not even mapped)
0050- 005F |System App local variables

0060- 0067 |Wristapp local variables

0068-00C2 |System local variables

00C3- 00FF |Call stack

0100- 010F |EEProm control variables

0110- 0335 |Wristapp memory

0336- 0435 |Sound memory (starts high, low end can be used for a larger wristapp)
0436- 04FF |System upper ram

0500- 3FFF |Unused - This is a hole in the address space
0400- 7FFF |System ROM

<More memory map stuff to come>

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Differences between the 150 and 150S

For Christmas 1996, Timex introduced a smaller version of the 150 called the 150s. This watch has substantially
the same hardware and capabilities as the 150, but in a smaller package. You can tell the difference between the
two by entering COMM Mode. If the version on the bottom line is V2.0, then the watch is a 150. If it says V2.1, it is
a 150S. There is also a newer release of the Datalink software (V2.1) for the 150s which works with all of the
Datalink watches. The older V2.0 software will not talk to the 150s.

It is not possible to run the same wristapp on both watches because of a few differences:
The addresses for the display segments have changed. Mostly this has been a simple subtraction of 2 from
the offsets for addressing the display segments, but it also involved the shuffling of a couple of the pixels in
the segments on the bottom line. Since turning on a segment is a hard coded constant, an application has
to be recompiled for the different display.

To accommodate the change in display segments, a couple of ROM routines have been changed. This
resulted in a shuffling of the addresses of a number of routines within the watch.

To further complicate things, the order of a few routines in the ROM has been changed. While the routines
are exactly the same in both the 150 and the 150s, the location of these routines is never the same.

The CPACKET_START packet has a 4 for the version code instead of a 3.

Even with all this shuffling, the memory map for the low ram appears to be exactly identical, as does the
actual 6805 hardware.

Dealing with the Differences

Because the two watches are so different, you have to essentially write the same program twice with different
targets for all of the system routines and any segment poking that is done. The V2.1 software handles this by
storing both copies of the code in the .ZAP file with a description field to identify which watch the software is targeted
to. When you identify the type of the watch to the DataLink software, it automatically chooses the right software to
send.

-29-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Accessing the EEPROM

The 2K EEProm in the Datalink is accessed over a serial interface and is not directly mapped to the 6805 address
space. The entries for all of the apps are stored sequentially in the EEProm with a length/flag byte at the front of
each one. When an entry is deleted, it is done by simply setting the high bit on the flag byte. All of the internal
software simply skips over the entry. There is no code in the watch for shuffling the data in the EEProm.

When any data is downloaded to the EEProm, it essentially clears the EEProm pointers and starts again. This has
the effect of deleting all Phone, List, Anniversary, and Appointment entries if you just load a single entry down to the
watch. However, the actual data in the EEProm is never cleared out except when new data overwrites. This means
that it is possible to dump out the data in the EEProm even if the watch has been reset or only one or two entries
downloaded to it.

There are some internal routines for getting to the EEProm (to be documented later) and it is possible with some
work to write code that allows you to store entries in the EEProm, but you would have to figure out how to shuffle the
entries in the EEProm if you wanted to add an entry without deleting everything (this isn't really as difficult as it
sounds).

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Sound Hardware

The Datalink is capable of playing 14 tones by poking one of the following values into PORT_souND (location $0028).
From experimentation, it appears that only the low nibble of whatever value is poked into this location is actually
used.

It is my current working theory that there is a timer routine in the Datalink which is actually causing the resulting
frequencies and it might be possible to generate other sounds by going through a slightly different mechanism to
poke the sound hardware.

Note that if you use the built-in sound routines for playing sounds, you will find that the interrupt routines will happily
readjust the hardware tones behind your back.

Hardware Tones

Tone_END - This seems to generate silence
Low C

High C

Middle C

Very High C

High F (Reported to be a little bit lower than F)
Middle F

Low F

Very High G# (G-Sharp)

High G# (G-Sharp)

Middle G# (G-Sharp)

Low G# (G-Sharp)

High D

Middle D

Low D

15 |Silence

Important Terms:

OlO|N|O|O|R|WIN|F|O

=
o

=Y
=Y

=
N

[y
w

'—\
a

Sound Scheme - A set of sounds (this is the .SPC file in the SND directory of the Datalink application) which are
downloaded to the watch. A sound scheme contains all the Soundlets and Sound Sequences for all 10 defined
system sound values. This file is loaded in the watch so that the end of it is at $0435 in memory.

System Sound - is one of the 10 defined system sound values:

Value Symbol Purpose
$80 SND_NONE No sound at all
$cl SND_BUTTON Button Beep
$c2 SND_RETURN Return to time
$83 SND_HOURLY Hourly Chime
$ca SND_CONF Confirmation
$85 SND_APPT Appointment Beep
$86 SND_ALARM Alarm Beep

-31-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

$87 SND_DLOAD Program Download
$88 SND_EXTRA Extra sound
$89 SND_COMERR Comm Error
$8a SND_DONE Comm done

Sound Sequence - The sequence of soundlets which are played to for a given System Sound. There can be as few
as 1 Sound Sequence and as many as 10 different Sound Sequences. Each System Sound maps to one Sound
Sequence although the same Sound Sequence can be used for more than one System Sound. A Sound Sequence
is represented by two series of numbers.

The first series is called the Soundlet Count Table and consists of a series of one or more bytes where the last byte
in the series has the high bit set ($80). For each entry in the Soundlet Count Table, the number of times that a sound
is played is determined by clearing the tip bit and then using the resulting number as a count. So $81 indicates the
last entry with a repeat count of 1. $A0 indicates the last entry with a repeat count of 20. $0A indicates an entry (with
at least one more following it) with a repeat count of 10.

The second series is the Soundlet Pointer Table which consists of exactly the same number of entries as the
Soundlet Count Table. Each entry in this table is simply a pointer to the start of the corresponding Soundlet

Soundlet - A sequence of Notes terminated by a 0 note. There is no practical limit on the number of notes in a
Soundlet except for the total size of 256 bytes for the entire Sound Scheme.

Note - A single sound to be played. The note consists of a single byte broken into two Nibbles. The high order nibble
is the tone to be played and the low order nibble is the duration for that tone in 1/10" of a second intervals.

Tone - One of 14 tones supported by the sound hardware on the watch as well as the two values which produce
silence:

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Sound Scheme Format

Given the default sounds in the ROM, | propose that this is how we would interpret and code them:

TONE_END EQU $00 ;. END

TONE_LOWVC EQU $10 ; Low C

TONE_H _C EQU $20 ; Hgh C

TONEMD C EQU $30 ; Mddle C

TONE_VH _C EQU $40 ; Very high C

TONE H _F EQU $50 ; Hgh F (little bit lower than F)
TONEMD F EQU $60 ; Mddle F

TONE_LO F EQU $70 ; Low F

TONE_VH _GSHARP EQU $80 ; Very H gh G (G Sharp)
TONE_H _GSHARP EQU $90 ; Hgh Gt

TONE_M D_GSHARP EQU $A0 ; Mddle Gt

TONE_LO GSHARP EQU $BO ; Low G#

TONE H _D EQU $Q0 ; HghD

TONEMD D EQU $00 ; Mddle D

TONE_LO D EQU $EO ; Low D

TONE_PAUSE EQU $FO ; Pause

; This is the default sound table

DEF_SOUNDS
db SP 1-SD 1 : 0000: 08
db SD 1- DEF_SOUNDS ; 0001: Ob BUTTON BEEP
db SD 2- DEF_SOUNDS ; 0002: Oc RETURN TO TI ME
db SD 3-DEF_SOUNDS ; 0003: 0d HOURLY CHI ME
db SD 4- DEF_SOUNDS ; 0004: Oe CONFI RVATI ON
db SD 5- DEF_SOUNDS ; 0005: Of APPO NTMENT BEEP
db SD 5- DEF_SOUNDS ; 0006: Of ALARM BEEP
db SD 5- DEF_SOUNDS ; 0007: Of PROGRAM DOANLQAD
db SD 5- DEF_SOUNDS ; 0008: Of EXTRA
db SD 6- DEF_SOUNDS ; 0009: 11 COMM ERRCR
db SD 7-DEF_SOUNDS ; 000a: 12 COMM DONE

; This is the soundl et count table which contains the duration
; counts for the individual soundlets

SD 1 db SND_END+1 ; 000b: 81
SD 2 db SND_END+1 ; 000c: 81
SD 3 db SND_END+2 ; 000d: 82
SD 4 db SND_END+4 ; 000e: 84
SD 5 db 10, SND END+24 ; 000f: Oa a8
SD 6 db SND_END+10 ; 0011: 8a

sb7 db SND_END+16 ; 0012: a0

; This is the soundl et pointer table which contains the pointers to the soundl ets

sP1 db SL_2-DEF_SOUNDS ; 0013: 1d

-33-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

SP 2 db SL_1-DEF_SOUNDS ; 0014: 1b
SP 3 db SL_3- DEF_SOUNDS ; 0015: 1f
SP 4 db SL_2- DEF_SOUNDS ; 0016: 1d
SP 5 db SL_4-DEF_SQUNDS ; 0017: 22

db SL_5- DEF_SOUNDS ; 0018: 27
SP 6 db SL_5- DEF_SOUNDS ; 0019: 2a
SP_7 db SL_2-DEF_SOUNDS ; 00la: 1d

; These are the soundl ets thensel ves. The +1 or other nunber
indicates the duration for the sound.

SL 1 db TONE_H _GSHARP+1 ; 001b: 91
db TONE_END ; 001lc: 00
SL_2 db TONE_M D_C+1 ; 001d: 31
db TONE_END ; 00le: 00
SL_3 db TONE_M D_C+2 ; 001f: 32
db TONE_PAUSE+2 ; 0020: f2
db TONE_END ; 0021: 00
SL_4 db TONE_H _C+2 ; 0022: 22
db TONE_PAUSE+2 ; 0023: f2
db TONE_H _C+2 ; 0024: 22
db TONE_PAUSE+10 ; 0025: fa
db TONE_END ; 0026: 00
SL_5 db TONE_H _C+2 ; 0027: 22
db TONE_PAUSE+2 ; 0028: f2
db TONE_END ; 0029: 00
SL_6 db TONE_HI _C+3 ; 002a: 23
db TONE_M D _C+3 ; 002b: 33
db TONE_END ; 002c: 00

; This is the tone that the conmapp plays for each record

db TONE_M DCJ 16 ; 002d: 03

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Sound Files

The sound scheme stored in a file is nearly identical with the exception of a 4 byte header. Given the default sound,
you might picture it as below (with thanks to Pigeon for his first representation of this).

Brent Davidson gives a pretty good explanation of this: (“Absolute offset” refer to the offset location in the file.
“Relative offset” refers to the location without the “header” (25 04 19 69).

The 08 at absolute offset 0004 indicates that the soundlet count table is 8 bytes long. In this case, we have only 7
different sounds, but one sound has two entries because it uses two soundlets.

The next 10 bytes represent the relative offsets of the sound sequences. The relative offset of each byte reflects the
system sound it represents. This table is fixed in size because there are only 10 system sounds.

_35-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

The next 8 (or however many are indicated by absolute offset 0004) bytes (the soundlet count table) are in the
relative offsets pointed to by the sound sequence table. The high order nibble of the byte indicates the last entry for
this sound. If it is clear, there are more soundlets associated with this sound. The remaining 7 bits in the byte are
the number of times that the corresponding soundlet is to be played. Hence, a value of Oa indicates that the
corresponding soundlet is to be played 10 times and the next entry in the soundlet count table is to be used for the
sound. A value of 81 indicates that the corresponding soundlet is to be played once.

The next 8 bytes (or however many are indicated by absolute offset 0004) are the soundlet pointer table. They are
parallel to the previous 8 bytes, and reference the relative offsets of the soundlets.

The remainder of the bytes (except for the final byte) are the soundlets themselves. The high order nibble indicates
the tone, the low order nibble indicates the duration. A byte of 00 signals the end of each soundlet.

The low order nibble of the final byte of the file indicates the tone played after each record is downloaded during
transmission, it's high order nibble is always 0, and it's count cannot be set.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Wristapp Programming Reference

-37-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

The Processor

The Datalink contains a custom Motorola 6805 processor which performs all of the watch functions. This turns out
to be a very convenient thing as the 6805 is well documented and actually pretty fun to program (IMHO). If you are
looking for technical information, | tend to look to Motorola’s 6805 home page and to the instruction set card Oxford
University Computing Laboratory’s Microprocessor reference card. All of my work has been done with just these
two information sources.

To summarize the 6805, it has two 8-bit registers (A and X) and a small number of addressing modes. Since it has
a 15 bit address bus, you are left with the interesting problem of using a register as a pointer. To deal with this, you
have to resort to self modifying code. If you are only having to point to a small amount of memory, you can also use
the indexed mode where the register is an offset from some base location. Of course, if you only have to point to
things in the first 256 bytes of ram, you can pretend that a register might be a pointer.

Bit Manip Branch|Read/Modify/Write Control Register/Memory

BTB BSC REL |DIR |INH INH INH IX INH |INH |IMM |DIR |EXT [IX2 |IX1 [IX

Ox 1x 2X 3x 4x 5x 6Xx 7X 8x 9x |AX Bx |Cx Dx Ex Fx
X0 |[BRSETO |BSETO |BRA |NEG |[NEGA |NEGX |NEGX |[NEG |RTI SUB |SUB |SUB [SUB |SUB |SUB
x1 |BRCLRO |BCLRO |BRN RTS CMP |CMP |CMP |CMP |CMP |CMP
X2 |BRSET1 |BSET1 |BHI SBC |SBC |SBC |SBC |SBC |SBC
x3 |BRCLR1|BCLR1 |[BLS |COM [COMA|COMX|COMX|COM [SWI CPX |CPX |CPX |CPX |CPX |CPX
x4 |BRSET2 |BSET2 |[BCC |LSR |LSRA |LSRX |LSRX [LSR AND |AND |AND |AND |AND [AND
x5 |BRCLR2|BCLR2 |BCS BIT |[BIT (BIT |(BIT |BIT |BIT
x6 |BRSET3 |BSET3 |BNE |ROR |[RORA |RORX |RORX |ROR LDA |LDA [LDA |LDA |LDA |LDA
X7 |BRCLR3|BCLR3 |[BEQ |ASR |ASRA |ASRX |ASRX |ASR TAX STA |STA |STA |STA [STA
x8 |BRSET4 |BSET4 |BHCC |LSL |[LSLA |LSLX |LSLX |LSL CLC |EOR |EOR [EOR |EOR [EOR |EOR
X9 |BRCLR4 |BCLR4 |BHCS |ROL |ROLA |ROLX |ROLX |ROL SEC |ADC |ADC |ADC |ADC |ADC |ADC
XA |BRSET5 |BSET5 |BPL |DEC |DECA |DECX |DECX |DEC CLI |ORA |ORA |ORA |ORA |ORA |ORA
XxB |BRCLR5 |BCLR5 |BMI SElI |ADD |ADD |ADD |ADD |ADD |ADD
XC |BRSET6 |BSET6 |[BMC |INC |INCA |INCX |INCX |INC RSP JMP [JMP [JMP |JMP |JMP
XD |[BRCLR6|BCLR6 |[BMS |TST |TSTA |TSTX |TSTX |TST NOP |BSR* |JSR |JSR [JSR |JSR |JSR
XE |BRSET7 |BSET7 |BIL STOP LDX |LDX |LDX |LDX |LDX |LDX
xF |BRCLR7 |BCLR7 |BIH CLR |CLRA |CLRX |CLRX |CLR |WAIT |TXA STX |STX |STX |STX |STX

* BSR Is a REL type instruction

I nherent (1 Byte)

I medi ate (2 Bytes) e.g. LDA #20

- Drect (2 Bytes) e.g. LDA $61

EXT - Extended (3 Bytes) e.g. LDA $0244

REL - Relative (2 Bytes) e.g. BEQ *+20

BSC - Bit Set/dear (2 bytes)e.g. BSET2 $61

BTB - Bit test and Branch (3 bytes) e.g. BRCLR2 $61, *+10
I X - Indexed (1 byte) e.g. ADD, X or ADD O, X

X1 - Indexed 1 byte offset (2 bytes) e.g. LDA $61, X

I X2 - Indexed 2 byte offset (3 bytes) e.g. LDA $0122, X

n2%

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Tools

Unfortunately, there really aren't a lot of tools out there for creating wristapps... While there are free assemblers
available on Motorola’'s 6805 home page, you will find that the lack of support for Timex’s character set can be a bit
limiting. Even more problematic is that you have to figure out how to get the program to the watch in order to run it.

My solution has been to write my own assembler which creates the .zap file format that is understood by the
Datalink software on the PC. This DLZap program is pretty braindead in many ways and has quite a few bugs
associated with refreshing the screen. It also is limited to creating apps only for the 150 or the 150s one at a time. If
you want to create an app which runs on both watches, you have to combine them by hand.

I am working on a newer tool which doesn't have the refresh bugs (yeah, right :-) and automatically creates both the

150 and the 150s applications. Hopefully, this should be available in a couple of weeks. (Like | ever got a chance to
actually finish it , but read on :-).

-39-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ASMG6805 (2 months later)
Instead of fixing the refresh problems in DLZap, | realized that | needed something to address all of the work | was
having to do to create wristApps and make it a bit easier (and hopefully more reproducible). | have gone and created
a new version of the DLZap program which takes .zsm files and outputs the proper .zap file. Basically in a nutshell
what it does is:

1. Compile from a single .zsm file and create both the 150 and the 150S versions of a Wristapp

2. Find the location where the Datalink software is installed and put the new wristapp there

3. Automatically update the timexdl.dat file to incorporate the wristapp

4. Integrate into Microsoft Developer studio to allow you to advance through errors with the F4 key.

5. Run as a windows app and allow you to select the file to assemble from a file requester

You can download the setup program for the beta here.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

The .ZSM file Format

So, what is the .ZSM file format? It is nothing more than a standard .ASM file with a couple of comment lines at the
beginning. For example the header for TIPCALC would be:

; Narre: Tim Cal cul at or
; Version: TIPCALCL
;Description: The tip calculator - by John A Toebes, V1|

;Press the set button to enter the anount. Wen in set node, press the MODE button to sw tch between

dol l ars and cents node.

;Press the set button to go back to the display node. The tip anmount will scroll across the bottomof the
screen as 15% 20%and then 10%in sequence.

;Wien in display node, pressing the prev or next buttons will enter the set nbde autonatically on the
dol I ars anount.

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

The keywords are immediately after the semicolon and before the colon. The only recognized keywords are
HEADER, NAME, VERSION, DESCRIPTION, HELPFILE, HELPTOPIC, and PARENT. It uses the VERSION
keyword to identify the name of the created wristapp. The remaining information is just copied into the .ZAP file for
use by the Timex software. In the process of doing this, | discovered that the last digit of the first line of a .ZAP file
(the line that looks like TDL0405971) indicates whether the app is a 150-only app (last digit =1) or a 150/150S Dual
app (last digit=2).

-41 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

System Routine Definitions

To compile a Wristapp, you need a header file which defines all of the routines that you might call. For now, | have
two versions of the same file - Wristapp.i which | put into two separate directories:

Wristapp.i for the 150

Wiristapp.i for the 150s

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Program Layout Basics
Wristapp Interface Entries

Unlike more complex operating systems and modern programming environments, the Datalink Wristapps are simply
a series of bytes to be loaded into the watch. They are always loaded at $0110 and there is no relocation
whatsoever. This means that if you want to have more than one Wristapp in the watch at a time, you can't.

However, you can get around this limitation by creating a Wristapp which performs more than one function. The
biggest issue with this will be the limited amount of ram ($0110 up $0436 minus however much you use for a sound
scheme). This works out to 804 bytes if you could have no sound scheme loaded. Since the typical sound scheme
is about 32 bytes, a more reasonable limit is 770 bytes for a wristapp - not a lot of room for sloppy code.

This is a JMP instruction to your primary initialization entry point for the
0110 |WRIST_MAIN wristapp. It is called immediately after the wristapp has been loaded for
the first time and never again.

This is a JMP instruction to your suspend entry point. It is called if your
app is suspended because an alarm has gone off or your app has timed
0113 |WRIST_SUSPEND out because nothing has happened for 3 minutes. If you don't care
about this, the three bytes should be a RTS followed by two NOP
instructions.

This is a JMP instruction to your callback handling routine. Itis called in
any situation where the app has requested a callback for timed events
such as the normal TIC (1/10th second), Second change, Minute change,
Hour Change, and Day change. If you do not want to handle these
events, the three bytes should be a RTS followed by two NOP
instructions

This is a JMP instruction to your COMM suspend routine. It is called
when the COMM app wants to suspend your Wristapp which has
requested a callback for timed events. This gives your app a chance to
0119 |WRIST_INCOMM forget about timers for a while. Note that it is possible that the app may
never be reentered if the user downloads a new wristapp on top of it. If
you don't care about this, the three bytes should be a RTS followed by
two NOP instructions.

This is a JMP instruction to your new data handling routine. It is called
when the COMM app has downloaded new data to the watch. This can
011C |WRIST_NEWDATA be useful if you have an app that has to know about the data in the
EEProm such as a password protect utility. If you don't care about this,
the three bytes should be a RTS followed by two NOP instructions.
This is always two instructions:

LDA STATETAB, X

RTS

Which are used to get an entry from The State Table. The X register
points to the entry that is to be retrieved. You MUST supply this routine
in order for the Wristapp to even function.

0123 |WRIST_JMP_STATEO This is a JMP to the state 0 handling routine.

This is the offset into the state table for the state data associated with
state 0. Unless you reorder the states, this will always be 0.

0127 |WRIST_JMP_STATE1 This is a JMP to the state 1 handling routine (if any).

This is the offset into the state table for the state data associated with
state 1 (if any)

0116 |WRIST_DOTIC

011F |WRIST_GETSTATE

0126 |WRIST_OFF_STATEO

012A |WRIST_OFF_STATE1

-43-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

This sequence of JMP instructions followed by the offset value repeats for all of the states that your Wristapp
supports. If you only have a single state, then your code can start at 0127.

Strings and Data

With any typical program, you want to be able to write to the display. If you can get away with using strings from the
ROM, then you don't have to worry about where to put the strings. However, when you want to put your own strings
there, you need to be aware that the BANNERS8, PUT6TOP, and PUT6EMID routines all take offsets from 0110 as
the string to put on the display. This effectively limits you to putting all of your strings at the start of the Wristapp.
Since you also know that you can't put a string until 0127, those first bytes of addressability are lost, limiting you to a
total of 233 bytes of strings that you can store.

.ZAP File Format

The Timex Datalink software on the PC stores all of the Wristapps in a .ZAP file. The format of this file turns out to
be pretty simple. In fact, you can edit it using any standard text editor as long as you remember that the last line can
not have a Carriage return after it. This seems to make the Datalink software not always recognize the file.

Within the file, each section is terminated by a - character ($AC). You can optionally put a comment on the line
immediately after the separator character. For the V2.1 software, the .ZAP file contains the code for both the 150
and the 150s. For the earlier 2.0 software, the 150 code happens to be first and the 150s code is simply ignored.
This allows the same .zap file to work for both versions of the software.

This is some sort of a version string associated with the creation time. It is typically of the form
“TDLmmddyyn” where mmddyy is the date that the applet was created and n is a sequence
number. The actual value of this string seems to be ignored.

This is the name of the applet as it is to appear in the Wristapps list for the 150. The hame can be
Name 150 Jany number of characters (there may be an upper limit on it) and can contain spaces and other
special characters.

This is the version number of the 150 applet. It should be up to 8 characters of alphanumeric
characters. Itis not clear that this is actually used by the software.

This is the description for the 150 applet that is shown when you select it in the Wristapp panel.

Applet file
header

Version 150

Description

150 The description can be pretty much any length and even include blank lines. The software does
its best to wrap this description when it displays it.

Help This is the name of the Windows .hlip file that is to be used when the user asks for help on the 150

Filename |applet. The default file that timex uses for all of its wristapps is WATCHAPP.HLP. You should

150 provide a .hlp file for any wristapp which tells the user how the Wristapp works on the watch.

Help Index |[This is the index in the help file associated with the help for the 150 applet. This is passed along

150 with the Help Filename to the Windows Help system.

Config App This is t_he config_uration program (if any) that is to be invoked when the user selects the configure

150 button in the Wristapps software. This program should be a standalone Windows program that

modifies the applet as appropriate. If the program is not configurable, the string should be “none”
This is the name of the watch that this applet is targeted at. It should be “Timex Data Link 150
\Watch”

This is the hex code for the 150 applet. Itis simply the ASCII dump of the hex digits (0-9A-Z) of
the code to be downloaded to the watch. It really should be a single line of text with no spaces,
but it does appear to allow the line to wrap. Since the longest this line can ever be is 1608
characters, there really isn't any need to wrap the line.

CRC 150 |This is the CRC-16 associated with the 150 applet. It is only a CRC on the Code 150 string.

Data This is the indicator of data for the 150 applet. If there is no data, this should be a 0, otherwise it is
Indicator |a 1.

\Watch 150

Code 150

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

150
(OPTIONAL) This is the data for the 150 applet. This entry is present ONLY if the Data Indicator
Data 150 150 value is 1
This is the name of the applet as it is to appear in the Wristapps list for the 150s. The hame can
Name 150s |be any number of characters (there may be an upper limit on it) and can contain spaces and other
special characters.
Version This is the version number of the 150s applet. It should be up to 8 characters of alphanumeric
150s characters. Itis not clear that this is actually used by the software.
Description This is the _de_scription for the 150s applet that is shown When you select_it in the Wristapp panel.
150s The description can be pretty much a_ny_length :_:md even include blank lines. The software does
its best to wrap this description when it displays it.
Help This is the name of the Windows ._hlp file that is to be gsed _vvhen th_e user asks for help on the
Filename 150s applet_. The defaylt file that Timex uses_for all of its wristapps is WATCHAPP.HLP. You
150 shou:]d provide a .hlp file for any wristapp which tells the user how the Wristapp works on the
watch.
Help Index |[This is the index in the help file associated with the help for the 150 applet. This is passed along
150s with the Help Filename to the Windows Help system.
Config App This is t_he config_uration program (if any) that is to be invoked when the user selects the configu_re
150s button in the Wristapps software. This program should be a_standalone Wln_dows program which
modifies the applet as appropriate. If the program is not configurable, the string should be “none”
\Watch 150s w;?ci;:[he name of the watch that this applet is targeted at. It should be “Timex Data Link 150s
This is the hex code for the 150s applet. It is simply the ASCII dump of the hex digits (0-9A-Z) of
Code 150s the code to be downloaded to the watch. It re_ally should be a singl_e line of text With no spaces,
but it does appear to allow the line to wrap. Since the longest this line can ever be is 1608
characters, there really isn't any need to wrap the line.
CRC 150s |This is the CRC-16 associated with the 150s applet. It is only a crc on the Code 150s string.
II:rEtiiator This is the indicator of data for the 150s applet. If there is no data, this should be a 0, otherwise it
isal.
150s
Data 150s (OPTIONAL) This is the data for the 150s applet. This entry is present ONLY if the Data Indicator

150 value is 1.

_45-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Getting Started

When your program is first invoked, you have to set a bit to tell the Roms that you are ready to handle processing.

To do this, you need to set bit 7 in the WRISTAPP_FLAGS ($96). At this time, you probably want to set a few of
the other requests to indicate how your Wristapp wants to process things. The bits in this flag byte are interpreted
as:

WRISTAPP_FLAGS - $96

7 |Wristapp has been loaded SET=LOADED

6 |Uses system rules for button beep decisions SET=System Rules
5 |Play button beep sound on wristapp for mode button SET=ENABLE

4 |Play button beep sound on wristapp for any button SET=ENABLE

3 |wristapp wants a call once a day when it changes (WRIST_DOTIC) SET=CALL

2 |wristapp wants a call once an hour when it changes (WRIST_DOTIC) SET=CALL

1 wristapp wants a call once a minute when it changes (WRIST_DOTIC) SET=CALL

0 |wristapp wants a second timer function called at start of interrupt (WRIST_DOTIC) [SET=CALL

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

The State Table

An app is generally run through events passed in to it. These events are controlled by a series of state tables which
indicate which events are to put the app into what state and how long to process that app for. A state table consists
of a single byte followed by a series of three byte entries with a EVENT_END terminator byte after the last entry.
Each entry has three parts to it:

1. The event code which indicates what event is to be accepted by this state table

2. The timer indicator to indicate how long to wait before firing off a timer if no other event occurs before it.
The values can be found in the table below

3. The new state to enter when this event is encountered
The initial byte is the state to enter if an event is encountered which does not match any entry in the table.
Special State Tables

State table 0 is always entered first for an app. It will almost always have an EVT_ENTER entry in it so that you can
know when an application is first called.

If an app supports nesting (all WristApps might), then it will be entered by a call to State Table 1 with an EVT_NEST
event. All other state tables are completely defined by the application and may be used in any way that you want.
Often a separate state is used for each mode that the app might have (such as a set mode). In order to switch
between states, either you code the new state with the event, such as with the EVT_SET operation OR you can
post a user event which has an associated entry in the state table that has the new state for that event.

There are two special state values associated with an event. $FF is used to indicate that the app wishes to exit and
go to the next app. For WristApps, this means go back to the time app. $FE is a special value used to handle
returning from a EVT_NEST nesting. If all of the nested app processing occurs in state 1, then this value would
appear for an entry in the statel table. For all others, it is assumed to be the new state table to select. No error
checking is done on any of these values.

One very nice thing that can be done with the events is posting a timer to go off if no other event occurs after the
current event. There are two timers although only one can be active at a time. The reason for this is to allow the app
to quickly distinguish between which event timed out without having to save some global variable. These timer
values are fixed in the ROM and you select which timer interval you want through the value you set. For a strange
happenstance, all of the intervals of the second timer are also available for the first time (but | would be careful not to
count on that).

Nested Apps

One important event that an application should handle is the EVT _RESUME which occurs after a nested app
terminates. This allows your application to pick up after an alarm or appointment has gone off. When you get this
event, it is a pretty good idea to refresh the display since you don’'t know what state the other app left it in. You
should also use this time to restore any system flags that you may have set. You should also be aware that before
your app is suspended, the system will call your suspend function at WRIST _SUSPEND ($0113). That will be your
chance to save any variables that you expect to have trashed.

-47 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Button Events

For the events, there are three forms of the button events. The EVT _NEXT, EVT _MODE, EVT _SET, EVT PREV,
and EVT_GLOW events allow you to see when the corresponding button is pressed. When you get one of these
events, you will not get notification of when the button was released. There is a set of events EVT_DNNEXT,
EVT_DNMODE, EVT_DNSET, EVT _DNPREV and EVT_DNGLOW which give you the down transition for those
buttons and the corresponding set of events EVT_UPNEXT, EVT_UPMODE, EVT_UPSET (I like that name),
EVT UPPREYV, and EVT_UPGLOW which tell you when the button has been released. It is the case that the UP
event can be handled by a different state than the DN event.

If you want to get any of those buttons, you can look for EVT_ANY (and EVT_DNANY, EVT_UPANY) which will call
when any of the 5 buttons have been pressed. In order to figure out which button was pressed, your code will need
to look at BTN_PRESSED ($04c3) which will contain one of the EVT_NEXT, EVT_MODE, EVT_SET, EVT PREV,
and EVT_GLOW values. Often an application does not have an interest in the Indiglo button but cares about the
other 4 buttons. For this, you can use EVT_ANY4 (and EVT_DNANY4, EVT_UPANY4) just the same way as the
EVT_ANY events.

Timer Events

The EVT_TIMERI1 and EVT_TIMERZ2 events come in when the timer associated with a particular event has elapsed
without another event being posted. There is no requirement of using a particular timer for a given event other than
to allow you to distinguish between which event occurred. The two timers have slightly different values for when they
go off and that might slightly affect your choice of timers (but that is rare). From experimentation, it appears that the
time cycle for the TIMERL is a bit slower than that for Timer2. | recommend that you use Timer2 for any of the fast
actions and timer1 for the slower ones (like timing out the display).

Other Events

The EVT_USERO, EVT_USER1, EVT_USER2, and EVT_USERS3 events are for an application to use for anything it
wants to. Most of the time, these are useful for transitioning to a different state. You can post an event by calling
POSTEVENT.

The only other event is EVT_IDLE. This event is sent only to the TIME app when another app has been suspended
because it was idle for more than three minutes. Since a wristapp could never get this event, it is probably worth
ignoring.

Event Constants

Here are the constants which you would find useful in creating your app:

State Table Values

EVT _NEXT $00 Next button pressed (not interested in the up transition)

EVT _MODE $01 Mode button pressed (not interested in the up transition)

EVT_SET $02 Set/Delete button pressed (hot interested in the up transition)

EVT _PREV $03 Prev button pressed (not interested in the up transition)

EVT _GLOW $04 Indiglo button pressed (not interested in the up transition)

EVT_ANY $05 Any button pressed (not interested in the up transition)

EVT_ANY4 $06 Any button pressed except Indiglo (not interested in the up transition)
EVT_IDLE $19 This is only sent to the TIME app when another app has been idle for more

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

than three minutes

EVT_RESUME $la Called when resuming from a nested app
EVT _ENTER $1b Initial state.
The state table 1 entry called when a nested application is called. It is the
EVT_NEST $1lc equivalent of EVT_ENTER for an interrupt. This only occurs for WristApps,
Timer, and appt apps.
EVT_END $1d End of event table indicator
EVT_TIMER1 $le Timer event - This is fired for the TIM1_ values
EVT _TIMER2 $1f Timer event - This is fired for the TIM2_ values
$20-$36 |UNUSED (I bet that you can have user specified events for these t00)
EVT_USERO $37 User specified events. Queued by calling POSTEVENT
EVT_USER1 $38 User specified events. Queued by calling POSTEVENT
EVT_USER2 $39 User specified events. Queued by calling POSTEVENT
EVT _USER3 $3a User specified events. Queued by calling POSTEVENT
$3b-$7f |UNUSED
EVT_DNNEXT $80 Next button pressed
EVT_DNMODE $81 Mode button pressed
EVT_DNSET $82 Set/Delete button pressed
EVT _DNPREV $83 Prev button pressed
EVT _DNGLOW $84 Indiglo button pressed
EVT_DNANY $85 Any of the four buttons Pressed
EVT_DNANY4 $86 Any button pressed except Indiglo
$87-$9F |UNUSED
EVT_UPNEXT $A0 Next button released
EVT_UPMODE $AL Mode button released
EVT_UPSET $A2 Set/Delete button released
EVT_UPPREV $A3 Prev button released
EVT_UPGLOW $A4 Indiglo button released
EVT_UPANY $A5 Any of the four buttons Released
EVT_UPANY4 $A6 Any button Released except Indiglo
Timer Constants
TIM_ONCE $ff No time interval. Operation is executed just once
TIM1_TIC $00
TIM1_2TIC $01
TIM1_3TIC $02
TIM1_4TIC $03
TIM1_HALFSEC $04
TIM1_SECOND $05
TIM1_SECHALF $06
TIM1_TWOSEC $07
TIM1_TWOSEC1 |$08
TIM1_12SEC $09
TIM1_18SEC $0a
TIM2_TIC $80 This is the typical scroll interval

_49-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

TIM2_2TIC $81

TIM2_4TIC $82

TIM2_8TIC $83 This is the normal blink interval
TIM2_12TIC $84 Just over a second
TIM2_16TIC $85 A second and a half
TIM2_24TIC $86 Two and a half seconds
TIM2_32TIC $87 Just over three seconds
TIM2_40TIC $88 Four seconds

TIM2_48TIC $89 Almost five seconds
TIM2_96TIC $8a Almost ten seconds

Note that the second part of this table is happen-stance since it is really a rollover of the second table on top of the
first one. But it might be useful to someone...

TIM1 TICA $0b |This is the typical scroll interval
TIM1 2TICA $0c

TIM1 _4TICA $0d

TIM1_8TIC $0e |This is the normal blink interval
TIM1_12TIC $Of |Just over a second
TIM1_16TIC $10 |A second and a half
TIM1_24TIC $11 |Two and a half seconds
TIM1_32TIC $12 |Just over three seconds
TIM1_40TIC $13 |Four seconds

TIM1_48TIC $14 |Almost five seconds
TIM1_96TIC $15 |Almost ten seconds

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Classes of Callable Functions

| have broken down the system routines into 14 basic categories. For each function listed, you will find the name of
the routine followed by two hex addresses separated by a slash. The first address is the location of the routine for

the Datalink 150 and the second is the location for that routine on the 150s.

Anniversary |General routines for accessing the Anniversary data in the EEProms and setting all of the flags
support and display to indicate the anniversaries.

Appointment |General routines for accessing the appointment data in the EEProms and setting all of the flags
support and display segments for appointments.

Blinking PPN

routines U

Event support [??7?7?

FLm_at Routines for converting numbers into the corresponding display digits.

Routines

Indiglo support|Routines for turning on and off the Indiglo light as well as managing the timers for the light
INST Support [???7?

Internal Not quite sure why you would ever call these routines, but the MIGHT be useful sometimes.
Line routines |???7?

Packet/EEPro |,

m Support U

Scanning B

support U

Scrolling B

Messages Y

Sound B

Support Y

Update PPN

functions Y

Anniversary support routines

Routine FI ND_ANNI V_TODAY - $40CD $40BC
Parameters |None
Purpose This finds the next anniversary entry which is greater than or equal to today
Routine FI ND_ANNI V_SCAN - $40D3/ $40C2
ANNIVSCAN_MONTH, ANNIVSCAN_YEAR, ANNIVSCAN_DAY - Date to scan for anniversary
Parameters entry
Purpose This finds the next anniversary entry which is greater than or equal to the scan date
Routine ANNI V_NEXT_ENTRY - $40E1/ $400D0
Parameters |JANNIV_CURRENT — The current anniversary entry
Advance to the next anniversary entry. If we hit the end of the list, we need to wrap the year and
Purpose
go to the next one
Routine ANNI V_PREV_ENTRY - $4117/ $4106
Parameters |JANNIV_CURRENT — The current anniversary entry

_51-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

Advance to the previous anniversary entry. If we hit the end of the list, we need to wrap the year

Purpose and go to the end again
Routine FI ND_ANNI V_ENTRY - $415F/ $414E
Parameters [ANNIVTEST_MONTH, ANNIVTEST_DAY, ANNIVTEST_YEAR - Date of anniversary to find
Purpose This finds the next anniversary entry which is greater than or equal to the specified date
Routine CHECK_ANNI VERSARI ES - $41FC $41EB
Parameters |None
Purpose This code checks all anniversaries to see if any occur today
Routine SET_ANNI VTEST_TCDAY - $423A/ $4229
Parameters |None
Purpose Latches the current month, date, year into the ANNIVTEST _ locations
Routine | NI T_ANNI VERSARY_DATA - $4282/ $4271
Parameters |None
PUrDOSE This clears the ANNIVERSARY occurrence flags and latches in the current date for the
P anniversary check routine
Routine TEST_ANNI VERSARY - $4288/ $4277
Parameters EXTRACTBUF — Anniversary data to be checked
ANNIVTEST_MONTH, ANNIVTEST_DAY, ANNIVTEST_YEAR - Current date to check against
PUrDOSE This tests the anniversary against the current day and sets the 4,ANNIV_FLAGS and
P 5,ANNIV_FLAGS flags appropriately.
Routine ANNI V_OCPY_| NFO - $4308/ $42F7
Parameters |ANNIV_YEAR - The year to fake the appointment as
Purpose This copies the current appointment information into the ANNIVSCAN variables
Routine READ ANNI V_CURRENT - $4317/ $4306
Parameters |ANNIV_CURRENT - the anniversary entry to be read
Purpose This reads in the current anniversary entry into EXTRACTBUF
Routine READ ANNIV_FI RST - $4326/ $4315
Parameters |None
Purpose This reads the first anniversary entry into EXTRACTBUF
Routine READ ANNI V_NEXT - $4335/ $4324
Parameters |None
Purpose This reads the next anniversary entry into EXTRACTBUF

Scanning support

Routine

TEST_SCAN START - $4346/ $4335

Parameters

SCAN_MONTH - Month, Day, Year of appointment to compare

SCAN_DAY SCAN_YEAR TMAPP_MONTH - Current Month, Day, Year

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

TMAPP_DAY TMAPP_YEAR
Purpose Sets 0,SCAN_FLAGS to indicate that the current scan date is out of range.
Routine FI X_SCAN_YEAR - $4371/ $4360
Parameters |SCAN_YEAR - Year to be adjusted
Purpose Adjusts SCAN_YEAR to account for years past 2000
Routine TEST_SCAN END - $437E/ $436D
Parameters SCAN_MONTH, SCAN_DAY, SCAN_YEAR - Current scan date
SCAN_END MONTH, SCAN_END_DAY, SCAN_END_YEAR - Limit of the scan range
PUrDOSE Tests to see if the current scan date is past the end range for the scan. If so, it sets
P 0,SCAN_FLAGS
Routine RESTORE_SCAN_YEAR - $43AE/ $439D
Parameters |SCAN_YEAR - Year to be adjusted
Purpose Restores SCAN_YEAR to be in the 0-99 range (After a call to FIX_SCAN_YEAR)
Routine | NCREMENT_SCAN _DATE - $43B9/ $43A8
Parameters |[SCAN_MONTH, SCAN_ DAY, SCAN_YEAR
Purpose Increments the current scan day by one
Routine GET_SCAN_MONTHLEN - $43E0/ $43CF
Parameters |None
Purpose This computes the end of the month based on SCAN_MONTH and SCAN_YEAR
Routine DECREMENT _SCAN DATE - $43F4/ $43E3
Parameters |SCAN_MONTH, SCAN_YEAR
Purpose Decrements the scan data by one
Appointment support
Routine FI ND_APPT_NOW - $4415/ $4404
Parameters |None
PUrDOSE This finds and reads in an appointment which will occur next after the current time in the current
P time zone. The appointment is put into EXTRACTBUF and all appropriate variables are set.
Routine FI ND_APPT_SCAN - $441B/ $440A
Parameters |SCAN_MONTH,DAY,YEAR
PUrDOSE This finds and reads in an appointment which will occur next after the current scan values. The
P appointment is put into EXTRACTBUF and all appropriate variables are set.
Routine SET_APPTFI ND_SCAN - $4422/ $4411
Parameters |SCAN_MONTH, SCAN_DAY, SCAN_YEAR
Purpose This copies over the current SCAN variables into the APPTFIND variables

[Routine

IREAD_APPT_NE)CF - $442C $441B

_53-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

Parameters |APPT_CURRENT, APPT_LAST - current and last appointment entries
Purpose This reads in the next appointment into EXTRACTBUF
. [APPT_LATCH _ENTRYDATA - $4468/ $4457

Routine APPT_LATCH ENTRYONLY - $446C/ $445B

Parameters |EXTRACTBUF - current appointment entry APPTEST_YEAR - year of the entry
These copy the current appointment data into the corresponding system variables The

Purpose ENTRYONLY routine doesn’t copy over the year because it presumably has already been
copied.

Routine READ APPT_PREV - $447C $446B

Parameters |APPT_CURRENT, APPT_LAST - current and last appointment entries

Purpose This reads in the previous appointment into EXTRACTBUF

Routine FI ND_APPT_ENTRY - $44C6/ $44B5

Parameters |APPTFIND_YEAR,DAY,MONTH,QHOUR,HOUR

Purpose This finds an appointment that matches or exceeds the APPTFIND values

Routine APPT_LATCH ENTDYDATA - $45A5/ $4594

Parameters |APPT_ENTRY - Entry to latch appointment information for

PUrDOSE This copies the current appointment entry into the corresponding system variables so that we can

P continue comparing appointments

Routine CHECK_APPQ NTMENTS - $45B9/ $45A8

Parameters APPT_QHOUR_NOW - The current quarter-hour
APPT BASEYEAR - The base year for the first appointment

PUrDOSE This tests to see if any appointments are ready to go off. It posts a nested app for any

P appointments

Routine SET_APPTFI ND_NOW - $462A/ $4619

Parameters |None

Purpose Sets the appointment find variables to the current time

Routine READ_APPT_FI RST - $4686/ $4675

Parameters |APPT_FIRST

Purpose Read in the first appointment

Routine READ APPT_LAST - $469D $468C

Parameters |APPT_LAST - the entry of the last appointment

Purpose This reads in the last appointment entry

Routine CHECK_APPT_TI ME - $46B7/ $46A6

Parameters |None

Purpose This checks to see if any appointments are ready to go off

Routine READ_APPT_PACKET1 - $473A/ $4729

Parameters

None

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

[Purpose [This reads the first appointment packet into EXTRACTBUF
Routine READ _NEXT_APPT_PACKET - $4749/ $4738
Parameters |None
Purpose This reads in the next appointment packet into EXTRACTBUF
Routine READ_APPT_CURRENT - $475A $4749
Parameters |APPT_CURRENT - the appointment entry to be read
Purpose This reads in the current appointment entry into EXTRACTBUF
Internal
Routine ANNIV_GETMONTHLEN - $426A/ $4259
Parameters ANNIV_MONTH — Month to calculate
ANNIVTEST_YEAR — Year to calculate
Purpose This computes the number of days in the given month
Routine ACQUI RE_TI ME - $4F22/ $4F11
Parameters [None
PUrDOSE This acquires the right to change the time. All alarms and anniversaries will temporarily be
P ignored until RELEASE_TIME has been called
Routine RELEASE TI ME - $4F2E $4F1D
Parameters [None
Purpose This releases the lock on time and allows all alarms and anniversaries to be checked once again.

Indiglo support

Routine QUEUE | NDIl GLO OFF - $49D9/ $4C38

Parameters |None

Purpose Queue up the timer for shutting off the Indiglo if the Indiglo is enabled and we are in night mode.

Routine I NDl GLO OFF - $4E8E/ $4E7D

Parameters |None

Purpose This routine turns off the Indiglo light

Routine NI GHTMODE_| NDi GLO_ON - $49E6/ $4C45

Parameters |None

Purpose Queue up the timer for _shuftting c_Jff the Indiglo if the_ Indiglo_ is ena_bled and we are in night mode.
The INDIGLO_ON routine just simply turns the Indiglo on immediately

Routine I NDl GLO_ON - $49EC/ $4CAB

Parameters |None

Purpose Queue up the timer for _shuftting c_Jff the Indiglo if the_ Indiglo_ is ena_bled and we are in night mode.
The INDIGLO_ON routine just simply turns the Indiglo on immediately

_55-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Sound Support

Routine SNDSTART - S$4EAA $4E39
Parameters |SYSSOUND - Current sound to be playing
Purpose Start playing the current sound in SYSSOUND
Routine STOP_ALL_SOUND - $4E68/ $4E57
Parameters [None
Purpose Keep the sound hardware running or reset everything else
Routine PLAYCONF - $4E7A $4E69
Parameters |None
Purpose Play a confirmation sound
Routine PLAYBUTTON - $4E80/ $4E6F
Parameters [None
Purpose Play the button beep sound if no other sound is currently playing
Routine PLAY_HOURLY - $4EBL/ $4EAQ
Parameters [None
Purpose Plays the hourly sound if nothing else is playing and sounds are enabled
Routine SNDSTCOP - $4F3A/ $4F29
Parameters [None
Purpose This stops whatever sound is currently playing
Routine PLAY BUTTON SAFE - $4F46/ $4F35
Parameters [None
Purpose This will play the button beep sound if it hasn't just been played
Event support
Routine PCSTEVENT - $4E89/ $4E78
Parameters |A - Event to be posted.
Purpose Post a event to the internal propessing gueue This posts an event to run through the processing
loop for the current applet. Typical user events are in the $30-$3F range.
Routine CALL_NESTEDAPP - $4F4D $4F3C
A - Nested application number.
This is one of the three defined apps:
Parameters 9 =APP2_ALARM - Alarr_n (while ano_ther app is runr_1ing) _
10 = APP2_APPT - Appointment (while another app is running)
11 = APP2_WRIST - Wristapp (while another app is running)
X - Parameter to pass to the nested application
This sets up to call a nested application while the current one is running. Up to 5 apps may be
Purpose nested (altho_ugh there are only 3 potential ones dgfined). If more than 5 have_ been called the
oldest one will be forgotten. When the nested app is called, NESTED_APP will be set to the
application number passed in and NESTED PARM will contain the X parameter passed in

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Packet/EEProm Support

Routine UNPACK_PHONENUM - $4FBF/ $4FAE
Parameters |EXTRACTBUF+1 — Pointer to 6 bytes of compressed phone humber information
Returns BUF_PHONENUM — Contains 12 byte unpacked number
This gets a compressed phone number and puts it in the phone number buffer Phone numbers
are compressed into nibbles instead of bytes, allowing a number to be packed in half the space.
Purpose As a result, a number can contain only 16 possible characters: “01234567890CFHPW “ Any
other characters are encoded as a space before being sent down. The presumption is that the
characters allow for the number and indicators for: Cell Fax Home Pager Work
Routine UNPACK_STRI NG - $4FF0/ $4FDF
Parameters PARM_UNPACKOFF - Offset into the start of the compressed buffer
EXTRACTBUF - packed data
Returns MSGBUF - Contains the unpacked string
This gets a compressed string and puts it into the scrolling message buffer Strings are packed 6
PUrDOSE bits across so that 4 unpacked characters can fit in 3 bytes This routine will unpack enough bits
P S0 that the resultant message buffer is exactly 32 bytes long. It is assumed that the end of the
buffer message is stored in the packed string.
Routine READ_PACKET - $503E/ $502D
PARM_LEN - Number of bytes to copy
PARM_PACKET — Packet number to read
X - Packet group to search (0,2,4,6)
Parameters |0 = APPT Entries
2 = List entries
4 = Phone Number
6 = Anniversaries
Purpose Reads the requested packet into EXTRACTBUF
Routine FI ND_PACKET - $5044/ $5033
Returns INST_ADDRHI:IINST_ADDRLO - points to the start of the packet
PARM_PACKET - Packet number to locate
X - Packet group to search (0,2,4,6)
0 = APPT Entries
Parameters |, _ . .
2 = List entries
4 = Phone Number
6 = Anniversaries
Purpose This advances to the given packet in the packet group
Routine DO _TRANSFER - $505F/ $504E
Parameters PARM_LEN - Number of bytes to copy
INST_ADDRHI - Address of source data to copy
PUrDOSE This transfers the data from the indicated location to EXTRACTBUF The source can be the
P EEPROM or somewhere else in memory
Routine TOGGLE_ENTRYFLAG - $5077/ $5066

Parameters

None

_57-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

|Purpose [This toggles the high bit of the first byte in an entry
Routine I Nl T_EEPROVMPQA NTERS - $5080/ $506F
Parameters |None
Purpose Initializes all of the EEProm data pointers to reflect empty data for all of the applications
Routine RESET_EEPROMENTRI ES - $5080Y $507C
Parameters |None
Purpose Re-Initializes all of the EEProm data pointers to reflect empty data for all of the applications
Routine REI NI T_APP_DATA - $50A7/ $5096
Parameters |None
Purpose This routine is called after new data has been loaded into the EEPROM
INST Support
MAKE_| NST_LDA - $50B4/ $50A3
Routine MAKE | NST_LDA X - $50B8/ $50A7
MAKE_| NST_STA - $50BC $50AB
Parameters |None
Purpose These routines make the INST2 opcodes to be an LDA or STA $nnnn,X instruction
Routine ADD_| NSTADDR - $50C7/ $50B6
Parameters |A - value to add to the current INST_ADDR base address
Purpose This takes an offset value and subsumes it into the already constructed instruction starting at
INST_OPCODE
Routine SET_| NSTADDR 0110 - $50D7/ $50C6
Parameters |X-R
Purpose This routine sets INST_ADDRHIIINST_ADDRLO to be 0110
Routine GET_I NST_BYTE - $50EB/ $50DA
Parameters [INST_ADDRHILINST ADDRLO - the pointer to the byte to get
This routine gets the single byte from the indicated location either in the EEPROM or somewhere
Purpose .
in memory.
Routine WRl TE_FLAG BYTE - $510A/ $50F9
Parameters |INST_ADDRHI:INST_ADDRLO - the pointer to the byte to write to
Purpose This routine writes a_singl_e byte to the indicatec_i location either in the EEPROM or somewhere in
memory. ????7?? This adjusts an address relative to the Sound buffers.
Parameters |A - Offset into the sound data area
Routine FI LL_EXTRACTBUF - $513E/ $512D
Parameters PARM_LEN - Number of bytes to be copieq
INST_ADDRHI:IINST_ADDRLO - Address in Prom to read
Returns EXTRACTBUF — Contains the bytes read in from the EEPROM
Purpose This copies datq from _the EEPROM to the EXTRACTBUFF Note that this buffer is only 31 bytes
long although this routine can support up to 256 bytes.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Routine SAVE_EXTRACTBUF - $51504 $514C
PARM_LEN - Number of bytes to be copied
Parameters |INST_ADDRHIINST_ADDRLO - Address in Prom to write
EXTRACTBUF - Contains the bytes to write to the EEPROM

PUrDOSE This copies data from the EXTRACTBUFF to the EEPROM Note that this buffer is only 31 bytes
P long although this routine can support up to 256 bytes.

Routine SYSTEM RESET - $519B/ $518A

Parameters |None

PUrDOSE This routine is the main reset routine for starting up the watch. It cleans up all of memory and
P starts the processing once again

Routine I NI T_SOUNDS - $5265/ $51F2

Parameters |None

Purpose This routine initializes the default sounds

Routine ENABLE EYE - $53A6/ $5367

Parameters |None

PUrDOSE This routine enables the received on the watch to download from the screen. It also seems to
P wait for SERIAL_DATA/SERIAL_CONTROL to settle down

Routine Dl SABLE_EYE - $53BD/ $537E

Parameters |None

Purpose This disables the eye for normal watch operation

Routine SET_SYS_07 - $53C8/ $5389

Parameters |None

Purpose ??7?7? This routine resets the SYS_07 hardware

Routine CLEAR_SYS 07 - $53CF/ $5390

Parameters |None

Purpose ??7?7? This routine resets the SYS_07 hardware Clears 1,HW_FLAGS

Routine RESET_SYS 07 - $53D5/ $5396

Parameters |None

Purpose ??7?7? This routine resets the SYS_07 hardware

Routine I NIl THW SYS 07 - $53DC $539D

Parameters |SYSTEMP2 - 0 or $cl to indicate how the hardware is to be reset

Purpose ??7?7? This routine initializes the SYS_07 hardware

Routine SETHW 07_08_C1 - $53F4/ $53B5

Parameters |A - $C1 - Value to be poked into SYS_ 08

Purpose ???? Resets the SYS_07, SYS_08 hardware. There is a timing loop associated with this reset

operation.

_59-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Routine WRI TE_ACQUI RE - $543C $542B
Parameters [None
PUrDOSE This routine acquires the EEPROM for writing. It will also turn off any playing sound as well as the
P INDIGLO in order to conserve power while doing the writing.
Routine WR TE_RELEASE - $5448/ $5437
Parameters [None
This routine releases the EEPROM for writing. If the Indiglo had been previously on, it is turned
Purpose
back on.
Routine MAKE | NST2_LDA X - $5453/ $5442 MAKE | NST2_STA X - $5457/ $5446
Parameters [None
Purpose These routines make the INST2 opcodes to be an LDA or STA $nnnn,X instruction
Routine PROM READ - $5462/ $5451
INST2_COUNT - Number of bytes to be copied
Parameters |PROM_ADDRHI:PROM_ADDRLO - Address in Prom to read
INST2_ADDRHLIINST2_ADDRLO - Address to copy data to
Purpose This copies data from the EEPROM to the indicated buffer
Routine PROM VR TE - $5488/ $5477
INST2_COUNT - Number of bytes to be copied
Parameters |PROM_ADDRHI:PROM_ADDRLO - Address in Prom to write
INST2_ADDRHI:IINST2_ADDRLO - Address to copy data from
Purpose This copies data to the EEPROM from the indicated buffer
Routine SET_I NDIl GLO - $5504/ $54F3
Parameters |0,HW_FLAGS - Indicates request for on or off
Purpose This routine turns on/off the Indiglo light

Scrolling Messages

Routine PUTSCROLLMSG - $5522/ $5511
Parameters |MSGBUF - the message to scroll terminated by SEPARATOR
Purpose Initialize a scrolling message
Routine SCROLLMSG - $5545/ $5534
Parameters |MSGBUF - Message to be scroll terminated by a SEPARATOR character
Purpose Start the scrolling cycle for the current message
Routine SCROLLMSG CONT - $5549/ $5538
Parameters MSGBUF - Message to be scr_oll terminated by a SEPARATOR character
SCROLL_TICS - The current tic count in the cycle
Purpose Start the scrolling cycle for the current message, but don't reset the scrolling cycle wait count.

Blinking routines

[Routine

ISTART_BLI NKX - $55BB/ $55AA

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Parameters

A - Blinking function to be selected

0 |BLINK_YEAR Blink the year in the right place according to the current time format
Blink two characters point to by UPDATE_PARM on the right two
1 |BLINK_SECONDS digits of the middle line - Used for the seconds
Blink AM/PM on the right most digits of the middle line (A or P
2 |BLINK_AMPM pointed to by UPDATE_PARM)
3 |BLINK MONTH Blink the month in the right place according to the current time
— format
4 |BLINK HMONTH Blink the month in the right place according to the current time
— format for a half date (no year)
5 |BLINK_DAY Blink the day in the right place according to the current time format
6 IBLINK HDAY Blink the day in the right place according to the current time format
— for half dates
Blink the left two blank padded digits on the middle line (value
7 |BLINK_MID12 pointed to by UPDATE_PARM)
Blink the Hour (left two segments on the middle line) and AM/PM
8 |BLINK_HOUR indicator (hour point to by UPDATE_PARM)
Blink the middle two zero padded digits on the middle line (value
9 |BLINK_MID34 pointed to by UPDATE_PARM)
Blink a single segment indicated by UPDATE_POS and mask in
10 |BLINK_SEGMENT UPDATE_ VAL
11 |BLINK DIGIT Blink solid black cursor for the digit (UPDATE_POS is the location
- on the bottom line)
12 |BLINK_TZONE Blink the timezone information (Pointed to by UPDATE_PARM)
13 |BLINK_TOP34 Blink the middle zero padded two digits on the top line (value

pointed to by UPDATE_PARM)

X - single byte parameter to the particular blinking function

Purpose Establish and call the specified blinking routine
Routine START_BLI NKP - $55BF/ $55AE
Parameters |A - Blinking function to be selected

0 |BLINK_YEAR Blink the year in the right place according to the current time format
Blink two characters point to by UPDATE_PARM on the right two
1 |BLINK_SECONDS digits of the middle line - Used for the seconds
Blink AM/PM on the right most digits of the middle line (A or P
2 [BLINK_AMPM pointed to by UPDATE_PARM)
3 IBLINK MONTH Blink the month in the right place according to the current time
— format
4 |BLINK HMONTH Blink the month in the right place according to the current time
— format for a half date (no year)
5 |BLINK_DAY Blink the day in the right place according to the current time format
6 |BLINK HDAY Blink the day in the right place according to the current time format
— for half dates
Blink the left two blank padded digits on the middle line (value
7 |[BLINK_MID12 pointed to by UPDATE_PARM)
8 IBLINK_HOUR Blink the Hour (left two segments on the middle line) and AM/PM

indicator (hour point to by UPDATE_PARM)

-61-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

Blink the middle two zero padded digits on the middle line (value
9 [BLINK_MID34 pointed to by UPDATE_PARM)
Blink a single segment indicated by UPDATE_POS and mask in
10 |BLINK_SEGMENT UPDATE_ VAL
11 IBLINK DIGIT Blink solid black cursor for the digit (UPDATE_POS is the location
— on the bottom line)
12 |BLINK_TZONE Blink the timezone information (Pointed to by UPDATE _PARM)
Blink the middle zero padded two digits on the top line (value
13 |BLINK_TOP34 pointed to by UPDATE_PARM)

X - Address of parameter to the particular blinking function

Purpose

Establish and call the specified blinking routine

Update functions

Routine START_UPDATEX - $57C3/ $56C4
A - Update function to be selected
0 |UPD_YEAR Update the year
1 |JUPD_MONTH Update the Month
2 |UPD_HMONTH Update the Month in Half date format
3 |UPD_DAY Update the day
Parameters |4 |UPD_HDAY Update the day in half date format
5 |UPD_MID12 Update MID12
6 |UPD_HOUR Update the hour
7 |UPD_MID34 Update MID34
8 |UPD_DIGIT Update the digit at UPDATE_POS
X - single byte parameter to the particular update function
Purpose Establish and call the specified update function
Routine START_UPDATEP - $57C7/ $56C8
A - Update function to be selected
0 |UPD_YEAR Update the year
1 |JUPD_MONTH Update the Month
2 |UPD_HMONTH Update the Month in Half date format
3 |UPD_DAY Update the day
Parameters |4 |UPD_HDAY Update the day in half date format
5 |UPD_MID12 Update MID12
6 |UPD_HOUR Update the hour
7 |UPD_MID34 Update MID34
8 |UPD_DIGIT Update the digit at UPDATE_POS
X - Pointer to parameters for the update function
This establishes an update function. Update functions are called every 8/10" of a second. This
Purpose function will update a number in an upward or downward direction based on the setting of

0,SYSFLAGS

Format Routines

These routines are useful for formatting numbers into the corresponding character representation.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Routine FMIXLEADO - $593FE/ $583F
X - value to be formatted.
Parameters |0-9 results in O followed by the digit
10-99 results in number for both digits
Purpose Formats into DATDIGIT1/2 with leading zeros
Routine FMIBLANKO - $5940¥ $584E
X - value to be formatted.
Parameters 0 results in all blanks.
1-9 results in blank followed by the digit
10-99 results in number for both digits
Purpose Formats a number into DATDIGIT1/2
Routine FMIX - $5951/ $5852
X - value to be formatted.
Parameters |0-9 results in blank followed by the digit
10-99 results in number for both digits
Purpose Formats a number into DATDIGIT1/2
Routine FMISPACE - $595C $585D
Parameters [None
Purpose This routine simply puts spaces into DATDIGIT1 DATDIGIT2
Routine FMIBLANKOB - $5963/ $5864
X - value to be formatted.
Parameters 0 results in all blanks.
1-9 results in blank followed by the digit
10-99 results in number for both digits
PUrDOSE Formats a number into DATDIGIT1/2. This routine does not appear to be used anywhere and
P seems to do exactly the same thing as FMTBLANKO
Routine FI XLEADO - $5A2A $592B
Parameters [None
Purpose If the first digit is a zero, replace it with a blank

Line routines

These routines are useful for putting strings on the display

Routine PUTLI NE3 - $56D5/ $59E7
A = Position
Parameters S1 |S2 |[S3 sS4 |S5 |s6 |S7 |[s8
$47 |$3D |$33 |$27 |[$1D |[$13 [$09 |[$0a
X = Character in Timex ASCII to display
Purpose Puta single character on th_e_b_ottom line of the displa_ly This rOl_Jtine pokes in a single digit on the
display. Note that the last digit is backwards and upside down in the hardware.

[Routine

IPUTLI NEL - $570D $5A33

-63-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

A = Position
Parameters TL T2 |13 |T4 |T5 |T6
$46 |$3E |$34 |$2C [$22 314
X = Character in Timex ASCII to display
Purpose Put a single character on the top line of the display
Routine PUTLI NE2 - $5745/ $5A6B
A = Position
Parameters M1 M2 [M3 [M4 [M5 [M6
$46 |$3E |$34 |$2C [$22 %14
X = Character in Timex ASCII to display
Purpose Put a single character on the second line of the display
Routine SETALL - $5776/ $5A9C
Parameters |None
Purpose Turns on all segments on the entire display
Routine CLEARALL - $577A/ $5AA0
Parameters |None
Purpose Clear the entire display
Routine CLEARBOT - $5787/ $5AAD
Parameters |None
Purpose Clear the bottom line of the display
Routine CLEAR RANGE - $5793/ $5ABF
Parameters A — Initial offset to be clearing from
X — Number of words to clear
Purpose Turn off all bits on the display at the given offsets
Routine CLEARSYM - $579F/ $5ACB
Parameters |None
Purpose Turns off all the non digit symbols segments (including dots, dashes and colons)
Routine BANNERS - $5845/ $5746
Parameters |A = Offset from 0110 for the start of an 8 character Timex string
Purpose Display an 8 character string
Routine PUTMBGXBOT - $5849/ $574A
A = Message selector number.
Parameters [Valid values from 0 to 27. They correspond to the same strings passed into PUTMSGBOT
scaled down by 8
Purpose Display an 8 character system string on the bottom line

[Routine

IPUTNBGBOT - $584C $574D

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

A = Offset into message selector string.
Valid values from $00 to $d8 at 8 Byte offsets.
$EO is the start of the 6 byte top/mid message strings.
$00 |SYS8_MON “ MON “
$08 |SYS8 TUE “ TUE
$10 |SYS8 WED “ VED
$18 |SYS8 THU “THU
$20 |SYS8_FRI “FRI
$28 |SYS8_SAT “ SAT
$30 |SYS8_SUN “ SUN
$38 |SYS8 VERDATE “ 802003 “
$40 |SYS8 VERSION “ V2.0
$48 |SYS8_MODE “ MDE
$50 |SYS8 SET _MODE “ SET MODE"
$58 |SYS8_SET “ SET “
Parameters [$60 |SYS8_TO “TO
$68 |SYS8_FOR “ FOR
$70 |SYS8_ENTRIES “ENTRI ES “
$78 |SYS8_UPCOMING “ UPCOM NG’
$80 |SYS8_ENTRY “ ENTRY *“
$88 |SYS8 SCAN “ SCAN
$90 |SYS8_SCAN_RIGHT . SCAN'
$98 |SYS8_SYNCING “ SYNCI NG
$a0 |SYS8 PROGRESS “ PROGRESS"
$a8 |SYS8_DATA_OK “ DATA OK'
$b0 |SYS8 RESEND “ - RESEND- *
$b8 |SYS8 ABORTED “ ABCRTED'
$cO |SYS8 MISMATCH “M SMATCH'
$c8 |SYS8 SPLIT “ SPLIT
$d0 |SYS8_START “ >=START “
$d8 |SYS8_STOP “ >=STCP
Purpose Display an 8 character system string on the bottom line
Routine PUTDOMOP - $5872/ $5773
Parameters [X - Day of week (0-6)
Purpose Displays the two character representation of the day of the week in the upper left of the display
Routine PUTETOP - $587E $577F
A = Offset from WRIST_MAIN for the start of a 6 byte data item to be put on the top line of the
screen. This uses a different encoding for characters where: we have 32 different values which
Parameters |correspond to:
0123456789ABCDEFGH LMNPRTUWYT - +
e.g. $12="", $13='L". It appears that things wrap when you get to $20
Purpose Display a 6 character string on the top line

[Routine

IPUTNBGl - $5882/ $5783

-65-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

A = Offset into message selector string.

Valid values from $00 to $a8 at 6 Byte offsets.

$00 |SYS6_SET « SET “

$06 |SYS6_HOLDTO " HOLDTO'

$0C |SYS6_ALARM “ ALARM ©

$12 |SYS6_ENTER “ ENTER *

$18 |SYS6_HR ‘ HR'

$1E |SYS6_SWITCH “ SW TCH’

$24 |SYS6_TIME “ TIME “

$2A |SYS6_FORMAT “ FORMAT”

$30 |SYS6_DAILY “DAILY *

$36 |SYS6_APPT “ APPT ©

$3c |SYS6_NO “ NO

$42 |SYS6_APPTS “ APPTS ©

$48 |SYS6_END_OF “END OF
Parameters [$4e |SYS6_LIST “ LIST *

$54 |SYS6_DELETE “ DELETE"

$5a |SYS6_ANN ‘AN

$60 |SYS6_PHONE “ PHONE “

$66 |SYS6_DONE “ DONE “

$6Cc |SYS6_PRI ‘PRI

$72 |SYS6_COMM “ COWM “

$78 |SYS6_READY “ READY *

$7e |SYS6_IN “ IN

$84 |SYS6 _ERROR " ERRCR *

$8a |SYS6_CEASED “ CEASED’

$90 |SYS6_PC “PC ¢

$96 |SYS6_WATCH “ WATCH ©

$9c |SYS6_CHRONO “ CHRONO'

$A2 |SYS6 TIMER “TI MER “

$a8 |SYS6_000000 “000000”
Purpose Display an 6 character system string on the top line |
Routine PUT6M D - $58A8/ $57A9

A = Offset from WRIST_MAIN for the start of a 6 byte data item to be put on the top line of the

screen. This uses a different encoding for characters where: we have 32 different values which
Parameters |correspond to:

0123456789ABCDEFGH LMNPRTUWYT - +

e.g. $12="", $13="L". Beyond $20 you get random junk.
Purpose Display a 6 character string on the second line
Routine PUTMB® - $58AC $57AD
Parameters A = Offset into message selector string. _

Valid values from $00 to $a8 at 6 Byte offsets and the strings are the same as for PUTMSG1
Purpose Display an 6 character system string on the top line

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Routine CLEARTOP - $5802/ $5703

Parameters |None

Purpose Puts blanks into all 6 top digits (Blanks out the top line)
Routine CLEARM D - $5808/ $57D9

Parameters |None

Purpose Puts blanks into all 6 Middle digits (Blanks out the middle line)
Routine CLRTOP12 - $58DE/ $57DF

Parameters |None

Purpose Puts blanks into top Digits 1 and 2

Routine PUTTCP12 - $58E0/ $57E1

Parameters |None

Purpose Puts DATDIGIT1/2 into TOP Digits 1 and 2
Routine CLRTOP34 - $58EE/ $57EF

Parameters |None

Purpose Puts blanks into TOP Digits 3 and 4
Routine PUTTCOP34 - $58F0/ $57F1

Parameters |None

Purpose Puts DATDIGIT1/2 into TOP Digits 3 and 4
Routine CLRTOP56 - $58FE/ $57FF

Parameters |None

Purpose Puts blanks into TOP Digits 5 and 6
Routine PUTTOP56 - $5900/ $5801

Parameters |None

Purpose Puts DATDIGIT1/2 into TOP Digits 5 and 6
Routine CLRM D12 - $590FE/ $580F

Parameters |None

Purpose Puts blanks into Middle Digits 1 and 2
Routine PUTM D12 - $5910/ $5811

Parameters |None

Purpose Puts DATDIGIT1/2 into Middle Digits 1 and 2
Routine CLRM D34 - $591FE $581F

Parameters |None

Purpose Puts blanks into Middle Digits 3 and 4
[Routine [PUTM D84 - $5920/ $5821

_67-

ABOUT THE DATALINK

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

Parameters |None

Purpose Puts DATDIGIT1/2 into Middle Digits 3 and 4

Routine CLRM D56 - $592E/ $582F

Parameters |None

Purpose Puts blanks into Middle digits 5 and 6

Routine PUTM D56 - $5930/ $5831

Parameters |None

Purpose Puts DATDIGIT1/2 into Middle Digits 5 and 6

Routine SAYEQLMSG - $5979/ $587A

Parameters |None

Purpose Puts ‘END OF LIST’ on the display

Routine SAYHOLDTODELETE - $598A/ $588B

Parameters |None

Purpose Puts ‘HOLD TO DELETE ENTRY’ on the display

Routine PUT_PHCNENUM - $59A2/ $58A3

Parameters |None
Puts a phone number on the top two lines of the display (Up to 12 digits). If there is a non blank

Purpose character as the third digit, a - is turned on between the 3%and 4" digits to separate out what is
presumably the area code

Routine PUTYEARM D - $59D9/ $58DA

Parameters |X - Year to be formatted on the display

PUrDOSE Puts the current year on the right half of the middle display. If the year passed in is less than 50, it

P is assumed to be 20xx, above 50 it is processed as 19xx giving a range of 1950-2049

Routine CLEAR HVONTH - $59F8/ $58F9

Parameters |None

Purpose blank out the 2 character day for a half date (no year) based on the current time zone date format

Routine PUT_HVONTHX - $59FDY $58FE

Parameters [X - Day to be displayed

PUrDOSE Put the leading space 2 digit month in the appropriate spot on the display based on the current

P time zone date format for a half date (no year)

Routine CLEAR HDAY - $5A11/ $5912

Parameters |None

Purpose blank out the 2 character day for a half date (no year) based on the current time zone date format

Routine PUT_HDAYX - $5A16/ $5917

Parameters [X - Day to be displayed

Purpose

Put the leading zero 2 digit day in the appropriate spot on the display based on the current time

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

|zone date format for a half date (no year)

Routine CLEAR MONTH - $5A36/ $5937
Parameters |None
Purpose blank out the 2 character month based on the current time zone date format
Routine CLEAR DAY - $5A4F/ $5950
Parameters |None
Purpose blank out the 2 character day based on the current time zone date format
Routine PUTBOT678 - $5A86/ $5987
X - Pointer to 3 byte location containing bytes to put on the display (pointed to by x) 3 bytes in
Parameters TIMEX ASCII.
Because the X register is used to index to them, they must be located in the first 256 bytes of
memory.
Purpose Puts three digits into the lower corner of the display. Typically this is the time zone information.
Routine CLEAR _YEAR - $5A6F/ $5970
Parameters |None
Purpose blank out the 2 character year based on the current time zone date format
Routine | PUT_MONTHX - $5A3B/ $593C
Parameters |[X - Month to be displayed
PUrDOSE Put the leading space 2 digit month in the appropriate spot on the display based on the current
P time zone date format
Routine | PUT_DAYX - $5A54/ $5955
Parameters [X - Day to be displayed
PUrDOSE Put the leading zero 2 digit day in the appropriate spot on the display based on the current time
P zone date format
Routine | PUT_YEARX - $5A74/ $5975
Parameters [X - Year to be displayed
PUrDOSE Put the leading zero 2 digit year in the appropriate spot on the display based on the current time
P zone date format
Routine PUTHALFDATESEP - $5AA0/ $59A1
Parameters |None
Purpose Show the separator character for a half date (no year) based on the current date format
Routine PUTDATESEP - $5AAB/ $59AC
Parameters |None
Purpose Show the separator characters for a full date based on the current date format
Routine PUT_LETTERX - $5ACH $59CF
Parameters |A - Character to be displayed X - Offset on the bottom line to put character

-69-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

IPurpose |Put a single character at the appropriate spot on the bottom line

Routine PUT_HOURX - $5AD9/ $59DA

Parameters |X - Hour to be displayed

Purpose Put the hour on the first two digits of the middle line along with the colon

Routine UPDATE_SECCNDS - $625E/ $6267

Parameters |None

PUrDOSE This routine checks the current TIC count and updates the seconds based on that TIC. If the
P minute rolls over, we also set the flags so that the rest of the system can respond to it.

Routine SHON TI ME_DI SPLAY - $676A $6773

Parameters |None

PUrDOSE Display the time information based on the current time zone and whether or not we might be in
P time set mode. All symbols are updated

Routine PUT_YEARX - $670C/ $67D5

Parameters [X - Year to be displayed

PUrDOSE Put the leading zero 2 digit year in the appropriate spot on the display based on the current time
P zone date format

Routine PUT_MONTHX - $67D0/ $67D9

Parameters |[X - Month to be displayed

PUrDOSE Put the leading space 2 digit month in the appropriate spot on the display based on the current
P time zone date format

Routine PUT_DAYX - $67D4/ $67DD

Parameters [X - Day to be displayed

PUrDOSE Put the leading zero 2 digit day in the appropriate spot on the display based on the current time
P zone date format

Routine SAY_HOURX - $67D8/ $67E1L

Parameters [X - Hour to be displayed

PUrDOSE Puts up the hour on the display along with an AM/PM indicator and a Colon. This code respects
P the current 12/24 hour format.

Routine CLEAR PM - $6815/ $681C

Parameters |[NONE

Purpose Turn off the PM indicator.

Routine CLEAR AM - $681C $6825

Parameters |[NONE

Purpose Turn off the AM indicator.

Routine PUT_M NUTEX - $6823/ $682C

Parameters [X - minute (0-59) to be displayed

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

IPurpose |This puts the minute in the middle two digits on the middle line followed by a period

Routine SHOWSEC TENS - $6830/ $6839

Parameters |[SECOND_TENS - Value to be put on the display

Purpose Puts the character at SECOND_TENS onto the next to the last digit on the middle line

Routine SHOWNSEC ONES - $6838/ $6841

Parameters |SECOND_ONES — Value to be put on the display

Purpose Puts the character at SECOND_ONES onto the last digit on the middle line

Routine SHOMN GHT_SYM - $6840/ $6849

Parameters |None

Purpose Displays the night symbol if we are in night mode

Routine SAY_HOLD TO - $6855/ $685E

Parameters |None

Purpose Puts ‘HOLD-TO’ on the top line

Routine FI X_TMAPP_DAY - $6861/ $686A

Parameters |None

Returns A - limited day of the month

Purpose Based on TMAPP_MONTH, TMAPP_YEAR, this routine limits the day of the month to a legal

one

Routine TMAPP_COPYTZ1 - $6881/ $688A

Parameters |None

PUrDOSE Copies the Hour, Minute, Month, Day, and Year information for Time Zone 1 to the
P corresponding TMAPP variables.

Routine TMAPP_COPYTZ2 - $688C $6895

Parameters |None

PUrDOSE Copies the Hour, Minute, Month, Day, and Year information for Time Zone 2 to the
P corresponding TMAPP variables.

Routine GETTZNAME - $6897/ $68A0

Parameters |None

Returns X - Pointer to the 3 character name of the current time zone

Routine CGET_MONTHDAYX - $689F/ $68A8

Parameters [X - pointer to two byte location to retrieve Month and Day

Returns A - The current year for the current time zone

Purpose Returns the year for the current time zone

Routine GET_YEAR - $68B2/ $68BB

Parameters |None

-71-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER'’'S REFERENCE

Returns A - The current year for the current time zone
Purpose Returns the year for the current time zone
Routine GET_HOURFORMAT - $68BB/ $68C4
Parameters |None
Returns X - 12 or 24 depending on the time format
Purpose Returns the 12/24 hour time format for the current time zone
Routine GET_DATEFMI - $68CB/ $68D4
Parameters |None
A - Date format mask for the current time zone
One of:
0 = DATEFMT_MMDDYY = Date Format is MM-DD-YY
Returns 1 =DATEFMT_DDMMYY = Date Format @s DD-MM-YY
2 = DATEFMT_YYMMDD = Date Format is YY-MM-DD
and One of
0 = DATEFMT_SEPDASH = Dates are separated by dashes
4 = DATEFMT_SEPDOTS = Dates are separated by periods
Purpose Returns the date format for the current time zone
Routine CALC DOW X - $68D5/ $68DE
Parameters |X - Pointer to Month, Day, Year block
Purpose Computes the Day of the Week from the Month, Day, Year information
Routine COPY_MDY - $68DB/ $68E4
Parameters |X - pointer to Month, Day, Year block to copy
Purpose Copies over the Month, Day, and Year information in preparation for calling CALC_DOW
Routine ACQUI RE - $68E8/ $68F1
Parameters |None
Purpose Disable interrupts for a short piece of code
Routine RELEASE - $68F2/ $68FB
Parameters |None
Purpose Reenable interrupts
Routine GET_MONTHLEN - $68F9/ $6902
Parameters |[PARM_MONTH, PARM_YEAR contain the month and year to look for
Returns A - Number of days in the month
Purpose Computes the number of days in a given month
Routine CHECK_TZ - $690F/ $6917
Parameters |None
Determine which time zone is to be displayed.
Purpose Carry flag clear = TZ1

Carry flag set = TZ2

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Routine CALC DOW - $691C $6925
CURRENT_MONTH, CURRENT_ DAY, CURRENT_YEAR - holds the information to calculate
Parameters from - -
Returns A - Day of Week (O=Monday...6=Sunday)
Purpose Calculates the day of the week from the given information
Routine LI ST_DI SPLAY_CURRENT - $6ABB/ $6AC4A
Parameters [None
Display the current list entry. List entries are up to 31 bytes long with Byte 0: Completion status.
Negative numbers indicate that it is not yet done
Purpose Byte 1: The priority of the event. 0 indicates no priority
Bytes 2-26: The packed text of the message (Up to 32 bytes unpacked)
Bytes 27-31 — Wasted since they can never be unpacked
Routine I NCA_WRAPX - $6B0D/ $6B16
Parameters |A - Number to be incremented X - Range to hold number within
Purpose Advance to the next value wrapped within a range
Routine DELAY_X - $6B31/ $6B3A
Parameters |X - Delay interval (Measured in ?) - Note that 1 is the only value ever passed in here
Purpose Delay for a fixed amount of time
Routine DELAY_X16 - $6B43/ $6BAC
Parameters |X - interval to delay for ($C8 is the only value ever passed in)
Purpose Delay for a fixed amount of time
Routine GETBCDH - $6B52/ $6B5B
Parameters [X - Hex value to be converted (Range 0-99)
Returns A - High byte of number in Timex ASCII
Routine GETBCDLOW - $6B5A/ $6B63
Parameters [X - Hex value to be converted (Range 0-99)
Returns A - Low byte of number in Timex ASCII
Routine ALARM CHECK - $6BC4/ $6C9C
Parameters [None
Purpose This routine is called once a minute to check for and raise any alarms
Routine SHOMOTE_SYM - $6062/ $6C56
Parameters |None
Purpose Displays the NOTE symbol if there is a note to be displayed
Routine SHOMLARM SYM - $6C76/ $6C6A
Parameters [None
Purpose Displays the ALARM symbol if there are any enabled alarms which are not masked This will also

start the alarm symbol blinking if we are in alarm backup mode

-73-

ABOUT THE DATALINK

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Routine ALARM DI SPLAY_CURRENT - $6EF4/ $6EFD
Parameters [None
PUrDOSE Display the current alarm information on the entire display. Daily is put on the top line and the
P NOTE/ALARM symbols are displayed accordingly
Routine ALARM SHOW HOURLYNOTE - $6F39/ $6F42
Parameters [None
Purpose Set the note symbol to the state of the hourly chimes
Routine ALARM SHOW ALARVBYM - $6F4A/ $6F53
Parameters |ALARM_FLAGS - status of alarm to show
Purpose Set the alarm symbol to the state of the current alarm
Routine ALARM SHOW AMPM - $6F5B/ $6F64
Parameters |ALARM_FLAGS - indicates whether a 12 hour format is in AM or PM
Purpose Set the alarm symbol to the state of the current alarm
Routine MASK_ALARVS - $6FF3/ $6FFC
Parameters [None
Purpose This temporarily disables all alarms by turning on the mask bit (0x02) for all five alarms.
Routine UNVASK_ALARMS - $7000/ $7009
Parameters [None
Purpose This reenables all alarms by turning off the mask bit (0x02) for all five alarms.
Routine ANNI V_SHOW DATE - $7184/ $718D
Parameters [None
Purpose Displays date for the current anniversary entry
Routine ANNIV_SHOW SCAN DATE - $719F/ $71A8
Parameters [None
Purpose Displays date for the current anniversary scan date
Routine ANNI V_SHOW CURRENT - $71AC $71B5
Parameters [None
Purpose Displays the current anniversary entry
Routine SHONREM ND_SYM - $71D6/ $71DF
Parameters [None
= Displays the reminder symbol if there are any anniversaries within this week. If one is today, this
urpose . . . - L
will toggle the remind symbol each time this routine is called
Routine OFFREM ND_SYM - $71EE/ $71F7
Parameters [None

Purpose

Turns off the reminder symbol

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Routine SAY_NO ANN ENTRI ES - $71F5/ $71FE
Parameters [None
Purpose Displays the message NO ANN ENTRIES on the display
Routine APPT_SHON.TI ME - $73D7/ $73E0
Parameters |SCAN_QHOUR - the quarter hour to display
Purpose This shows the appointment time on the display (including AM/PM indicator)
Routine APPT_SHOW DATE - $7439/ $7442
Parameters [SCAN_MONTH,SCAN_DAY
Purpose This shows the appointment date on the display (including the day of the week)
Routine APPT_SHOW SCAN - $7454/ $745D
Parameters [SCAN_MONTH,SCAN_DAY
PUrDOSE This shows the scan date on the display (including the day of the week) with the year and a
P message indicating that we are scanning
Routine APPT_SHOW CURRENT - $7461/ $746A
Parameters [None
Purpose This shows the next upcoming appointment (if any)
Routine APPT_SHON UPCOM NG - $748E/ $7497
Parameters [None
Purpose This shows the next upcoming appointment (if any)
Routine SAY_NO APPT_ENTRI ES - $74BD $7406
Parameters [None
Purpose This puts NO APPT ENTRIES on the display
Routine OCOW CHECK_CRC - $7C56/ $7C3C
Parameters [None
A - 0 CRC for the current packet matched
Returns

$ff - CRC for the current packet did not match

Purpose

Compute and validate a CRC for the current packet

_75-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Installing a Wristapp

Many people have asked how to install a Wristapp and download it to your watch. While there are people who are
using their DataLink with many different operating systems, these instructions only work for the Timex Data Link
software for Windows (what comes on the floppy disk with the watch). Note that this is different than Schedule+ or
another PIM downloading to the watch.

1. Locate the directory where the DataLink software is installed. Typically this will be C:\Datalink or
C:\Program Files\DataLink. In that directory will be a file called TimexDL.DAT

2. Using your favorite editor (Notepad will work just fine), bring in that file to edit.

3. Search in the file for the [WristApps] section. It will consist of several lines like:

[Wi st Apps]
Wi st AppTot al =10
Sel ect edWi st App=9
Wi st AppSendQpt i on=Tr ue
Wi st AppO00=HEXDUMPO. ZAP
Wi st App001=Mel odyl7. ZAP
Wi st App002=HELLO ZAP
Wi st AppO03=NUMBER. ZAP
Wi st App004=Updat e. ZAP
Wi st AppO05=Fl ash. ZAP
Wi st AppO06=passwd. ZAP
Wi st AppO07=dayfi nd. ZAP
Wi st App008=t est snd. ZAP
Wi st App009=endof f . ZAP
4. Note the number in the WristAppTotal and increment it by one. (In this case | would change the 10 to an
11)

5. Go to the last entry and add a new line just like the ones above it, but increment the WristApp number by
one. In this case, | would add a line after the WristApp009=endoff.ZAP and call that line WristApp010=.
Put the name of the wristapp (don't forget the .ZAP extension) on the line. In my example, it would look
like:

[Wi st Apps]
Wi st AppTot al =11
Sel ect edWi st App=9
Wi st AppSendQpt i on=Tr ue
Wi st AppO00=HEXDUMPO. ZAP
Wi st App001=Mel odyl7. ZAP
Wi st App002=HELLO ZAP
Wi st AppO03=NUMBER. ZAP
Wi st App004=Updat e. ZAP
Wi st AppO05=Fl ash. ZAP
Wi st AppO06=passwd. ZAP
Wi st AppO07=dayfi nd. ZAP
Wi st App008=t est snd. ZAP
Wi st App009=endof f . ZAP
Wi st APPO10=NewApp. ZAP
6. Save the file

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

10.

11.

12.

Copy the .ZAP file into the APP subdirectory of the DataLink software and you are done.
Load up the Datalink Software, and click on the WristApps button.

Scroll to the bottom of the list to see your new WristApp

Select the wristapp and make sure that the bottom says to send the selected WristApp
Select OK and then proceed to download to your watch with the normal COMM mode

Enjoy!

-77 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

The wristapps that | have written so far. Everything here works for both the 150 and the 150s.

TipCalc - Calculates 10, 15, 20% tips. Thanks to David M. Schreck <dschreck@csfbg.csfb.com> for the
idea!

Hello - Tutorial #1 - Hello World! (Now where is my C Compiler?)

Number - Tutorial #2 - Change a single humber

Update - Tutorial #3 - Update a number using a system routine

Flash - Tutorial #4 - Blinks and changes the number.

Passwd - Tutorial #5 - Blinks, changes, and selects numbers.

DayFind - Tutorial #6 - gives you the day of the week

Sound Test - Tutorial #7 - Plays one of the 14 possible tones on the watch.

EndOff - Tutorial #8 - Turn off alarms on the weekend

HexDump - Tutorial #9 - Dump out memory.

PromDump - Tutorial #10 - Dump out the contents of the EEPROM.

SpendWatch - Tutorial #11 - Track how much you spend in a day.

Sound1 - Tutorial #12 - Create a simple soundscape.

3Ball - Tutorial #13 - Can't make up your mind? Let 3Ball help you out. Thanks to Wayne Buttles
<timex@fdisk.com>

ShipBell - Tutorial #14 - Beeps on the hour with the nhumber of hours past a shift change. (suggested by
“Theron E. White, CPA” <twhite@mercury.peganet.com>).

Data Hider - This works for both the 150 and the 150s.

Segment Setter - This allows you to set all of the segments on the display on/off.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Other People’s Wristapps

It is wonderful to now see other people creating Wristapps.

NumPad - Michael Polymenakos <mpoly@panix.com> has created an excellent app which has two
functions in one. In his own words: “The first thing | miss from my old (and now non-functional) Casio is the
ability to record a number quickly when pen and paper are not available. | wrote a small wristapp,
NUMPAD, to let me record a 12 digit number... Any comments will be appreciated (especially on replacing
the ugly cursor with a ‘blink’ function that blinks only one digit at a time).” He has also incorporated a
chronometer wristapp in with the app to give you two apps in one.

3Ball - Wayne Buttles <timex@fdisk.com> created the first version of this fun app. It's been updated here

as a tutorial.

-79-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Plans for Wristapps

The wristapps that | plan to create and know everything necessary to create them.

WestMinister Chimes - For that ‘Big Ben’ sound. With thanks to Pigeon for the sound scheme to make it
possible.

Other wristapps that have been suggested (their original comments are presented. | also include my comments in
blue).

Falling Blocks - | have been thinking about this for a while. There is really no reason that you can't design
a game to take advantage of the segments to do a simple falling-blocks-like game. You would have to turn
the display sideways to play it.

Slots - | have also wanted to do this game for a while. The basic idea is to have a slot machine in the watch
where you can press a button and take a whirl. The watch should keep track of your winnings. Because of
the way the segments are organized, | believe that you can even do a good imitation of the wheels
spinning.

Dumper - We need to have a good application that allows the Datalink to talk back to the PC. The obvious
way here will be to use the sounds on the watch and listen to them with the SoundBlaster on the PC. Right
now the only thing holding us back is someone to create the PC end to listen. | have everything necessary
to generate the tones in a predictable manner.

Phone Dialer - The Datalink is just screaming for this application that has been suggested by many people.

It is not clear that this is beyond the capabilities of the DataLink, but so far | have only been able to emit the
14 basic tones in the watch. From my understanding of the watch and the hardware, | haven't completely
ruled this out as a possibility.

Info entry - “One of the reasons | like the DatalLink is because it DOESN'T have an ugly 12 button keypad
on it, but | have to admit, it would be nice to be able to enter a phone number when needed. Granted, it
would cumbersome to enumerate the desired digits, but | think it would still be useful (could also be used to
enter the section # of a large parking lot that you left your car)” David M. Schreck
<dschreck@csfbg.csfb.com>. This is certainly doable, but it does have some issues to be considered in
dealing with the EEProm. See the EEProms information to understand why.

Screen Saver - “Not in the true sense of the phrase, of course, and this one you would have to purposely
invoke. | imagine that those who are artistically inclined might think up a creative and interesting way to
cycle through the available display fields.” David M. Schreck <dschreck@csfbg.csfb.com>. If someone
proposes a suggested way that this might work, | certainly could implement it.

Baseball counter - “This might be too simple to bother with, but people who are umpires (I'm mainly thinking
about the many folks who ump for little league games) use a little hand held clicker to keep track of balls,
strikes, and outs. This should be an easy applet to create.” David M. Schreck <dschreck@csfbg.csfb.com>
This is one where | would love to hear from someone who would actually use it. | have a number of ideas
for user interface, but that would really depend on how someone would use it.

Tennis counter - “Say I'm about to start a tennis game. | hit one button each time | score a point, and a
different one each time my opponent scores. The applet always displays the current score. It might even
display the word “deuce” when appropriate. Hopefully it could be programmed to be smart enough to know
when subsequent games begin, and even keep track of the set score.” David M. Schreck
<dschreck@csfbg.csfb.com>. Here is where | will let my lack of knowledge of tennis show. | simply don't

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

know how the scoring works well enough to write this. | would like to have the person enter the two names
of the people playing and it would keep track of who has to serve, the current score, and the total match/set
score. If someone would toss me this information, | could create the app really quickly.

Calorie Counter - “If someone wanted to keep track of their caloric intake for the day (or any other need
where you want to tally up a total but don't feel like carrying around a paper and pencil) perhaps they could
just punch in the number to be added to the daily total each time they eat something. At the end of the day
they can glance at the total and then reset to zero. David M. Schreck <dschreck@csfbg.csfb.com>" This is
probably one of the more interesting apps to create. | might even take advantage of the EEProm to store
some of the basic foods and their calorie counts to make it easier.

-81-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Wristapp Programming Tutorial

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

A First Wristapp - Hello World

To illustrate, let us take our favorite C Program and figure out how to put it on the Datalink. The first step in creating
a wristapp is to decide on what the user interface will be. You would think that with only 5 buttons, this would be an
easy task, but in reality this can make or break a good application. For our application, we will have it so that when
you first enter the app, it puts “HELLO WORLD MODE” on the screen. If you press the PREV button, it will toggle to
turning on all segments. Pressing the PREV button will switch back to the “HELLO WORLD MODE”. The Next
button will take you out of the app and the SET/NEXT buttons will not do anything. Pressing the GLOW button will
activate the Indiglo light as expected. Here’s what the code would look like:

; Nane: Hello Wrld

; Version: HELLO

;Description: This is a sinple Hello Program

; by John A Toebes, VIII

; TIP: Downl oad your watch faster: Download a WistApp once, then do not send it again. It stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

I NCLUDE “WRI STAPP. | "

; (1) Programspecific constants

FLAGBYTE EQU $61

; Bit 0 indicates that we want to show the segnents instead of the nessage
START EQU *

; (2) Systementry point vectors

LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN
L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop
nop
L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC
nop
nop
L0119: rts ; Called when the COM app starts and we have tiners pending - WR ST_| NCOW
nop
nop
LO11lc: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: Ida STATETAB, X ; The state table get routine - WR ST_GETSTATE
rts
L0123: jnp HANDLE_STATEO
db STATETAB- STATETAB

; (3) Programstrings
S6_HELLO tinmex6 “HELLO “

-83-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S6_WORLD: ti mex6

; (4) State Table

; (4) State Table

STATETAB:
db
db
db
db
db
db

“WORLD “

0

EVT_ENTER, TI M_ONCE, 0

EVT_RESUME, TI M ONCE, 0
EVT_DNNEXT, TI M_ONCE, 0
EVT_MODE, TI M_ONCE, $FF

EVT_END

. (5) State Table 0 Handl er

; This is called to process the state events.

HANDLE_STATEO:
bset
| da
cnp
beq
CLEARI T belr

REFRESH brclr

inp
SHONDI SP jsr
| da
jsr
| da
jsr
| da
inp

; (6) Qur only real

DOTOGGELE br set

bset
bra

1, $8f
BTNSTATE
#EVT_DNNEXT
DOTOGGLE

0, FLAGBYTE

0, FLAGBYTE, SHOADI SP

SETALL

CLEARALL
#56_HELLO START
PUT6TCP
#S6_\WORLD- START
PUT6M D
#SYS8_MODE
PUTMBGBOT

pi ece of working code. ..
0, FLAGBYTE, CLEAR T

0, FLAGBYTE
REFRESH

; Initial state

; Resune froma nested app
; Next button

; Mbde button

W only see ENTER, RESUME, and DNNEXT events

; I'ndicate that we can be suspended

; CGet the event

; Dd they press the next button?

; Yes, toggle what we are displaying

; Start us in the show di splay state

; Do we want to see the main display?
; No, just turn on all segnents

; Qear the display

; CGet the offset for the first string
; And send it to the top line

; Cet the offset for the second string
; and put it on the mddle line

; Get the systemoffset for the ‘MXDE string
; and put it on the bottomline

; If it is set, just junmp to clear it |ike nornal
; Already clear, so set it
; and let the refresh code handle it

; (7) This is the main initialization routine which is called when we first get the app into nmenory

MAI N
| da
| oaded
sta
clr
rts

#$c0

$96
FLAGBYTE

; W want button beeps and to indicate that we have been

; start with a clean slate

Now all of that code needs a little explanation. As you can see from the numbers, we have 7 basic sections

1. Program specific constants - This is where you declare everything that you want to use. As a Wristapp, you

have only a limited amount of Ram (7 bytes to be specific) that you can store your stuff with, so be careful

here.

2. System entry point vectors - These are fixed and mandated for any Wristapp. If there is more than one

state, the JMP and db sequence is repeated for each state.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

3. Program strings - In order to provide addressability to the strings, you need to put them immediately after
the entry point vectors.

4. State Table(s) - This really tells the watch how we want to operate and what events we want to handle.
See The State Table for a more complete explanation of this.

5. State Table Handler(s) - These are called to process the events for a particular state. Typically this is a
LDA BTNSTATE followed by a lot of CMP/Bcc instructions. You also need to do the BSET 1,$8f at the
start to allow the Wristapp to be suspendable.

6. Program Specific Code - The actual meat of the program. In our case, we simply have to toggle a value.

7. Main Initialization routine - This is called once when the wristapp is first loaded. We need to make sure that
we set the appropriate bits in WRISTAPP_FLAGS.

Now that we have a basic program working. Next Up: Getting Input - Numbers

-85-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Getting Input

A program which just does output and really takes no input is not very useful. The first stage in making a program
more useful is to figure out how to allow the user to enter a value. With this first numbers program, we allow you to
enter a number by pressing the PREV/NEXT key to advance it by one each time you press the key. This allows us
to see how basic input works and a couple of the formatting/display routines.

; Nane: Nunbers

; Ver si on: NUMBER

;Description: This is a sinple nunber count program

; by John A Toebes, VIII

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

| NCLUDE “WRI STAPP. |7

; (1) Programspecific constants

FLAGBYTE EQU $61

; Bit 0 indicates that we want to show the segnents instead of the nessage
CURVAL EQU $62 ; The current value we are displaying

START EQU *

; (2) Systementry point vectors

LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN
L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop
nop
L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC
nop
nop
L0119: rts ; Called when the COW app starts and we have tiners pending - WR ST_| NCOW
nop
nop
LO11lc: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: Ida STATETAB, X ; The state table get routine - WR ST_GETSTATE
rts

L0123: jnp HANDLE STATEO

db STATETAB- STATETAB

; (3) Programstrings
S6_NUMBER timex6 “NUVBER’
S6_COUNT: timex6 “COUNT “

; (4) State Table

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

STATETAB
db 0
db EVT_ENTER TIM2_8TIC,0 ; Initial state
db EVT_TIMER2, TIMONCE, 0 ; The tiner fromthe enter event
db EVT_RESUVE, TITM ONCE,0 ; Resume froma nested app
db EVT_DNNEXT, TIM ONCE, 0 ; Next button
db EVT_DNPREV, TIMONCE, 0 ; Prev button
db EVT_DNSET, TI M_ONCE, 0 ; Set button
db EVT_MODE, TI M ONCE, $FF ; Mbde button
db EVT_END

; (5) State Table 0 Handler
; This is called to process the state events. W will see ENTER, RESUME, DNNEXT, DNPREV, DNSET, and
TI MER2

HANDLE_STATEO

bset 1, APP_FLAGS ; Indicate that we can be suspended
| da BTNSTATE ; Get the event

cnp #EVT_DNNEXT ; Dd they press the next button?
beq DO _NEXT . Yes, increnent the counter

cnp #EVT_DNPREV ; How about the PREV button

beq DO _PREV ; handle it

cnp #EVT_DNSET ; Maybe the set button?

beq DO SET ; Deal withit!

cnp #EVT_ENTER ; Is this our initial entry?

bne REFRESH

; This is the initial event for starting us

DO _ENTER
belr 1, FLAGBYTE ; Indicate that we need to clear the display
jsr CLEARSYM ; Qear the display
| da #S6_NUMBER- START
jsr PUT6TOP
| da #S6_COUNT- START
jsr PUT6M D

| da #SYS8_MODE
inp PUTMBGBOT

; (6) Qur only real working code. ..

DO_NEXT
inc CURVAL
| da CURVAL
cnp #100
bne SHOWAL
DO _SET
clr CURVAL
SHOAVAL
br set 1, FLAGBYTE, NOCLEAR
REFRESH
jsr CLEARALL

-87-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

bset 1, FLAGBYTE

NOCLEAR
| dx CURVAL
jsr FMIXLEADO
jmp PUTM D34
DO _PREV
| da CURVAL
beq WRAPUP
dec CURVAL
bra SHOW/AL
WRAPUP
| da #99
sta CURVAL
bra SHOWAL

; (7) This is the main initialization routine which is called when we first get the app into nmenory

MAI N

| da #$c0 ; W want button beeps and to indicate that we have been
| oaded

sta WRI STAPP_FLAGS

clr FLAGBYTE ; start with a clean slate

clr CURVAL

rts
We have the same 7 basic sections, but some of them are a little more filled out.

1. Program specific constants - We have only two basic variables. The flagbyte and the current value.

2. System entry point vectors - We have nothing special this time..

3. Program strings - The strings go here for addressability.

4. State Table(s) - This really tells the watch how we want to operate and what events we want to handle.
See The State Table for a more complete explanation of this. For this, we want to see the down events for
the NEXT, PREV, and SET buttons so that we can increment, decrement, or reset the counter as
appropriate. We also have coded the MODE button with the magic $FF which causes it to advance to the
next app.

5. State Table Handler(s) - Here we have the typical CMP/BEQ instruction sequence to quickly determine
what event happened. Note that the EVT_ENTER event causes a timer to go off which allows us to clear
the screen 8/10 second after they switch to the app.

6. Program Specific Code - The actual meat of the program. We really only have to deal with
advance/retreat/reset of the value and then displaying it after each change..

7. Main Initialization routine - This is called once when the wristapp is first loaded. We need to make sure that
we set the appropriate bits in WRISTAPP_FLAGS.

Just pressing a button for each increment can be tedious. Learn how to make it better with: Better Input - Update

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Better Input - Update

Pressing the button for each time you want to increment or decrement a number can be very tedious. Fortunately,
the Datalink has a series of update routines that you can call to handle this automatically. The update routine takes
a few parameters. First is the type of update to do. The function limits

; Nare: Updat e

; Ver si on: UPDATE

;Description: This is a sinple nunber update program

; by John A Toebes, VIII

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

| NCLUDE “WRI STAPP. |7

; (1) Programspecific constants

FLAGBYTE EQU $61

; Bit 1 indicates that we need to clear the display first

CURVAL EQU $62 ; The current value we are displaying

; (2) Systementry point vectors

START EQU *
LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN
L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop
nop
L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC
nop
nop
L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop
nop
LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: |lda STATETAB, X ; The state table get routine - WR ST_CGETSTATE
rts
L0123: jnp HANDLE_STATEO
db STATETAB- STATETAB

; (3) Programstrings
S6_UPDATE: tinex6 “UPDATE
S6_SAMPLE: timex6 “SAVPLE’

-89-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (4) State Table

STATETAB:
db 0
db EVT_ENTER TIM 2 _8TIC, 0 o Initial state
db EVT_TI MER2, TI M_ONCE, 0 ; The timer fromthe enter event
db EVT_RESUVE, TI M_ONCE, 0 ; Resune froma nested app
db EVT_MODE, TI M_ONCE, $FF ; Mode button
db EVT_DNANY4, TI M_ONCE, 0 ; NEXT, PREV, SET, MOXDE button pressed
db EVT_UPANY4, TI M_ONCE, 0 ; NEXT, PREV, SET, MODE button rel eased
db EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER, TIMER2, RESUVE, DNANY4 and UPANY4 events

HANDLE_STATEQ:

bset 1, APP_FLAGS ; I'ndicate that we can be suspended

| da BTNSTATE ; CGet the event

cnp #EVT_DNANY4 ; Dd they press a button?

bne CHKENTER ; No, pass on to see what else there mght be
| da BTN_PRESSED ; Let's see what the button they pressed was
cnp #EVT_PREV ; How about the PREV button

beq DO _PREV ; handle it

cnp #EVT_NEXT ; Maybe the NEXT button?

beq DO _NEXT ; Deal withit!

cnp #EVT_SET ; Perhaps the SET button

beq DO SET ; If so, handle it

; Inreality, we can't reach here since we handled all three buttons

; in the above code (the MIDE button is handl ed before we get here and the
; GLONbutton doesn't send in an event for this). W can just fall through
; and take whatever we get fromit.

CHKENTER
cnp #EVT_ENTER ; Is this our initial entry?
bne REFRESH

; This is the initial event for starting us

DO ENTER
belr 1, FLAGBYTE ; Indicate that we need to clear the display
jsr CLEARSYM ; Qear the display
| da #S6_UPDATE- START
jsr PUT6TOP
| da #S6_SAMPLE- START
jsr PUT6M D
| da #SYS8_MODE
jmp PUTMSGBOT

; (6) Qur real working code...

DO_NEXT
bset 0, SYSFLAGS ; Mark our update direction as up
bra DO _UPD

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

DO _PREV
belr 0, SYSFLAGS ; Mark our update direction as down
DO _UPD
clra
sta UPDATE_M N ; Qur lowend is O
| da #99
sta UPDATE_MAX ; and the high end is 99 (the nax since this is a 2 digit val ue)
| dx #CURVAL ; Point to our value to be updated
| da #UPD M D34 ; Request updating in the middle of the display
jsr START_UPDATEP ; And prepare the update routine
bset 4, BTNFLAGS ; Mark that the update is now pending
bcl r 1, FLAGBYTE
| da #SYS8_SET_MDE
jmp PUTMSGBOT
DO _SET
clr CURVAL ; Wien they hit the set button, we just clear to zero
SHOWAL
brset 1, FLAGBYTE, NOCLEAR ; Do we need to clear the display first?
REFRESH
jsr CLEARALL ; Yes, clear everything before we start
bset 1, FLAGBYTE ; And remenber that we have al ready done that
NOCLEAR
belr 7, BINFLAGS ; Turn off any update routine that m ght be pending
| dx CURVAL ; Get the current val ue
jsr FMIXLEADO ; Convert it to the two ASCII digits
jnp PUTM D34 ; And put it on the screen in the right place

(7) This is the main initialization routine which is called when we first get the app into nenory

MAI N

| da #$c0 ; W want button beeps and to indicate that we have been
| oaded

sta WRI STAPP_FLAGS

clr FLAGBYTE ; start with a clean slate

clr CURVAL
rts

Now all of that code needs a little explanation. As you can see from the numbers, we have 7 basic sections

1. Program specific constants - This is where you declare everything that you want to use. As a Wristapp, you
have only a limited amount of Ram (7 bytes to be specific) that you can store your stuff with, so be careful
here.

2. System entry point vectors - These are fixed and mandated for any Wristapp. If there is more than one
state, the JMP and db sequence is repeated for each state. We haven't started getting fancy so we still
have only one state table.

3. Program strings - In order to provide addressability to the strings, you need to put them immediately after
the entry point vectors. Our only strings are the two banner strings.

-91-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

4. State Table(s) - This really tells the watch how we want to operate and what events we want to handle.
See The State Table for a more complete explanation of this. We accept the normal RESUME, ENTER,
and TIMER2 events for getting us running. We also handle the MODE button by allowing it to just bounce
us out of the application and into the next. It is important that this event be in the table before the
EVT_DNANY4 which allows for the NEXT, PREV, SET, and MODE buttons (it ignores the INDIGLO
button). If you press the mode button, it will be handled by the first entry and the application terminated
cleanly. Otherwise, we have to sort out which of the three buttons was pressed. This is easy to do since
BTN_PRESSED holds the actual code associated with the button that was selected.

5. State Table Handler(s) - These are called to process the events for a particular state. Typically this is a
LDA BTNSTATE followed by a lot of CMP/Bcc instructions. You also need to do the BSET 1,$8f at the
start to allow the Wristapp to be suspendable. In this case we introduce the use of the EVT_DNANY4 in
the basic state table logic testing. When we see the EVT_DNANY4 or EVT_UPANY4, we look at
BTN_PRESSED to identify what the user pressed.

6. Program Specific Code - The actual meat of the program. Again, the code is very simple. We have to
handle making sure that the screen is cleared at the appropriate times, but other than that, the majority of
the work is picking a direction and setting 0.SYSFLAGS appropriately before letting the system handle the
Update for us. Once we are set up, we set 4,BTNFLAGS and the system roms will handle updating the
number for us.

7. Main Initialization routine - This is called once when the wristapp is first loaded. We need to make sure that
we set the appropriate bits in WRISTAPP_FLAGS.

This has gotten a bit better for input, now you need to show them what they have selected with: Showing Selection
- Blink

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Showing Selection - Blink routines

We can make our update program a bit smarter and more obvious to the user by blinking the digit when it is
available to be changed. Like the START_UPDATEP routine, there is an equivalent START_BLINKP routine which
handles blinking the display for you. | call this routine FLASH since it is not possible to put a K on the top two lines of
the display :-).

; Narme: Fl ash

; Ver si on: FLASH

; Description: by John A Toebes, VI

;This is a sinple nunber update/flash program

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

I NCLUDE “WRI STAPP. | "

; (1) Programspecific constants

FLAGBYTE EQU $61

; Bit 1 indicates that we need to clear the display first

CURVAL EQU $62 ; The current value we are displaying

; (2) Systementry point vectors

START EQU *
LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN
L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop
nop
L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC
nop
nop
L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop
nop
LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: |lda STATETAB, X ; The state table get routine - WR ST_CGETSTATE
rts
L0123: jnp HANDLE_STATEO
db STATETAB- STATETAB

; (3) Programstrings
S6_FLASH: tinex6é “FLASH “
S6_SAMPLE: timex6 “SAVPLE’

-93-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (4) State Table

STATETAB:
db 0
db EVT_ENTER TIM 2 _8TIC, 0 o Initial state
db EVT_TI MER2, TI M_ONCE, 0 ; The timer fromthe enter event
db EVT_RESUVE, TI M_ONCE, 0 ; Resune froma nested app
db EVT_MODE, TI M_ONCE, $FF ; Mode button
db EVT_DNANY4, TI M_ONCE, 0 ; NEXT, PREV, SET, MOXDE button pressed
db EVT_UPANY4, TI M_ONCE, 0 ; NEXT, PREV, SET, MODE button rel eased
db EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER, TIMER2, RESUVE, DNANY4 and UPANY4 events

HANDLE_STATEQ:

bset 1, APP_FLAGS ; I'ndicate that we can be suspended

| da BTNSTATE ; CGet the event

cnp #EVT_DNANY4 ; Dd they press a button?

bne CHKENTER ; No, pass on to see what else there mght be
| da BTN_PRESSED ; Let's see what the button they pressed was
cnp #EVT_PREV ; How about the PREV button

beq DO _PREV ; handle it

cnp #EVT_NEXT ; Maybe the NEXT button?

beq DO _NEXT ; Deal withit!

cnp #EVT_SET ; Perhaps the SET button

beq DO SET ; If so, handle it

; Inreality, we can't reach here since we handled all three buttons

; in the above code (the MIDE button is handl ed before we get here and the
; GLONbutton doesn't send in an event for this). W can just fall through
; and take whatever we get fromit.

CHKENTER
cnp #EVT_ENTER ; Is this our initial entry?
bne REFRESH

; This is the initial event for starting us

DO ENTER
belr 1, FLAGBYTE ; Indicate that we need to clear the display
jsr CLEARSYM ; Qear the display
| da #S6_FLASH START
jsr PUT6TOP
| da #S6_SAMPLE- START
jsr PUT6M D
| da #SYS8_MODE
jmp PUTMSGBOT

; (6) Qur real working code...

DO_NEXT
bset 0, SYSFLAGS ; Mark our update direction as up
bra DO _UPD

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

DO _PREV
bel r 0, SYSFLAGS ;
DO _UPD
clra
sta UPDATE_M N
| da #99
sta UPDATE_MAX
| dx #CURVAL
| da #UPD_M D34
jsr START_UPDATEP
bset 4, BTNFLAGS
bcl r 1, FLAGBYTE
| da #SYS8_SET_MODE
jmp PUTNVBGBOT
DO _SET
clr CURVAL
SHOAVAL
brset
REFRESH
jsr CLEARALL
bset 1, FLAGBYTE
NOCLEAR
belr 7, BTNFLAGS
| dx #CURVAL
| da #BLI NK_M D34
jsr START_BLI NKP
bset 2, BTNFLAGS
rts

MAI N:
| da
| oaded
sta
clr
clr
rts

; Wien they hit the set button

#$c0

VR STAPP_FLAGS

FLAGBYTE
CURVAL

i

i

Mark our update direction as down

Qur lowend is 0

and the high end is 99 (the nax since this is a 2 digit val ue)
Point to our value to be updated

Request updating in the mddle of the display

And prepare the update routine

Mark that the update is now pending

we just clear to zero

1, FLAGBYTE, NOCLEAR ; Do we need to clear the display first?

Yes, clear everything before we start
And renenber that we have al ready done that

Turn off any update routine that m ght be pendi ng

Mark a blink routine as pendi ng

(7) This is the main initialization routine which is called when we first get the app into nenory

; W want button beeps and to indicate that we have been

; start with a clean slate

This is code is basically identical to the Update sample with only a couple of minor changes.

1. Program specific constants - No Change.

2. System entry point vectors - We have nothing special this time..

3. Program strings - Gee, we changed the strings.

4. State Table(s) - We get to use exactly the same state table. See The State Table for a more complete

explanation of this.

5. State Table Handler(s) - Since the state table is the same, the state handling is the same.

-95-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

6. Program Specific Code - All we had to do different here was to call START BLINKP and then set
2,BTNFLAGS to notify the system that we want the blink routine to run. The blink routine will automatically
handle putting up the number for us.

7. Main Initialization routine - No changes here either. This is called once when the wristapp is first loaded.
We need to make sure that we set the appropriate bits in WRISTAPP_FLAGS.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Entering Digits - PASSWD sample

This program is a bit more sophisticated to show off how you might go toward creating a complex app. | have not
made any attempts at optimizing the code here in order to be a bit more clear about how to go about writing this type
of app. There are a few new features with this code:

We have two different display screens. When you first enter the app, it puts up one display. After it times
out, it puts up a different display which also has a scrolling message across the bottom.

The set button brings you into a set mode where the mode button switches between digits to set.
This app uses two state tables instead of one. It shows how to switch between the two states.

; Nane: Passwor d

; Ver si on: PASSVD

;Description: This is a sinple nunber update/passwd program

; by John A Toebes, VIII

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. It stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

I NCLUDE “WRI STAPP. |*

; (1) Programspecific constants

FLAGBYTE EQU $61

; Bit O indicates which digit we are working on (SET=SECOND DA T)
; Bit 1 indicates that we need to clear the display first

DA TO EQU $62 ; The first digit to enter
DATL EQU $63 ; The second digit to enter
SYSTEMPO EQU $A0

SYSTEMPL EQU $AL

; (2) Systementry point vectors

START EQU *

LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN

L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop

nop

L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC
nop

nop

L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop

nop

LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA

nop

nop

-97-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

LO11f: |lda STATETABO, X ; The state table get routine - WR ST_CGETSTATE
rts
L0123: jnp HANDLE_STATEO
db STATETABO- STATETABO
L0127: jnp HANDLE_STATE1L
db STATETABL- STATETABO

; (3) Programstrings

S6_TCOEBES: timex6 “TOEBES'
S6_SAVPLE: timex6 “SAWPLE’
S6_PRESS: tinex6 “PRESS “
S8_PASSWORD: Ti mex “ PASSWORD'
SX_MESSAGE Ti mex “BY JOHN AL TCEBES, VIII”
db SEPARATOR
; (4) State Table
STATETABO:
db 0
db EVT_ENTER TIM 2_8TIC, 0 o Initial state
db EVT_TI MER2, TI M_ONCE, 0 ; The timer fromthe enter event
db EVT_RESUVE, TI M_ONCE, 0 ; Resune froma nested app
db EVT_MODE, TI M_ONCE, $FF ; Mode button
db EVT_SET, TI M_ONCE, 1 ; SET button pressed
db EVT_END
STATETABL:
db 1
db EVT_RESUVE, TI M ONCE, 1 ; Resune froma nested app
db EVT_DNANY4, TI M_ONCE, 1 ; NEXT, PREV, SET, MOXDE button pressed
db EVT_UPANY4, TI M_ONCE, 1 ; NEXT, PREV, SET, MODE button rel eased
db EVT_USER2, TI M_ONCE, 0
db EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER, TIMER2, and RESUME events

HANDLE_STATEQ:

bset 1, APP_FLAGS ; I'ndicate that we can be suspended
| da BTNSTATE ; Get the event

cnp #EVT_ENTER ; Is this our initial entry?

bne REFRESHO

; This is the initial event for starting us

DO ENTER
belr 1, FLAGBYTE ; Indicate that we need to clear the display
jsr CLEARSYM ; Qear the display
| da #S6_TOEBES- START

jsr PUT6TOP

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

| da
jsr
| da
inp

; W cone here for a RESUME or TIMER2 event.

REFRESHO
brset
bset
jsr

NOCLEARO
| da
jsr
| da
jsr
| da
inp

#S6_SAVPLE- START

PUT6M D

#58_PASSWORD

BANNERS

1, FLAGBYTE, NOCLEARO

1, FLAGBYTE
CLEARSYM

#S6_PRESS- START

PUT6TCP
#SYS6_SET
PUTNBG2

#SX_MESSAGE- START

SETUP_SCROLL

; (6) State Table 1 Handler
; This is called to process the state events.
; W see SET, RESUME, DNANY4, and UPANY4 events

HANDLE_STATEL:

i

’
i
’
i
’
’

For this we want to reset the display

Do we need to clear the display first?

Indicate that we can be suspended

Get the event

Is this our initial entry?

Let’s see what the button they pressed was

How about the PREV button
handl e it

Maybe the NEXT button?
Deal with it!

Per haps the MIDE button

If so, handle it

so take us out of this state

bset 1, APP_FLAGS
| da BTNSTATE
cnp #EVT_UPANY4
beq REFRESH
cnp #EVT_DNANY4
bne FORCEFRESH
| da BTN_PRESSED
cnp #EVT_PREV
beq DO _PREV
cnp #EVT_NEXT
beq DO _NEXT
cnp #EVT_MODE
beq DO _MODE

; It must be the set button,
| da #EVT_USER2
jnp PCSTEVENT

; (7) Qur real working code...

DO_NEXT
bset 0, SYSFLAGS
bra DO _UPD

DO _PREV

bel r 0, SYSFLAGS

DO _UPD

clra
sta UPDATE_M N
| da #99

Mark our update direction as up

Mark our update direction as down

-99-

Qur lowend is 0

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

sta UPDATE_MAX ; and the high end is 99 (the max since this is a 2 digit
val ue)
brset 0, FLAGBYTE, UPDL
| dx DAdTl
jsr FMIXLEADO
jsr PUTM D34
| dx #D A TO ; Point to our value to be updated
| da #UPD_M D12 ; Request updating in the mddle of the display
bra UPD2
UPDL
| dx DA TO
jsr FMIXLEADO
jsr PUTM D12
| dx #D A T1
| da #UPD_M D34
UPD2
jsr START_UPDATEP ; And prepare the update routine
bset 4, BTNFLAGS ; Mark that the update is now pendi ng
bcl r 1, FLAGBYTE
| da #SYS8_SET_MODE
jmp PUTMSGBOT
DO_MXDE
| da FLAGBYTE
eor #1
sta FLAGBYTE
REFRESH
brset 1, FLAGBYTE, NOCLEAR ; Do we need to clear the display first?
FORCEFRESH
jsr CLEARALL ; Yes, clear everything before we start
bset 1, FLAGBYTE ; And remenber that we have al ready done that
NOCLEAR
bel r 7, BINFLAGS ; Turn of f any update routine that m ght be pending
brset 0, FLAGBYTE, SET1
| dx DAdT1l
jsr FMIXLEADO
jsr PUTM D34
| dx #D A TO
| da #BLI NK_M D12
bra SET2
SET1
| dx DA TO
jsr FMIXLEADO
jsr PUTM D12
| dx #D A T1
| da #BLI NK_M D34
SET2
jsr START_BLI NKP
bset 2, BINFLAGS ; Mark a blink routine as pending

rts

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

; (8) This is the main initialization routine which is called when we first get the app into nmenory

MAI N

| da #$c0 ; W want button beeps and to indicate that we have been
| oaded

sta WRI STAPP_FLAGS

clr FLAGBYTE ; start with a clean slate

clr DdTo

clr DAdT1l
rts

; (9) This subroutine is useful for getting a scrolling string on the screen

; Routi ne:

; SETUP_SCROLL

; Paraneters:

; X - Ofset fromStart to the string

; Returns:

; MBGBUF - contains copied string

; Purpose

; This copies the current string into MSGBUF and calls the appropriate routines
; to start it scrolling on the bottomline.

SETUP_SCROLL:
clr SYSTEMPO
sta SYSTEMP1
DO _COPY:
| dx SYSTEMP1 ; Get the pointer to the source character
| da START, X ; Get the character that we are copying
| dx SYSTEMPO ; Get the pointer to the output buffer
sta MB@BUF, X ; and store the character away
inc SYSTEMPO ; Increment our count
inc SYSTEMPL ; As well as the pointer to the character
cnp #SEPARATOR ; Did we get a term nator character
bne DO_CoPY ; No, go back for nore

; The string is nowin a buffer termnated by a separator character

jsr PUTSCROLLNBG ; Initialize the scrolling support

jnp SCROLLNMSG ; And tell it to actually start scrolling
This is code is built on the Update and Blink samples with a few changes and additions.

1. Program specific constants - We now have two digits to care about.

2. System entry point vectors - Because we have gone to two state tables, we now have the extra jump
vector.

3. Program strings - Gee, we changed the strings. Plus we have a longer string which we pass to our
SETUP_SCROLL routine.

-101 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

4. State Table(s) - We now have two state tables. State tableO is pretty simple and is used only for when we
are in the normal state. State table 1 is used when we are in the set mode. See The State Table for a
more complete explanation of this.

5. State Table HandlerO - For stateO, we only really need to handle the initial enter where we put up the
banner. After a while we time out and put up the ‘PRESS SET’ message with my name scrolling across the
bottom.

6. State Table Handlerl - This handler is used for when we are in the SET state for changing the numbers.

7. Program Specific Code - We use the same UPDATE and BLINK functions from the Blink sample. The only
extra work here is that we cause the display to update the other digit when we are setting one.

8. Main Initialization routine - No changes here. This is called once when the wristapp is first loaded. We need
to make sure that we set the appropriate bits in WRISTAPP_FLAGS.

9. SETUP_SCROLL subroutine - This is a useful routine that you may wish to copy for another wristapp.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Getting time and Input - DAYFIND sample

This is the first real app with some attempt at optimization and a bit of planning for user input. It stems from a
suggestion by Roman Mazi. There are a lot of things in this code which build on the previous examples. The most
notable things in this one are:

This code shows how to get the current date (and you can also get the time the same way).
There are banner messages on the bottom of the display to provide a little help.
Workarounds for a lack of update routines are given.
Quite a few new routines are introduced here.

The code is reasonably commented:

; Nanme: Day Fi nder

; Ver si on: DAYFI ND

;Description: This will allow you to determine the date for a given day of the week and vi ce-versa.
; by John A Toebes, VIII

;Press the prev/next buttons to advance by a single day. Press SET to access the ability to advance/ backup
by

;weeks, months, days, and years. The MODE button advances through those different states

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

| NCLUDE “WRI STAPP. |7

; (1) Programspecific constants

FLAGBYTE EQU $61
B_CLEAR EQU 0 ; Bit O indicates that we need to clear the display first
B_SCANUP EQU 1 ; Bit 1 indicates that we are scanning up
B_SCANNI NG EQU 2 ; Bit 2 indicates that we are in a fake scanning node
DI GSEL EQU $62 ; I'ndicates which digit we are working on
;0 = DAY OF VEEEK
;1 = Month
7 2 = Day
;3 = Year
YEAR D GL EQU $63 ; This is the first digit of the year to blink (the tens digit)
YEAR DI @ EQU $64 ; This is the second digit of the year to blink (the ones digit)
COUNTER EQU $65 ; A convenient counter for us to advance a week at a tine
; (2) Systementry point vectors
START EQU *
LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN

-103 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop
nop
L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC
nop
nop
L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop
nop
LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: |lda STATETABO, X ; The state table get routine - WR ST_CETSTATE
rts
L0123: jnp HANDLE_STATEO
db STATETABO- STATETABO
L0127: jnp HANDLE_STATE1L
db STATETABL- STATETABO

; (3) Programstrings

S6_DAY timex6 “DAY “
S6_FI ND tinexé “ FIND
S8_TCEBES Ti mex “J. TCEBES’
S8_DAYFI ND Ti mex “DAY FI ND’
S8_WEEK db C_LEFTARR
Ti mex “ WEEK “
db C_RI GHTARR
S8_MONTH db C_LEFTARR
Ti mex “MONTH
db C_RI GHTARR
S8_DAY db C_LEFTARR
Ti mex “ DAY
db C_RI GHTARR
S8_YEAR db C_LEFTARR
Ti mex “ YEAR “
db C_RI GHTARR

; (4) State Table

STATETABO:
db 0
db EVT_ENTER, TIML_4TIC, 0 ; Initial state
db EVT_TI MERL, TI M_ONCE, 0 ; The timer fromthe enter event
db EVT_RESUVE, TI M_ONCE, 0 ; Resune froma nested app
db EVT_MODE, TI M_ONCE, $FF ; Mode button
db EVT_SET, TI M_ONCE, 1 ; SET button pressed
db EVT_DNNEXT, TI M_8TIC, 0 ; NEXT button pressed
db EVT_DNPREV, TI M_8TI C, 0 ; PREV button pressed
db EVT_UPANY4, TI M_ONCE, 0 ;. The
db EVT_TIMER2, TIM_TIC, O ; The timer for the next/prev button pressed

db EVT_END

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

STATETABL:
db 1
db EVT_RESUVE, TI M ONCE, 1 ; Resune froma nested app
db EVT_DNANY4, TI M_ONCE, 1 ; NEXT, PREV, SET, MODE button pressed
db EVT_UPANY4, TI M_ONCE, 1 ; NEXT, PREV, SET, MODE button rel eased
db EVT_USER2, TI M_ONCE, 0
db EVT_USER3, TI M2_8TIC, 1 :
db EVT_TIMER2, TIM2_TIC, 1 :
db EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER, TIMER2, and RESUME events

HANDLE_STATEQ:

bset 1, APP_FLAGS ; I'ndicate that we can be suspended
| da BTNSTATE ; Get the event

cnp #EVT_DNNEXT

beq DO_NEXTO

cnp #EVT_DNPREV

beq DO _PREVO

cnp #EVT_TI MER2

beq DO _SCAN

cnp #EVT_ENTER ; Is this our initial entry?

bne REFRESHO

; This is the initial event for starting us up
DO ENTER

; (6) This code gets the current date fromthe system

jsr ACQUI RE ; Lock so that it doesn’t change under us

| dx #TZ1_MONTH ; Assune that we are using the first timezone

jsr CHECK_TZ ; See which one we are really using

bcc COPY_TZ1 ; If we were right, just skip on to do the work

| dx #TZ2_MONTH ; Wong guess, just load up the second tine zone
ooPY_TZ1

| da 0, x ; Copy out the nonth

sta SCAN_MONTH

| da 1, x ; Day

sta SCAN_DAY

| da 2, X ; and year

sta SCAN_YEAR

jsr RELEASE ; Unlock so the rest of the systemis happy

belr B _CLEAR FLAGBYTE ; Indicate that we need to clear the display

clr DI GSEL ; Start us off on the week advance

jsr CLEARSYM ; Qear the display

| da #S6_DAY- START

jsr PUT6TOP

-105 -

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

| da
jsr
| da
inp
DO_SCAN
brelr
DO_NEXTO
bset
jsr
bra
;i
node
DO_PREVO
belr
jsr
bra

;i

; W cone here for a RESUME or TIMER2 event.

REFRESHO
brset
bset
jsr

NOCLEARO
| da
jsr

SHOW DATE
jsr
| dx
inp

#S6_FI ND- START
PUT6M D
#S8_TOEBES- START
BANNERS

B_SCANUP, FLAGBYTE, DO_PREVO

B_SCANUP, FLAGBYTE

| NCREMENT_SCAN_DATE

SHOW DATE
APPT_SHOW SCAN

B_SCANUP, FLAGBYTE

DECREMENT _SCAN_DATE

SHOW DATE
APPT_SHOW SCAN

B_CLEAR FLAGBYTE, NOCLEARO

B_CLEAR, FLAGBYTE
CLEARALL

#S8_DAYFI ND- START
BANNERS

APPT_SHOW DATE
SCAN_YEAR
PUTYEARM D

; (7) State Table 1 Handler
; This is called to process the state events.
; W see SET, RESUME, USER3, TIMER2, DNANY4, and UPANY4 events
; W use the USER3 to trigger a delay which fires off a TIMER2 sequence of events.

; This allows us to have the PREV/ NEXT buttons repeat for advancing the WEEK and YEAR
; since we can’t use the UPDATE routines for them

HANDLE_STATEL:
bset
| da
cnp
beq
cnp
bne
rts

| ater

TRY_UP
bel r

1, APP_FLAGS
BTNSTATE
#EVT Tl MER2
DO _UPD

#EVT USER3
TRY_UP

B_SCANNI NG FLAGBYTE

Were we

For

scanni ng up or down?

W are now scanni ng up

Advance to the next date

Comment this out and use the next one if you want

to put the text ‘SCAN on the bottomwhen we are in scan

W% are now scanni ng down

Back up to the previous date
Show the date on the screen.
Use this if you want ‘ SCAN on the bottom of the display

this we want to reset the display

Do we need to clear the display first?

Mark that the display has been cl eared

and do the work of clearing

Put up the nane of the app on the display

Show the date on the screen

as well as the year

Indicate that we can be suspended

Get the event

Was it a tiner for a repeat operation?

Yes, go handle it

Was it the USER3 event fired fromthe PREV/ NEXT buttons?

No, try again
Yes, just ignore it,

it wll

cause a tinmer to go off

W can’'t be scanning any nore, so turn it off

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Was it any button being rel eased?
No, try again
Yes, go refresh the screen (note that the branch is out

Is this our initial
No, try again
Yes, go setup the screen (note that the branch is out of

entry?

Let’s see what the button they pressed was
How about the PREV button

handl e it

Maybe the NEXT button?

Deal with it!

Per haps the MODE button

If so, handle it

so take us out of this state

cnp #EVT_UPANY4
bne TRY_DN
inp REFRESH

of range)

TRY_DN
cnp #EVT_DNANY4
beq GET_DN
inp FORCEFRESH

range)

CGET_DN
| da BTN_PRESSED
cnp #EVT_PREV
beq DO _PREV
cnp H#EVT_NEXT
beq DO _NEXT
cnp #EVT_MODE
beq DO_MODE

; It must be the set button,
| da #EVT_USER2
jnp POSTEVENT

; (8) Qur real working code...

; W cone here when they press the next/prev buttons.

if we are in a tinmer repeat

; situation (triggered when they press prev/next for the WEEK/ YEAR) then we skip right
; to processing based on the button that was previously pressed

DO _NEXT

bset 0, SYSFLAGS
bra DO _UPD
DO _PREV
belr 0, SYSFLAGS
DO_UPD
| da DI GSEL
beq DO _UPD_DOW
cnp #2
bl o DO_UPD_MONTH
beq DO _UPD_DAY
DO_UPD_YEAR
brclr 0, SYSFLAGS, LASTYEAR
| dx #99
| da SCAN_YEAR
jsr I NCA_WVRAPX
bra SAVEYEAR
LASTYEAR
| da SCAN_YEAR
deca
bpl SAVEYEAR
| da #99
SAVEYEAR
sta SCAN_YEAR
bra SETUP_LAG

Mar k our

-107 -

Mark our update direction as up

update direction as down

Wiich digit node are we in?
0 - Handl e the WEEK

<2 = 1 - Handle the MONTH

2 - Handl e the Day

>2 = 3 - Handl e the YEAR

Wre we in the down direction?

Going up, let the WRAPX routine handle it for us

Goi ng down, get the year
Decrenent it

and see if we hit the | ower end
Yes, 2000 w aps down to 1999

Save away the new year

And fire off an event to allow for repeating

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

DO _UPD_DOW ; 0 - Day of week
| da #7 ; W want to iterate 7 tines advanci ng by one day.
sta COUNTER ; (this nakes it nuch easier to handle all the fringe
cases)
WEEKLOOP
brelr 0, SYSFLAGS, LASTWEEK ; Are we goi ng backwards?
jsr | NCREMENT_SCAN_DATE ; Going forwards, advance by one day
bra WEEKLOOPCHK ; And continue the | oop
LASTVEEK
jsr DECREMVENT _SCAN _DATE ; Going backwards, retreat by one day
WEEKL OOPCHK
dec COUNTER ; Count down
t st COUNTER ; See if we hit the limt
bne WEEKLOOP ; and go back for nore

. (9) Fake repeater

; This code is used for the Day of week and year nodes where we want to have a

; repeating button,

but the systemroutines won't handle it for us

; It works by posting a USER3 event which has a timer of about % second.

; After that timer expires, we get a timer2 event which then repeats every tic.

; The only thing that we have to worry about here is to not go through this

; every tine so that it takes “.second for every repeat.

SETUP_LAG
brset B_SCANNI NG FLAGBYTE, | NLAG ; If we were already scanning, skip out
bset B_SCANNI NG FLAGBYTE ; Indicate that we are scanning
| da #EVT_USER3 ; and post the event to start it off
jsr PCSTEVENT

I NLAG

jnp SHOW DATE ; Put the date up on the display

; (10) Update routine usage

DO _UPD_MONTH ; 1 - Handl e the nonth

| da #MONTH_JAN ; The bottomend is January

sta UPDATE_M N

| da #MONTH_DEC ; and the top end is Decenber (INCLUSIVE)

sta UPDATE_MNAX

| da #UPD_HMONTH ; Ve want the HALF- MONTH udpate function

| dx #SCAN_MONTH ; To update the SCAN _MONTH vari abl e

bra SEL_UPD ; Godoit
DO _UPD_DAY ; 2 - Handl e the day

| da #1 ; 1is the first day of the nonth

sta UPDATE_M N

jsr GET_SCAN_MONTHLEN ; Figure out how long the month is

sta UPDATE_MAX ; and neke that the limt

| da #UPD_HDAY ; W want the HALF- DAY update function

| dx #SCAN_DAY ; to update the SCAN DAY vari abl e
SEL_UPD

jsr START_UPDATEP ; And prepare the update routine

bset 4, BTNFLAGS ; Mark that the update is now pending
rts

(11) Making the node button work
when they press the node button,
on the display.

we want to cycle through the various choices

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

DO_MXDE
| da DI GSEL ; Figure out where we are in the cycle
inca ; advance to the next one
and #3 ; and wap at 4 to zero
sta DI GSEL
REFRESH
brset B_CLEAR FLAGBYTE, NCCLEAR ; Do we need to clear the display first?
FORCEFRESH
jsr CLEARALL ; Yes, clear everything before we start
bset B _CLEAR FLAGBYTE ; And rermenber that we have al ready done that
NOCLEAR
clr BTNFLAGS ; Turn off any scrolling banners
| da #ROW TD23 ; Turn off the dash fromthe week blink
sta Dl SP_ROW
belr COL_TD23, DI SP_COL
jsr SHOW DATE ; Display the date

; (12) Establishing a blink routine
; This makes the appropriate section of the display blink based on what we are changi ng

| da DI GSEL ; Get the digit we are on

beq DO BLI NK_DOW ; 0 -> Update Day of week

cnp #2

bl o DO BLI NK_MONTH ; <2 =1 -> Update nonth

beq DO BLI NK_DAY ; 2 - Update day of nonth
DO BLI NK_YEAR 3: Year

; (13) Calling BLI NK_SECOND
; For BLI NK_SECONDS, the UPDATE PARM points to the 2 character format for the year.

| dx SCAN_YEAR ; CGet our year
jsr GETBCDHI ; And extract out the high digit of it
sta YEAR DI GL ; Save that away
| dx SCAN_YEAR ; Doit again
jsr GETBCDLOW ; toget the lowdigit
sta YEAR DI @ ; and save that away
| dx #YEAR DI GL ; the parmpoints to the first digit
| da #BLI NK_SECONDS ; and we want a BLI NK_SECONDS functi on
bra SETUP_BLI NK ; so do it already
DO BLI NK_DOW ; 0: Day of week:

; (14) Calling BLI NK_SEGVENT
; Unfortunately, there is no blink routine to blink the upper two letters on the display.
; To get around this, | have chosen to blink a single segnent on the display (the dash
; after the day of the week). This routine was designed to blink the AMPM or ot her
; synmbols, but it works quite fine for our purposed. You need to set UPDATE PCS to have
; the row to be updated and UPDATE VAL hol ds the mask for the COLUVS to be XORed.
; In this way, you might have nore than one segnent blinking, but there are few segnents
; on the same row which woul d achi eve a reasonabl e effect.
: UPDATE_POS ROW TD23
: UPDATE VAL (1<<COL_TD23)
| da #ROW TD23
; W want to blink the DASH after the day of week sta UPDATE PCS
; Store the RONfor it in UPDATE PCS | da #(1<<COL_TD23)

-109 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; CGet the mask for the colum sta UPDATE_ VAL

; And store that in UPDATE VAL | da #BLI NK_SEGVENT

; W want a BLINK_SEGVENT function bra SETUP_BLI NK

; and get to it.

DO _BLI NK_MONTH ; 1: Month

; (15) Calling BLI NK_HMONTH, BLI NK_HDAY

; These are the normal boring cases of calling the blink routine. They sinply need the
; address of the byte holding the value to blink and the function to blink themwith.

UPDATE_PARM - Points to the nonth

| da #BLI NK_HMONTH ; W want a BLINK HALF- MONTH functi on
| dx #SCAN_MONTH ; to blink our nmonth
bra SETUP_BLI NK ; and do it
DO BLI NK_DAY ; 2. Day
; UPDATE_PARM - Points to the day
| da #BLI NK_HDAY ; W want a BLI NK HALF- DAY function
| dx #SCAN_DAY ; to blink our day
SETUP_BLI NK
jsr START_BLI NKP ; Request the blink function
| da di gsel ; Figure out which one we are blinking
Isla ;%2
Isla ;x4
I'sla ; *8
add #S8_ WEEK- START ; And use that to index the banner to put on the bottom
jsr BANNERS
bset 2, BINFLAGS ; Mark a blink routine as pending

rts

; (16) This is the main initialization routine which is called when we first get the app into nmenory

MAI N

| oaded

rts

| da #$c0 ; W want button beeps and to indicate that we have been
sta WRI STAPP_FLAGS
clr FLAGBYTE ; start with a clean slate

This is code is built on the passwd with a quite a few changes and additions.

1.

2.

Program specific constants - different uses for the flags and a couple of new local variables

System entry point vectors - No change here.

Program strings - Gee, we changed the strings. Note the four strings in a row which serve as help
messages when in set mode.

State Table(s) - State table0 is not radically changed (We added the next/prev buttons). State table 1 is
used when we are in the set mode. See The State Table for a more complete explanation of this. Note
the use of the USER3 event in this table

State Table HandlerQ - For stateO, we only really need to handle the initial enter where we put up the
banner. After a while we time out and put up the current day of the week and our banner.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

6. Get the system date - This shows how to get the current date.

7. State table 1 handler

8. Program Specific Code - We use the same UPDATE and BLINK functions from the Blink sample.

9. Fake Repeater - I'm pretty proud of this one...

10. Update routine usage - Look here for some clues on using the update routines.

11. Making the mode button work

12. Establishing a blink routine

13. Calling BLINK_SECOND

14. Calling BLINK SEGMENT

15. Calling BLINK_HMONTH, BLINK_HDAY

16. Main initialization - Surprisingly, there is not much change here.

-111-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Playing With Sound - TestSnd example

This is a very simple program that | had put together to test out what sounds the watch can make. The program
doesn't really do a lot except poke the hardware a little. It does use the update routine without the blinking. Unlike
programs which play a tune, this goes straight to the hardware to test out the capabiliies and is completely
independent of any sound scheme that you might have loaded.

; Nane: Test Sound

; Ver si on: TESTSND

;Description: This routine tests the various sound capabilities of the Datalink.

; by John A Toebes, VIII

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

| NCLUDE “WRI STAPP. |7

; (1) Programspecific constants

CURRENT_VAL EQU $61
; (2) Systementry point vectors

START EQU *
LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN
L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop
nop
L0116: rts ; Called to handle any tiners or time events - WRI ST _DOTIC
nop
nop
L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop
nop
LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: |lda STATETABO, X ; The state table get routine - WR ST_CETSTATE
rts
L0123: jnp DCEVENTO
db TABLEO- TABLEO
LO127: jnp DCEVENT1
db TABLE1- TABLEO

; (3) Programstrings

S6_SOUND: tinmex6 “SOUND “
S6_TEST: tinmexé6 “ TEST “

S8_TCEBES: Ti mex “J. TCEBES®

; (4) State Table

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

TABLEO:
db
db
db
db
db
db
db
db
db
db

TABLEL:
db
db
db
db
db

0
EVT_ENTER TI M LONG 0
EVT_RESUME, TI M ONCE, 0
EVT_TI MER2, TI M ONCE, 0
EVT_DNNEXT, TI M_ONCE, 1
EVT_DNPREV, TI M_ONCE, 1
EVT_MODE, TI M_ONCE, $FF
EVT_DNSET, TI M_ONCE, 0
EVT_UPSET, TI M_ONCE, 0
EVT_END

1
EVT_UPNEXT, TI M_ONCE, 1
EVT_UPPREV, TI M ONCE, 1
EVT_USERD, TI M_ONCE, 0
EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER, TIMER2, and RESUME events

DOEVENTO:
bset
| da
cnp
beq
cnp
beq
cnp
beq
cnp
beq
cnp
beq

rts

; (6) Sound pl ayi ng

PLAYI T:
| da
sta
bset
| da
sta

rts

SI LENCE:
| da
sta

code.

1, APP_FLAGS
BTNSTATE
#EVT RESUVE
REFRESH
#EVT Tl MER2
REFRESH
#EVT_ENTER

| Nl TBANNER
#EVT_DNSET
PLAYI T

#EVT _UPSET
SI LENCE

#ROW NOTE

Dl SP_ROW
OCL_NOTE, DI SP_CoL
CURRENT_VAL

$28

#ROW NOTE
Dl SP_ROW

Note that we go strai

-113-

Initial state

Resunme froma nested app

Next button
Prev button
Mbde button
Set button

Rel easi ng the next button
Rel easi ng the prev button

Return to the main state table

End of table

Al low us to be suspended

Get the event

Did another app get called in the neantinme?

Ve will

Yes,
Is this the initial

Yes, put up the banner

Did they hit the set button

refresh the display in this case
; Did the initial
clean up the screen

state?

tiner expire?

ght to the hardware here for this one

Turn on the little note synbol

Turn off the little note synbol

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

rts
REFRESH:

I NI TBANNER

JBANNER

bcl r
| da
sta

jsr
| da
jsr
| dx
jsr
jsr
bra

jsr
| da
jsr
| da
jsr

| da
inp

COL_NOTE, Dl SP_CCOL
#15
$28

CLEARALL ; Qear the display

#S6_SOUND- START ; Put “SOUND’ on the top of the display
PUT6TCP

CURRENT_VAL

FMIX

PUTM D34

JBANNER

CLEARALL ; Qear the display

#S6_SOUND- START ; Put “SOUND * on the top line
PUT6TCP

#S6_TEST- START ; Put * TEST * on the second line
PUT6M D

#S8_TCEBES- START
BANNERS

; (7) This is the main initialization routine which is called when we first get the app into nmenory

MAI N

rts

bset
clr

7, WRl STAPP_FLAGS ; Tell themthat we are a |live application
CURRENT_VAL

. (8) State Table 1 Handler

; This is called when we press the prev/next button or when the timer fires during that event

DOEVENT1:

GO DO

@ WP
DOUPDN

| da
cnp
beq
cnp
beq
| da
inp

bel r
bra
bset
clra
jsr
sta
| da
sta
| dx

BTNSTATE
#EVT_DNPREV
GO _DOM
#EVT_DNNEXT
@ WP
#EVT_USERO
POSTEVENT

0, SYSFLAGS ; Mark update direction as down
DOUPDN
0, SYSFLAGS ; Mark update direction as up

CLEARM D
UPDATE_ M N
#99
UPDATE_MAX
#CURRENT VAL

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

| da #UPD_M D34
jsr START_UPDATEP
bset 4, BTNFLAGS
rts
This code has a few notable sections.

1. Program specific constants - Nothing special here

2. System entry point vectors - Nothing new here either.

3. Program strings - Of course we changed the strings once again.

4. State Table(s) - We have two state tables. Both of these are pretty simple. StateTableO has a lot of values
instead of using the EVT_DNANY event just for a little variety. StateTablel is used just for the
increment/decrement mode. See The State Table for a more complete explanation of this.

5. State Table HandlerO - For stateO, we only really need to handle the initial enter where we put up the
banner. It times out and puts up the sound banner. When you press the set button, it will play the sound.

6. Sound playing code - This code simply pokes the current value to the hardware at $28. When we let go of
the button, we make the hardware silent by poking a $0f to that same location.

7. Main Initialization routine - Nothing really significant here. This is called once when the wristapp is first
loaded. We need to make sure that we set the appropriate bits in WRISTAPP_FLAGS.

8. State Table Handlerl - Nothing really significant here, it uses the same update routines that most of the
other examples use.

-115-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Using Callbacks - Endoff example

Here is another pretty simple program that shows off a couple of useful features of a wristapp. This one stems from
a request several people have had (including myself) to turn off the alarms on the weekend. That's really all this
does. To make it a little more fun, | decided that | wanted to call it “ WEEK “ “ENDOFF”", with the problem that there
is no letter K in the character set for the top line on the display. So, | figured out how to make a reasonably ok

looking letter. You will notice that this program seems to do very little...

; Nane: Week End O f
; Ver si on: ENDOFF
; Description:
; This application turns off all

; TIP: Downl oad your watch faster:
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

I NCLUDE “WR STAPP. |~

; (1) Programspecific constants
START EQU *
; (2) Systementry point vectors

LO110: jnp MAI' N ;
LO113: rts ;
nop
nop
L0116: jnp CHECKSTATE ;
L0119: jnp ENABLE_ALL ;
WRI ST_| NCOWM
LO11c: jnmp CHECKSTATE ;
LO11f: |da STATETAB, X ;
rts
L0123: jnp HANDLE_STATEO
db STATETAB- STATETAB

; (3) Programstrings

S6_WEEK: timex6 “ WEEH “
S6_ENDOFF:; timex6 “ENDOFF”
S8_TCEBES: Ti mex “J. TCEBES”
; (4) State Table
STATETAB:
db 0
db EVT_ENTER, TI M LONG 0
db EVT_RESUME, TI M_ONCE, 0

db EVT_MODE, TI M_ONCE, $FF

Week End Of - by John A Toebes,

Downl oad a Wi st App once,

’
i

1

VI

al arns on the weekend.

The main entry point - WR ST_MAIN
Cal | ed when we are suspended for any reason - WR ST_SUSPEND

Called to handle any tiners or tine events - WR ST_DOTI C

Cal I ed when the COW app starts and we have tiners pending -

Cal | ed when the COW app | oads new data - WR ST_NEWDATA

The state table get routine - WR ST_CETSTATE

Initial state
Resunme froma nested app

Mbde button

then do not send it again. It stays in the

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

db EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER and RESUME events

HANDLE_STATEQ:

bset 1, APP_FLAGS ; Allow us to be suspended

jsr CLEARALL ; Qear the display

| da #S6_WEEK- START ; Put © WEEK * on the top line
jsr PUT6TOP

| da #S6_ENDOFF- START ; Put “ENDCFF on the second |ine
jsr PUT6M D

; (6) Faking a letter K

;W% have W want it to | ook |ike:

; This nmeans turning off T5B and turning on T5H
| da #ROW T5B
sta Dl SP_ROW
belr COL_T5B, Dl SP_COL
| da #ROW T5H

sta Dl SP_ROW

bset COL_T5H, DI SP_CaL

jsr CHECKSTATE ; Just for fun, check the alarmstate
| da #S8_TOEBES- START

inp BANNERS

; (7) This is the main initialization routine which is called when we first get the app into nmenory
MAI N:
bset 7, WRI STAPP_FLAGS ; Tell themthat we are a |ive application
| da #$C8 ; Bit3 = wistapp wants a call once a day when it changes (WRI ST_DOTI C) (SET=CALL)
; Bit6 = Uses systemrules for button beep decisions (SET=SYSTEM RULES)
; Bit7 = Wistapp has been | oaded (SET=LQADED)
sta WRI STAPP_FLAGS
; Fall into CHECKSTATE
; (8) Determining the day of the week

CHECKSTATE
jsr ACQUI RE ; Lock so that it doesn’t change under us
| da TZ1_DOW ; Assune that we are using the first timezone

-117 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

jsr CHECK_TZ ; See which one we are really using

bcc Qor_TZ1 ; If we were right, just skip on to do the work

| da TZ2_DON ; Wong guess, just |load up the second tinme zone
QoT_T71

jsr RELEASE ; Unlock so the rest of the systemis happy

cnp #5 ; Time zone day of week is 0=Monday. .. 6=Sunday

bhs DI SABLE_ALL ; Saturday, Sunday - disable themall

; Fall into ENABLE ALL

; Routi ne:

: (9) ENABLE_ALL/ DI SABLE_ALL

, Paraneters:

; NONE

; Purpose:

; These routines enabl e/disable all of the alarms. It hides the disabled status of
; the alarmby storing it in bit 3 of the alarmfl ags.

; Bit0 = Alarmis enabl ed (SET=ENABLED)

; Bitl = Alarmis nasked (SET=MASKED)

; Bit2 = Qurrent alarmis in 12 hour node and is in the afternoon (SET=AFTERNOON)
; Bit3 = Alarmwas enabled, but we are hiding it (SET=H DDEN)

; It is safe to call these routine nultiple tines.

ENABLE_ALL
| dx #4 ; W have 5 alarns to go through
ENABLE_NEXT
| da ALARM STATUS, X ; Get the flags for this alarm
Isra ; Shift right 3 to get our hidden bit into place
Isra
Isra
and #1 ; Mask out everything except the hidden bit (now in the enabl ed
posi tion
ora ALARM STATUS, X ; O it back into the flags
and #7 ; and clear out our hidden bit
sta ALARM STATUS, X ; then save it out again.
decx ; Count down the nunber of alarns
bpl ENABLE_NEXT ; And go back for the next one
rts
DI SABLE_ALL
| dx #4 ; W have 5 alarns to go through
DI SABLE_NEXT
| da ALARM STATUS, X ; Get the flags for this alarm
and #1 ; And extract our enabled bit
I'sla ; Shift left 3 to save as our hidden bit
I'sla
I'sla
ora ALARM STATUS, X ; O it back into the flags
and #$0e ; and clear out the enabled bit
sta ALARM STATUS, X ; then save it out again.
decx ; Count down the nunber of alarns
bpl DI SABLE_NEXT ; And go back for the next one
rts

This code has a few notable sections.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

1. Program specific constants - We don't have any

2. System entry point vectors - This is where we have a lot of fun. We are using three of the entry points which
we have never used before. The WRIST_DOTIC entry is enabled by us setting bit 3 in the Wristapp_flags
which causes us to get called once a day. While we could enable it to call us hourly, by the minute, or even
faster, it really doesn’t make sense to waste processing time. The WRIST_INCOMM entry point gives us a
chance to undo our hiding of the alarms just in case the downloaded data wants to mess with it. Lastly, the
WRIST_NEWDATA entry is called after the data has been loaded into the watch.

3. Program strings - Of course we changed the strings once again. Note that the one string says WEEH and
not WEEK since K is not a valid letter in the TIMEX6 alphabet. Don’'t worry, we will fix it up at runtime.

4. State Table(s) - We are back to only one state table. In fact, you will see that this state table is even less
fancy than the hello world example. We really don’'t have any input functions, so we pretty much ignore
everything.

5. State Table HandlerQ - For state0, we only really need to handle the initial enter or resume where we put up
the banner.

6. [Faking the letter K - All we need to do is turn off one segment and turn on another to turn the H into a K.

7. Main Initialization routine - Nothing really significant here. This is called once when the wristapp is first
loaded. We need to make sure that we set the appropriate bits in WRISTAPP_FLAGS. The new bit that we
set here is to enable the callback once a day.

8. Determining the Current Day - This really is pretty simple, we figure out the current time zone and grab the
day of the week from the right spot.

9. ENABLE ALL/DISABLE_ALL - These routines are pretty simple also, all they have to do is hide the state of
the enabled bit in the third bit of the alarm status flags. These routines had to be constructed so that you
can call them many times in a row and not lose the original sense of the enabled bit for each alarm. We are
able to do that by making sure that we always OR together the bits before clearing out the other.

-119-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Using 3 States - HexDump example

Ok, so you have a computer on your wrist. What better way to show it off than by having a hex dump utility to
traipse through memory. This is a major overhaul of a previous version of the HexDump application that | have
posted. | have turned it into a real application instead of a simple test program. It also uses the .ZSM file format to
allow you to use it with ASM6805. You can download it here

; Name: Hex Dunp

; Ver si on: HEXDUWP

; Description: Hex Dunper - by John A Toebes, VI

;This Hex dunp routine is a sinple thing to test out dunping hex bytes...

; Press the NEXT/PREV buttons to advance/ backup by 6 bytes of nenmory at a tinme
; Press the SET button to change the location in nenory where you are dunping.
; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

I NCLUDE “WRI STAPP. | "

; (1) Programspecific constants

FLAGBYTE EQU $61

; Bit O indicates the direction of the |ast button

; The other bits are not used

CURRENT DIGT EQ $62

DG TO EQU $63
DA Tl EQU $64
DA T2 EQU $65

DG T3 EQU $66

; (2) Systementry point vectors

START EQU *
LO110: jnp MAI N ; The nain entry point - WRI ST_NAIN

L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND

nop

nop

L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC

nop

nop

L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop

nop

LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA

nop

nop

LO11f: |lda STATETABO, X ; The state table get routine - WR ST_CGETSTATE

rts

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

L0123: jnmp
db
L0127: jnp
db
LO12b: jmp
db

HANDLE_STATEO
STATETABO- STATETABO
HANDLE STATE1
STATETABL- STATETABO
HANDLE_STATE2
STATETAB2- STATETABO

; (3) Programstrings

S6_BYTE:
S6_DUVPER
S8_LOCATI ON

ti nex6 BYTE “
tinex6 “DUWPER'
Ti mex “aaaa

; (4) State Table

STATETABO:
db
db
db
db
db
db
db
db
db
db

STATETABL:
db
db
db
db

STATETAB2:
db
db
db
db
db
db

0

EVT_ENTER TI M2_12TI C, O
EVT_RESUME, TI M ONCE, 0
EVT_TI MER2, TI M ONCE, 0
EVT_DNNEXT, TI M2_8TI G, 1
EVT_DNPREV, TI M2_8TI G, 1
EVT_MODE, TI M_ONCE, $FF
EVT_SET, TI M ONCE, 2
EVT_USEROD, TI M ONCE, $FF
EVT_END

0

EVT_UPANY, TI M_ONCE, 0
EVT_TIMER2, TIM2_TIC, 1
EVT_END

2
EVT_RESUME, TI M ONCE, 2
EVT_DNANY4, TI M_ONCE, 2
EVT_UPANY4, TI M_ONCE, 2
EVT_USER2, TI M_ONCE, 0
EVT_END

. (5) State Table 0 Handl er

; This is called to process the state events.
; W see ENTER, TIMER2, and RESUME events

HANDLE_STATEO:
bset
| da
cnp
bne

1, APP_FLAGS
BTNSTATE
#EVT_ENTER
SHONDATA

-121-

Initial state

Resunme froma nested app
This is the tiner

Next button

Prev button

Mbde button

Set button

Return to system

Rel easing the prev or next button
Repeat operation with a tiner
End of table

Resunme froma nested app

NEXT, PREV, SET, MODE button pressed
NEXT, PREV, SET, MODE button rel eased
Return to state 0

End of table

Indicate that we can be suspended
Get the event
Is this the initial state?

no, just clean up the screen

ABOUT THE DATALINK

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (6) Put up the initial banner screen

jsr CLEARALL ; Oear the display

| da #S6_BYTE- START ; Put * BYTE ‘ on the top line
jsr PUT6TOP

| da #S6_DUMPER- START ; Put ‘DUVPER on the second line
jsr PUT6M D

| da #SYS8_MCDE ; Put MODE on the bottomline

jmp PUTMSGBOT

; (7) FMIHEX is a routine simlar to FMIX, but it handl es hex val ues instead

; Routine: FMIHEX

; Purpose:

; Format a byte into the buffer

; Paraneters:

; A - Byte to be formatted

; X - Ofset into Message buffer to put the byte

FMIHEX:
sta S8_LQOCATION, X ; Save the byte
and #$0f ; Extract the bottom nibble
sta S8_LOCATI ON#+1, X ; Save the hex value of the nibble
| da S8_LOCATION, X ; Cet the val ue once again
Isra ; Shift right by 4 to get the high order nibble
Isra
Isra
Isra
sta S8_LOCATION, X ; And put it back into the buffer
rts

; (8) This is called when we press the prev/next button or when the timer fires during that event

HANDLE_STATEL:

| da BTNSTATE

cnp #EVT_TI MER2 ; Is this a repeat/timer event?

beq REPEATBTN ; yes, do as they asked

belr 0, FLAGBYTE ; Assune that they hit the prev button

cnp #EVT_DNPREV ; Ddthey hit the prev button

bne REPEATBTN ; Yes, we guessed right

bset 0, FLAGBYTE ; No, they hit next. Mark the direction.
REPEATBTN:
brelr 0, FLAGBYTE, NEXTLCC ; If they hit the next button, go do that operation

; They pressed the prev button, let's go to the previous | ocation
PREVLCC.

| da COURRENT_LOC+1

sub #6

sta CURRENT_LOC+1

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

| da CURRENT_LOC

shc #0

sta CURRENT_LCC

bra SHONDATA
NEXTLCC:

| da #6

add COURRENT_LOC+1

sta CURRENT_LOC+1

| da CURRENT_LOC

adc #0

sta CURRENT_LCC

; (9) This is the main screen update routine
; It dunps the current nenory bytes based on the current address
; display, it doesn't have to clear anything

Note that since it updates the entire

SHOWDATA:
jsr CLEARSYM
clrx
bsr GETBYTE
jsr PUTTOP12
| dx #1
bsr GETBYTE
jsr PUTTOP34
| dx #2
bsr GETBYTE
jsr PUTTOP56
| dx #3
bsr GETBYTE
jsr PUTM D12
| dx #4
bsr GETBYTE
jsr PUTM D34
| dx #5
bsr GETBYTE
jsr PUTM D56
| da CURRENT_LCC ; Get the high order byte of the address
clrx
bsr FMIHEX ; Put that at the start of the buffer
| da CURRENT_LCC+1 ; Get the low order byte of the address
| dx #2
bsr FMIHEX ; Put that next in the buffer
| da #S8_LOCATI ON- START
inp BANNERS

-123-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (10) CETBYTE gets a byte fromnenory and formats it as a hex val ue

; Routine: GETBYTE

; Purpose:

; Read a byte fromnenory and put it into DATDI G T1/DATDI A T2 as hex val ues

; Paraneters:

; X - Ofset fromlocation to read byte
; CURRENT_LCC - Base location to read from

CGETBYTE

CURRENT_LCC
| da
sta
Isra

Isra

Isra

Isra
sta
| da
and
sta

rts

; (11) State Table 2 Handl er
; This is called to process the state events.
; W see SET, RESUME, DNANY4, and UPANY4 events

HANDLE_STATEZ2:

bset 1, APP_FLAGS
| da BTNSTATE
cnp #EVT_UPANY4
beq REFRESH2
cnp #EVT_DNANY4
bne FORCEFRESH
| da BTN_PRESSED
cnp #EVT_PREV
beq DO _PREV
cnp #EVT_NEXT
beq DO _NEXT
cnp #EVT_MODE
beq DO_MODE

; It must be the set button,
bsr SHOADATA
| da #EVT_USER2
inp POSTEVENT

EQU *41
$4000, X
DATDI G T2

DATDI G T1
DATDI G T2
#$0f

DATDI G T2

Sel f nodifying code... Point to what we want to nodify
Get the current byte

And save it away

Extract the high nibble

And save it

CGet the byte again
Extract the |ow nibble
And save it

ndi cate that we can be suspended
Get the event

Is this our initial entry?

Let’'s see what the button they pressed was
How about the PREV button

handl e it

Maybe the NEXT button?

Deal with it!

Per haps the MODE button

If so, handle it

so take us out of this state

; (12) This handles the update routine to change a digit...

DO_NEXT
bset
bra

0, SYSFLAGS
DO_UPD

Mark our update direction as up

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

DO _PREV
belr 0, SYSFLAGS ; Mark our update direction as down
DO_UPD
clra
sta UPDATE_ M N ; Qur lowend is O
| da #3F
sta UPDATE_MAX ; and the high end is 15 (the hes digits 0-F)
bsr GET_DI SP_PARM
| da #UPDDGAT
jsr START_UPDATEP ; And prepare the update routine
bset 4, BTNFLAGS ; Mark that the update is now pending
rts

; (13) This is where we switch which digit we are changing...

DO _MCDE
| da CURRENT_DIA T
i nca
and #3
sta CURRENT_DIGA T

; (14) Refresh the screen and start blinking the current digit...

REFRESH2
| da D@ TO0 ; CGet the first digit
Isla ; *16
I'sla
I'sla
I'sla
add DAdT1l ; Plus the second digit
sta CURRENT_LCC ; To nake the high byte of the address
| da DAT2 ; Get the third digit
Isla ; *16
I'sla
I'sla
I'sla
add DAT3 ; Plus the fourth digit
sta CURRENT_LOC+1 ; To make the | ow byte of the address
FORCEFRESH
bel r 7, BTNFLAGS ; Turn off any update routine that mght be pending
jsr SHONDATA ; Format the screen
| dx #4 ; W need to copy over 4 bytes fromthe buffer
COPYI T
decx ; This will be one down.
| da S8_LOCATI ON, X ; Get the formatted byte
sta D @ T0, X ; And store it for the update routine
tstx ; Dd we copy enough bytes?
bne CcoPYI T ; No, go back for nore
bsr GET_DI SP_PARM ; Get the parmfor the blink routine
| da #BLINK. DA T ; Request to blink a digit
jsr START_BLI NKP : And do it

-125-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

rts

bset 2, BINFLAGS ; Mark a blink routine as pending

; (15) This gets the paraneters for an UPDATE/ BLI NK routine

GET_DI SP_PARM

rts

| da CURRENT_DIA T ; Figure out what digit we are dunping

sta UPDATE_PCS ; Store it for the BLINK/ UPDATE routine

add #D A TO ; Point to the byte to be updated

t ax ; And put it into X as needed for the paraneter

; (16) This is the main initialization routine which is called when we first get the app into nmenory

MAI N

| oaded

rts

| da #$c0 ; W want button beeps and to indicate that we have been
sta WRI STAPP_FLAGS
clr CURRENT_DIGA T ; Start out on the first digit

This code has a few notable sections.

1.

Program specific constants - We only really need special storage for the 4 digits which the update/blink
routines will handle.

System entry point vectors - We only have a main. However, we also have 3 state tables.

Program strings - Nothing special here. We have two strings for the banner and one string that we show
the current location with.

State Tables - We have three state tables now. State tableO does very little other than handle getting into
states 1 and 2. State table 1 is for when you are pressing the prev/next buttons while in the main state to
allow you to advance/backup by 6 bytes at a time. State Table 2 handles all of the setting of the digits.
Note that it would be possible to combine these two states, but it would make the code much more
complicated than it needs to be.

State Table 0 Handler - This is actually one of the simplest. All it has to do is put up the startup banner and
then show the current data once that times out.

Initial banner screen - Very simple code to display the name of the application.

EFMTHEX is a routine similar to FMTX, but it handles hex values instead. It is up here in order to allow
several of the other BSR instructions to be able to reach the main update routine. Sometimes moving a
subroutine can save you quite a few bytes.

PREV/NEXT Handling This is called when we press the prev/next button or when the timer fires during that
event.

Main Update This is the main screen update routine. Note that we don’'t have to refresh anything since the
entire screen is written.

10. GETBYTE gets a byte from memory and formats it as a hex value

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

11. State Table 2 Handler - This is very similar to the state handling in the passwd sample.

12. Changing Digits This handles the update routine to change a digit...
13. Switching Digits This is where we switch which digit we are changing...
14. Blinking Digits Refresh the screen and start blinking the current digit...

15. GET_DISP_PARM This gets the parameters for an UPDATE/BLINK routine. We made this a subroutine in
order to ensure that everything is kept in sync. It also saves a few bytes.

16. Main Initialization This is the main initialization routine which is called when we first get the app into
memory. As usual, there is not a lot that we have to do.

-127 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Dumping the EEPROM - promdump example

The HexDump program is great for dumping out the regular memory, but if you search and search, you will never
find any of your appointments, lists, phone numbers, or anniversaries in the memory. That is because they are
stored in an EEPROM outside of the address space. With a few simple modifications to the HexDump program,
you can use the system to dump out the contents of the EEPROM. You can download it here

; Name: Prom Dunp

; Version: prondunp

; Description: PromDunmper - by John A Toebes, V1|

; This Prom Dunp routine shows you what is in the EEProm

; Press the NEXT/PREV buttons to advance/ backup by 6 bytes of nenmory at a tinme
; Press the SET button to change the location in nenory where you are dunping.
; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

I NCLUDE “WRI STAPP. | "

; (1) Programspecific constants

FLAGBYTE EQU $61

; Bit O indicates the direction of the |ast button

; The other bits are not used

CURRENT DIGT EQ $62

DG TO EQU $63
DA Tl EQU $64
DA T2 EQU $65

DG T3 EQU $66

; These should have been in the Wistapp.i files, but | forgot them..

I NST_ADDRHI EQU $0437
I NST_ADDRLO EQU $0438
HW FLAGS EQU $9e

; (2) Systementry point vectors

START EQU *

LO110: jnp MAI N ; The nain entry point - WRI ST_NAIN

L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND

nop

nop

L0116: rts ; Called to handle any tiners or time events - WR ST _DOTIC

nop

nop

L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop

nop

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

LO11lc: rts ;
nop
nop
LO11f: Ida STATETABO, X ;
rts
L0123: jnp HANDLE_STATEO
db STATETABO- STATETABO
L0127: jnp HANDLE_STATE1L
db STATETABL- STATETABO
LO12b: jnp HANDLE_STATE2
db STATETAB2- STATETABO

; (3) Programstrings

S6_EEPROM timex6 “EEPROM
S6_DUVPER tinex6 “DUWPER'
Ti mex “aaaa

S8_LOCATI ON

; (4) State Table

STATETABO:
db 0
db EVT_ENTER TI M2_12TI G, 0
db EVT_RESUME, TI M ONCE, 0
db EVT_TI MER2, TI M ONCE, 0
db EVT_DNNEXT, TI M2_8TI G, 1
db EVT_DNPREV, TI M2_8TI C, 1
db EVT_MODE, TI M_ONCE, $FF
db EVT_SET, TI M_ONCE, 2
db EVT_USEROD, TI M_ONCE, $FF
db EVT_END

STATETABL:
db 0
db EVT_UPANY, TI M_ONCE, 0
db EVI_TIMER2, TIMR_TIC, 1
db EVT_END

STATETAB2:
db 2
db EVT_RESUME, TI M ONCE, 2
db EVT_DNANY4, TI M_ONCE, 2
db EVT_UPANY4, TI M_ONCE, 2
db EVT_USER2, TI M_ONCE, 0
db EVT_END

CURRENT_LOC

dw $0000

. (5) State Table 0 Handl er

This is

-129-

Cal | ed when the COW app | oads new data - WR ST_NEWDATA

The state table get routine - WRI ST_CETSTATE

Initial state

Resunme froma nested app
This is the tiner

Next button

Prev button

Mbde button

Set button

Return to system

Rel easing the prev or next button
Repeat operation with a tiner
End of table

Resunme froma nested app

NEXT, PREV, SET, MODE button pressed
NEXT, PREV, SET, MODE button rel eased
Return to state 0

End of table

where we start in nenory

ABOUT THE DATALINK

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; This is called to process the state events.
; W see ENTER, TIMER2, and RESUME events

HANDLE_STATEO:

bset
| da
cnp
bne

1, APP_FLAGS
BTNSTATE
#EVT_ENTER
SHONDATA

Indicate that we can be suspended

Get the event

Is this the initial

state?

no, just clean up the screen

; (6) Put up the initial banner screen

jsr CLEARALL ; Oear the display

| da #S6_EEPROME START ; Put ‘EEPROM on the top line
jsr PUT6TOP

| da #S6_DUMPER- START ; Put ‘DUVPER on the second |ine
jsr PUT6M D

| da #SYS8_MCDE ; Put MODE on the bottomline

jmp PUTMSGBOT

; (7) FMIHEX is a routine simlar to FMIX, but it handl es hex val ues instead

; Routine: FMIHEX

; Purpose:

; Format a byte into the buffer
; Paraneters:

; A - Byte to be formatted

; X - Ofset into Message buffer to put the byte

FMIHEX:
sta S8_LQOCATION, X ; Save the byte
and #$0f ; Extract the bottom nibble
sta S8_LOCATI ON#+1, X ; Save the hex value of the nibble
| da S8_LOCATION, X ; Cet the val ue once again
Isra ; Shift right by 4 to get the high order nibble
Isra
Isra
Isra
sta S8_LOCATION, X ; And put it back into the buffer
rts

; (8) This is called when we press the prev/next button or when the timer fires during that event

HANDLE_STATEL:

| da BTNSTATE

cnp #EVT_TI MER2 ; Is this a repeat/timer event?

beq REPEATBTN ; yes, do as they asked

belr 0, FLAGBYTE ; Assune that they hit the prev button
cnp #EVT_DNPREV ; Ddthey hit the prev button

bne REPEATBTN ; Yes, we guessed right

bset 0, FLAGBYTE ; No, they hit next. Mark the direction.

REPEATBTN:

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

brclr 0, FLAGBYTE, NEXTLCC

; They pressed the prev button,

PREVLCC
| da
sub
sta
| da
shc
sta
bra

NEXTLCC:
| da
add
sta
| da
adc
sta

; (9) This is the main screen update routine.
; It dunps the current nenory bytes based on the current address.

CURRENT_LOC+1
#6
CURRENT_LOC+1
CURRENT_LOC
#0
CURRENT_LOC
SHOADATA

#6
CURRENT_LOC+1
CURRENT_LOC+1
CURRENT_LOC
#0
CURRENT_LOC

it doesn’'t have to clear anything

; display,

SHOWDATA:

jsr CLEARSYM

clrx
bsr GETBYTE
jsr PUTTOP12
| dx #1
bsr GETBYTE
jsr PUTTOP34
| dx #2
bsr GETBYTE
jsr PUTTOP56
| dx #3
bsr GETBYTE
jsr PUTM D12
| dx #4
bsr GETBYTE
jsr PUTM D34
| dx #5
bsr GETBYTE
jsr PUTM D56
| da CURRENT_LOC

let’s go to the previous |ocation

If they hit the next button, go do that operation

Note that since it updates the entire

Get the high order byte of the address

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

clrx
bsr FMIHEX ; Put that at the start of the buffer
| da CURRENT_LCC+1 ; Get the low order byte of the address
| dx #2
bsr FMIHEX ; Put that next in the buffer

| da #S8_LOCATI ON- START
inp BANNERS
; (10) CETBYTE gets a byte fromnenory and formats it as a hex val ue

; Routine: GETBYTE

; Purpose:

; Read a byte fromnmenory and put it into DATDI A T1/DATDI A T2 as hex val ues
; Paraneters:

; X - Ofset fromlocation to read byte

; CURRENT_LCC - Base location to read from

CGETBYTE

txa
add COURRENT_LOC+1
sta I NST_ADDRLO
| da CURRENT_LOC
adc #0
sta | NST_ADDRHI
bset 6, HW FLAGS ; Tell themthat it is an EEPROM address
jsr GET_I NST_BYTE ; Get the current byte
sta DATDI G T2 ; And save it away
Isra ; Extract the high nibble
Isra
Isra
Isra
sta DATDI G T1 ; And save it
| da DATDI G T2 ; CGet the byte again
and #$0f ; Extract the | ow nibble
sta DATDI @ T2 ; And save it
rts

; (11) State Table 2 Handl er
; This is called to process the state events.
; W see SET, RESUME, DNANY4, and UPANY4 events

HANDLE_STATEZ2:

bset 1, APP_FLAGS ; I'ndicate that we can be suspended

| da BTNSTATE ; Get the event

cnp #EVT_UPANY4

beq REFRESH2

cnp #EVT_DNANY4 ; Is this our initial entry?

bne FORCEFRESH

| da BTN_PRESSED ; Let’s see what the button they pressed was
cnp #EVT_PREV ; How about the PREV button

beq DO _PREV ; handle it

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

cnp #EVT_NEXT ; Maybe the NEXT button?
beq DO _NEXT ; Deal withit!
cnp #EVT_MODE ; Perhaps the MODE button
beq DO_MODE ; If so, handle it
; It must be the set button, so take us out of this state
bsr SHONDATA
| da #EVT_USER2
inp POSTEVENT

; (12) This handles the update routine to change a digit...

DO_NEXT
bset 0, SYSFLAGS ; Mark our update direction as up
bra DO _UPD
DO _PREV
belr 0, SYSFLAGS ; Mark our update direction as down
DO_UPD
clra
sta UPDATE_ M N ; Qur lowend is O
| da #3F
sta UPDATE_MAX ; and the high end is 15 (the hes digits 0-F)
bsr GET_DI SP_PARM
| da #UPDDGAT
jsr START_UPDATEP ; And prepare the update routine
bset 4, BTNFLAGS ; Mark that the update is now pending
rts

; (13) This is where we switch which digit we are changing...

DO _MCDE
| da CURRENT_DIA T
inca
and #3
sta CURRENT_DIGA T

; (14) Refresh the screen and start blinking the current digit...

REFRESH2
| da DA T0 ; Cet the first digit
Isla ; *16

Isla

Isla

Isla
add DAdT1l ; Plus the second digit
sta CURRENT_LCC ; To nake the high byte of the address
| da DA T2 ; CGet the third digit
Isla ; *16

Isla

Isla

Isla
add DAT3 ; Plus the fourth digit

-133-

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

sta CURRENT_LOC+1 ; To make the | ow byte of the address
FORCEFRESH

bel r 7, BTNFLAGS ; Turn of f any update routine that mght be pending

jsr SHONDATA ; Format the screen

| dx #4 ; W need to copy over 4 bytes fromthe buffer
COPYI T

decx ; This will be one down.

| da S8_LOCATI ON, X ; Get the formatted byte

sta D @ T0, X ; And store it for the update routine

tstx ; Dd we copy enough bytes?

bne COPYI T ; No, go back for nore

bsr GET_DI SP_PARM ; Get the parmfor the blink routine

| da #BLINK. DA T ; Request to blink a digit

jsr START_BLI NKP : And do it

bset 2, BINFLAGS ; Mark a blink routine as pending
rts

; (15) This gets the paraneters for an UPDATE/ BLI NK routine

GET_DI SP_PARM

| da CURRENT_DIA T ; Figure out what digit we are dunping

sta UPDATE_PCS ; Store it for the BLINK/ UPDATE routine

add #D A TO ; Point to the byte to be updated

t ax ; And put it into X as needed for the paraneter
rts
; (16) This is the main initialization routine which is called when we first get the app into nmenory
MAI N:

| da #$c0 ; W want button beeps and to indicate that we have been
| oaded

sta WRI STAPP_FLAGS

clr CURRENT_DIGA T ; Start out on the first digit
rts

This code is virtually identical to the promdump example with a few minor changes

1. Program specific constants - | didn’t include these three important addresses in the Wristapp.i file, so you
have to define them here.

2. System entry point vectors - No change.

3. Program strings - Of course we change the name of the application.
4. State Tables - No change here.

5. State Table 0 Handler - No change here.

6. Initial banner screen - No change here.

7. EMTHEX - No change here.

8. PREV/NEXT Handling - No change here.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

9. Main Update - No change here.

10. GETBYTE This is the only real change. We have to call a system routine to read the byte from memory.
Before we do that, we need to store the address into the INST_ADDR:HI_INST_ADDRLO variables and set
the HW_FLAGS bit to indicate that it is an EEPROM address instead of a real memory address. Note that if
we clear the bit instead of setting it, this program will behave like the HEXDUMP program.

11. State Table 2 Handler - No change here.

12. Changing Digits - No change here.
13. Switching Digits - No change here.
14. Blinking Digits - No change here.

15. GET DISP_PARM - No change here.

16. Main Initialization - No change here.

-135-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Tracking Money - Spend Watch example

David Andrews [david@polarnet.com] gets the credit for the inspiration on this example. Of course it turned out to
be a bit harder than | expected to write it - mostly due to the fact that | wanted it to be a full blown wristapp with lots
of features yet still fit on the watch. This one also takes advantage of the ‘parent’ app which allows setting
information in the applet without recompiling it.

What was the hardest about this application is making the user interface work and still be intuitive. Once | got past
that, coding was just an exercise left to the reader.

There are a lot of tricks in this code to make it fit. | created a lot of subroutines and learned some interesting tricks to
reduce code size. It currently sits at 713 bytes and | know how | can get 2 more bytes out of it, but | can’t find much
more fluff in the code to cut out. If you can find ways to make it smaller, | would be more than happy to hear about
them...

You can download the wristapp and set program here

; Nare: spend wat ch

; Version: spend0

; Description: spend watch - by John A Toebes, V1|

; This keeps track of how nuch is in one of 7 categories

; Press the NEXT/ PREV buttons to advance/ backup through the categories

; Press the SET button to add/subtract/set/clear the ambunts in the categories

; If you press the set button while the action is blinking, it will be carried out, otherwise
; you can cancel the operation.

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

; Parent: SpendSet

B R R R R R R R

;* Copyright © 1997 John A Toebes, VI *
;* Al R ghts Reserved *
;* This programnay not be distributed in any formw thout the permssion of the author *
* jtoebes@eoci ti es. com *
B e R TR PP
; History:

; 31 July 96 - Corrected problemw th totals not being recal cul ated when you reenter
; the wi stapp.

| NCLUDE “WRI STAPP. |7

; (1) Programspecific constants

; W& use a few extra bytes here in low nenory. Since we can’t possibly

; be running while the COMW app is running, we have no chance of

; conflicting with it’'s use of this nmenory.

BLI NK_BUF EQU $5C ; 3 Byte Buffer for the blink routine

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

; EQU $5D

; EQU $5E

CAT_SAVE EQU $5F ; Tenporary counter variable
COUNTER EQU $60 ; Tenporary variable to hold the
FLAGBYTE EQU $61

; Bit O indicates that the display does not need to be cleared
; The other bits are not used

CURRENT_MCDE EQU $62 ; The current node that we are in

MODE_SELECT EQU 0 ; Set node, selecting which category to nodify
MODE_HUNDREDS EQU 1 ; Set node, changing the hundreds of dollars digits
MODE_DOLLARS EQU 2 ; Set node, changing the dollars digits

MODE_CENTS EQU 3 ; Set node, changing the cents

MODE_ACTI ON EQU 4 ; Set node, changing the action

MODE_VI EW EQU 5 ; Nornal display node

CATECORY EQU $63 ; Qurrent category

; These three bytes need to be contiguous. The represent the current
; value that is being operated on

HUNDREDS EQU $64

DOLLARS EQU $65

CENTS EQU $66

ACTI ON EQU $67 ; Selector for the current action
ACT_ADD EQU

ACT_SUB EQU 1

ACT_SET EQU 2

ACT_CLEAR EQU

AMI_BASE EQU $FO

; (2) Systementry point vectors

START EQU *

LO110: jnp MAI N ; The nain entry point - WRI ST_NAIN

L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop

nop

LO116: jnp DO UPD ; Called to handle any tiners or tine events - WR ST_DOTI C
L0119: rts ; Called when the COW app starts and we have tiners pending - WRI ST_| NCOW
nop

nop

LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA

nop

nop

LO11f: |lda STATETABO, X ; The state table get routine - WR ST_CETSTATE

rts

L0123: jnp HANDLE_STATE

-137-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

db STATETABO- STATETABO
L0127: jnp HANDLE STATE
db STATETABL- STATETABO

; (3) Programstrings

; These strings represent the 4 possible actions. They need to be early on in the data segnent so that
; then can be pointed to by using 8-bit offset addressing. They are exactly 3 bytes long and are
; displayed by using the BLINK_TZONE routine

S3_MDE:

S3_ADD Tinex “ADD’
S3_SuB Tinex “SWB”
S3_SET Tinex “SET”

S3_CLR Tinex “CLR

; These are the categories that the end user has configured. They are set by using the SPENDSET program
; which searches for the first string “TOTAL “. These strings nust be exactly 8 bytes each in order
with

; total being the first one.

S8_TOTAL: Tinmex “TOTAL
S8_CAT1: Tinmex “CAT1
S8_CAT2: Tinmex “CAT2
S8_CAT3: Ti mex “ CAT3
S8_CAT4: Ti mex “ CAT4
S8_CATS: Ti mex “ CATS
S8_CAT6: Ti mex “ CAT6

S8_CAT7: Tinex “CAT7
; These are the running anounts for each category. Note that you can actually
; initialize themwith sone default and the code will run properly

AMT_TOTAL: db 0,0,0
AMT_CAT1: db 0,0,0
AMT_CAT2: db 0,0,0
AMT_CAT3: db 0,0,0
AMT_CAT4: db 0,0,0
AMT_CATS: db 0,0,0
AMT_CAT6: db 0,0,0

AMT_CAT7: db 0,0,0
; These strings pronpt for the current node that we are in. They are displayed on the top |ine of
; the display.

S6_SELECT timexé6 “SELECT”

S6_AMOUNT tinmex6 “AMOUNT”

S6_ACTI ON timex6 “ACTI O\

S6_SPEND: timex6 “SPEND’ ; save a byte by leaching off the space on the start of the next
string

S6_WATCH: timex6 “ WATCH'

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

; This table selects which string is to be displayed. It is directly indexed by the current node
MSG_TAB db S6_SELECT- START ; 0 - MODE_SELECT

db S6_AMOUNT- START ; 1 - MODE_HUNDREDS

db S6_AMOUNT- START ; 2 - MODE_DOLLARS

db S6_AMOUNT- START ; 3 - MODE_CENTS

db S6_ACTI ON- START ; 4 - MODE_ACTI ON

db S6_SPEND- START ; 5 - MODE_MI EW

; This is one of the magic tricks for providing the source for the blink routine.

; These are base pointers (offset from HUNDREDS) that we use to copy three bytes into

; BLINK_BUF. The interesting one here is the MODE_CENTS entry which points to DATDIA T1
; This works because the |ast nunber that we format happens to be the cents anount,

; and the blink routine expects the two characters instead of the actual val ue.

DATASRC db HUNDREDS- HUNDREDS . 1 - MODE_HUNDREDS
db DOLLARS- HUNDREDS . 2 - MODE_DOLLARS
db DATDI G T1- HUNDREDS . 3 - MIDE_CENTS
db S3_ADD- HUNDREDS : 4 - MDEACTION O - ACT_ADD
db S3_SUB- HUNDREDS : 4 - MDEACTION 1 - ACT _SUB
db S3_SET- HUNDREDS : 4 - MDDEACTION 2 - ACT_SET
db S3_CLR- HUNDREDS . 4 - MDEACTION 3 - ACT_OLR

; This is the paraneter to select which blink routine we want to use

BLI NK_PARM db BLI NK_M D12 ;1 - MODE_HUNDREDS
db BLI NK_M D34 ;2 - MODE_DOLLARS
db BLI NK_SECONDS ; 3 - MXDE_CENTS
db BLI NK_TZONE ;4 - MODE_ACTI ON

; (4) State Tables

; This set of state tables is a little special since we actually use the
; same state processing routine for both states. This saves us a |ot of
; menory but still allows us to let the state table nmake it easy to exit
; the app with the MODE button

STATETABO:
db 0
db EVT_ENTER, TI M2_12TIC, 0 o Initial state
db EVT_RESUVE, TI M_ONCE, 0 ; Resune froma nested app
db EVT_TI MER2, TI M_ONCE, 0 : This is the tiner
db EVT_MODE, TI M_ONCE, $FF ; Mode button
db EVT_SET, TI M_ ONCE, 1 ; Set button
db EVT_DNANY4, TI M_ONCE, 0 ; NEXT, PREV, SET, MOXDE button pressed
db EVT_END
STATETABL:
db 1
db EVT_RESUVE, TI M ONCE, 1 ; Resune froma nested app
db EVT_DNANY4, TI M_ONCE, 1 ; NEXT, PREV, SET, MOXDE button pressed

-139-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

db EVT_UPANY4, TI M_ONCE, 1 ; NEXT, PREV, SET, MODE button rel eased
db EVT_USER2, TI M_ONCE, 0 ; Return to state O
db EVT_END ; End of table

; (5) Put up the initial banner screen

HANDLE_ENTER
clra
sta CATEQORY ; W start out displaying the totals
jsr FETCH_CATEGORY
jsr CLEARALL ; Qear the display
| da #S6_SPEND- START ; Put “SPEND ‘ on the top line
jsr PUT6TOP
| da #S6_WATCH START ; Put © WATCH on the second |ine
jsr PUT6M D
clr FLAGBYTE ; Force us to clear the display
| da #MODE_VI EW ; Start out in the VI EWnode
sta CURRENT_MCDE
| da #SYS8_MCDE ; Put MODE on the bottomline
jmp PUTMSGBOT

; (6) This is the main screen update routine.

; Routi ne:

; SHONCURRENT

; Paraneters:

; HUNDREDS, DOLLARS, CENTS - Current value to be displ ayed

; 0, FLAGBYTE - Screen state (CLR=Must clear it first)

; CATEQORY - the current category to be displ ayed

; Returns:

; DATDOA T1,DATDIA@ T2 - 2 digit characters for the cents val ue
; Purpose:

; This routine shows the current selected category and val ue for the category

SHONCURRENT
brset 0, FLAGBYTE, NOCLEAR ; If we don't need to clear the display, skip it
jsr CLEARALL ; Qear the display
bset 0, FLAGBYTE ; And renenber that we did it
NOCLEAR
| da #ROW MP45 ; Turn on the deci nal point
sta Dl SP_ROW
bset COL_MP45, DI SP_COL
| dx HUNDREDS ; Get the Hundreds
jsr FMTIBLANKO ; Format it
jsr PUTM D12 ; and display it

; W want to output the dollars, but if there were no hundreds, we want to let the
; first digit be a blank. To do this, we sinply let it be a blank and set it to a zero
; if there was actually anything in the hundreds field

| dx DOLLARS ; Get the Dollars

jsr FMIX ; Format it

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

tst
beq
| dx
jsr
NOBLANKI T
jsr
| dx
jsr
jsr
| da
I'sla
I'sla
I'sla
add
inp

; (7) State Table 0 and 1 Handl er

HUNDREDS
NCBLANKI T
DCALLARS
FMI'XLEADO

PUTM D34
CENTS
FMI'XLEADO
PUTM D56
CATEGCRY

#S8_TOTAL- START

BANNERS

; This is called to process the state events.
; W see SET, RESUME, DNANY4, and UPANY4 events

HANDLE_STATE:
bset
| da
cnp
beq
cnp
beq
belr
cnp
bne
clr

SKIP2 bra

1, APP_FLAGS
BTNSTATE
#EVT_ENTER
HANDLE_ENTER
#EVT_DNANY4
HANDLE_DNANY
1, BTNFLAGS
#EVT SET

SKI P2
CURRENT_MODE
GOREFRESH

; (8) They pressed a button,

HANDLE_DNANY
| da
beq

next button
cnp
bl o
bhi

; They pressed the set button,
; one currently sel ected.

DO _SETOUT
| da
cmp
bne
jsr

BTN_PRESSED
DO _NEXT

#EVT_SET
DO _MODE
DO _PREV

CURRENT_MODE
#MODE_ACTI ON
NO_ACTI ON

DO_OPERATI ON

so handle it

SO we want

-141-

Do we need to have a | eading zero?

No,
Yes

And for mat

so it is fine

CGet the Dollars again

it with a leading zero

Display the Dollars
CGet the Cents
Format it (and leave it around for later)
and display it.
Get which category we want

*2
*4
*8

*8+the start of the string
and display the right string

Indicate that we can be suspended

Get the event

Is this the initial

state?

How about a button pressed?

Turn off the repeat counter

D d they press the set button

No
Yes

’

G to MODE_SELECT

Let’s see what the button they pressed was

MODE=1, and NEXT=0,

MODE=1 SET=2 PREV=3,

<2
>2

to

soif it

test all

1 so we have a EVT_MDE
3 so we have a EVT_PREV

is |ess,

at once

it must be the

carry out the operation |F they have

See what node we were in
Is it the ACTI ON node?

No,

so just cancel

the operation

Do what they requested

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

jsr DO TOTAL ; And total up everything

jsr PLAYCONF ; Plus tell themthat we did it
NO_ACTI ON

bel r 0, FLAGBYTE ; W need to clear the display

| da #MODE_VI EW ; And switch back to VI EWnode

sta CURRENT_MCDE

| da #EVT_USER2 ; And go back to state O

jnp PCSTEVENT

; (9) This handles the update routine to change a digit...

DO_NEXT
bset 0, SYSFLAGS ; Mark our update direction as up
BRSKI P2 ; and skip over the next instruction
DO _PREV
belr 0, SYSFLAGS ; Mark our update direction as down
DO_UPD
| da CURRENT_MODE ; Which node are we in?
beq CHANCE_CATEGORY ; O=MODE_SELECT, so change the category
cnp #MODE_VI EW ; b=MODE_VI EW so we al so change the category
bne TRYOTHERS

CHANGE_CATEGORY
; (10) updating the category

| dx #CATEQORY ; Point to the category variable

| da #7 ; get our range of val ues

bsr ADJUST_PX_ANDA ; And let the routine do the adjust for us

jsr FETCH CATEGORY ; Update the current anmount fromthe new category
GOREFRESH

bra REFRESH

; (11) ADJUST_PX ANDA - a routine to adjust a value based on the direction

; Routi ne:

; ADJUST_PX_ANDA

; Paraneters:

; A - Binary range to limt value within ((2**x)-1)

; 0, SYSFLAGS - Direction to adjust, SET=UP

; X - Pointer to value to be adjusted

; Returns:

; Val ue pointed to by X is adjusted

; Purpose:

; This routine adjusts a value up or down based on the current direction, wapping
; it to the binary range indicated by the value in A° Note that this val ue nust
; be a power of 2-1 (e.g. 1, 3, 7, 15, 31, 63, or 127)

ADJUST_PX_ANDA

inc , X
brset 0, SYSFLAGS, NCDEC
dec , X
dec , X
NCDEC and , X
sta , X

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

rts

; (12) Try updating one of the other nodes

; W have already handl ed MCDE_SELECT and MODE VI EW This code handl es
; MODE_HUNDREDS, MODE_DOLLARS, MODE CENTS, and MODE_ACTI ON

TRYOTHERS
cnp
bl's

; (13) updating

| da

beq
action

| dx

| da

bsr

bra
TRYMORE

beq

#MODE_CENTS
TRYMORE

the Action
CATEGCRY
REFRESH

#ACTI ON
#3

ADJUST_PX_ANDA

REFRESH

DCOCENTS

: (14) Update MODE_HUNDREDS=1 and MODE_DOLLARS=2

clrx
stx
| dx
stx
add
tax
| da
deca
Isla
add
jsr
bset
rts

UPDATE_ M N
#99

UPDATE_MAX
#HUNDREDS- 1

CURRENT _MODE

#UPD_M D12

START_UPDATEP
4, BTNFLAGS

; (15) This is where we switch which digit we are

DO_MXDE
| da
| dx
jsr
sta

CURRENT_MODE
#MODE_ACTI ON
| NCA WRAPX

CURRENT_MODE

’
’
i

3=MODE_CENTS
If it is <=

then we | eave only MODE_ACTI ON

Wi ch category is it?

If we are displaying the total,

Point to the current action
and the range of actions

you can’t change the

and let our sinple routine handle it for us

If it is MODE_CENTS, go handle it

Set the lower limt

And the upper limt= 99

0

Point to the right byte to update

And put it in X as the paraneter

MODE=1
0
0

5=UPD M D12 7=UPD_M D34
And prepare the update routine

MODE=2
1
2

Mark that the update i s now pending

changi ng. . .

Get the node

Limt it to the first 5 nodes

And let the systemincrenent it for us

Save it back

; Wien we switch to the ACTION node and we have the Total s category showi ng,

; we need to limt themto the single action of CLEAR

cnp
bne
clr
tst
bne
| da
sta

#MODE_ACTI ON
REFRESH
ACTION
CATEGORY
REFRESH
#ACT_CLEAR
ACTI ON

i

-143-

Did we go to action node?

No, nothing to do

Reset the action to be add
Are we displaying the totals

No, nothing nore to do

Yes, switch themto CLEAR

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (16) Refresh the screen and start blinking the current digit...

REFRESH
; 0 - SELECT <Cat egory>
;1 - AMOUNT (Bl'i nk hundr eds)
;2 - AMOUNT (Blink dollars)
;3 - AMOUNT (Blink cents)
;4 - ACTION
jsr SHOWCURRENT ; Format the screen
| dx CURRENT_MODE ; Get the node
| da MBG_TAB, X ; So that we can get the nessage for it
jsr PUT6TCOP ; And put that on the top of the display
; Now we need to make the right thing blink
| dx CURRENT_MODE ; Are we in Sel ect node?
beq NCBLI NK2 ; Yes, don’t blink anything
cpx #MCDE_ACTI ON ; How about ACTI ON MODE?

bhi NCBLI NK2 ; >ACTION is VIEWnode, so if so, don’t blink either

: 1 -> BLINK M D12 PARMEGHUNDREDS

: 2 -> BLINK_M D34 PARMESGDOLLARS

;3 -> BLINK_SECONDS PARM=&Char acters

;4 -> BLINK_TZONE PARM:=&3Char act er s

brset 1, BTNFLAGS, NOBLI NK2 ; Also, we don’t want to be blinking if we are in an
updat e routine

bne SETUP_BLI NK ; If we were not in action node, we have the right data
sour ce

; Put a > on the display

| dx #C R GHTARR ; Put a >signright infront of the action

| da #PCSL3_5

jsr PUTLI NE3

| da CURRENT_MODE ; Get the node

add ACTI ON ; And add in the action

t ax ; To conpute our data source pointer
SETUP_BLI NK

; (17) Set up the paraneters for and call the blink routine

| dx DATASRC- 1, X ; CGet the offsetted pointer to the right data
| da HUNDREDS, X ; And copy the 3 bytes to our blink buffer
sta BLI NK_BUF

| da HUNDREDS+1, X

sta BLI NK_BUF+1

| da HUNDREDS+2, X

sta BLI NK_BUF+2

| dx CURRENT_MODE ; Get our node again

| da BLI NK_PARM 1, X ; and use it to pick up which parameter we are passing
| dx #BLI NK_BUF ; Point to the coomon blink buffer

jsr START_BLI NKP ; And do it

bset 2, BINFLAGS ; Mark a blink routine as pending

NCBLI NK2

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

rts

; (18) Update MODE_CENTS

; This is a special case since we don't have a systemroutine that allows updating
; the right nost digits on the mddle line. Fortunately we can fake it by turning
; onthe tic timer and waiting until 8 tics have passed before going into a repeat

; loop. The code has been carefully constructed so that the tic tiner can just go
; straight to the DO UPD code to work.

DOCENTS
| dx #COUNTER ; Point to the counter (saves code size)
brset 1, BTNFLAGS, NOSTART ; Are we already in an update | oop?
| da #8 ; No, we need to wait 8 tics
sta , X ;. X->COUNTER ; Save the val ue
BSET 1, BTNFLAGS ; and start the tinmer
bra DAT ; But still do it once right now
DEC_DELAY
dec , X ;. X->COUNTER ; W& haven't hit the limt, decrement it and try again
rts
NCSTART
tst , X ;. X->C0UNTER ; We are in the |oop, have we hit the [imt?
bne DEC DELAY ; no, go off and delay once nore
DAT
| da #99 ; Qur upper limt is 99
| dx #CENTS ; Point to the cents variable (saves code size)
brset 0, SYSFLAGS, UPCENTS ; Are we in an up node?
dec , X ;. X->CENTS ; Down, decrenent the val ue
bpl REFRESH ; If we didn"t wap, just go display it
sta , X ;. X->CENTS ; W wapped, save the upper limt
bra REFRESH ; and go display it
UPCENTS
inc , X ;. X->CENTS ; Up, increnent the val ue
cnp , X ;. X->CENTS ; Dd we hit the limt?
bpl REFRESH ; No, go display it
clr , X ;. X->CENTS ; Yes, wap to the bottom
bra REFRESH ; and display it

; (19) DO _CPERATION - Performthe requested operation

; Routi ne:

;' DO_CPERATI ON

; Paraneters:

; HUNDREDS, DOLLARS, CENTS - Anount to be added/ subtracted/ set
; CATECORY - Itemto be updated

: ACTION - 0 = ACT_ADD

; 1 = ACT_SUB
: 2 = ACT_SET
) 3 = ACT_CLEAR

; Purpose:
; Adj usts the correspondi ng category by the given anount

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

DO_OPERATI ON
| da CATEQCORY ; Get our category
bsr COVPUTE_BASE ; And point to the data for it
| da ACTI ON ; Which actionis it?
beq DO_ADD ; 0=ADD, go do it
cnp #ACT_SET ; 3 way conpare here... (code trick)
beq DO SET ; 2=SET, go do it
bl o DO _SuB ; <2=1 (SUB), go do it

DO CLR ; >2 = 3 (CLEAR
clr HUNDREDS ; Oear out the current val ues
clr DOLLARS
clr CENTS
tst CATEGCRY ; Were we clearing the total ?
bne DO SET ; No, just handle it

; They want to clear everything

| dx #(3*8)-1 ; Total nunber of categories
CLEAR TOTALS
; Mni Routine here X=nunber of bytes to clear
clra
CLR_MORE
sta AMI_TOTAL, X ; Oear out the next byte
decx ; Decrenent the number to do
bpl CLR_MORE ; And go for nore
rts

; (20) Handl e Subtracting a val ue

DO _SuB
neg HUNDREDS ; Just negate the value to be added
neg DOLLARS
neg CENTS ; And fall into the add code

; (21) Handl e Adding a val ue

DO_ADD
| da CENTS ; Add the cents
add AMI_BASE+2, X
sta CENTS
| da DOLLARS ; Add the dollars
add AMI_BASE+1, X
sta DOLLARS
| da HUNDREDS ; Add the hundreds
add AMI_BASE, X
sta HUNDREDS
| dx #CENTS ; Point to the cents as it will be the first one we fix up
tst ACTI ON ; See what type of operation we just did
beq FI XUP_ADD ; Was it an ADD? If so, do do it
bsr TRYDEC ; Decrenent, fix up the Cents
bsr TRYDEC ; Then fix up the dollars

| da HUNDREDS ; Did the hundreds underflow as a result?

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

bm DO LR ; Yes, so just set everything to zero
bra DO SET ; No, so copy over the values to the current entry
TRYDEC
| da , X ; Get the current byte to check
bpl RETDEC ; If it didn't underflow, then skip to the next byte
add #100 ; Add back the 100 that it underfl| owned
sta , X ; And save that away
decx ; Back up to the next nost significant byte
dec , X ; and borrow the one
rts
RETDEC decx ; No need to do anything, so skip to the next byte
rts
TRYADD
| da , X ; Get the current byte to check
sub #100 ; See if it was less than 100
bm RETDEC ; If so, then it was already normalized so skip out
sta , X ; It was an overflow, so save the fixed val ue
decx ; Skip to the next byte
inc , X ; And add in the overflow
rts
FI XUP_ADD
bsr TRYADD ; Fix up the cents
bsr TRYADD ; and then fix up the dollars

; (22) Handl e setting a val ue
DO _SET
bsr COVPUTE_CATEGORY_BASE ; Point to the data for our category
| da HUNDREDS ; Copy over the values to the current category
sta AMI_BASE, X
| da DOLLARS
sta AMI_BASE+1, X

| da CENTS
sta AMI_BASE+2, X
rts

; (23) COWPUTE_BASE - Conputes an offset pointer to get to the total amounts
; This is atrick to save us a few bytes in the instructions.
; Routi ne:
; COVPUTE_BASE
, Paraneters:
; A - Ofset into total
; Returns:
; X - Pointer relative to AMI_BASE to use
; Purpose:
; Conputes an offset pointer to get to the total amounts
COVPUTE_CATEGORY_BASE
| da CATEQCORY ; Get our category
COVPUTE_BASE

-147-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

| dx #3

mul

add #AMI_TOTAL- AMT_BASE
tax

rts

; (24) This is the main initialization routine which is called when we first get the app into nmenory
MAI N

| da #$c0 ; W want button beeps and to indicate that we have been
| oaded

sta WRI STAPP_FLAGS
; Fall into DO TOTAL

; (25) DO TOTAL - Reconputes the current total

; Paraneters:

; NONE

; Purpose:

; Reconputes the current total

DO _TOTAL
| da CATEQORY ; Remenber our category
sta CAT_SAVE
clr ACTI ON ; Say that we want to add 0=ACT_ADD
clr CATEQCORY ; To the total category
| dx #2 ; But we need to clear it first
bsr CLEAR TOTALS
| da #7 ; And iterate over the 7 categories
sta COUNTER
TOT_LOOP
| da COUNTER ; Get our current category
bsr FETCH CATEGORY ; And fetch the data
jsr DO CPERATI ON ; Then add it to the total
dec COUNTER ; Co to the next category
bne TOT_LOOP ; Until we are done
| da CAT_SAVE ; Restore the category
sta CATECORY

; fall into FETCH CATEGORY

; (26) FETCH CATEGORY - Retrieves the value of the total anount for the selected category
; Routi ne:

;. FETCH_CATEGORY

; Paraneters:

; A - Category to be fetched

; Returns:

; HUNDREDS, DOLLARS, CENTS - CQurrent value of selected category

; Purpose:

; Retrieves the value of the total amount for the selected category

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

FETCH_CATEGORY

bsr COWPUTE_BASE ; CGet the pointer to the base

| da AMI_BASE, X ; And retrieve the data

sta HUNDREDS

| da AMI_BASE+1, X

sta DOLLARS

| da AMT_BASE+2, X

sta CENTS

rts

------------- END OF OODE---------m -

look around at the sections.

1.

10.

11.

12.

13.

14.

Program specific constants - It is worth noting that in this case, | actually intruded on the space which one
might consider reserved for the system applications. However, the only one that uses any of this memory is
the Comm app and there is no chance that we need to be running while it is. We are forced in several
instances to use this lower memory because the system roms need a pointer passed in X. Since our code
loads into 0110 and beyond, we have to use lower memory if we want to actually point to something.

System entry point vectors - Nothing really special here. However, we do have a timer routine that we
enable when we are inputting cents. What is nice in this case is that the code is constructed so that it jumps
right into the processing loop to act as if a timer event had occurred with the normal state processing.

Program strings - We have quite a few strings that we have created. We also take advantage of table of
pointers to save us code space.

State Tables - This is a pretty unusual program in that even though we have two state tables, they both
point to the same state table processing routine. This allows me to let the system handle knowing when we
are in set mode to allow for the mode button to advance us through states in the set mode and to take us
out of the wristapp when we are not in set mode.

Initial Banner Screen - No real surprises here.

This is the main screen update routine.

State Table 0 and 1 Handler

They pressed a button, so handle it

This handles the update routine to change a digit...

updating the cateqgory

ADJUST PX ANDA - a routine to adjust a value based on the direction

Try updating one of the other modes

updating the Action

Update MODE_HUNDREDS=1 and MODE_DOLLARS=2

-149-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

15. This is where we switch which digit we are changing...

16. Refresh the screen and start blinking the current digit...

17. Set up the parameters for and call the blink routine

18. Update MODE_CENTS

19. DO _OPERATION - Perform the requested operation

20. Handle Subtracting a value

21. Handle Adding a value

22. Handle setting a value

23. COMPUTE_BASE - Computes an offset pointer to get to the total amounts

24. This is the main initialization routine which is called when we first get the app into memory

25. DO _TOTAL - Recomputes the current total

26. FETCH CATEGORY - Retrieves the value of the total amount for the selected category

27. Handle the underflows when adding dollars and cents

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Creating a Sound Scheme - Sound1 example

With a little prodding, | decided to update the assembler so that allows you to create a sound scheme automatically.
This is a very simple sound scheme which gives you the same sounds as the Datalink default ones. Use this as a
basis to create any new ones that you might want.

; Sound: Datalink Defaul t
:Version: Soundl

; This sanple corresponds to the default sounds that you get when you reset a Datalink
; watch to its default state.

B R R R R R R

;* Copyright © 1997 John A Toebes, VI *

;* Al R ghts Reserved *
;* This programnay not be distributed in any formw thout the perm ssion of the author *
* jtoebes@eoci ti es. com *

B R R R R R R

I NCLUDE “WR STAPP. |~

; This is the default sound table

DEF_SOUNDS
db SP 1-SD 1 : 0000: 08
db SD 1- DEF_SOUNDS ; 0001: Ob BUTTON BEEP
db SD 2- DEF_SOUNDS ; 0002: Oc RETURN TO TI ME
db SD 3-DEF_SOUNDS ; 0003: 0d HOURLY CHI ME
db SD 4- DEF_SOUNDS ; 0004: Oe CONFI RVATI ON
db SD 5- DEF_SOUNDS ; 0005: Of APPO NTMENT BEEP
db SD 5- DEF_SOUNDS ; 0006: Of ALARM BEEP
db SD 5- DEF_SOUNDS ; 0007: Of PROGRAM DOANLQAD
db SD 5- DEF_SOUNDS ; 0008: Of EXTRA
db SD 6- DEF_SOUNDS ; 0009: 11 COMM ERRCR
db SD 7-DEF_SOUNDS ; 000a: 12 COMM DONE

; This is the soundl et count table which contains the duration

; counts for the individual soundlets

SD 1 db SND_END+1 ; 000b: 81
SD 2 db SND_END+1 ; 000c: 81
SD 3 db SND_END+2 ; 000d: 82
SD 4 db SND_END+4 ; 000e: 84
SD 5 db 10, SND END+40 ; 000f: Oa a8
SD 6 db SND_END+10 ; 0011: 8a

sD7 db SND_END+32 . 0012: a0

; This is the soundl et pointer table which contains the pointers to the soundl ets

sP1 db SL_2-DEF_SOUNDS ; 0013: 1d

-151-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

SP 2 db SL_1-DEF_SOUNDS ; 0014: 1b
SP 3 db SL_3- DEF_SOUNDS ; 0015: 1f
SP 4 db SL_2- DEF_SOUNDS ; 0016: 1d
SP 5 db SL_4-DEF_SQUNDS ; 0017: 22

db SL_5- DEF_SOUNDS ; 0018: 27
SP 6 db SL_6- DEF_SOUNDS ; 0019: 2a
SP_7 db SL_2-DEF_SOUNDS ; 00la: 1d

; These are the soundl ets thensel ves. The +1 or other nunber
; indicates the duration for the sound.

SL 1 db TONE_H _GSHARP+1 ; 001b: 91
db TONE_END ; 001lc: 00
SL_2 db TONE_M D_C+1 ; 001d: 31
db TONE_END ; 00le: 00
SL_3 db TONE_M D_C+2 ; 001f: 32
db TONE_PAUSE+2 ; 0020: f2
db TONE_END ; 0021: 00
SL_4 db TONE_H _C+2 ; 0022: 22
db TONE_PAUSE+2 ; 0023: f2
db TONE_H _C+2 ; 0024: 22
db TONE_PAUSE+10 ; 0025: fa
db TONE_END ; 0026: 00
SL_5 db TONE_H _C+2 ; 0027: 22
db TONE_PAUSE+2 ; 0028: f2
db TONE_END ; 0029: 00
SL_6 db TONE_HI _C+3 ; 002a: 23
db TONE_M D _C+3 ; 002b: 33
db TONE_END ; 002c: 00

; This is the tone that the conmapp plays for each record

db TONE M D_C 16 . 002d: 03

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Random Numbers and Marquis - 3Ball example

Wayne Buttles contributed the first version of this Wristapp which gives you a simple decision maker. It inspired me
to make a few adjustments to it and add a real random number generator that you can use. I've also included a little
busy wait Marquis while it is selecting a number to show off a use of the time. This Wristap also illustrates that you
don't always have to put a JMP or RTS instruction in the entry point vectors.

; Nane: 3BALL

; Version: 3BALL

; Description: An executive decision naker that will give a yes/no/maybe answer. Pressing Next will
gener ate anot her answer and beep (since it will be the same answer sonetines).

; © 1997 Wayne Buttles (tinex@di sk.con). Conpiled using tools and know edge published by John A Toebes,
VIl and M chael Pol ymenakos (npol y@ani x. con).

; Some enhancenents by John Toebes. ..

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 100

; (1) Programspecific constants
| NCLUDE “WRI STAPP. |7

; Program specific constants

CURRENT_TI C EQU $27 ; Qurrent systemclock tic (Tiner)

LAST_ANS EQU $61
RAND_SEED EQU $60
MARQ PCS EQU $62
START EQU *

; (2) Systementry point vectors

LO110: jnp MAI' N ; The nain entry point - WR ST_NAIN
L0113: bclr 1, BTNFLAGS ; Called when we are suspended for any reason - VR ST_SUSPEND
rts
LO116: jnp FLASH ; Called to handle any tiners or tine events - WR ST_DOTI C
L0119: bclr 1, BTNFLAGS ; Called when the COW app starts and we have tiners pending - WR ST_| NCOWM
rts
LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: |lda STATETAB, X ; The state table get routine - WR ST_CGETSTATE
rts

L0123: jnp HANDLE STATEO
db STATETAB- STATETAB

; (3) Programstrings
S6_MSG timex6 “3 BALL”

-153 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S6_NAYBE ti mex6 “MAYBE
S6_YES tinex6 “ YES
S6_NO timex6 “ NO
S6_VARQ timex6 +Or

MARQ SEL

S6_MARQH2- START
S6_MARQH3- START
S6_MARQH2- START
S6_MARQH1- START
S6_MARQ START
S6_MARQH1- START

PEEEE D

MBG SEL S6_YES- START
S6_NO- START
S6_MAYBE- START

S6_YES- START

B8B83

; (4) State Table

STATETAB:
db 0
db EVT_ENTER TIM2_16TIC, O ; Initial state
db EVT_RESUVE, TITM ONCE,0 ; Resume froma nested app
db EVT_DNNEXT, TIM2_16TIC, 0 ; Next button
db EVT_TI MER2, TI M_ONCE, 0 o Timer
db EVT_MODE, TI M ONCE, $FF ; Mbde button
db EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER, RESUME, TI MER2 and NEXT events

HANDLE_STATEQ:

bset 1, APP_FLAGS ; Indicate that we can be suspended
bel r 1, BTNFLAGS ; Turn off the MARQU S tic event

| da BTNSTATE

cnp #EVT_DNNEXT ; Dd they press the next button?
beq DA TAGAI N

cnp #EVT_ENTER ; O did we start out

beq DA TAGAI N

cnp #EVT_RESUME

beq REFRESH

; (6) Select a random answer

SHOW T
bsr RAND
and #3 ; gotoalin 4 chance
sta LAST_ANS

; (7) Display the currently sel ected random nunber

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

REFRESH
I dx LAST_ANS ; Get the last answer we had, and use it as an index
| da MBG_SEL, X ; And get the nessage to display
jsr PUT6TCOP ; Put that on the top
BANNER
| da #S6_NM5G START
jsr PUT6M D
| da #SYS8_MCDE ; And show the node on the bottom

jmp PUTMSGBOT
; (8) This flashes the text on the screen

FLASH
| da CURRENT_APP ; See which app is currently running
cnp #APP_WRI ST ; Is it us?
bne L0113 ; No, so just turn off the tic timer since we don't need it
| dx #5
| da MARQ PGS
jsr I NCA_V\RAPX
sta MARQ PGS
tax
| da MARQ SEL, X
jmp PUT6TCP

; (9) They want us to do it again

DA TAGAI N ; Tell themwe are going to do it again
clr MARQ_PCS
bset 1, BTNFLAGS
bra BANNER
; (10) Here is a sinple random nunber generator
RAND
| da RAND_SEED
| dx #85
m
add #25
sta RAND_SEED
rol a
rol a
rol a
rts
; (11) This is the main initialization routine which is called when we first get the app into nmenory

MAI N
| da #$c0 ; W want button beeps and to indicate that we have been | oaded
sta WRI STAPP_FLAGS
| da CURRENT_TI C

-155-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

10.

11.

sta RAND_SEED
rts

Program specific constants - We have two variables - RAND_SEED and CURRENT_TIC which we use for
the random number routine. RAND_SEED is used to keep track of the last random number returned so
that we continue to deliver random numbers. CURRENT _TIC is what is set by the system when it reads
the clock to keep the watch time up to date. We use it once to provide a seed for the random number
generator.

System entry point vectors - This one gets to be a litte fun. Notice for the WRIST _SUSPEND and
WRIST_INCOMM routines that we don't have a JMP instruction, but instead put the actual code in line.
This saves use a couple of bytes.

Program strings - We are pretty frugal here in reusing blanks at the end of the string very liberally. Also
note the S6_ MARQ string which has blanks at the start and end so that it can shuffle left and right on the
display but always have blanks visible. The MARQ_SEL and MSG_SEL tables are simply offsets that allow
us to select the message with a simple load instruction instead of having to calculate the offset.

State Table - This is pretty vanilla here except for the fact that we have a very long time interval after the
DNNEXT and ENTER events. It is during this time that the Marquis runs. We could make it even longer,
but this seems to be a good compromise between seeing something happen and actually getting a result in
a reasonable time.

State Table 0 Handler - Extremely simple, there are only four events that we want to see and this is the
typical test and branch one. The only unique thing here is that we turn off the Marquis timer as soon as we
get any event.

Select a random answer - As if life weren't complicated enough. This is where we go when it is time to
make a decision. For this we get a random number and limit it to 1 in four.

Display the currently selected random number - Given a random number, we just get the message for it and
put it on the display.

This flashes the text on the screen - This is the cheap way to do a Marquis. Just have a string wider than
the display and change the offset from the start at which you start to display. For this one, there are only 6
states and we select the starting offset from the table based on our current cycle. Note that this routine is
called by the TIC timer which is enabled when they want a new random number. Eventually the timer for
the main event will run out and they will simply stop calling us.

They want us to do it again - Whenever we want to do a new random number, we just start the Marquis tic
timer and set up the display.

Here is a simple random number generator - This is a random number generator that you might want to
use. It is a derivative of the typical calculation rand = (seed*25173 + 13849) MOD 65536 which | have
chopped down to fit in the 8 bit world as rand = (seed * 85 + 25) MOD 256. Because the low order bits do
produce a pattern cycle which is fairly predictable, we rotate through to get a few of the more randomly
occurring bits.

This is the main initialization routine which is called when we first get the app into memory - Very boring
stuff here, but we do take a moment to initialize the random number seed with the current tic count just to
make it a little more variable.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

Playing Hourly Chimes - Ships Bells example

Theron E. White, CPA” <twhite@mercury.peganet.com> suggested a wristapp to allow the hourly chimes to play the
number of bells past a shift change. This would be 8 bells at midnight, 8AM, and 4PM, 1 bell at 1AM, 9AM, and
5PM, with one more bell for each hour after that. This wristapp is a little unique in that it doesn't use the sound
playing routines directly, but instead goes straight to the hardware. This allows you to have whatever sound scheme
you want in the watch. The pattern for the bells and the actual tone is customizable below. This app is also a good
candidate for combining with another wristapp as this one has no real user input operations.

; Narre: Ships Bells

; Ver sion: SH PBELL

; Description: Ships bells - by John A Toebes, VII

; This application turns nmakes the hour chine with nautical bells.

; TIP: Downl oad your watch faster: Download a Wi stApp once, then do not send it again. |t stays in the
wat ch!

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 106

| NCLUDE “WRI STAPP. |7

; (1) Programspecific constants

START EQU *

CHANGE_FLAGS EQU $92 ; System Fl ags
SND_PCS EQU $61

SND_REMAI N EQU $62

SND_NOTE EQU $63

NOTE_PAUSE EQU (TONE_PAUSE/ 16)
NOTE_BELL EQU (TONE_M D_C 16)

; (2) Systementry point vectors

LO110: jnp MAI' N ; The nain entry point - WR ST_MAIN
L0113: rts ; Called when we are suspended for any reason - WR ST_SUSPEND
nop
nop
LO116: jnp CHECKSTATE ; Called to handle any tinmers or tine events - WR ST_DOTI C
L0119: jnp STOPI T ; Called when the COW app starts and we have tiners pending -
WR ST_I NOOW
LOllc: rts
nop
nop ; Called when the COW app | oads new data - WR ST_NEWDATA
LO11f: |lda STATETAB, X ; The state table get routine - WR ST_CGETSTATE
rts
L0123: jnp HANDLE_STATEO
db STATETAB- STATETAB

; (3) Programstrings

-157 -

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S6_SH PS:
S6_BELLS:
S8_TCEBES:

timex6 “SHPS’
tinmex6 “ BELLS’
Ti mex “J. TOEBES®

; Here is the pattern for the ships bells. W want to have a short bell followed by a very short silence

; followed by a longer bell. W use 3 tics for the short bell, 1 tic for the silence and 6 tics for the
| onger
; bell. The last bell is 7 ticks.

; W then have to byte swap each of these because the BRSET instruction nunbers frombottomto top.

; The string | ooks like:
; 111 0 111111 000000 111 O 111111 000000 111 O 111111 000000 111 O 111111 000000
; Taking this into clunps of 4 bytes, we get

Pattern DB
DB
P67 DB
DB
P45 DB
DB
P23 DB
DB
P1 DB

$F7 ;1110 1111
$03 ; 1100 0000
$F7 ;1110 1111
$03 ; 1100 0000
$F7 ;1110 1111
$03 ; 1100 0000
$F7 ;1110 1111
$03 ; 1100 0000
$7F ;1111 1110

1110 1111 1100 0000 1110 1111 1100 0000 1110 1111 1100 0000 1110 1111 1100 0000 1111 1110

8 start here

o

, 7 start here

N

, 5 start here

N

, 3 start here

1 starts here

; This table indexes where we start playing the tone from

STARTS

PEEEEEE

(Pattern-Pattern)*8
(Pl-Pattern)*8
(P23-Pattern)*8
(P23-Pattern)*8
(P45-Pattern)*8
(PA5-Pattern)*8
(P67-Pattern)*8
(P67-Pattern)*8

; (4) State Table

STATETAB:
db
db
db
db
db

0

EVT_ENTER TI M LONG 0
EVT_RESUME, TI M ONCE, 0
EVT_MODE, TI M_ONCE, $FF
EVT_END

; (5) State Table 0 Handler
; This is called to process the state events.
; W see ENTER and RESUME events

HANDLE_STATEO
bset

1, APP_FLAGS

© 0 (8 AM 4PM M dnight)
© 1 (1AM 9AM 5PV
. 2 (2 AM 10AM 6PV
. 3 (3 AM 11AM 7PV
. 4 (4 AM NOON, 8PV
. 5(5AM 1PM 9PV
. 6 (6 AM 2PM 10PM)
.7 (7 AM 3PM 11PV)

; Initial state
; Resune froma nested app
; Mode button

; Allow us to be suspended

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

jsr CLEARALL ; Qear the display

| da #S6_SH PS- START ; Put “SHPS*‘ on the top line

jsr PUT6TOP

| da #S6_BELLS- START ; Put * BELLS on the second line

jsr PUT6M D

bsr FORCESTATE ; Just for fun, check the alarmstate
| da #S8_TOEBES- START

inp BANNERS

; (6) This is the main initialization routine which is called when we first get the app into nmenory
MAI N
| da #$C4 ; Bit2 = wistapp wants a call once an hour when it changes (WR ST_DOTI C)
(SET=CALL)
; Bit6 = Uses systemrules for button beep decisions (SET=SYSTEM RULES)
; Bit7 = Wistapp has been | oaded (SET=LQADED)

sta WRI STAPP_FLAGS
belr 2, MODE_FLAGS ; Turn off the hourly chines
clr SND_REMAI N

; (7) Determning the current hour

CHECKSTATE
brelr 5, CHANGE_FLAGS, NO HOUR ; Have we hit the hour nmark?
FORCESTATE
bel r 3, MAI N_FLAGS ; Make sure we don't play the systemhourly chines
jsr ACQU RE ; Lock so that it doesn’t change under us
| da TZ1_HOUR ; Assune that we are using the first timezone
jsr CHECK_TZ ; See which one we are really using
bcc QorT_TZ1 ; If we were right, just skip on to do the work
| da TZ2_HOUR ; Wong guess, just |load up the second tinme zone

corT_TZ1

; 12 1 2 3 4 5 6 7 8 9101112 1 2 3 4 5 6 7 8 91011 12
; 00 01 02 03 04 05 06 07 08 09 Oa Ob Oc Od Oe Of 10 11 12 13 14 15 16 17 18
; deca FF 00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of 10 11 12 13 14 15 16 17
; anda 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

and #7 ; Convert the hour to the nunber of bells
t ax ; Save away as an index into the start position table
bne NOTEl GHT ; Is it mdnight (or a multiple of 8)
| da #8 ; Yes, so that is 8 bells, not zero
NOTEI GHT
Isla ; Multiple the nunber of bells by 8 to get the length
Isla
Isla
sta SND_REMAI N ; Save away the nunber of bells left to play
| da STARTS, X ; Point to the pattern of the first bell
sta SND_PCS
bset 1, BTNFLAGS ; Turn on the tic tiner
JMP RELEASE ; And rel ease our lock on the tine

-159 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (8) Playing the next note piece
NO_HOUR
| da SND_REMAI N ; Do we have any nore notes to play?
bne DO_SOUND ; No, skip out
STOPI T
| da #TONE_PAUSE ; End of the line, shut up the sound hardware
sta $28
clr SND_RENMAI N ; Force us to quit |ooking at sound
belr 1, BTNFLAGS ; and turn off the tic tiner
rts
DO_SOUND
deca ; Yes, note that we used one up
sta SND_REMAI N
| da SND_PCS ; See where we are in the sound
Isra ; Dvide by 8 to get the byte pointer
Isra
Isra
tax ; and nmeke it an index
| da Pattern, X ; Get the current pattern byte
sta SND_NOTE ; And save it where we can test it
| da SND_PCS ; Get the pointer to where we are in the sound
inc SND_PCS ; Advance to the next byte
and #7 ; and hack off the high bytes to |l eave the bit index
I'sla ; Convert that to a BRSET instruction
sta TSTNOTE ; And self nodify our code so we can play
TSTNOTE br set 0, SND_NOTE, PLAYI T ; If the note is not set, skip out
| da #TONE_PAUSE ; Not playing, we want to have sil ence
br ski p2
PLAYIT |da #NOTE_BELL ; Playing, select the bell tone
sta $28 ; And nake it play
NO_SOUND
rts
1. Program specific constants - We define the CHANGE_FLAGS because it is nhot currently in Wristapp.i. This

allows us to turn off the system attempts at playing hourly chimes. We also select the tone that we want to
play the bells with. This seems to work as the best one to be heard as bells.

System entry point vectors - The only interesting thing here is that we use the WRIST_INCOMM entry to
disable any bell playing that might have started.

Program strings - The pattern and starts tables are used to describe when we will be playing notes and
when we will be pausing.

State Table - Pretty boring here.

State Table 0 Handler - Also amazingly boring. The only interesting thing that we do here is to force the
current bells to play when you enter the app.

Main initialization routine - Nothing spectacular here, other than the fact that we save 1 byte by falling into
the code to determine if we have passed an hour.

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

7. Determining the current hour - This code looks to see if the hour has changed and if so, it latches in the time
based on the selected timezone. It also calculates the number of bells and the length of the sequence
necessary to play for that number of bells.

8. Playing the next note piece - The really tricky part here is that we have self-modifying code that generates a
BRSET instruction to test the next bit in the currently selected byte. Once we have done so, we load up a
tone and stuff it into the hardware.

-161-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

More Random Numbers and Marquis - PICK6 example

Philip Hudnott <Philip.hudnott@btinternet.com> came up with this idea for a wristapp to pick lottery numbers.
Overall, this is pretty simple wristapp to write, but it really showed the need for a decent random number generator.
Fortunately, Alan Beale <biljir@pobox.com> provided me with a great MWC (multiply-with-carry) algorithm. Feel free
to use the random number generator for other programs, it has some pretty good behavior. Overall, this program
has very little changes from the 3BALL example, so getting into it should be pretty easy.

; Nane: Pl CK6

; Ver si on: Pl CK6

;Description: A sanple lottery nunmber picker to pick 6 nunbers out of a pool of 49 nunbers (no duplicates
al | oned) .

; To use it, just select it as the current app and it will pick a set of 6 nunbers for you. To get

anot her set,

; just press the next button. This is for amusenent only (but if you w n anything because of it, |I would
wel cone

; anything that you send ne).

; by John A Toebes, VIII

; Hel pFi | e: wat chapp. hl p

; Hel pTopi c: 100

B R R R R R

;* Copyright (© 1997 John A Toebes, VI *
;* Al R ghts Reserved *
;* This programnay not be distributed in any formw thout the permssion of the author *
* j toebes@eoci ti es. com *

B R R R R R
’

; (1) Programspecific constants

I NCLUDE "WR STAPP. | "

; Program specific constants

RAND RANCE EQU 48 ; This is the nunber of items to select from (1 to RAND RANGE+1)
CURRENT_TI C EQU $27 ; Qurrent systemclock tic (Tiner)

RAND WCL EQU $61

RAND_WCH EQU $62

RAND_WAL EQU $63

RAND_WAH EQU $64

TH S _PI CK EQU $65 ; W& can share this with MARQ PCS since we don't do both at the same tine
MARQ _PCS EQU $65

TEMPL EQU $66

TEMPH EQU $67

START EQU *

BASE_TAB EQU $FE

; (2) Systementry point vectors

L0110: jnp MAI N ; The main entry point - WRIST MAIN

L0113: bclr 1, BTNFLAGS ; Called when we are suspended for any reason - VR ST_SUSPEND
rts

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

LO116: jnp FLASH ; Called to handle any tiners or tine events - WR ST_DOTI C
L0119: bclr 1, BTNFLAGS ; Called when the COW app starts and we have tiners pending -
WRI ST_| NOOW
rts
LO11c: rts ; Called when the COW app | oads new data - WR ST_NEWDATA
nop
nop
LO11f: |lda STATETAB, X ; The state table get routine - WR ST_CGETSTATE
rts

L0123: jnp HANDLE STATEO
db STATETAB- STATETAB

; (3) Programstrings

S6_VARQ timex6 " +Or
S8_TITLE Timex " PICK-6 "

MARQ SEL

S6_MARQH2- START
S6_MARQH3- START
S6_MARQH2- START
S6_MARQH1- START
S6_MARQ START
S6_MARQH1- START

PEEEE D

; (4) State Table

STATETAB:
db 0
db EVT_ENTER TIM2_16TIC, 0O ; Initial state
db EVT_RESUME, TIM ONCE, 0 ; Resune froma nested app
db EVT_DNNEXT, TIM2_16TIC, 0 ; Next button
db EVT_TI MER2, TI M_ONCE, 0 o Timer
db EVT_MODE, TI M ONCE, $FF ; Mbde button
db EVT_END
Pl CK_VALS db 0,0,0,0,0,0,0, $FF

; (5) This flashes the text on the screen

FLASH
| da CURRENT_APP ; See which app is currently running
cnp #APP_WRI ST ; Is it us?
bne L0113 ; No, so just turn off the tic timer since we don't need it
| dx #5
| da MARQ PCs
jsr | NCA_V\RAPX
sta MARQ_PCS
tax

-163 -

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

| da MARQ SEL, X

jsr PUT6M D

I dx MARQ_PCS

| da MARQ SEL, X
jmp PUT6TCP

; (6) They want us to do it again

DA TAGAI N o Tell

themwe are going to do it again
clr MARQ_PCS
bset 1, BTNFLAGS
jsr CLEARALL
inp BANNER

; (7) State Table 0 Handl er
; This is called to process the state events.
; W see ENTER, RESUME, TI MER2 and NEXT events

HANDLE_STATEQ:

bset 1, APP_FLAGS ; Indicate that we can be suspended
bcl r 1, BTNFLAGS

| da BTNSTATE

cnp #EVT_DNNEXT ; Dd they press the next button?
beq DA TAGAI N

cnp #EVT_ENTER ; O did we start out

beq DA TAGAI N

cnp #EVT_RESUME

beq REFRESH

; (8) Select a random answer

SHON' T
clra
| dx #6
CLEARI T
sta Pl CK_VALS-1, X
decx
bne CLEART

; W want to pick 6 random nunbers.
; The second should be in the range 1 ...
; The third should be in the range 1 ...
; The fourth should be in the range 1 ...
; The fifth should be in the range 1 ...
; The sixth should be in the range 1 ...

(RAND_RANGE- 1)
(RAND_RANGE- 2)

(RAND_RANGE- 3)
(RAND_RANGE- 4)
(RAND_RANGE- 5)

clr TH S_PI CK
ONE_MORE_PI CK

REPI CK
jsr RAND16
and #63

The first needs to be in the range 1 ...

RAND RANGE

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

sta TEMPL

| da #RAND_RANGE
sub TH S_PI CK
cnp TEMPL

bl o REPI CK

| da TEMPL

bsr | NSERT_NUM
inc TH S_PI CK

| da TH S_PI CK
cnp #6

bne ONE_MORE_PI CK
bra REFRESH

; (9) Insert a nunber in the |ist

I NSERT_NUM

inca

I dx #(PI CK_VALS-1)-BASE_TAB ; Index so that we can use the short addressing node
TRY_NEXT

i ncx ; Advance to the next nunber

tst BASE TAB, X ; Is it an enpty slot?

bne NOT_END ; No, try sone nore

sta BASE TAB, X ; Yes, just toss it in there

rts ; And return
NOT_END

cnp BASE TAB, X ; Non-enpty slot, are we less than it?

bl o PUT_HERE ; Yes, so we go here

inca ; No, Geater than or equal, we need to increment one and try
again

bra TRY_NEXT
PUT_HERE

sta TEMPL

| da BASE_TAB, X

sta TEMPH

| da TEMPL

sta BASE_TAB, X

| da TEMPH

i ncx

tsta

bne PUT_HERE

rts

; (10) Display the currently sel ected random nunbers

REFRESH
| dx Pl CK_VALS
bsr GOFMTX
jsr PUTTCP12
| dx Pl OK_VALS+1

-165-

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

bsr GOFMTX

jsr PUTTOP34

| dx Pl OK_VALS+2
bsr GOFMTX

jsr PUTTOP56

| dx Pl CK_VALS+3
bsr GOFMTX

jsr PUTM D12

| dx Pl OK_VALS+4
bsr GOFMTX

jsr PUTM D34

| dx Pl CK_VALS+5
bsr GOFMTX

jsr PUTM D56

| da #ROWN MP23
sta Dl SP_ROW
bset COL_MP23, Dl SP_COL

| da #ROW MP4A5
sta Dl SP_ROW
bset COL_MP45, Dl SP_COL

| da #ROW TP23
sta Dl SP_ROW
bset COL_TP23, Dl SP_COL

| da #ROW TP45
sta Dl SP_ROW
bset COL_TP45, Dl SP_COL

BANNER
| da #S8 TI TLE- START ; And show the node on the bottom
inp BANNERS

QOFMIX IMP FMIX

; (11) Here is an excellent random nunber generator

; it conmes courtesy of Alan Beal e <biljir@obox.contgt;

; The following C code gives a good MAC (nultiply-wth-carry)

; generator. This type is generally superior to |linear

; congruential generators. As a bonus, there is no particular advantage to using the high-order
; rather than the |oworder bits.

; The al gorithmwas devel oped and anal yzed by George

; Marsaglia, a very well-known scholar of random nunber |ore.

; The code assunes 16 bit shorts and 32 bit longs (hardly surprising).

;static unsigned short wn,wc; /* random nunber and carry */

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

;unsigned short rand() {

; unsi gned | ong tenp;

; tenp = 18000*wn + wc;
; wec = tenp >> 16;

; wn = tenp & Oxffff;

; return wn;

; To seed, set wn to anything you like, and wc to anything between 0 and 17999.
; Translating this into assenbler is
; NHNL*0x4650 + RAND WCHcL

; unsi gned | ong tenp;

; tenp = 18000*wn + wc;

; wec = tenp >> 16;

; wn = tenp & Oxffff;

; return wn;

; tenp = 0x4650 * n + ¢

; tenp = 0x4650 * nHhL + cHcL

; temp = (0x4600 + 0x50) * (nHOO + nL) + cHcL

; tenp = 0x4600*nHOO + Ox4600*nL + Ox50*nHOO0 + Ox50*nL + cHcL

; tenp = 0x46*nH*0x10000 + Ox46*nL*0x100 + Ox50*nH*0x1000 + Ox50*nL + cHcL
; W construct the 32bit result into tHtL cHcL and then swap the 16 bit val ues
; once we have no nore need of the original numbers in the cal cul ation

RAND_MULT EQU 18000 ; This is for the random nunber generator
RAND MULTH EQU RAND MULT/ 256
RAND MULTL EQU RAND MULT&255
RAND16
| da RAND WAL ;. A=nL
I dx RAND MULTL ; X=0x50
mul ;o Xt A = 0x50*nL
add RAND_WCL ; A=Low(0x50nL) +cL
sta RAND_WCL ; cL=Low(0x50nL) +cL
txa ; A=H gh(0x50nL)
adc RAND_WCH ; A=H gh(0x50nL) +cH
sta RAND_WCH ; cH=H gh(0x50nL) +cH
clra ;. A=0
sta TEMPH ; tHEO
adc #0 ; A=Carry(0x50nL) +cH
sta TEMPL ; tL=Carry(0x50nL)+cH
| da RAND WAL ;. A=nL
I dx RAND MULTH ; X=0x46
bsr RAND SUB ; tL:cH += 0x46*nL tH=carry(0x46*nL)
| da RAND VWAH ; A=nH
I dx RAND MULTL ; X=0x50
bsr RAND SUB ; tL:cH += 0x50*nH t H=carry(0x50*nH)

-167 -

ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

RAND SUB

| da RAND WWAH ; A=nH

| dx RAND WCL ;. X=cL

st x RAND_ WAL ; nbL=cL

| dx RAND WCH ;. X=cH

st x RAND WWAH ; hHecH

I dx RAND MULTH ; X=0x46

mul ;X A=0x46* nH

add TEMPL ; A=Low(0x46*nH) +t L

sta RAND WCL ; nL=Low(0x46* nH) +t L

txa ; A=H gh(0x46*nH)

adc TEMPH ; A=H gh(0x46*nH) +t H

sta RAND WCH ; nHEH gh(0x46*nH) +t H

rts

mul ; Conpute the val ues

add RAND WCH ; A=LOWresul t)+cH

sta RAND WCH ; cHeLow(resul t)+cH

txa ; X=H gh(result)

adc TEMPL ; X=H gh(resul t)+tL+Carry(l ow(result)+cH)
sta TEMPL ; tL=H gh(result)+tL+Carry(low(result)+cH)
clra . A=0

adc TEMPH ; A=carry(H gh(result)+tL+Carry(l ow(result)+cH)+tH
sta TEMPH ; tHecarry(H gh(result)+tL+Carry(l ow(result)+cH)+tH

rts

; (12) This is the main initialization routine which is called when we first get the app into nmenory

MAI N

| da #$c0 ; W want button beeps and to indicate that we have been | oaded
sta WRI STAPP_FLAGS

| da CURRENT_TI C

sta RAND_ WAL

sta RAND_WAH

sta RAND_WCL

and #$3f

sta RAND_WCH

rts

Program specific constants - We have several variables - RAND_WCL, RAND_WCH, RAND_WNL and
RAND_WNH which we use for the random number routine. CURRENT _TIC is what is set by the system
when it reads the clock to keep the watch time up to date. We use it once to provide a seed for the random
number generator. Note that we are overlapping the use of THIS_PICK and MARQ_POS to save one byte
of low ram.

System entry point vectors - identical to the 3BALL example, This one gets to be a little fun. Notice for the
WRIST _SUSPEND and WRIST_INCOMM routines that we don't have a JMP instruction, but instead put
the actual code in line. This saves use a couple of bytes.

Program strings - We are pretty frugal here in reusing blanks at the end of the string very liberally. Also
note the S6_MARQ string which has blanks at the start and end so that it can shuffle left and right on the
display but always have blanks visible. The MARQ_SEL and MSG_SEL tables are simply offsets that allow
us to select the message with a simple load instruction instead of having to calculate the offset.

State Table - This is pretty vanilla here except for the fact that we have a very long time interval after the
DNNEXT and ENTER events. Itis during this time that the Marquis runs. We could make it even longer,

DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

10.

11.

12.

but this seems to be a good compromise between seeing something happen and actually getting a result in
a reasonable time.

State Table 0 Handler - Extremely simple, there are only four events that we want to see and this is the
typical test and branch one. The only unique thing here is that we turn off the Marquis timer as soon as we
get any event.

This flashes the text on the screen - This is the cheap way to do a Marquis. Just have a string wider than
the display and change the offset from the start at which you start to display. For this one, there are only 6
states and we select the starting offset from the table based on our current cycle. Note that this routine is
called by the TIC timer which is enabled when they want a new random number. Eventually the timer for
the main event will run out and they will simply stop calling us.

They want us to do it again - Whenever we want to do a new random number, we just start the Marquis tic
timer and set up the display.

Select a random answer - This is really the meat of this wristapp. We need to pick 6 random numbers and
sort them. Fortunately, we can take advantage of the sorting as part of our random number selection.

Insert a number in the list - Given a random number, add it to the list of random numbers in sorted order.
Essentially, we start at the beginning of the list and go until we either find a slot where we need to insert the
number in order or we hit the end of the list. If we hit the end of the list, we store the number there and
return. Otherwise we insert the number at the appropriate spot. One additional thing that we do is increment
the number by 1 for each entry in the that is less than it. It makes sense, but you need to think about why
this works.

Display the currently selected random numbers - Given the 6 random numbers, we just put them on the
display separated by periods. Note the series of BSR instructions to the GOFMTX label. Since there were 6
calls to it, we were about to reduce the 6 3-byte instructions to 6 2-byte instructions plus one 3-byte
instruction to do the call for a savings of 3 bytes.

Here is a random number generator - This is great random number generator that you might want to grab
for any other code that you might write.

This is the main initialization routine which is called when we first get the app into memory - Very boring
stuff here, but we do take a moment to initialize the random number seed with the current tic count just to
make it a little more variable.

-169 -

ABOUT THE DATALINK

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Index

1
150, 6, 8, 12, 24, 30, 31, 33, 38, 64, 65
150s, 6, 8, 24, 30, 31, 33, 38, 64, 65

3
3Ball, 65, 131

6
6805, 23, 24, 30

7
75,6

A

Adjustable Timer, 6
Applet file header, 33
ASM6805, 30, 100
assemblers, 30

C

Character Set, 12
Conversion, 7

CopyMe, 7
CPACKET_ALARM, 10
CPACKET_BEEPS, 12
CPACKET_CLEAR, 10
CPACKET_DATA, 9, 10
CPACKET_END, 10
CPACKET_JMPMEM, 8, 9
CPACKET_MEM, 8, 11
CPACKET_SECT, 9, 10
CPACKET_SKIP, 9
CPACKET_START, 8, 24
CPACKET_TIME, 11
CRC, 8,9, 10, 11, 12, 33, 34, 63

D

DAYFIND, 84, 85, 87
Display, 12
Download Protocol, 7

E

EEPROM, 9, 10, 24, 45, 46, 47, 48, 64, 107, 108, 109, 111,
114

ENDOFF, 96

EVENT_END, 35

EVT_ANY, 36

EVT_ANY4, 36

EVT_END, 37, 68, 70, 73, 76, 80, 86, 94, 97, 101, 108, 109,
118, 132, 136

EVT_ENTER, 35, 37, 67, 70, 72, 73, 76, 77, 80, 86, 93, 94,
97, 101, 108, 109, 118, 120, 132, 136

EVT_GLOW, 36

EVT_IDLE, 36

EVT_MODE, 36, 68, 70, 73, 76, 80, 81, 86, 88, 93, 97, 101,
104, 108, 112, 118, 120, 132, 136

EVT_NEST, 35, 37

EVT_NEXT, 36, 73, 77, 81, 88, 104, 112

EVT_PREV, 36, 73, 77, 81, 88, 104, 112, 120

EVT_RESUME, 35, 37, 67, 70, 73, 76, 80, 86, 93, 94, 97,
101, 108, 109, 118, 132, 136

EVT_SET, 35, 36, 73, 77, 80, 86, 101, 108, 118, 120

EVT_TIMERL, 36, 37, 86

EVT_TIMER?, 36, 37, 70, 73, 76, 80, 86, 88, 93, 94, 101,
102, 108, 109, 110, 118, 132

EVT_USERQO, 36, 37, 94, 95, 101, 108

EVT_USERL, 36, 37

EVT_USER?2, 36, 37, 80, 81, 86, 88, 101, 104, 109, 112,
118, 120

EVT_USERS, 36, 37, 86, 88, 89

G
Golf, 7

H
HexDump, 64, 100, 107

M
Melody Tester, 6

N
Note, 6, 8, 11, 12, 17, 25, 26, 32, 38, 46, 51, 60, 63, 72, 92,
94, 99, 103, 106, 110, 114, 117, 121, 134

P
Packet Format, 8
PASSWD, 78, 79
Preset Timer, 6
Pulse, 7

S

Ships Bells, 135

Sound Hardware, 25

sound scheme, 9, 26, 32, 65, 92, 129, 135
Sound Scheme, 26, 129

Sound Sequence, 26

Soundlet, 26

DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ABOUT THE DATALINK

Spend Watch, 114

State Table, 32, 35, 36, 67, 68, 69, 70, 71, 72, 73, 75, 76,
78, 80, 81, 83, 84, 86, 87, 92, 93, 94, 95, 96, 97, 99,
101, 104, 106, 107, 108, 109, 112, 114, 120, 128, 132,
134, 136, 138

Stopwatch, 6

Strings, 33

Sync Bits, 7

Sync bytes, 7

Synchronization, 7

System Sound, 26

T
TestSnd, 92
TIMEX®6, 13
Tone, 25, 26

w

Week of the Year, 6

World Time, 7

WRIST_DOTIC, 32, 34, 67, 69, 72, 76, 79, 85, 93, 96, 98,
99, 100, 108, 116, 131, 135, 137

-171-

WRIST_GETSTATE, 32, 67, 70, 73, 76, 79, 85, 93, 96, 100,
108, 116, 131, 135

WRIST_INCOMM, 32, 67, 69, 72, 76, 79, 85, 93, 96, 99,
100, 108, 116, 131, 134, 135, 138

WRIST_JMP_STATEQ, 32

WRIST_JMP_STATEL1, 32

WRIST_MAIN, 32, 53, 54, 67, 69, 72, 76, 79, 85, 93, 96,
100, 108, 116, 131, 135

WRIST_NEWDATA, 32, 67, 69, 72, 76, 79, 85, 93, 96, 99,
100, 108, 116, 131, 135

WRIST_OFF_STATEQ, 32

WRIST_OFF_STATEL1, 32

WRIST_SUSPEND, 32, 35, 67, 69, 72, 76, 79, 85, 93, 96,
100, 108, 116, 131, 134, 135

WRISTAPP_FLAGS, 34, 69, 71, 72, 74, 75, 78, 82, 84, 91,
95, 96, 98, 99, 106, 113, 127, 134, 137

Z
ZAP, 24,31, 33, 63, 64
ZSM, 31, 100

