
Datalink Wristapp Programmer’sDatalink Wristapp Programmer’s
ReferenceReference

John A. Toebes, VIII
© 1997 John A. Toebes, VIII
All Rights Reserved

jtoebes@geocities.com

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Table of ContentsTable of Contents

About the DataLink ...6

So, What is a Datalink?..7

There are three basic models of the Datalink...8

What programs can I load in the 150/150s?...8

Datalink Technical Details ..10

Download Protocol...11

Synchronization Process..11

Sync Bits ..11

Packet Format..12

$20 - CPACKET_START...12

$21 - CPACKET_SKIP ..12

$23 - CPACKET_JMPMEM...12

$90 - CPACKET_SECT...13

$91 - CPACKET_DATA...13

$92 - CPACKET_END...14

$93 - CPACKET_CLEAR ..14

$50 - CPACKET_ALARM..14

$32 - CPACKET_TIME..14

$70 - CPACKET_MEM..15

$71 - CPACKET_BEEPS ..15

The Display ..16

The TOP/MIDDLE Character Set...16

The Bottom Character set..18

Memory Map..28

Datalink Overview Memory Map..28

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 3 -

Differences between the 150 and 150S ...29

Dealing with the Differences...29

Accessing the EEPROM..30

Sound Hardware ..31

Hardware Tones...31

Important Terms:..31

The format of a sound scheme...33

Sound Files ..35

Wristapp Programming Reference ...37

The Processor..38

Tools ..39

ASM6805 (2 months later) ...40

The .ZSM file Format..41

System Routine Definitions ..42

Program Layout Basics ..43

Wristapp Interface Entries ..43

Strings and Data...44

.ZAP File Format ..44

Getting Started ...46

The State Table..47

Special State Tables ..47

Nested Apps...47

Button Events...48

Timer Events ..48

Other Events ..48

Event Constants...48

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

State Table Values...48

Timer Constants...49

Classes of Callable Functions..51

Anniversary support routines..51

Scanning support ...52

Appointment support..53

Internal ...55

Indiglo support..55

Sound Support...56

Event support...56

Packet/EEProm Support..57

INST Support ...58

Scrolling Messages..60

Blinking routines...60

Update functions ..62

Format Routines...62

Line routines...63

Installing a Wristapp...76

My Wristapps..78

Other People’s Wristapps ..79

Plans for Wristapps..80

Wristapp Programming Tutorial..82

A First Wristapp - Hello World..83

Getting Input...86

Better Input - Update..89

Showing Selection - Blink routines...93

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 5 -

Entering Digits - PASSWD sample ..97

Getting time and Input - DAYFIND sample ..103

Playing With Sound - TestSnd example...112

Using Callbacks - Endoff example ...116

Using 3 States - HexDump example..120

Dumping the EEPROM - promdump example.....................................128

Tracking Money - Spend Watch example ..136

Creating a Sound Scheme - Sound1 example.....................................151

Random Numbers and Marquis - 3Ball example153

Playing Hourly Chimes - Ships Bells example157

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

About the DataLink

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 7 -

So, What is a Datalink?

The Datalink is a pretty neat watch that Timex created which allows you to download information just by pointing the
watch at the display screen. You have probably seen the commercials where the dog and cat play around with
reprogramming the appointments on the watch.

What makes the watch interesting to me is that you can actually write programs for it. Although Timex did not
document how to do this, it turned out not to be too difficult to figure out how to write code for the watch. Of course
explaining how to do that is a bit more difficult, but that is what this document is all about.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

There are four basic models of the Datalink

• The original 75 model which allowed you to download phone numbers, alarms, lists, anniversaries, and
appointments.

• The updated 150 model which doubled the download speed and increased the amount of memory for
storing those phone numbers, alarms, lists, anniversaries, and appointments. Timex also was kind enough
to give us the ability to download wristApps to extend the functionality of the watch.

• The smaller 150s model which is nearly identical to the 150 in capabilities. This was introduced for the
1996 Christmas season as a lady’s watch.

• The Ironman Datalink watch. Some people called this the 150r, but that is not the correct designation.
While this watch is similar to the 150 and 150s with respect to capacity, it does not support downloading of
wristapps.

What programs can I load in the 150/150s?

Timex ships several useful Wristapps with the 150 in the box:

• Note - Used for copying up to 255 characters of text (30-40 words) to the watch. It is useful for storing
directions, etc. that need to be readily accessible.

• Melody Tester - Used for testing Watch Tones on the watch. It sure beats waiting around for the
appointment beep to go off.

• Stopwatch - A chronograph that times events by starting from zero and counting up.

• Adjustable Timer - Allows setting of a time to be counted from 1 minute to 100 hours, in 1 minute
increments.

• Preset Timer - The Preset Countdown Timer that allows for quick selection of the following preset times: 5,
10, 15 20, 30, 45, or 60 minutes.

• Week of the Year (U.S.) - Displays what week of the year it is, what day of the year it is, and how many
days are left in the year.

• Week of the Year (International) - Displays what week of the year it is, what day of the year it is, and how
many days are left in the year.

You can also purchase the optional Wristapps, which give you a few other useful wristapps:

• Golf - A golfer’s electronic scorecard. Enter the number of strokes per hole and let the watch calculate the
total for the round and the front and back nine. You can recall your totals or hole scores at any time.

• CopyMe Game - A memory game. The watch displays a sequence of 0’s that you must duplicate using the
watch’s buttons. If you are successful, the watch adds another step to the sequence. Make it through 15
steps and you win!

• Pulse - Gives you a quick estimate of your pulse rate. Feel for your pulse. When the watch beeps, start
counting beats. When you count ten, press a button, and the watch calculates your pulse. It’s a great
workout companion.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 9 -

• World Time - Displays the time in each of the 24 time zones around the world.

• Conversion - Gives you a table for converting values from one unit to another.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Datalink Technical Details

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 11 -

Download Protocol

Synchronization Process

Before you can start sending any data to the DataLink, you have to send a series of sync bytes:

$55 (the watch has to see 4 in a row to be happy about it)

Once the watch has gotten the Sync bytes, it will look for a series of at least four $AA or $BF bytes to go into an
initialization mode.

Once in initialization mode, it will start looking for the data bytes. If it sees a $EF, it will treat that as an escape byte
and read in the next byte regardless of what it is (this allows the first byte of the packet to be a $55, $AA, $BF or even
$EF).

Once it has gone into data transfer mode, it expects a series of 2 byte groups where the low bit of the first byte and
the high bit of the second byte (I call these middle bits) must match to be sync bits. It expects these sync bits to
alternate between 0 and 1. Any 2-byte group that does not match this will be thrown out. Also, if no valid bytes are
received within 1/5 second, the transfer operation is aborted.

Sync Bits

With these sync bits, you can only transfer 14 bits of data for every 16 bits sent. (There are actually 2 extra sync bits
on the screen to act as start and stop bits). If you look at it, that means that you can get 7 bytes transferred for every
8 bytes sent. The organization of these bits is:

A b c d e f g - - i j k l m n h

Q r s t u o p + + z y A B v w x

G H I C D E F - - O P J K L M N

W Q R S T U V + + X Y Z 1 2 3 4

Where - and + represent the sync bits (zero and one) in the byte pairs. If you decode these bits into the
corresponding bytes, you get:

A b c d e f g h

I j k l m n o p

Q r s t u v w x

Y z A B C D E F

G H I J K L M N

O P Q R S T U V

W X Y Z 1 2 3 4

Note that you always have to send in byte pairs, but the code is smart enough to throw away an extra byte which
does not fit in a packet. All packets end with a 2 byte 16-Bit CRC.

I think that the most interesting packet of all of this is the CPACKET_JMPMEM. It is possible to reset the watch by
just sending this packet in the stream:

09 23 04 3e 18 94 81 <crc-16>
What this does is tells it to jump to location 04 3e which happens to be the address of where the 4th byte in the
packet is stored. The code executes the 18 94 which is a BSET 4,TIMER_FLAGS followed by an 81 = RTS. When the
watch sees that 4,TIMER_FLAGS has been set, it will run the watch through a complete reset cycle. There are a lot of

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

other fun things that you can do. For example, you can play a tune during the download by storing new values at
location 0335. So the packet:

0c 23 04 3e a6 01 c7 03 35 81 <crc-16>
Would change the download tone to be a LOW C. Replace the 01 with any value up to 0f and you can actually play
a tune as it is downloading. (The note at $0335 is played after each packet).

You can also use this code to indicate a status on the watch by setting the individual segments on the bottom:

0d 23 04 3e a6 48 b7 1d 19 1e 81 <crc-16>
Would turn on the AM indicator. Of course since you can’t look at the watch while it is downloading, it would be little
silly. However, this can be a great debug aid for someone working on the download protocol since the symbols are
not cleared out once the download process starts.

The CPACKET_MEM packet is also pretty useful. You can use it to set any of the locations in ram to a particular
value. This might be useful if you know that you have a certain Wristapp already loaded and you want to change
some data stored in the wristapp. All you need is the address to store the data in and the data that you want to put
there.

Packet Format

$20 - CPACKET_START

0 Packet Length
1 $20 - CPACKET_START
2 $00
3 $00
4 Version: 3=V2.0 for the 150, 4=V2.1 for the 150s
5 CRC-16 High
6 CRC-16 Low
$21 - CPACKET_SKIP

This skip packet does get sent to the Datalink, but its contents are completely ignored.

0 Packet Length
1 $21 – CPACKET_SKIP
2 <ignored>
3 CRC-16 High
4 CRC-16 Low

$23 - CPACKET_JMPMEM

This JMPMEM packet is useful for jumping to/calling specific locations in memory during the download process.

0 Packet Length
1 $23 – CPACKET_JMPMEM
2 Address High to jump to
3 Address low to jump to
4 CRC-16 High

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 13 -

5 CRC-16 Low

$90 - CPACKET_SECT

This is the Initialization packet to start loading a section. There are three formats based on the section to be loaded.

$90 - CPACKET_SECT - Format 1

0 Packet Length
1 $90 – CPACKET_SECT
2 $01 - CLOAD_EEPROM - Load up EEProm data
3 Number of CPACKET_DATA packets to follow
4 CRC-16 High
5 CRC-16 Low

$90 - CPACKET_SECT - Format 2

0 Packet Length
1 $90 – CPACKET_SECT
2 $02 – CLOAD_WRISTAPP - Load a new Wristapp
3 Number of CPACKET_DATA packets to follow
4 Value to be stored in COMM_010e
5 CRC-16 High
6 CRC-16 Low

$90 - CPACKET_SECT - Format 3

0 Packet Length
1 $90 – CPACKET_SECT
2 $03 - CLOAD_SOUND - Load a new sound scheme
3 Number of CPACKET_DATA packets to follow
4 Base offset for the sound (should be $100-length of the sound)
5 CRC-16 High
6 CRC-16 Low

$91 - CPACKET_DATA

This is the data packet sent after a CPACKET_SECT. The number of packets sent will be dependent on the section
and is indicated in the CPACKET_SECT packet. Once these packets start getting sent, there should be no other
packets until a CPACKET_END is encountered (although there is really no error checking done on it). If the
download is terminated without the last CPACKET_END being seen or the right number of CPACKET_DATA
packets, the entire section is ignored.

0 Packet Length
1 $91 - CPACKET_DATA
2 <ignored> (probably address high)
3 <ignored> (probably address low)
4 .. n+4 n Databytes to be stored
n+5 CRC-16 High

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

n+6 CRC-16 Low

$92 - CPACKET_END

This packet marks the end of a section.

0 Packet Length
1 $92 - CPACKET_END
2 Section (1=CLOAD_EEPROM, 2=CLOAD_WRISTAPP, 3=CLOAD_SOUND)
3 CRC-16 High
4 CRC-16 Low
$93 - CPACKET_CLEAR

This Packet is used to clear out a section.

0 Packet Length
1 $93 - CPACKET_CLEAR
2 Section to clear (CLOAD_EEPROM, CLOAD_WRISTAPP, CLOAD_SOUND)
3 CRC-16 High
4 CRC-16 Low

$50 - CPACKET_ALARM

This packet is used to set the alarm information for a single alarm.

0 Packet Length
1 $50 - CPACKET_ALARM
2 Alarm Number (1-5)
3 Alarm Hour (0-23)
4 Alarm Minute (0-59)
5 <ignored>
6 <ignored>
7 Alarm String character 1
8 Alarm String character 2
9 Alarm String character 3
10 Alarm String character 4
11 Alarm String character 5
12 Alarm String character 6
13 Alarm String character 7
14 Alarm String character 8
15 Alarm enable 0=disable, non-zero=enable
16 CRC-16 High
17 CRC-16 Low

$32 - CPACKET_TIME

This single packet is used to set the time. It should be sent early in the process in ensure the best synchronization
with the CPU clock time.

0 Packet Length

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 15 -

1 $32 – CPACKET_TIME
2 Time zone selector (1=Time zone 1)
3 Seconds (0-59)
4 Hour (0-23)
5 Minute (0-59)
6 Month of the year (1-12)
7 Day of the month (1-31)
8 Current year (mod 1900)
9 Time Zone Name character 1
10 Time Zone Name character 2
11 Time Zone Name character 3
12 Day of the week (0=Monday...6=Sunday)
13 12/24 hour selector (1=12 Hour format, anything other than 1=24 hour format)
14 Time zone date format
15 CRC-16 High
16 CRC-16 Low

$70 - CPACKET_MEM

This packet is used to store a number of bytes into memory at a fixed location. Note that it is not used for loading up
a wristapp because other information has to be reset when a wristapp has been loaded.

0 Packet Length
1 $70 – CPACKET_MEM
2 High byte of memory address
3 Low byte of memory address
4..n+3 Data to be stored into memory
n+4 CRC-16 High
n+5 CRC-16 Low

$71 - CPACKET_BEEPS

This packet is used to control the hourly chimes and button beep flags.

0 Packet Length
1 $71 - CPACKET_BEEPS
2 Enable Hourly chimes flag (0=Disable, Non-Zero=Enable)
3 Enable Button beep flag (0=Disable, Non-Zero=Enable)
4 CRC-16 High
5 CRC-16 Low

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

The Display

The DataLink display has 4 basic areas when it comes to programming. For convenience, I call them simply:

1. TOP - The top 6 digits. Each of these digits are represented by 9 segments which can be individually
controlled. There are dash and period separators between the second/third and the forth/fifth digits for
displaying dates. There is also a dash separator between the third and forth digits which is used for
telephone numbers. It also has a tic mark before the first digit as a shorthand for the first two digits of the
year.

2. SYMBOLS - The AM/PM, Reminder, Night Mode, Alarm, and Note symbols. These tend to only be used by
the Time app.

3. MIDDLE - Like the TOP area, the Middle area also consists of 6 digits each made up of 9 segments. For
separators between the second and third digits, you can use a colon, period, or a dash. The fourth and fifth
digits can be separated by a dash or a period.

4. BOTTOM - The bottom 8 digits which are each represented by a 5 by 5 matrix of pixels that can be
individually addressed. The ROMs also support a series of scrolling routines to allow a message to be
scrolled across the bottom at a nice even rate.

What is really nice about the watch is that every segment on the display is individually addressable. For
convenience, we use a notation of BIT:OFFSET to indicate how to address the segment. What this means is that
you need to set DISP_ROW ($001d) to the OFFSET value and then set/clear the BIT in DISP_COL ($001e) to turn
on/off the corresponding segment. For example, if you wanted to turn on the AM indicator on the 150 which is
referred to as 4:48, you would do:

LDA #$48

STA DISP_ROW

BSET 4,DISP_COL

Here’s a quick overview of the display. All of the segments are clickable so that you can determine the way to
set/clear that segment. This is a Java applet, so if your browser is not capable of supporting Java, you won’t be able
to see it. When you click on the segment, it will hi-light in red and display the appropriate set values on the status
bar. Value1 will be what you use for the 150 and Value2 will be for the 150S.

The TOP/MIDDLE Character Set

The TOP and MIDDLE lines only allow for 32 different characters to be displayed (unless of course you do it all
yourself). For convenience, we refer to this character set as the TIMEX6 character set. All of the Wristapps that are
written use the TIMEX6 macro to convert ASCII strings to this set. Because you have to use the number zero for the
letter O and the number five for the letter S, the TIMEX6 macro will handle the conversion for you. The characters
that can’t easily be displayed are: J K Q V X Y. Fortunately, they aren’t used in a lot of words (except of course my
first name :-).

The TIMEX6 character set does allow for the names of all the internal Apps to be displayed. It is important to be
aware of this limited character set when choosing the name of your Wristapp, otherwise you won’t be able to display
it easily when someone switches to the app.

$00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $0a $0b $0c $0d $0e $0f
0 1 2 3 4 5 6 7 8 9 A B C D E F

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 17 -

$10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1a $1b $1c $1d $1e $1f
G H : L M N P R T U W Y r _ - +
The routines which are useful for putting strings on the top and middle lines are:

PUT6TOP ???
PUT6MID ???
PUTMSG1 ???
PUTMSG2 ???
CLEARTOP ???
CLEARMID ???
CLEARTOP12 ???
CLEARTOP34 ???
CLEARTOP56 ???
CLEARMID12 ???
CLEARMID34 ???
CLEARMID56 ???
PUTLINE1 ???
PUTLINE2 ???
PUTTOP12 ???
PUTTOP34 ???
PUTTOP56 ???
PUTMID12 ???
PUTMID34 ???
PUTMID56 ???
You can see what all of these are displayed as below.

$00 – 0 $01 - 1 $02 - 2 $03 - 3
|=====|
| |
| |
| |
| |
| |
|=====|

 |
 |
 |
 |
 |
 |
 |

 =====|
 |
 |
 =====|
|
|
|=====

 =====|
 |
 |
 =====|
 |
 |
 =====|

$04 - 4 $05 - 5 $06 - 6 $07 - 7
| |
| |
| |
|=====|
 |
 |
 |

|=====
|
|
|=====
 |
 |
 =====|

|=====
|
|
|=====
| |
| |
|=====|

 =====|
 |
 |
 |
 |
 |
 |

$08 - 8 $09 - 9 $0a - A $0b - B
|=====|
| |
| |
|=====|
| |
| |

|=====|
| |
| |
|=====|
 |
 |

|=====|
| |
| |
|=====|
| |
| |

 =====|
 | |
 | |
 =====|
 | |
 | |

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

|=====| =====| | | =====|

$0c - C $0d - D $0e - E $0f - F
|=====
|
|
|
|
|
|=====

 =====|
 | |
 | |
 |
 | |
 | |
 =====|

|=====
|
|
|=====
|
|
|=====

|=====
|
|
|=====
|
|
|

$10 - G $11 - H $12 - I $13 - L
|=====
|
|
|
| |
| |
|=====|

| |
| |
| |
|=====|
| |
| |
| |

 |
 |

 |
 |

|
|
|
|
|
|
|=====

$14 - M $15 - N $16 - P $17 - R
|=====|
| | |
| | |
| |
| |
| |
| |

|=====|
| |
| |
| |
| |
| |
| |

|=====|
| |
| |
|=====|
|
|
|

|=====|
| |
| |
|=====|
| |
| |
|

$18 - T $19 - U $1a - W $1b - Y
 =====
 |
 |

 |
 |

| |
| |
| |
| |
| |
| |
|=====|

| |
| |
| |
| |
| | |
| | |
|=====|

| |
| |
| |
|=====|
 |
 |

$1c - r $1d - $1e - - $1f - +

 =====
|
|
|

 =====

 |
 |
 =====
 |
 |

The Bottom Character set

The BOTTOM line has a slightly richer character set which we call the TIMEX character set. It allows for 64 different
characters, includes the entire upper case alphabet and quite a few special symbols. All of these characters are
drawn on a 5x5 dot matrix.

$00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $0a $0b $0c $0d $0e $0f
0 1 2 3 4 5 6 7 8 9 A B C D E F

$10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1a $1b $1c $1d $1e $1f
G H I J K L M N O P Q R S T U V

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 19 -

$20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $2a $2b $2c $2d $2e $2f
W X Y Z _ ! “ # > % & ‘ () * +

$30 $31 $32 $33 $34 $35 $36 $37 $38 $39 $3a $3b $3c $3d $3e $3f
, - . / : \ DIV = BELL ? _ CHK PREV NEXT BLOCK SEP
The routines which are useful for putting strings on the top and middle lines are:

BANNER8 ???
PUTMSGXBOT ???
PUTMSGBOT ???
PUTBOT678 ???
PUTLINE3 ???
PUT_LETTERX ???
PUTSCROLLMSG ???
SCROLLMSG ???
SCROLLMSG_CONT ???

$00-0 $01-1 $02-2 $03-3 $04-4 $05-5 $06-6 $07-7
__@@_
_@__@
_@__@
_@__@
__@@_

__@__
_@@__
__@__
__@__
__@__

@@@@_
____@
@@@
@____
@@@@@

@@@@_
____@
@@@
____@
@@@@_

@__@_
@__@_
@@@@@
___@_
___@_

@@@@@
@____
@@@@_
____@
@@@@_

_@@@@
@____
@@@@_
@___@
@@@

@@@@@
____@
___@_
__@__
__@__

$08-8 $09-9 $0a-A $0b-B $0c-C $0d-D $0e-E $0f-F
@@@
@___@
@@@
@___@
@@@

@@@
@___@
_@@@@
____@
@@@@_

@@@
@___@
@@@@@
@___@
@___@

@@@@_
@___@
@@@@_
@___@
@@@@_

_@@@@
@____
@____
@____
_@@@@

@@@@_
@___@
@___@
@___@
@@@@_

@@@@@
@____
@@@@_
@____
@@@@@

@@@@@
@____
@@@@_
@____
@____

$10-G $11-H $12-I $13-J $14-K $15-L $16-M $17-N
_@@@@
@____
@_@@@
@___@
_@@@@

@___@
@___@
@@@@@
@___@
@___@

@@@
__@__
__@__
__@__
@@@

__@@@
___@_
___@_
@__@_
_@@__

@___@
@__@_
@_@__
@@_@_
@___@

@____
@____
@____
@____
@@@@@

@___@
@@_@@
@_@_@
@_@_@
@___@

@___@
@@__@
@_@_@
@__@@
@___@

$18-O $19-P $1a-Q $1b-R $1c-S $1d-T $1e-U $1f-V
@@@
@___@
@___@
@___@
@@@

@@@@_
@___@
@@@@_
@____
@____

@@@
@___@
@_@_@
@__@_
@@@

@@@@_
@___@
@@@@_
@__@_
@___@

_@@@@
@____
@@@
____@
@@@@_

@@@@@
__@__
__@__
__@__
__@__

@___@
@___@
@___@
@___@
@@@

@___@
@___@
@___@
@@_
__@__

$20-W $21-X $22-Y $23-Z $24- $25-! $26-“ $27-#
@___@
@___@
@_@_@
@@@
@@_

@___@
@@_
__@__
@@_
@___@

@___@
@@_
__@__
__@__
__@__

@@@@@
___@_
__@__
_@___
@@@@@

__@__
__@__
__@__

__@__

@@_
@@_

@@_
@@@@@
@@_
@@@@@
@@_

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

$28-$ $29-% $2a-& $2b-‘ $2c-($2d-) $2e-* $2f-+
_@@@@
@_@__
@@@
__@_@
@@@@_

@@__@
___@_
__@__
_@___
@__@@

_@___
@_@__
@@@
@__@_
@@@

__@__
_@___

__@__
_@___
_@___
_@___
__@__

__@__
___@_
___@_
___@_
__@__

@_@_@
@@@
@@@@@
@@@
@_@_@

__@__
__@__
@@@@@
__@__
__@__

$30-, $31-- $32-. $33-/ $34-: $35-\ $36- $37-=

__@__
_@___

@@@@@

__@__

____@
___@_
__@__
_@___
@____

__@__

__@__

@____
_@___
__@__
___@_
____@

__@__

@@@@@

__@__

@@@@@

@@@@@

$38-> $39-? $3a-_ $3b- $3c- $3d- $3e- $3f-
__@__
@@@
@@@
@@@@@
__@__

_@@__
@__@_
__@__

__@__

@@@@@

____@
___@_
@_@__
_@___
@@@@@

____@
__@@@
@@@@@
__@@@
____@

@____
@@@__
@@@@@
@@@__
@____

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

@@@
@@@
@@@

Alarm 4:1C 4:1A
AM 4:48 4:46
M1A 4:42 4:40
M1B 3:40 3:3E
M1C 2:40 2:3E
M1D 2:46 2:44
M1E 3:46 3:44
M1F 4:46 4:44
M1G 3:44 3:42
M1H 4:44 4:42
M1I 2:44 2:42
M2A 4:3A 4:38
M2B 3:38 3:36
M2C 2:38 2:36
M2D 2:3E 2:3C
M2E 3:3E 3:3C
M2F 4:3E 4:3C
M2G 3:3C 3:3A
M2H 4:3C 4:3A
M2I 2:3C 2:3A
M3A 4:30 4:2E
M3B 3:2E 3:2C
M3C 2:2E 2:2C
M3D 2:34 2:32
M3E 3:34 3:32
M3F 4:34 4:32
M3G 3:32 3:30
M3H 4:32 4:30

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 21 -

M3I 2:32 2:30
M4A 4:28 4:26
M4B 3:26 3:24
M4C 2:26 2:24
M4D 2:2C 2:2A
M4E 3:2C 3:2A
M4F 4:2C 4:2A
M4G 3:2A 3:28
M4H 4:2A 4:28
M4I 2:2A 2:28
M5A 4:1E 4:1C
M5B 3:1C 3:1A
M5C 2:1C 2:1A
M5D 2:22 2:20
M5E 3:22 3:20
M5F 4:22 4:20
M5G 3:20 3:1E
M5H 4:20 4:1E
M5I 2:20 2:1E
M6A 4:10 4:0E
M6B 3:0E 3:0C
M6C 2:0E 2:0C
M6D 2:14 2:12
M6E 3:14 3:12
M6F 4:14 4:12
M6G 3:12 3:10
M6H 4:12 4:10
M6I 2:12 2:10
MC23 3:36 3:34
MD45 3:24 3:22
MP23 2:36 2:34
MP45 2:24 2:22
Night 4:26 4:24
Note 4:0e 4:0C
PM 4:40 4:3E
Remind 4:38 4:36
S1A1 2:47
S1A2 2:45
S1A3 2:43
S1A4 2:41
S1A5 2:3F
S1B1 3:47
S1B2 3:45
S1B3 3:43
S1B4 3:41

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S1B5 3:3F
S1C1 4:47
S1C2 4:45
S1C3 4:43
S1C4 4:41
S1C5 4:3F
S1D1 0:47
S1D2 0:45
S1D3 0:43
S1D4 0:41
S1D5 0:3F
S1E1 1:47
S1E2 1:45
S1E3 1:43
S1E4 1:41
S1E5 1:3F
S2A1 2:3D
S2A2 2:3B
S2A3 2:39
S2A4 2:37
S2A5 2:35
S2B1 3:3D
S2B2 3:3B
S2B3 3:39
S2B4 3:37
S2B5 3:35
S2C1 4:3D
S2C2 4:3B
S2C3 4:39
S2C4 4:37
S2C5 4:35
S2D1 0:3D
S2D2 0:3B
S2D3 0:39
S2D4 0:37
S2D5 0:35
S2E1 1:3D
S2E2 1:3B
S2E3 1:39
S2E4 1:37
S2E5 1:35
S3A1 2:33
S3A2 2:31
S3A3 2:2F
S3A4 2:2D

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 23 -

S3A5 2:2B
S3B1 3:33
S3B2 3:31
S3B3 3:2F
S3B4 3:2D
S3B5 3:2B
S3C1 4:33
S3C2 4:31
S3C3 4:2F
S3C4 4:2D
S3C5 4:2B
S3D1 0:33
S3D2 0:31
S3D3 0:2F
S3D4 0:2D
S3D5 0:2B
S3E1 1:33
S3E2 1:31
S3E3 1:2F
S3E4 1:2D
S3E5 1:2B
S4A1 2:27
S4A2 2:25
S4A3 2:23
S4A4 2:21
S4A5 2:1F
S4B1 3:27
S4B2 3:25
S4B3 3:23
S4B4 3:21
S4B5 3:1F
S4C1 4:27
S4C2 4:25
S4C3 4:23
S4C4 4:21
S4C5 4:1F
S4D1 0:27
S4D2 0:25
S4D3 0:23
S4D4 0:21
S4D5 0:1F
S4E1 1:27
S4E2 1:25
S4E3 1:23
S4E4 1:21

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S4E5 1:1F
S5A1 2:1D
S5A2 2:1B
S5A3 2:19
S5A4 2:17
S5A5 2:15
S5B1 3:1D
S5B2 3:1B
S5B3 3:19
S5B4 3:17
S5B5 3:15
S5C1 4:1D
S5C2 4:1B
S5C3 4:19
S5C4 4:17
S5C5 4:15
S5D1 0:1D
S5D2 0:1B
S5D3 0:19
S5D4 0:17
S5D5 0:15
S5E1 1:1D
S5E2 1:1B
S5E3 1:19
S5E4 1:17
S5E5 1:15
S6A1 2:13
S6A2 2:11
S6A3 2:0F
S6A4 2:0D
S6A5 2:0B
S6B1 3:13
S6B2 3:11
S6B3 3:0F
S6B4 3:0D
S6B5 3:0B
S6C1 4:13
S6C2 4:11
S6C3 4:0F
S6C4 4:0D
S6C5 4:0B
S6D1 0:13
S6D2 0:11
S6D3 0:0F
S6D4 0:0D

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 25 -

S6D5 0:0B
S6E1 1:13
S6E2 1:11
S6E3 1:0F
S6E4 1:0D
S6E5 1:0B
S7A1 2:09
S7A2 2:07
S7A3 2:05
S7A4 2:03
S7A5 2:01
S7B1 3:09
S7B2 3:07
S7B3 3:05
S7B4 3:03
S7B5 3:01
S7C1 4:09
S7C2 4:07
S7C3 4:05
S7C4 4:03
S7C5 4:01
S7D1 0:09
S7D2 0:07
S7D3 0:05
S7D4 0:03
S7D5 0:01
S7E1 1:09
S7E2 1:07
S7E3 1:05
S7E4 1:03
S7E5 1:01
S8A1 2:02
S8A2 2:04
S8A3 2:06
S8A4 2:08
S8A5 2:0a
S8B1 3:02
S8B2 3:04
S8B3 3:06
S8B4 3:08
S8B5 3:0a
S8C1 4:02
S8C2 4:04
S8C3 4:06
S8C4 4:08

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S8C5 4:0a
S8D1 1:02
S8D2 1:04
S8D3 1:06
S8D4 1:08
S8D5 1:0a
S8E1 0:02
S8E2 0:04
S8E3 0:06
S8E4 0:08
S8E5 0:0a
T1A 2:42 2:40
T1B 1:40 1:3E
T1C 0:40 0:3E
T1D 0:42 0:40
T1E 0:46 0:44
T1F 1:46 1:44
T1G 1:42 1:40
T1H 1:44 1:42
T1I 0:44 0:42
T2A 2:3A 2:38
T2B 1:38 1:36
T2C 0:38 0:36
T2D 0:3A 0:38
T2E 0:3E 0:3C
T2F 1:3E 1:3C
T2G 1:3A 1:38
T2H 1:3C 1:3A
T2I 0:3C 0:3A
T3A 2:30 2:2E
T3B 1:2E 1:2C
T3C 0:2E 0:2C
T3D 0:30 0:2E
T3E 0:34 0:32
T3F 1:34 1:32
T3G 1:30 1:2E
T3H 1:32 1:30
T3I 0:32 0:30
T4A 2:28 2:26
T4B 1:26 1:24
T4C 0:26 0:24
T4D 0:28 0:26
T4E 0:2C 0:2A
T4F 1:2C 1:2A
T4G 1:28 1:26

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 27 -

T4H 1:2A 1:28
T4I 0:2A 0:28
T5A 2:1E 2:1C
T5B 1:1c 1:1A
T5C 0:1c 0:1A
T5D 0:1e 0:1C
T5E 0:22 0:20
T5F 1:22 1:20
T5G 1:1E 1:1C
T5H 1:20 1:1E
T5I 0:20 0:1E
T6A 2:10 2:0E
T6B 1:0e 1:0C
T6C 0:0e 0:0C
T6D 0:10 0:0E
T6E 0:14 0:12
T6F 1:14 1:12
T6G 1:10 1:0E
T6H 1:12 1:10
T6I 0:12 0:10
TD23 1:36 1:34
TD34 4:2E 4:2C
TD45 1:24 1:22
TP23 0:36 0:34
TP45 0:24 0:22

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Memory Map

The Datalink is controlled by a custom 6805 which has 16K of ROM, 1.25K of Ram and 2.0K of EEProm. Because
the 6805 has a 15 bit address bus, all accesses wrap at 0800 to 0000 and repeat once again. The EEProm is
a serial device and does not appear in the accessible address space for the 6805.

Datalink Overview Memory Map

0000-002A 6805 Hardware registers
002B-004F Unused ram (probably not even mapped)
0050-005F System App local variables
0060-0067 Wristapp local variables
0068-00C2 System local variables
00C3-00FF Call stack
0100-010F EEProm control variables
0110-0335 Wristapp memory
0336-0435 Sound memory (starts high, low end can be used for a larger wristapp)
0436-04FF System upper ram
0500-3FFF Unused - This is a hole in the address space
0400-7FFF System ROM
<More memory map stuff to come>

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 29 -

Differences between the 150 and 150S

For Christmas 1996, Timex introduced a smaller version of the 150 called the 150s. This watch has substantially
the same hardware and capabilities as the 150, but in a smaller package. You can tell the difference between the
two by entering COMM Mode. If the version on the bottom line is V2.0, then the watch is a 150. If it says V2.1, it is
a 150S. There is also a newer release of the Datalink software (V2.1) for the 150s which works with all of the
Datalink watches. The older V2.0 software will not talk to the 150s.

It is not possible to run the same wristapp on both watches because of a few differences:

• The addresses for the display segments have changed. Mostly this has been a simple subtraction of 2 from
the offsets for addressing the display segments, but it also involved the shuffling of a couple of the pixels in
the segments on the bottom line. Since turning on a segment is a hard coded constant, an application has
to be recompiled for the different display.

• To accommodate the change in display segments, a couple of ROM routines have been changed. This
resulted in a shuffling of the addresses of a number of routines within the watch.

• To further complicate things, the order of a few routines in the ROM has been changed. While the routines
are exactly the same in both the 150 and the 150s, the location of these routines is never the same.

• The CPACKET_START packet has a 4 for the version code instead of a 3.

• Even with all this shuffling, the memory map for the low ram appears to be exactly identical, as does the
actual 6805 hardware.

Dealing with the Differences

Because the two watches are so different, you have to essentially write the same program twice with different
targets for all of the system routines and any segment poking that is done. The V2.1 software handles this by
storing both copies of the code in the .ZAP file with a description field to identify which watch the software is targeted
to. When you identify the type of the watch to the DataLink software, it automatically chooses the right software to
send.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Accessing the EEPROM

The 2K EEProm in the Datalink is accessed over a serial interface and is not directly mapped to the 6805 address
space. The entries for all of the apps are stored sequentially in the EEProm with a length/flag byte at the front of
each one. When an entry is deleted, it is done by simply setting the high bit on the flag byte. All of the internal
software simply skips over the entry. There is no code in the watch for shuffling the data in the EEProm.

When any data is downloaded to the EEProm, it essentially clears the EEProm pointers and starts again. This has
the effect of deleting all Phone, List, Anniversary, and Appointment entries if you just load a single entry down to the
watch. However, the actual data in the EEProm is never cleared out except when new data overwrites. This means
that it is possible to dump out the data in the EEProm even if the watch has been reset or only one or two entries
downloaded to it.

There are some internal routines for getting to the EEProm (to be documented later) and it is possible with some
work to write code that allows you to store entries in the EEProm, but you would have to figure out how to shuffle the
entries in the EEProm if you wanted to add an entry without deleting everything (this isn’t really as difficult as it
sounds).

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 31 -

Sound Hardware

The Datalink is capable of playing 14 tones by poking one of the following values into PORT_SOUND (location $0028).
 From experimentation, it appears that only the low nibble of whatever value is poked into this location is actually
used.

It is my current working theory that there is a timer routine in the Datalink which is actually causing the resulting
frequencies and it might be possible to generate other sounds by going through a slightly different mechanism to
poke the sound hardware.

Note that if you use the built-in sound routines for playing sounds, you will find that the interrupt routines will happily
readjust the hardware tones behind your back.

Hardware Tones

0 Tone_END - This seems to generate silence
1 Low C
2 High C
3 Middle C
4 Very High C
5 High F (Reported to be a little bit lower than F)
6 Middle F
7 Low F
8 Very High G# (G-Sharp)
9 High G# (G-Sharp)
10 Middle G# (G-Sharp)
11 Low G# (G-Sharp)
12 High D
13 Middle D
14 Low D
15 Silence

Important Terms:

Sound Scheme - A set of sounds (this is the .SPC file in the SND directory of the Datalink application) which are
downloaded to the watch. A sound scheme contains all the Soundlets and Sound Sequences for all 10 defined
system sound values. This file is loaded in the watch so that the end of it is at $0435 in memory.

System Sound - is one of the 10 defined system sound values:

Value Symbol Purpose
$80 SND_NONE No sound at all
$c1 SND_BUTTON Button Beep
$c2 SND_RETURN Return to time
$83 SND_HOURLY Hourly Chime
$c4 SND_CONF Confirmation
$85 SND_APPT Appointment Beep
$86 SND_ALARM Alarm Beep

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

$87 SND_DLOAD Program Download
$88 SND_EXTRA Extra sound
$89 SND_COMERR Comm Error
$8a SND_DONE Comm done
Sound Sequence - The sequence of soundlets which are played to for a given System Sound. There can be as few
as 1 Sound Sequence and as many as 10 different Sound Sequences. Each System Sound maps to one Sound
Sequence although the same Sound Sequence can be used for more than one System Sound. A Sound Sequence
is represented by two series of numbers.

The first series is called the Soundlet Count Table and consists of a series of one or more bytes where the last byte
in the series has the high bit set ($80). For each entry in the Soundlet Count Table, the number of times that a sound
is played is determined by clearing the tip bit and then using the resulting number as a count. So $81 indicates the
last entry with a repeat count of 1. $A0 indicates the last entry with a repeat count of 20. $0A indicates an entry (with
at least one more following it) with a repeat count of 10.

The second series is the Soundlet Pointer Table which consists of exactly the same number of entries as the
Soundlet Count Table. Each entry in this table is simply a pointer to the start of the corresponding Soundlet

Soundlet - A sequence of Notes terminated by a 0 note. There is no practical limit on the number of notes in a
Soundlet except for the total size of 256 bytes for the entire Sound Scheme.

Note - A single sound to be played. The note consists of a single byte broken into two Nibbles. The high order nibble
is the tone to be played and the low order nibble is the duration for that tone in 1/10th of a second intervals.

Tone - One of 14 tones supported by the sound hardware on the watch as well as the two values which produce
silence:

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 33 -

Sound Scheme Format

Given the default sounds in the ROM, I propose that this is how we would interpret and code them:

TONE_END EQU $00 ; END

TONE_LOW_C EQU $10 ; Low C

TONE_HI_C EQU $20 ; High C

TONE_MID_C EQU $30 ; Middle C

TONE_VHI_C EQU $40 ; Very high C

TONE_HI_F EQU $50 ; High F (little bit lower than F)

TONE_MID_F EQU $60 ; Middle F

TONE_LO_F EQU $70 ; Low F

TONE_VHI_GSHARP EQU $80 ; Very High G# (G Sharp)

TONE_HI_GSHARP EQU $90 ; High G#

TONE_MID_GSHARP EQU $A0 ; Middle G#

TONE_LO_GSHARP EQU $B0 ; Low G#

TONE_HI_D EQU $C0 ; High D

TONE_MID_D EQU $D0 ; Middle D

TONE_LO_D EQU $E0 ; Low D

TONE_PAUSE EQU $F0 ; Pause

;

; This is the default sound table

;

DEF_SOUNDS

 db SP_1-SD_1 ; 0000: 08

 db SD_1-DEF_SOUNDS ; 0001: 0b BUTTON BEEP

 db SD_2-DEF_SOUNDS ; 0002: 0c RETURN TO TIME

 db SD_3-DEF_SOUNDS ; 0003: 0d HOURLY CHIME

 db SD_4-DEF_SOUNDS ; 0004: 0e CONFIRMATION

 db SD_5-DEF_SOUNDS ; 0005: 0f APPOINTMENT BEEP

 db SD_5-DEF_SOUNDS ; 0006: 0f ALARM BEEP

 db SD_5-DEF_SOUNDS ; 0007: 0f PROGRAM DOWNLOAD

 db SD_5-DEF_SOUNDS ; 0008: 0f EXTRA

 db SD_6-DEF_SOUNDS ; 0009: 11 COMM ERROR

 db SD_7-DEF_SOUNDS ; 000a: 12 COMM DONE

;

; This is the soundlet count table which contains the duration

; counts for the individual soundlets

;

SD_1 db SND_END+1 ; 000b: 81

SD_2 db SND_END+1 ; 000c: 81

SD_3 db SND_END+2 ; 000d: 82

SD_4 db SND_END+4 ; 000e: 84

SD_5 db 10,SND_END+24 ; 000f: 0a a8

SD_6 db SND_END+10 ; 0011: 8a

SD_7 db SND_END+16 ; 0012: a0

;

; This is the soundlet pointer table which contains the pointers to the soundlets

;

SP_1 db SL_2-DEF_SOUNDS ; 0013: 1d

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

SP_2 db SL_1-DEF_SOUNDS ; 0014: 1b

SP_3 db SL_3-DEF_SOUNDS ; 0015: 1f

SP_4 db SL_2-DEF_SOUNDS ; 0016: 1d

SP_5 db SL_4-DEF_SOUNDS ; 0017: 22

 db SL_5-DEF_SOUNDS ; 0018: 27

SP_6 db SL_5-DEF_SOUNDS ; 0019: 2a

SP_7 db SL_2-DEF_SOUNDS ; 001a: 1d

;

; These are the soundlets themselves. The +1 or other number

indicates the duration for the sound.

;

SL_1 db TONE_HI_GSHARP+1 ; 001b: 91

 db TONE_END ; 001c: 00

SL_2 db TONE_MID_C+1 ; 001d: 31

 db TONE_END ; 001e: 00

SL_3 db TONE_MID_C+2 ; 001f: 32

 db TONE_PAUSE+2 ; 0020: f2

 db TONE_END ; 0021: 00

SL_4 db TONE_HI_C+2 ; 0022: 22

 db TONE_PAUSE+2 ; 0023: f2

 db TONE_HI_C+2 ; 0024: 22

 db TONE_PAUSE+10 ; 0025: fa

 db TONE_END ; 0026: 00

SL_5 db TONE_HI_C+2 ; 0027: 22

 db TONE_PAUSE+2 ; 0028: f2

 db TONE_END ; 0029: 00

SL_6 db TONE_HI_C+3 ; 002a: 23

 db TONE_MID_C+3 ; 002b: 33

 db TONE_END ; 002c: 00

;

; This is the tone that the comm app plays for each record

;

db TONE_MIDC/16 ; 002d: 03

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 35 -

Sound Files

The sound scheme stored in a file is nearly identical with the exception of a 4 byte header. Given the default sound,
you might picture it as below (with thanks to Pigeon for his first representation of this).

Brent Davidson gives a pretty good explanation of this: (“Absolute offset” refer to the offset location in the file.
 “Relative offset” refers to the location without the “header” (25 04 19 69).

The 08 at absolute offset 0004 indicates that the soundlet count table is 8 bytes long. In this case, we have only 7
different sounds, but one sound has two entries because it uses two soundlets.

The next 10 bytes represent the relative offsets of the sound sequences. The relative offset of each byte reflects the
system sound it represents. This table is fixed in size because there are only 10 system sounds.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

The next 8 (or however many are indicated by absolute offset 0004) bytes (the soundlet count table) are in the
relative offsets pointed to by the sound sequence table. The high order nibble of the byte indicates the last entry for
this sound. If it is clear, there are more soundlets associated with this sound. The remaining 7 bits in the byte are
the number of times that the corresponding soundlet is to be played. Hence, a value of 0a indicates that the
corresponding soundlet is to be played 10 times and the next entry in the soundlet count table is to be used for the
sound. A value of 81 indicates that the corresponding soundlet is to be played once.

The next 8 bytes (or however many are indicated by absolute offset 0004) are the soundlet pointer table. They are
parallel to the previous 8 bytes, and reference the relative offsets of the soundlets.

The remainder of the bytes (except for the final byte) are the soundlets themselves. The high order nibble indicates
the tone, the low order nibble indicates the duration. A byte of 00 signals the end of each soundlet.

The low order nibble of the final byte of the file indicates the tone played after each record is downloaded during
transmission, it’s high order nibble is always 0, and it’s count cannot be set.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 37 -

Wristapp Programming Reference

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

The Processor

The Datalink contains a custom Motorola 6805 processor which performs all of the watch functions. This turns out
to be a very convenient thing as the 6805 is well documented and actually pretty fun to program (IMHO). If you are
looking for technical information, I tend to look to Motorola’s 6805 home page and to the instruction set card Oxford
University Computing Laboratory’s Microprocessor reference card. All of my work has been done with just these
two information sources.

To summarize the 6805, it has two 8-bit registers (A and X) and a small number of addressing modes. Since it has
a 15 bit address bus, you are left with the interesting problem of using a register as a pointer. To deal with this, you
have to resort to self modifying code. If you are only having to point to a small amount of memory, you can also use
the indexed mode where the register is an offset from some base location. Of course, if you only have to point to
things in the first 256 bytes of ram, you can pretend that a register might be a pointer.

Bit Manip Branch Read/Modify/Write Control Register/Memory
BTB BSC REL DIR INH INH INH IX INH INH IMM DIR EXT IX2 IX1 IX
0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

x0 BRSET0 BSET0 BRA NEG NEGA NEGX NEGX NEG RTI SUB SUB SUB SUB SUB SUB
x1 BRCLR0 BCLR0 BRN RTS CMP CMP CMP CMP CMP CMP
x2 BRSET1 BSET1 BHI SBC SBC SBC SBC SBC SBC
x3 BRCLR1 BCLR1 BLS COM COMA COMX COMX COM SWI CPX CPX CPX CPX CPX CPX
x4 BRSET2 BSET2 BCC LSR LSRA LSRX LSRX LSR AND AND AND AND AND AND
x5 BRCLR2 BCLR2 BCS BIT BIT BIT BIT BIT BIT
x6 BRSET3 BSET3 BNE ROR RORA RORX RORX ROR LDA LDA LDA LDA LDA LDA
x7 BRCLR3 BCLR3 BEQ ASR ASRA ASRX ASRX ASR TAX STA STA STA STA STA
x8 BRSET4 BSET4 BHCC LSL LSLA LSLX LSLX LSL CLC EOR EOR EOR EOR EOR EOR
x9 BRCLR4 BCLR4 BHCS ROL ROLA ROLX ROLX ROL SEC ADC ADC ADC ADC ADC ADC
xA BRSET5 BSET5 BPL DEC DECA DECX DECX DEC CLI ORA ORA ORA ORA ORA ORA
xB BRCLR5 BCLR5 BMI SEI ADD ADD ADD ADD ADD ADD
xC BRSET6 BSET6 BMC INC INCA INCX INCX INC RSP JMP JMP JMP JMP JMP
xD BRCLR6 BCLR6 BMS TST TSTA TSTX TSTX TST NOP BSR* JSR JSR JSR JSR JSR
xE BRSET7 BSET7 BIL STOP LDX LDX LDX LDX LDX LDX
xF BRCLR7 BCLR7 BIH CLR CLRA CLRX CLRX CLR WAIT TXA STX STX STX STX STX

* BSR Is a REL type instruction

INH - Inherent (1 Byte)
IMM - Immediate (2 Bytes) e.g. LDA #20
DIR - Direct (2 Bytes) e.g. LDA $61
EXT - Extended (3 Bytes) e.g. LDA $0244
REL - Relative (2 Bytes) e.g. BEQ *+20
BSC - Bit Set/Clear (2 bytes)e.g. BSET2 $61
BTB - Bit test and Branch (3 bytes) e.g. BRCLR2 $61,*+10
IX - Indexed (1 byte) e.g. ADD ,X or ADD 0,X
IX1 - Indexed 1 byte offset (2 bytes) e.g. LDA $61,X
IX2 - Indexed 2 byte offset (3 bytes) e.g. LDA $0122,X

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 39 -

Tools

Unfortunately, there really aren’t a lot of tools out there for creating wristapps... While there are free assemblers
available on Motorola’s 6805 home page, you will find that the lack of support for Timex’s character set can be a bit
limiting. Even more problematic is that you have to figure out how to get the program to the watch in order to run it.

My solution has been to write my own assembler which creates the .zap file format that is understood by the
Datalink software on the PC. This DLZap program is pretty braindead in many ways and has quite a few bugs
associated with refreshing the screen. It also is limited to creating apps only for the 150 or the 150s one at a time. If
you want to create an app which runs on both watches, you have to combine them by hand.

I am working on a newer tool which doesn’t have the refresh bugs (yeah, right :-) and automatically creates both the
150 and the 150s applications. Hopefully, this should be available in a couple of weeks. (Like I ever got a chance to
actually finish it , but read on :-).

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

ASM6805 (2 months later)

Instead of fixing the refresh problems in DLZap, I realized that I needed something to address all of the work I was
having to do to create wristApps and make it a bit easier (and hopefully more reproducible). I have gone and created
a new version of the DLZap program which takes .zsm files and outputs the proper .zap file. Basically in a nutshell
what it does is:

1. Compile from a single .zsm file and create both the 150 and the 150S versions of a Wristapp

2. Find the location where the Datalink software is installed and put the new wristapp there

3. Automatically update the timexdl.dat file to incorporate the wristapp

4. Integrate into Microsoft Developer studio to allow you to advance through errors with the F4 key.

5. Run as a windows app and allow you to select the file to assemble from a file requester

You can download the setup program for the beta here.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 41 -

The .ZSM file Format

So, what is the .ZSM file format? It is nothing more than a standard .ASM file with a couple of comment lines at the
beginning. For example the header for TIPCALC would be:

;Name: Tim Calculator

;Version: TIPCALC1

;Description: The tip calculator - by John A. Toebes, VIII

;

;Press the set button to enter the amount. When in set mode, press the MODE button to switch between

dollars and cents mode.

;Press the set button to go back to the display mode. The tip amount will scroll across the bottom of the

screen as 15%, 20% and then 10% in sequence.

;

;When in display mode, pressing the prev or next buttons will enter the set mode automatically on the

dollars amount.

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

The keywords are immediately after the semicolon and before the colon. The only recognized keywords are
HEADER, NAME, VERSION, DESCRIPTION, HELPFILE, HELPTOPIC, and PARENT. It uses the VERSION
keyword to identify the name of the created wristapp. The remaining information is just copied into the .ZAP file for
use by the Timex software. In the process of doing this, I discovered that the last digit of the first line of a .ZAP file
(the line that looks like TDL0405971) indicates whether the app is a 150-only app (last digit =1) or a 150/150S Dual
app (last digit=2).

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

System Routine Definitions

To compile a Wristapp, you need a header file which defines all of the routines that you might call. For now, I have
two versions of the same file - Wristapp.i which I put into two separate directories:

• Wristapp.i for the 150

• Wristapp.i for the 150s

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 43 -

Program Layout Basics

Wristapp Interface Entries

Unlike more complex operating systems and modern programming environments, the Datalink Wristapps are simply
a series of bytes to be loaded into the watch. They are always loaded at $0110 and there is no relocation
whatsoever. This means that if you want to have more than one Wristapp in the watch at a time, you can’t.
 However, you can get around this limitation by creating a Wristapp which performs more than one function. The
biggest issue with this will be the limited amount of ram ($0110 up $0436 minus however much you use for a sound
scheme). This works out to 804 bytes if you could have no sound scheme loaded. Since the typical sound scheme
is about 32 bytes, a more reasonable limit is 770 bytes for a wristapp - not a lot of room for sloppy code.

0110 WRIST_MAIN
This is a JMP instruction to your primary initialization entry point for the
wristapp. It is called immediately after the wristapp has been loaded for
the first time and never again.

0113 WRIST_SUSPEND

This is a JMP instruction to your suspend entry point. It is called if your
app is suspended because an alarm has gone off or your app has timed
out because nothing has happened for 3 minutes. If you don’t care
about this, the three bytes should be a RTS followed by two NOP
instructions.

0116 WRIST_DOTIC

This is a JMP instruction to your callback handling routine. It is called in
any situation where the app has requested a callback for timed events
such as the normal TIC (1/10th second), Second change, Minute change,
Hour Change, and Day change. If you do not want to handle these
events, the three bytes should be a RTS followed by two NOP
instructions

0119 WRIST_INCOMM

This is a JMP instruction to your COMM suspend routine. It is called
when the COMM app wants to suspend your Wristapp which has
requested a callback for timed events. This gives your app a chance to
forget about timers for a while. Note that it is possible that the app may
never be reentered if the user downloads a new wristapp on top of it. If
you don’t care about this, the three bytes should be a RTS followed by
two NOP instructions.

011C WRIST_NEWDATA

This is a JMP instruction to your new data handling routine. It is called
when the COMM app has downloaded new data to the watch. This can
be useful if you have an app that has to know about the data in the
EEProm such as a password protect utility. If you don’t care about this,
the three bytes should be a RTS followed by two NOP instructions.

011F WRIST_GETSTATE

This is always two instructions:
LDA STATETAB,X
RTS
Which are used to get an entry from The State Table. The X register
points to the entry that is to be retrieved. You MUST supply this routine
in order for the Wristapp to even function.

0123 WRIST_JMP_STATE0 This is a JMP to the state 0 handling routine.

0126 WRIST_OFF_STATE0 This is the offset into the state table for the state data associated with
state 0. Unless you reorder the states, this will always be 0.

0127 WRIST_JMP_STATE1 This is a JMP to the state 1 handling routine (if any).

012A WRIST_OFF_STATE1 This is the offset into the state table for the state data associated with
state 1 (if any)

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

This sequence of JMP instructions followed by the offset value repeats for all of the states that your Wristapp
supports. If you only have a single state, then your code can start at 0127.

Strings and Data

With any typical program, you want to be able to write to the display. If you can get away with using strings from the
ROM, then you don’t have to worry about where to put the strings. However, when you want to put your own strings
there, you need to be aware that the BANNER8, PUT6TOP, and PUT6MID routines all take offsets from 0110 as
the string to put on the display. This effectively limits you to putting all of your strings at the start of the Wristapp.
Since you also know that you can’t put a string until 0127, those first bytes of addressability are lost, limiting you to a
total of 233 bytes of strings that you can store.

.ZAP File Format

The Timex Datalink software on the PC stores all of the Wristapps in a .ZAP file. The format of this file turns out to
be pretty simple. In fact, you can edit it using any standard text editor as long as you remember that the last line can
not have a Carriage return after it. This seems to make the Datalink software not always recognize the file.

Within the file, each section is terminated by a ¬ character ($AC). You can optionally put a comment on the line
immediately after the separator character. For the V2.1 software, the .ZAP file contains the code for both the 150
and the 150s. For the earlier 2.0 software, the 150 code happens to be first and the 150s code is simply ignored.
 This allows the same .zap file to work for both versions of the software.

Applet file
header

This is some sort of a version string associated with the creation time. It is typically of the form
“TDLmmddyyn” where mmddyy is the date that the applet was created and n is a sequence
number. The actual value of this string seems to be ignored.

Name 150
This is the name of the applet as it is to appear in the Wristapps list for the 150. The name can be
any number of characters (there may be an upper limit on it) and can contain spaces and other
special characters.

Version 150 This is the version number of the 150 applet. It should be up to 8 characters of alphanumeric
characters. It is not clear that this is actually used by the software.

Description
150

This is the description for the 150 applet that is shown when you select it in the Wristapp panel.
 The description can be pretty much any length and even include blank lines. The software does
its best to wrap this description when it displays it.

Help
Filename
150

This is the name of the Windows .hlp file that is to be used when the user asks for help on the 150
applet. The default file that timex uses for all of its wristapps is WATCHAPP.HLP. You should
provide a .hlp file for any wristapp which tells the user how the Wristapp works on the watch.

Help Index
150

This is the index in the help file associated with the help for the 150 applet. This is passed along
with the Help Filename to the Windows Help system.

Config App
150

This is the configuration program (if any) that is to be invoked when the user selects the configure
button in the Wristapps software. This program should be a standalone Windows program that
modifies the applet as appropriate. If the program is not configurable, the string should be “none”

Watch 150 This is the name of the watch that this applet is targeted at. It should be “Timex Data Link 150
Watch”

Code 150

This is the hex code for the 150 applet. It is simply the ASCII dump of the hex digits (0-9A-Z) of
the code to be downloaded to the watch. It really should be a single line of text with no spaces,
but it does appear to allow the line to wrap. Since the longest this line can ever be is 1608
characters, there really isn’t any need to wrap the line.

CRC 150 This is the CRC-16 associated with the 150 applet. It is only a CRC on the Code 150 string.
Data
Indicator

This is the indicator of data for the 150 applet. If there is no data, this should be a 0, otherwise it is
a 1.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 45 -

150

Data 150 (OPTIONAL) This is the data for the 150 applet. This entry is present ONLY if the Data Indicator
150 value is 1.

Name 150s
This is the name of the applet as it is to appear in the Wristapps list for the 150s. The name can
be any number of characters (there may be an upper limit on it) and can contain spaces and other
special characters.

Version
150s

This is the version number of the 150s applet. It should be up to 8 characters of alphanumeric
characters. It is not clear that this is actually used by the software.

Description
150s

This is the description for the 150s applet that is shown when you select it in the Wristapp panel.
 The description can be pretty much any length and even include blank lines. The software does
its best to wrap this description when it displays it.

Help
Filename
150s

This is the name of the Windows .hlp file that is to be used when the user asks for help on the
150s applet. The default file that Timex uses for all of its wristapps is WATCHAPP.HLP. You
should provide a .hlp file for any wristapp which tells the user how the Wristapp works on the
watch.

Help Index
150s

This is the index in the help file associated with the help for the 150 applet. This is passed along
with the Help Filename to the Windows Help system.

Config App
150s

This is the configuration program (if any) that is to be invoked when the user selects the configure
button in the Wristapps software. This program should be a standalone Windows program which
modifies the applet as appropriate. If the program is not configurable, the string should be “none”

Watch 150s This is the name of the watch that this applet is targeted at. It should be “Timex Data Link 150s
Watch”

Code 150s

This is the hex code for the 150s applet. It is simply the ASCII dump of the hex digits (0-9A-Z) of
the code to be downloaded to the watch. It really should be a single line of text with no spaces,
but it does appear to allow the line to wrap. Since the longest this line can ever be is 1608
characters, there really isn’t any need to wrap the line.

CRC 150s This is the CRC-16 associated with the 150s applet. It is only a crc on the Code 150s string.
Data
Indicator
150s

This is the indicator of data for the 150s applet. If there is no data, this should be a 0, otherwise it
is a 1.

Data 150s (OPTIONAL) This is the data for the 150s applet. This entry is present ONLY if the Data Indicator
150 value is 1.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Getting Started

When your program is first invoked, you have to set a bit to tell the Roms that you are ready to handle processing.
 To do this, you need to set bit 7 in the WRISTAPP_FLAGS ($96). At this time, you probably want to set a few of
the other requests to indicate how your Wristapp wants to process things. The bits in this flag byte are interpreted
as:

WRISTAPP_FLAGS - $96
7 Wristapp has been loaded SET=LOADED
6 Uses system rules for button beep decisions SET=System Rules
5 Play button beep sound on wristapp for mode button SET=ENABLE
4 Play button beep sound on wristapp for any button SET=ENABLE
3 wristapp wants a call once a day when it changes (WRIST_DOTIC) SET=CALL
2 wristapp wants a call once an hour when it changes (WRIST_DOTIC) SET=CALL
1 wristapp wants a call once a minute when it changes (WRIST_DOTIC) SET=CALL
0 wristapp wants a second timer function called at start of interrupt (WRIST_DOTIC) SET=CALL

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 47 -

The State Table

An app is generally run through events passed in to it. These events are controlled by a series of state tables which
indicate which events are to put the app into what state and how long to process that app for. A state table consists
of a single byte followed by a series of three byte entries with a EVENT_END terminator byte after the last entry.
Each entry has three parts to it:

1. The event code which indicates what event is to be accepted by this state table

2. The timer indicator to indicate how long to wait before firing off a timer if no other event occurs before it.
 The values can be found in the table below

3. The new state to enter when this event is encountered

The initial byte is the state to enter if an event is encountered which does not match any entry in the table.

Special State Tables

State table 0 is always entered first for an app. It will almost always have an EVT_ENTER entry in it so that you can
know when an application is first called.

If an app supports nesting (all WristApps might), then it will be entered by a call to State Table 1 with an EVT_NEST
event. All other state tables are completely defined by the application and may be used in any way that you want.
Often a separate state is used for each mode that the app might have (such as a set mode). In order to switch
between states, either you code the new state with the event, such as with the EVT_SET operation OR you can
post a user event which has an associated entry in the state table that has the new state for that event.

There are two special state values associated with an event. $FF is used to indicate that the app wishes to exit and
go to the next app. For WristApps, this means go back to the time app. $FE is a special value used to handle
returning from a EVT_NEST nesting. If all of the nested app processing occurs in state 1, then this value would
appear for an entry in the state1 table. For all others, it is assumed to be the new state table to select. No error
checking is done on any of these values.

One very nice thing that can be done with the events is posting a timer to go off if no other event occurs after the
current event. There are two timers although only one can be active at a time. The reason for this is to allow the app
to quickly distinguish between which event timed out without having to save some global variable. These timer
values are fixed in the ROM and you select which timer interval you want through the value you set. For a strange
happenstance, all of the intervals of the second timer are also available for the first time (but I would be careful not to
count on that).

Nested Apps

One important event that an application should handle is the EVT_RESUME which occurs after a nested app
terminates. This allows your application to pick up after an alarm or appointment has gone off. When you get this
event, it is a pretty good idea to refresh the display since you don’t know what state the other app left it in. You
should also use this time to restore any system flags that you may have set. You should also be aware that before
your app is suspended, the system will call your suspend function at WRIST_SUSPEND ($0113). That will be your
chance to save any variables that you expect to have trashed.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Button Events

For the events, there are three forms of the button events. The EVT_NEXT, EVT_MODE, EVT_SET, EVT_PREV,
and EVT_GLOW events allow you to see when the corresponding button is pressed. When you get one of these
events, you will not get notification of when the button was released. There is a set of events EVT_DNNEXT,
EVT_DNMODE, EVT_DNSET, EVT_DNPREV and EVT_DNGLOW which give you the down transition for those
buttons and the corresponding set of events EVT_UPNEXT, EVT_UPMODE, EVT_UPSET (I like that name),
EVT_UPPREV, and EVT_UPGLOW which tell you when the button has been released. It is the case that the UP
event can be handled by a different state than the DN event.

If you want to get any of those buttons, you can look for EVT_ANY (and EVT_DNANY, EVT_UPANY) which will call
when any of the 5 buttons have been pressed. In order to figure out which button was pressed, your code will need
to look at BTN_PRESSED ($04c3) which will contain one of the EVT_NEXT, EVT_MODE, EVT_SET, EVT_PREV,
and EVT_GLOW values. Often an application does not have an interest in the Indiglo button but cares about the
other 4 buttons. For this, you can use EVT_ANY4 (and EVT_DNANY4, EVT_UPANY4) just the same way as the
EVT_ANY events.

Timer Events

The EVT_TIMER1 and EVT_TIMER2 events come in when the timer associated with a particular event has elapsed
without another event being posted. There is no requirement of using a particular timer for a given event other than
to allow you to distinguish between which event occurred. The two timers have slightly different values for when they
go off and that might slightly affect your choice of timers (but that is rare). From experimentation, it appears that the
time cycle for the TIMER1 is a bit slower than that for Timer2. I recommend that you use Timer2 for any of the fast
actions and timer1 for the slower ones (like timing out the display).

Other Events

The EVT_USER0, EVT_USER1, EVT_USER2, and EVT_USER3 events are for an application to use for anything it
wants to. Most of the time, these are useful for transitioning to a different state. You can post an event by calling
POSTEVENT.

The only other event is EVT_IDLE. This event is sent only to the TIME app when another app has been suspended
because it was idle for more than three minutes. Since a wristapp could never get this event, it is probably worth
ignoring.

Event Constants

Here are the constants which you would find useful in creating your app:

State Table Values

EVT_NEXT $00 Next button pressed (not interested in the up transition)
EVT_MODE $01 Mode button pressed (not interested in the up transition)
EVT_SET $02 Set/Delete button pressed (not interested in the up transition)
EVT_PREV $03 Prev button pressed (not interested in the up transition)
EVT_GLOW $04 Indiglo button pressed (not interested in the up transition)
EVT_ANY $05 Any button pressed (not interested in the up transition)
EVT_ANY4 $06 Any button pressed except Indiglo (not interested in the up transition)
EVT_IDLE $19 This is only sent to the TIME app when another app has been idle for more

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 49 -

than three minutes
EVT_RESUME $1a Called when resuming from a nested app
EVT_ENTER $1b Initial state.

EVT_NEST $1c
The state table 1 entry called when a nested application is called. It is the
equivalent of EVT_ENTER for an interrupt. This only occurs for WristApps,
Timer, and appt apps.

EVT_END $1d End of event table indicator
EVT_TIMER1 $1e Timer event - This is fired for the TIM1_ values
EVT_TIMER2 $1f Timer event - This is fired for the TIM2_ values

$20-$36 UNUSED (I bet that you can have user specified events for these too)
EVT_USER0 $37 User specified events. Queued by calling POSTEVENT
EVT_USER1 $38 User specified events. Queued by calling POSTEVENT
EVT_USER2 $39 User specified events. Queued by calling POSTEVENT
EVT_USER3 $3a User specified events. Queued by calling POSTEVENT

$3b-$7f UNUSED
EVT_DNNEXT $80 Next button pressed
EVT_DNMODE $81 Mode button pressed
EVT_DNSET $82 Set/Delete button pressed
EVT_DNPREV $83 Prev button pressed
EVT_DNGLOW $84 Indiglo button pressed
EVT_DNANY $85 Any of the four buttons Pressed
EVT_DNANY4 $86 Any button pressed except Indiglo

$87-$9F UNUSED
EVT_UPNEXT $A0 Next button released
EVT_UPMODE $A1 Mode button released
EVT_UPSET $A2 Set/Delete button released
EVT_UPPREV $A3 Prev button released
EVT_UPGLOW $A4 Indiglo button released
EVT_UPANY $A5 Any of the four buttons Released
EVT_UPANY4 $A6 Any button Released except Indiglo
Timer Constants

TIM_ONCE $ff No time interval. Operation is executed just once
TIM1_TIC $00
TIM1_2TIC $01
TIM1_3TIC $02
TIM1_4TIC $03
TIM1_HALFSEC $04
TIM1_SECOND $05
TIM1_SECHALF $06
TIM1_TWOSEC $07
TIM1_TWOSEC1 $08
TIM1_12SEC $09
TIM1_18SEC $0a
TIM2_TIC $80 This is the typical scroll interval

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

TIM2_2TIC $81
TIM2_4TIC $82
TIM2_8TIC $83 This is the normal blink interval
TIM2_12TIC $84 Just over a second
TIM2_16TIC $85 A second and a half
TIM2_24TIC $86 Two and a half seconds
TIM2_32TIC $87 Just over three seconds
TIM2_40TIC $88 Four seconds
TIM2_48TIC $89 Almost five seconds
TIM2_96TIC $8a Almost ten seconds
Note that the second part of this table is happen-stance since it is really a rollover of the second table on top of the
first one. But it might be useful to someone...

TIM1_TICA $0b This is the typical scroll interval
TIM1_2TICA $0c
TIM1_4TICA $0d
TIM1_8TIC $0e This is the normal blink interval
TIM1_12TIC $0f Just over a second
TIM1_16TIC $10 A second and a half
TIM1_24TIC $11 Two and a half seconds
TIM1_32TIC $12 Just over three seconds
TIM1_40TIC $13 Four seconds
TIM1_48TIC $14 Almost five seconds
TIM1_96TIC $15 Almost ten seconds

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 51 -

Classes of Callable Functions

I have broken down the system routines into 14 basic categories. For each function listed, you will find the name of
the routine followed by two hex addresses separated by a slash. The first address is the location of the routine for
the Datalink 150 and the second is the location for that routine on the 150s.

Anniversary
support

General routines for accessing the Anniversary data in the EEProms and setting all of the flags
and display to indicate the anniversaries.

Appointment
support

General routines for accessing the appointment data in the EEProms and setting all of the flags
and display segments for appointments.

Blinking
routines ????

Event support ????
Format
Routines Routines for converting numbers into the corresponding display digits.

Indiglo support Routines for turning on and off the Indiglo light as well as managing the timers for the light
INST Support ????
Internal Not quite sure why you would ever call these routines, but the MIGHT be useful sometimes.
Line routines ????
Packet/EEPro
m Support ????

Scanning
support ????

Scrolling
Messages ????

Sound
Support ????

Update
functions ????

Anniversary support routines

Routine FIND_ANNIV_TODAY - $40CD/$40BC

Parameters None
Purpose This finds the next anniversary entry which is greater than or equal to today

Routine FIND_ANNIV_SCAN - $40D3/$40C2

Parameters ANNIVSCAN_MONTH, ANNIVSCAN_YEAR, ANNIVSCAN_DAY - Date to scan for anniversary
entry

Purpose This finds the next anniversary entry which is greater than or equal to the scan date

Routine ANNIV_NEXT_ENTRY - $40E1/$40D0

Parameters ANNIV_CURRENT – The current anniversary entry

Purpose Advance to the next anniversary entry. If we hit the end of the list, we need to wrap the year and
go to the next one

Routine ANNIV_PREV_ENTRY - $4117/$4106

Parameters ANNIV_CURRENT – The current anniversary entry

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Purpose Advance to the previous anniversary entry. If we hit the end of the list, we need to wrap the year
and go to the end again

Routine FIND_ANNIV_ENTRY - $415F/$414E

Parameters ANNIVTEST_MONTH, ANNIVTEST_DAY, ANNIVTEST_YEAR - Date of anniversary to find
Purpose This finds the next anniversary entry which is greater than or equal to the specified date

Routine CHECK_ANNIVERSARIES - $41FC/$41EB

Parameters None
Purpose This code checks all anniversaries to see if any occur today

Routine SET_ANNIVTEST_TODAY - $423A/$4229

Parameters None
Purpose Latches the current month, date, year into the ANNIVTEST_ locations

Routine INIT_ANNIVERSARY_DATA - $4282/$4271

Parameters None

Purpose This clears the ANNIVERSARY occurrence flags and latches in the current date for the
anniversary check routine

Routine TEST_ANNIVERSARY - $4288/$4277

Parameters EXTRACTBUF – Anniversary data to be checked
ANNIVTEST_MONTH, ANNIVTEST_DAY, ANNIVTEST_YEAR - Current date to check against

Purpose This tests the anniversary against the current day and sets the 4,ANNIV_FLAGS and
5,ANNIV_FLAGS flags appropriately.

Routine ANNIV_COPY_INFO - $4308/$42F7

Parameters ANNIV_YEAR - The year to fake the appointment as
Purpose This copies the current appointment information into the ANNIVSCAN variables

Routine READ_ANNIV_CURRENT - $4317/$4306

Parameters ANNIV_CURRENT – the anniversary entry to be read
Purpose This reads in the current anniversary entry into EXTRACTBUF

Routine READ_ANNIV_FIRST - $4326/$4315

Parameters None
Purpose This reads the first anniversary entry into EXTRACTBUF

Routine READ_ANNIV_NEXT - $4335/$4324

Parameters None
Purpose This reads the next anniversary entry into EXTRACTBUF

Scanning support

Routine TEST_SCAN_START - $4346/$4335

Parameters SCAN_MONTH - Month, Day, Year of appointment to compare
SCAN_DAY SCAN_YEAR TMAPP_MONTH - Current Month, Day, Year

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 53 -

TMAPP_DAY TMAPP_YEAR
Purpose Sets 0,SCAN_FLAGS to indicate that the current scan date is out of range.

Routine FIX_SCAN_YEAR - $4371/$4360

Parameters SCAN_YEAR - Year to be adjusted
Purpose Adjusts SCAN_YEAR to account for years past 2000

Routine TEST_SCAN_END - $437E/$436D

Parameters SCAN_MONTH, SCAN_DAY, SCAN_YEAR - Current scan date
SCAN_END_MONTH, SCAN_END_DAY, SCAN_END_YEAR - Limit of the scan range

Purpose Tests to see if the current scan date is past the end range for the scan. If so, it sets
0,SCAN_FLAGS

Routine RESTORE_SCAN_YEAR - $43AE/$439D

Parameters SCAN_YEAR - Year to be adjusted
Purpose Restores SCAN_YEAR to be in the 0-99 range (After a call to FIX_SCAN_YEAR)

Routine INCREMENT_SCAN_DATE - $43B9/$43A8

Parameters SCAN_MONTH, SCAN_DAY, SCAN_YEAR
Purpose Increments the current scan day by one

Routine GET_SCAN_MONTHLEN - $43E0/$43CF

Parameters None
Purpose This computes the end of the month based on SCAN_MONTH and SCAN_YEAR

Routine DECREMENT_SCAN_DATE - $43F4/$43E3

Parameters SCAN_MONTH, SCAN_YEAR
Purpose Decrements the scan data by one

Appointment support

Routine FIND_APPT_NOW - $4415/$4404

Parameters None

Purpose This finds and reads in an appointment which will occur next after the current time in the current
time zone. The appointment is put into EXTRACTBUF and all appropriate variables are set.

Routine FIND_APPT_SCAN - $441B/$440A

Parameters SCAN_MONTH,DAY,YEAR

Purpose This finds and reads in an appointment which will occur next after the current scan values. The
appointment is put into EXTRACTBUF and all appropriate variables are set.

Routine SET_APPTFIND_SCAN - $4422/$4411

Parameters SCAN_MONTH, SCAN_DAY, SCAN_YEAR
Purpose This copies over the current SCAN variables into the APPTFIND variables

Routine READ_APPT_NEXT - $442C/$441B

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Parameters APPT_CURRENT, APPT_LAST - current and last appointment entries
Purpose This reads in the next appointment into EXTRACTBUF

Routine
APPT_LATCH_ENTRYDATA - $4468/$4457
APPT_LATCH_ENTRYONLY - $446C/$445B

Parameters EXTRACTBUF - current appointment entry APPTEST_YEAR - year of the entry

Purpose
These copy the current appointment data into the corresponding system variables The
ENTRYONLY routine doesn’t copy over the year because it presumably has already been
copied.

Routine READ_APPT_PREV - $447C/$446B

Parameters APPT_CURRENT, APPT_LAST - current and last appointment entries
Purpose This reads in the previous appointment into EXTRACTBUF

Routine FIND_APPT_ENTRY - $44C6/$44B5

Parameters APPTFIND_YEAR,DAY,MONTH,QHOUR,HOUR
Purpose This finds an appointment that matches or exceeds the APPTFIND values

Routine APPT_LATCH_ENTDYDATA - $45A5/$4594

Parameters APPT_ENTRY - Entry to latch appointment information for

Purpose This copies the current appointment entry into the corresponding system variables so that we can
continue comparing appointments

Routine CHECK_APPOINTMENTS - $45B9/$45A8

Parameters APPT_QHOUR_NOW - The current quarter-hour
APPT_BASEYEAR - The base year for the first appointment

Purpose This tests to see if any appointments are ready to go off. It posts a nested app for any
appointments

Routine SET_APPTFIND_NOW - $462A/$4619

Parameters None
Purpose Sets the appointment find variables to the current time

Routine READ_APPT_FIRST - $4686/$4675

Parameters APPT_FIRST
Purpose Read in the first appointment

Routine READ_APPT_LAST - $469D/$468C

Parameters APPT_LAST - the entry of the last appointment
Purpose This reads in the last appointment entry

Routine CHECK_APPT_TIME - $46B7/$46A6

Parameters None
Purpose This checks to see if any appointments are ready to go off

Routine READ_APPT_PACKET1 - $473A/$4729

Parameters None

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 55 -

Purpose This reads the first appointment packet into EXTRACTBUF

Routine READ_NEXT_APPT_PACKET - $4749/$4738

Parameters None
Purpose This reads in the next appointment packet into EXTRACTBUF

Routine READ_APPT_CURRENT - $475A/$4749

Parameters APPT_CURRENT - the appointment entry to be read
Purpose This reads in the current appointment entry into EXTRACTBUF

Internal

Routine ANNIV_GETMONTHLEN - $426A/$4259

Parameters ANNIV_MONTH – Month to calculate
ANNIVTEST_YEAR – Year to calculate

Purpose This computes the number of days in the given month

Routine ACQUIRE_TIME - $4F22/$4F11

Parameters None

Purpose This acquires the right to change the time. All alarms and anniversaries will temporarily be
ignored until RELEASE_TIME has been called

Routine RELEASE_TIME - $4F2E/$4F1D

Parameters None
Purpose This releases the lock on time and allows all alarms and anniversaries to be checked once again.

Indiglo support

Routine QUEUE_INDIGLO_OFF - $49D9/$4C38

Parameters None
Purpose Queue up the timer for shutting off the Indiglo if the Indiglo is enabled and we are in night mode.

Routine INDIGLO_OFF - $4E8E/$4E7D

Parameters None
Purpose This routine turns off the Indiglo light

Routine NIGHTMODE_INDIGLO_ON - $49E6/$4C45

Parameters None

Purpose Queue up the timer for shutting off the Indiglo if the Indiglo is enabled and we are in night mode.
The INDIGLO_ON routine just simply turns the Indiglo on immediately

Routine INDIGLO_ON - $49EC/$4C4B

Parameters None

Purpose Queue up the timer for shutting off the Indiglo if the Indiglo is enabled and we are in night mode.
The INDIGLO_ON routine just simply turns the Indiglo on immediately

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Sound Support

Routine SNDSTART - $4E4A/$4E39

Parameters SYSSOUND - Current sound to be playing
Purpose Start playing the current sound in SYSSOUND

Routine STOP_ALL_SOUND - $4E68/$4E57

Parameters None
Purpose Keep the sound hardware running or reset everything else

Routine PLAYCONF - $4E7A/$4E69

Parameters None
Purpose Play a confirmation sound

Routine PLAYBUTTON - $4E80/$4E6F

Parameters None
Purpose Play the button beep sound if no other sound is currently playing

Routine PLAY_HOURLY - $4EB1/$4EA0

Parameters None
Purpose Plays the hourly sound if nothing else is playing and sounds are enabled

Routine SNDSTOP - $4F3A/$4F29

Parameters None
Purpose This stops whatever sound is currently playing

Routine PLAY_BUTTON_SAFE - $4F46/$4F35

Parameters None
Purpose This will play the button beep sound if it hasn’t just been played

Event support

Routine POSTEVENT - $4E89/$4E78

Parameters A - Event to be posted.

Purpose Post a event to the internal processing queue This posts an event to run through the processing
loop for the current applet. Typical user events are in the $30-$3F range.

Routine CALL_NESTEDAPP - $4F4D/$4F3C

Parameters

A - Nested application number.
This is one of the three defined apps:
9 = APP2_ALARM - Alarm (while another app is running)
10 = APP2_APPT - Appointment (while another app is running)
11 = APP2_WRIST - Wristapp (while another app is running)
X - Parameter to pass to the nested application

Purpose

This sets up to call a nested application while the current one is running. Up to 5 apps may be
nested (although there are only 3 potential ones defined). If more than 5 have been called the
oldest one will be forgotten. When the nested app is called, NESTED_APP will be set to the
application number passed in and NESTED_PARM will contain the X parameter passed in

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 57 -

Packet/EEProm Support

Routine UNPACK_PHONENUM - $4FBF/$4FAE

Parameters EXTRACTBUF+1 – Pointer to 6 bytes of compressed phone number information
Returns BUF_PHONENUM – Contains 12 byte unpacked number

Purpose

This gets a compressed phone number and puts it in the phone number buffer Phone numbers
are compressed into nibbles instead of bytes, allowing a number to be packed in half the space.
As a result, a number can contain only 16 possible characters: “01234567890CFHPW “ Any
other characters are encoded as a space before being sent down. The presumption is that the
characters allow for the number and indicators for: Cell Fax Home Pager Work

Routine UNPACK_STRING - $4FF0/$4FDF

Parameters PARM_UNPACKOFF - Offset into the start of the compressed buffer
EXTRACTBUF - packed data

Returns MSGBUF - Contains the unpacked string

Purpose

This gets a compressed string and puts it into the scrolling message buffer Strings are packed 6
bits across so that 4 unpacked characters can fit in 3 bytes This routine will unpack enough bits
so that the resultant message buffer is exactly 32 bytes long. It is assumed that the end of the
buffer message is stored in the packed string.

Routine READ_PACKET - $503E/$502D

Parameters

PARM_LEN - Number of bytes to copy
PARM_PACKET – Packet number to read
X - Packet group to search (0,2,4,6)
0 = APPT Entries
2 = List entries
4 = Phone Number
6 = Anniversaries

Purpose Reads the requested packet into EXTRACTBUF

Routine FIND_PACKET - $5044/$5033

Returns INST_ADDRHI:INST_ADDRLO - points to the start of the packet

Parameters

PARM_PACKET - Packet number to locate
X - Packet group to search (0,2,4,6)
0 = APPT Entries
2 = List entries
4 = Phone Number
6 = Anniversaries

Purpose This advances to the given packet in the packet group

Routine DO_TRANSFER - $505F/$504E

Parameters PARM_LEN - Number of bytes to copy
INST_ADDRHI - Address of source data to copy

Purpose This transfers the data from the indicated location to EXTRACTBUF The source can be the
EEPROM or somewhere else in memory

Routine TOGGLE_ENTRYFLAG - $5077/$5066

Parameters None

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Purpose This toggles the high bit of the first byte in an entry

Routine INIT_EEPROMPOINTERS - $5080/$506F

Parameters None
Purpose Initializes all of the EEProm data pointers to reflect empty data for all of the applications

Routine RESET_EEPROMENTRIES - $508D/$507C

Parameters None
Purpose Re-Initializes all of the EEProm data pointers to reflect empty data for all of the applications

Routine REINIT_APP_DATA - $50A7/$5096

Parameters None
Purpose This routine is called after new data has been loaded into the EEPROM

INST Support

Routine
MAKE_INST_LDA - $50B4/$50A3
MAKE_INST_LDA_X - $50B8/$50A7
MAKE_INST_STA - $50BC/$50AB

Parameters None
Purpose These routines make the INST2 opcodes to be an LDA or STA $nnnn,X instruction

Routine ADD_INSTADDR - $50C7/$50B6

Parameters A - value to add to the current INST_ADDR base address

Purpose This takes an offset value and subsumes it into the already constructed instruction starting at
INST_OPCODE

Routine SET_INSTADDR_0110 - $50D7/$50C6

Parameters X – R
Purpose This routine sets INST_ADDRHI:INST_ADDRLO to be 0110

Routine GET_INST_BYTE - $50EB/$50DA

Parameters INST_ADDRHI:INST_ADDRLO - the pointer to the byte to get

Purpose This routine gets the single byte from the indicated location either in the EEPROM or somewhere
in memory.

Routine WRITE_FLAG_BYTE - $510A/$50F9

Parameters INST_ADDRHI:INST_ADDRLO - the pointer to the byte to write to

Purpose This routine writes a single byte to the indicated location either in the EEPROM or somewhere in
memory. ?????? This adjusts an address relative to the Sound buffers.

Parameters A - Offset into the sound data area

Routine FILL_EXTRACTBUF - $513E/$512D

Parameters PARM_LEN - Number of bytes to be copied
INST_ADDRHI:INST_ADDRLO - Address in Prom to read

Returns EXTRACTBUF – Contains the bytes read in from the EEPROM

Purpose This copies data from the EEPROM to the EXTRACTBUFF Note that this buffer is only 31 bytes
long although this routine can support up to 256 bytes.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 59 -

Routine SAVE_EXTRACTBUF - $515D/$514C

Parameters
PARM_LEN - Number of bytes to be copied
INST_ADDRHI:INST_ADDRLO - Address in Prom to write
EXTRACTBUF - Contains the bytes to write to the EEPROM

Purpose This copies data from the EXTRACTBUFF to the EEPROM Note that this buffer is only 31 bytes
long although this routine can support up to 256 bytes.

Routine SYSTEM_RESET - $519B/$518A

Parameters None

Purpose This routine is the main reset routine for starting up the watch. It cleans up all of memory and
starts the processing once again

Routine INIT_SOUNDS - $5265/$51F2

Parameters None
Purpose This routine initializes the default sounds

Routine ENABLE_EYE - $53A6/$5367

Parameters None

Purpose This routine enables the received on the watch to download from the screen. It also seems to
wait for SERIAL_DATA/SERIAL_CONTROL to settle down

Routine DISABLE_EYE - $53BD/$537E

Parameters None
Purpose This disables the eye for normal watch operation

Routine SET_SYS_07 - $53C8/$5389

Parameters None
Purpose ???? This routine resets the SYS_07 hardware

Routine CLEAR_SYS_07 - $53CF/$5390

Parameters None
Purpose ???? This routine resets the SYS_07 hardware Clears 1,HW_FLAGS

Routine RESET_SYS_07 - $53D5/$5396

Parameters None
Purpose ???? This routine resets the SYS_07 hardware

Routine INITHW_SYS_07 - $53DC/$539D

Parameters SYSTEMP2 - 0 or $c1 to indicate how the hardware is to be reset
Purpose ???? This routine initializes the SYS_07 hardware

Routine SETHW_07_08_C1 - $53F4/$53B5

Parameters A - $C1 - Value to be poked into SYS_08

Purpose ???? Resets the SYS_07, SYS_08 hardware. There is a timing loop associated with this reset
operation.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Routine WRITE_ACQUIRE - $543C/$542B

Parameters None

Purpose This routine acquires the EEPROM for writing. It will also turn off any playing sound as well as the
INDIGLO in order to conserve power while doing the writing.

Routine WRITE_RELEASE - $5448/$5437

Parameters None

Purpose This routine releases the EEPROM for writing. If the Indiglo had been previously on, it is turned
back on.

Routine MAKE_INST2_LDA_X - $5453/$5442 MAKE_INST2_STA_X - $5457/$5446

Parameters None
Purpose These routines make the INST2 opcodes to be an LDA or STA $nnnn,X instruction

Routine PROM_READ - $5462/$5451

Parameters
INST2_COUNT - Number of bytes to be copied
PROM_ADDRHI:PROM_ADDRLO - Address in Prom to read
INST2_ADDRHI:INST2_ADDRLO - Address to copy data to

Purpose This copies data from the EEPROM to the indicated buffer

Routine PROM_WRITE - $5488/$5477

Parameters
INST2_COUNT - Number of bytes to be copied
PROM_ADDRHI:PROM_ADDRLO - Address in Prom to write
INST2_ADDRHI:INST2_ADDRLO - Address to copy data from

Purpose This copies data to the EEPROM from the indicated buffer

Routine SET_INDIGLO - $5504/$54F3

Parameters 0,HW_FLAGS – Indicates request for on or off
Purpose This routine turns on/off the Indiglo light

Scrolling Messages

Routine PUTSCROLLMSG - $5522/$5511

Parameters MSGBUF - the message to scroll terminated by SEPARATOR
Purpose Initialize a scrolling message

Routine SCROLLMSG - $5545/$5534

Parameters MSGBUF - Message to be scroll terminated by a SEPARATOR character
Purpose Start the scrolling cycle for the current message

Routine SCROLLMSG_CONT - $5549/$5538

Parameters MSGBUF - Message to be scroll terminated by a SEPARATOR character
SCROLL_TICS - The current tic count in the cycle

Purpose Start the scrolling cycle for the current message, but don’t reset the scrolling cycle wait count.

Blinking routines

Routine START_BLINKX - $55BB/$55AA

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 61 -

A - Blinking function to be selected
0 BLINK_YEAR Blink the year in the right place according to the current time format

1 BLINK_SECONDS Blink two characters point to by UPDATE_PARM on the right two
digits of the middle line - Used for the seconds

2 BLINK_AMPM Blink AM/PM on the right most digits of the middle line (A or P
pointed to by UPDATE_PARM)

3 BLINK_MONTH Blink the month in the right place according to the current time
format

4 BLINK_HMONTH Blink the month in the right place according to the current time
format for a half date (no year)

5 BLINK_DAY Blink the day in the right place according to the current time format

6 BLINK_HDAY Blink the day in the right place according to the current time format
for half dates

7 BLINK_MID12 Blink the left two blank padded digits on the middle line (value
pointed to by UPDATE_PARM)

8 BLINK_HOUR Blink the Hour (left two segments on the middle line) and AM/PM
indicator (hour point to by UPDATE_PARM)

9 BLINK_MID34 Blink the middle two zero padded digits on the middle line (value
pointed to by UPDATE_PARM)

10 BLINK_SEGMENT Blink a single segment indicated by UPDATE_POS and mask in
UPDATE_VAL

11 BLINK_DIGIT Blink solid black cursor for the digit (UPDATE_POS is the location
on the bottom line)

12 BLINK_TZONE Blink the timezone information (Pointed to by UPDATE_PARM)

13 BLINK_TOP34 Blink the middle zero padded two digits on the top line (value
pointed to by UPDATE_PARM)

Parameters

X - single byte parameter to the particular blinking function
Purpose Establish and call the specified blinking routine

Routine START_BLINKP - $55BF/$55AE

A - Blinking function to be selected
0 BLINK_YEAR Blink the year in the right place according to the current time format

1 BLINK_SECONDS Blink two characters point to by UPDATE_PARM on the right two
digits of the middle line - Used for the seconds

2 BLINK_AMPM Blink AM/PM on the right most digits of the middle line (A or P
pointed to by UPDATE_PARM)

3 BLINK_MONTH Blink the month in the right place according to the current time
format

4 BLINK_HMONTH Blink the month in the right place according to the current time
format for a half date (no year)

5 BLINK_DAY Blink the day in the right place according to the current time format

6 BLINK_HDAY Blink the day in the right place according to the current time format
for half dates

7 BLINK_MID12 Blink the left two blank padded digits on the middle line (value
pointed to by UPDATE_PARM)

Parameters

8 BLINK_HOUR Blink the Hour (left two segments on the middle line) and AM/PM
indicator (hour point to by UPDATE_PARM)

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

9 BLINK_MID34 Blink the middle two zero padded digits on the middle line (value
pointed to by UPDATE_PARM)

10 BLINK_SEGMENT Blink a single segment indicated by UPDATE_POS and mask in
UPDATE_VAL

11 BLINK_DIGIT Blink solid black cursor for the digit (UPDATE_POS is the location
on the bottom line)

12 BLINK_TZONE Blink the timezone information (Pointed to by UPDATE_PARM)

13 BLINK_TOP34 Blink the middle zero padded two digits on the top line (value
pointed to by UPDATE_PARM)

X - Address of parameter to the particular blinking function
Purpose Establish and call the specified blinking routine

Update functions

Routine START_UPDATEX - $57C3/$56C4

A - Update function to be selected
0 UPD_YEAR Update the year
1 UPD_MONTH Update the Month
2 UPD_HMONTH Update the Month in Half date format
3 UPD_DAY Update the day
4 UPD_HDAY Update the day in half date format
5 UPD_MID12 Update MID12
6 UPD_HOUR Update the hour
7 UPD_MID34 Update MID34
8 UPD_DIGIT Update the digit at UPDATE_POS

Parameters

X - single byte parameter to the particular update function
Purpose Establish and call the specified update function

Routine START_UPDATEP - $57C7/$56C8

A - Update function to be selected
0 UPD_YEAR Update the year
1 UPD_MONTH Update the Month
2 UPD_HMONTH Update the Month in Half date format
3 UPD_DAY Update the day
4 UPD_HDAY Update the day in half date format
5 UPD_MID12 Update MID12
6 UPD_HOUR Update the hour
7 UPD_MID34 Update MID34
8 UPD_DIGIT Update the digit at UPDATE_POS

Parameters

X - Pointer to parameters for the update function

Purpose
This establishes an update function. Update functions are called every 8/10th of a second. This
function will update a number in an upward or downward direction based on the setting of
0,SYSFLAGS

Format Routines

These routines are useful for formatting numbers into the corresponding character representation.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 63 -

Routine FMTXLEAD0 - $593E/$583F

Parameters
X - value to be formatted.
0-9 results in 0 followed by the digit
10-99 results in number for both digits

Purpose Formats into DATDIGIT1/2 with leading zeros

Routine FMTBLANK0 - $594D/$584E

Parameters

X - value to be formatted.
0 results in all blanks.
1-9 results in blank followed by the digit
10-99 results in number for both digits

Purpose Formats a number into DATDIGIT1/2

Routine FMTX - $5951/$5852

Parameters
X - value to be formatted.
0-9 results in blank followed by the digit
10-99 results in number for both digits

Purpose Formats a number into DATDIGIT1/2

Routine FMTSPACE - $595C/$585D

Parameters None
Purpose This routine simply puts spaces into DATDIGIT1 DATDIGIT2

Routine FMTBLANK0B - $5963/$5864

Parameters

X - value to be formatted.
0 results in all blanks.
1-9 results in blank followed by the digit
10-99 results in number for both digits

Purpose Formats a number into DATDIGIT1/2. This routine does not appear to be used anywhere and
seems to do exactly the same thing as FMTBLANK0

Routine FIXLEAD0 - $5A2A/$592B

Parameters None
Purpose If the first digit is a zero, replace it with a blank

Line routines

These routines are useful for putting strings on the display

Routine PUTLINE3 - $56D5/$59E7

A = Position
S1 S2 S3 S4 S5 S6 S7 S8
$47 $3D $33 $27 $1D $13 $09 $0a

Parameters

X = Character in Timex ASCII to display

Purpose Put a single character on the bottom line of the display This routine pokes in a single digit on the
display. Note that the last digit is backwards and upside down in the hardware.

Routine PUTLINE1 - $570D/$5A33

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

A = Position
T1 T2 T3 T4 T5 T6
$46 $3E $34 $2C $22 $14

Parameters

X = Character in Timex ASCII to display
Purpose Put a single character on the top line of the display

Routine PUTLINE2 - $5745/$5A6B

A = Position
M1 M2 M3 M4 M5 M6
$46 $3E $34 $2C $22 $14

Parameters

X = Character in Timex ASCII to display
Purpose Put a single character on the second line of the display

Routine SETALL - $5776/$5A9C

Parameters None
Purpose Turns on all segments on the entire display

Routine CLEARALL - $577A/$5AA0

Parameters None
Purpose Clear the entire display

Routine CLEARBOT - $5787/$5AAD

Parameters None
Purpose Clear the bottom line of the display

Routine CLEAR_RANGE - $5793/$5ABF

Parameters A – Initial offset to be clearing from
X – Number of words to clear

Purpose Turn off all bits on the display at the given offsets

Routine CLEARSYM - $579F/$5ACB

Parameters None
Purpose Turns off all the non digit symbols segments (including dots, dashes and colons)

Routine BANNER8 - $5845/$5746

Parameters A = Offset from 0110 for the start of an 8 character Timex string
Purpose Display an 8 character string

Routine PUTMSGXBOT - $5849/$574A

Parameters
A = Message selector number.
Valid values from 0 to 27. They correspond to the same strings passed into PUTMSGBOT
scaled down by 8

Purpose Display an 8 character system string on the bottom line

Routine PUTMSGBOT - $584C/$574D

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 65 -

A = Offset into message selector string.
Valid values from $00 to $d8 at 8 Byte offsets.
$E0 is the start of the 6 byte top/mid message strings.
$00 SYS8_MON “MON “

$08 SYS8_TUE “TUE “

$10 SYS8_WED “WED “

$18 SYS8_THU “THU “

$20 SYS8_FRI “FRI “

$28 SYS8_SAT “SAT “

$30 SYS8_SUN “SUN “

$38 SYS8_VERDATE “ 802003 “

$40 SYS8_VERSION “ V2.0 “

$48 SYS8_MODE “ MODE “

$50 SYS8_SET_MODE “SET MODE”

$58 SYS8_SET “SET “

$60 SYS8_TO “TO “

$68 SYS8_FOR “FOR “

$70 SYS8_ENTRIES “ENTRIES “

$78 SYS8_UPCOMING “UPCOMING”

$80 SYS8_ENTRY “ ENTRY “

$88 SYS8_SCAN “ SCAN “

$90 SYS8_SCAN_RIGHT “ SCAN”

$98 SYS8_SYNCING “ SYNCING”

$a0 SYS8_PROGRESS “PROGRESS”

$a8 SYS8_DATA_OK “ DATA OK”

$b0 SYS8_RESEND “-RESEND-“

$b8 SYS8_ABORTED “ ABORTED”

$c0 SYS8_MISMATCH “MISMATCH”

$c8 SYS8_SPLIT “ SPLIT “

$d0 SYS8_START “>=START “

Parameters

$d8 SYS8_STOP “>=STOP “

Purpose Display an 8 character system string on the bottom line

Routine PUTDOWTOP - $5872/$5773

Parameters X - Day of week (0-6)
Purpose Displays the two character representation of the day of the week in the upper left of the display

Routine PUT6TOP - $587E/$577F

Parameters

A = Offset from WRIST_MAIN for the start of a 6 byte data item to be put on the top line of the
screen. This uses a different encoding for characters where: we have 32 different values which
correspond to:
0123456789ABCDEFGH:LMNPRTUWYr -+

e.g. $12=’:’, $13=’L’. It appears that things wrap when you get to $20
Purpose Display a 6 character string on the top line

Routine PUTMSG1 - $5882/$5783

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

A = Offset into message selector string.
Valid values from $00 to $a8 at 6 Byte offsets.
$00 SYS6_SET “ SET “

$06 SYS6_HOLDTO “HOLDTO”

$0C SYS6_ALARM “ALARM “

$12 SYS6_ENTER “ENTER “

$18 SYS6_HR “ HR”

$1E SYS6_SWITCH “SWITCH”

$24 SYS6_TIME “ TIME “

$2A SYS6_FORMAT “FORMAT”

$30 SYS6_DAILY “DAILY “

$36 SYS6_APPT “ APPT “

$3c SYS6_NO “ NO “

$42 SYS6_APPTS “APPTS “

$48 SYS6_END_OF “END OF”

$4e SYS6_LIST “ LIST “

$54 SYS6_DELETE “DELETE”

$5a SYS6_ANN “ ANN “

$60 SYS6_PHONE “PHONE “

$66 SYS6_DONE “ DONE “

$6c SYS6_PRI “PRI “

$72 SYS6_COMM “ COMM “

$78 SYS6_READY “READY “

$7e SYS6_IN “ IN “

$84 SYS6_ERROR “ERROR “

$8a SYS6_CEASED “CEASED”

$90 SYS6_PC “PC- “

$96 SYS6_WATCH “WATCH “

$9c SYS6_CHRONO “CHRONO”

$A2 SYS6_TIMER “TIMER “

Parameters

$a8 SYS6_000000 “000000”

Purpose Display an 6 character system string on the top line

Routine PUT6MID - $58A8/$57A9

Parameters

A = Offset from WRIST_MAIN for the start of a 6 byte data item to be put on the top line of the
screen. This uses a different encoding for characters where: we have 32 different values which
correspond to:
0123456789ABCDEFGH:LMNPRTUWYr -+

e.g. $12=’:’, $13=’L’. Beyond $20 you get random junk.
Purpose Display a 6 character string on the second line

Routine PUTMSG2 - $58AC/$57AD

Parameters A = Offset into message selector string.
Valid values from $00 to $a8 at 6 Byte offsets and the strings are the same as for PUTMSG1

Purpose Display an 6 character system string on the top line

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 67 -

Routine CLEARTOP - $58D2/$57D3

Parameters None
Purpose Puts blanks into all 6 top digits (Blanks out the top line)

Routine CLEARMID - $58D8/$57D9

Parameters None
Purpose Puts blanks into all 6 Middle digits (Blanks out the middle line)

Routine CLRTOP12 - $58DE/$57DF

Parameters None
Purpose Puts blanks into top Digits 1 and 2

Routine PUTTOP12 - $58E0/$57E1

Parameters None
Purpose Puts DATDIGIT1/2 into TOP Digits 1 and 2

Routine CLRTOP34 - $58EE/$57EF

Parameters None
Purpose Puts blanks into TOP Digits 3 and 4

Routine PUTTOP34 - $58F0/$57F1

Parameters None
Purpose Puts DATDIGIT1/2 into TOP Digits 3 and 4

Routine CLRTOP56 - $58FE/$57FF

Parameters None
Purpose Puts blanks into TOP Digits 5 and 6

Routine PUTTOP56 - $5900/$5801

Parameters None
Purpose Puts DATDIGIT1/2 into TOP Digits 5 and 6

Routine CLRMID12 - $590E/$580F

Parameters None
Purpose Puts blanks into Middle Digits 1 and 2

Routine PUTMID12 - $5910/$5811

Parameters None
Purpose Puts DATDIGIT1/2 into Middle Digits 1 and 2

Routine CLRMID34 - $591E/$581F

Parameters None
Purpose Puts blanks into Middle Digits 3 and 4

Routine PUTMID34 - $5920/$5821

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Parameters None
Purpose Puts DATDIGIT1/2 into Middle Digits 3 and 4

Routine CLRMID56 - $592E/$582F

Parameters None
Purpose Puts blanks into Middle digits 5 and 6

Routine PUTMID56 - $5930/$5831

Parameters None
Purpose Puts DATDIGIT1/2 into Middle Digits 5 and 6

Routine SAYEOLMSG - $5979/$587A

Parameters None
Purpose Puts ‘END OF LIST’ on the display

Routine SAYHOLDTODELETE - $598A/$588B

Parameters None
Purpose Puts ‘HOLD TO DELETE ENTRY’ on the display

Routine PUT_PHONENUM - $59A2/$58A3

Parameters None

Purpose
Puts a phone number on the top two lines of the display (Up to 12 digits). If there is a non blank
character as the third digit, a - is turned on between the 3rd and 4th digits to separate out what is
presumably the area code

Routine PUTYEARMID - $59D9/$58DA

Parameters X - Year to be formatted on the display

Purpose Puts the current year on the right half of the middle display. If the year passed in is less than 50, it
is assumed to be 20xx, above 50 it is processed as 19xx giving a range of 1950-2049

Routine CLEAR_HMONTH - $59F8/$58F9

Parameters None
Purpose blank out the 2 character day for a half date (no year) based on the current time zone date format

Routine PUT_HMONTHX - $59FD/$58FE

Parameters X - Day to be displayed

Purpose Put the leading space 2 digit month in the appropriate spot on the display based on the current
time zone date format for a half date (no year)

Routine CLEAR_HDAY - $5A11/$5912

Parameters None
Purpose blank out the 2 character day for a half date (no year) based on the current time zone date format

Routine PUT_HDAYX - $5A16/$5917

Parameters X - Day to be displayed
Purpose Put the leading zero 2 digit day in the appropriate spot on the display based on the current time

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 69 -

zone date format for a half date (no year)

Routine CLEAR_MONTH - $5A36/$5937

Parameters None
Purpose blank out the 2 character month based on the current time zone date format

Routine CLEAR_DAY - $5A4F/$5950

Parameters None
Purpose blank out the 2 character day based on the current time zone date format

Routine PUTBOT678 - $5A86/$5987

Parameters

X - Pointer to 3 byte location containing bytes to put on the display (pointed to by x) 3 bytes in
TIMEX ASCII.
Because the X register is used to index to them, they must be located in the first 256 bytes of
memory.

Purpose Puts three digits into the lower corner of the display. Typically this is the time zone information.

Routine CLEAR_YEAR - $5A6F/$5970

Parameters None
Purpose blank out the 2 character year based on the current time zone date format

Routine IPUT_MONTHX - $5A3B/$593C

Parameters X - Month to be displayed

Purpose Put the leading space 2 digit month in the appropriate spot on the display based on the current
time zone date format

Routine IPUT_DAYX - $5A54/$5955

Parameters X - Day to be displayed

Purpose Put the leading zero 2 digit day in the appropriate spot on the display based on the current time
zone date format

Routine IPUT_YEARX - $5A74/$5975

Parameters X - Year to be displayed

Purpose Put the leading zero 2 digit year in the appropriate spot on the display based on the current time
zone date format

Routine PUTHALFDATESEP - $5AA0/$59A1

Parameters None
Purpose Show the separator character for a half date (no year) based on the current date format

Routine PUTDATESEP - $5AAB/$59AC

Parameters None
Purpose Show the separator characters for a full date based on the current date format

Routine PUT_LETTERX - $5ACE/$59CF

Parameters A - Character to be displayed X - Offset on the bottom line to put character

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Purpose Put a single character at the appropriate spot on the bottom line

Routine PUT_HOURX - $5AD9/$59DA

Parameters X - Hour to be displayed
Purpose Put the hour on the first two digits of the middle line along with the colon

Routine UPDATE_SECONDS - $625E/$6267

Parameters None

Purpose This routine checks the current TIC count and updates the seconds based on that TIC. If the
minute rolls over, we also set the flags so that the rest of the system can respond to it.

Routine SHOW_TIME_DISPLAY - $676A/$6773

Parameters None

Purpose Display the time information based on the current time zone and whether or not we might be in
time set mode. All symbols are updated

Routine PUT_YEARX - $67CC/$67D5

Parameters X - Year to be displayed

Purpose Put the leading zero 2 digit year in the appropriate spot on the display based on the current time
zone date format

Routine PUT_MONTHX - $67D0/$67D9

Parameters X - Month to be displayed

Purpose Put the leading space 2 digit month in the appropriate spot on the display based on the current
time zone date format

Routine PUT_DAYX - $67D4/$67DD

Parameters X - Day to be displayed

Purpose Put the leading zero 2 digit day in the appropriate spot on the display based on the current time
zone date format

Routine SAY_HOURX - $67D8/$67E1

Parameters X - Hour to be displayed

Purpose Puts up the hour on the display along with an AM/PM indicator and a Colon. This code respects
the current 12/24 hour format.

Routine CLEAR_PM - $6815/$681C

Parameters NONE
Purpose Turn off the PM indicator.

Routine CLEAR_AM - $681C/$6825

Parameters NONE
Purpose Turn off the AM indicator.

Routine PUT_MINUTEX - $6823/$682C

Parameters X - minute (0-59) to be displayed

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 71 -

Purpose This puts the minute in the middle two digits on the middle line followed by a period

Routine SHOWSEC_TENS - $6830/$6839

Parameters SECOND_TENS - Value to be put on the display
Purpose Puts the character at SECOND_TENS onto the next to the last digit on the middle line

Routine SHOWSEC_ONES - $6838/$6841

Parameters SECOND_ONES – Value to be put on the display
Purpose Puts the character at SECOND_ONES onto the last digit on the middle line

Routine SHOWNIGHT_SYM - $6840/$6849

Parameters None
Purpose Displays the night symbol if we are in night mode

Routine SAY_HOLD_TO - $6855/$685E

Parameters None
Purpose Puts ‘HOLD-TO’ on the top line

Routine FIX_TMAPP_DAY - $6861/$686A

Parameters None
Returns A - limited day of the month

Purpose Based on TMAPP_MONTH, TMAPP_YEAR, this routine limits the day of the month to a legal
one

Routine TMAPP_COPYTZ1 - $6881/$688A

Parameters None

Purpose Copies the Hour, Minute, Month, Day, and Year information for Time Zone 1 to the
corresponding TMAPP variables.

Routine TMAPP_COPYTZ2 - $688C/$6895

Parameters None

Purpose Copies the Hour, Minute, Month, Day, and Year information for Time Zone 2 to the
corresponding TMAPP variables.

Routine GETTZNAME - $6897/$68A0

Parameters None
Returns X - Pointer to the 3 character name of the current time zone

Routine GET_MONTHDAYX - $689F/$68A8

Parameters X - pointer to two byte location to retrieve Month and Day
Returns A - The current year for the current time zone
Purpose Returns the year for the current time zone

Routine GET_YEAR - $68B2/$68BB

Parameters None

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Returns A - The current year for the current time zone
Purpose Returns the year for the current time zone

Routine GET_HOURFORMAT - $68BB/$68C4

Parameters None
Returns X - 12 or 24 depending on the time format
Purpose Returns the 12/24 hour time format for the current time zone

Routine GET_DATEFMT - $68CB/$68D4

Parameters None

Returns

A - Date format mask for the current time zone
One of:
0 = DATEFMT_MMDDYY = Date Format is MM-DD-YY
1 = DATEFMT_DDMMYY = Date Format is DD-MM-YY
2 = DATEFMT_YYMMDD = Date Format is YY-MM-DD
and One of
0 = DATEFMT_SEPDASH = Dates are separated by dashes
4 = DATEFMT_SEPDOTS = Dates are separated by periods

Purpose Returns the date format for the current time zone

Routine CALC_DOW_X - $68D5/$68DE

Parameters X - Pointer to Month, Day, Year block
Purpose Computes the Day of the Week from the Month, Day, Year information

Routine COPY_MDY - $68DB/$68E4

Parameters X - pointer to Month, Day, Year block to copy
Purpose Copies over the Month, Day, and Year information in preparation for calling CALC_DOW

Routine ACQUIRE - $68E8/$68F1

Parameters None
Purpose Disable interrupts for a short piece of code

Routine RELEASE - $68F2/$68FB

Parameters None
Purpose Reenable interrupts

Routine GET_MONTHLEN - $68F9/$6902

Parameters PARM_MONTH, PARM_YEAR contain the month and year to look for
Returns A - Number of days in the month
Purpose Computes the number of days in a given month

Routine CHECK_TZ - $690E/$6917

Parameters None

Purpose
Determine which time zone is to be displayed.
Carry flag clear = TZ1
Carry flag set = TZ2

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 73 -

Routine CALC_DOW - $691C/$6925

Parameters CURRENT_MONTH, CURRENT_DAY, CURRENT_YEAR - holds the information to calculate
from

Returns A - Day of Week (0=Monday...6=Sunday)
Purpose Calculates the day of the week from the given information

Routine LIST_DISPLAY_CURRENT - $6ABB/$6AC4

Parameters None

Purpose

Display the current list entry. List entries are up to 31 bytes long with Byte 0: Completion status.
Negative numbers indicate that it is not yet done
Byte 1: The priority of the event. 0 indicates no priority
Bytes 2-26: The packed text of the message (Up to 32 bytes unpacked)
Bytes 27-31 – Wasted since they can never be unpacked

Routine INCA_WRAPX - $6B0D/$6B16

Parameters A - Number to be incremented X - Range to hold number within
Purpose Advance to the next value wrapped within a range

Routine DELAY_X - $6B31/$6B3A

Parameters X - Delay interval (Measured in ?) - Note that 1 is the only value ever passed in here
Purpose Delay for a fixed amount of time

Routine DELAY_X16 - $6B43/$6B4C

Parameters X - interval to delay for ($C8 is the only value ever passed in)
Purpose Delay for a fixed amount of time

Routine GETBCDHI - $6B52/$6B5B

Parameters X - Hex value to be converted (Range 0-99)
Returns A - High byte of number in Timex ASCII

Routine GETBCDLOW - $6B5A/$6B63

Parameters X - Hex value to be converted (Range 0-99)
Returns A - Low byte of number in Timex ASCII

Routine ALARM_CHECK - $6BC4/$6C9C

Parameters None
Purpose This routine is called once a minute to check for and raise any alarms

Routine SHOWNOTE_SYM - $6C62/$6C56

Parameters None
Purpose Displays the NOTE symbol if there is a note to be displayed

Routine SHOWALARM_SYM - $6C76/$6C6A

Parameters None

Purpose Displays the ALARM symbol if there are any enabled alarms which are not masked This will also
start the alarm symbol blinking if we are in alarm backup mode

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Routine ALARM_DISPLAY_CURRENT - $6EF4/$6EFD

Parameters None

Purpose Display the current alarm information on the entire display. Daily is put on the top line and the
NOTE/ALARM symbols are displayed accordingly

Routine ALARM_SHOW_HOURLYNOTE - $6F39/$6F42

Parameters None
Purpose Set the note symbol to the state of the hourly chimes

Routine ALARM_SHOW_ALARMSYM - $6F4A/$6F53

Parameters ALARM_FLAGS – status of alarm to show
Purpose Set the alarm symbol to the state of the current alarm

Routine ALARM_SHOW_AMPM - $6F5B/$6F64

Parameters ALARM_FLAGS - indicates whether a 12 hour format is in AM or PM
Purpose Set the alarm symbol to the state of the current alarm

Routine MASK_ALARMS - $6FF3/$6FFC

Parameters None
Purpose This temporarily disables all alarms by turning on the mask bit (0x02) for all five alarms.

Routine UNMASK_ALARMS - $7000/$7009

Parameters None
Purpose This reenables all alarms by turning off the mask bit (0x02) for all five alarms.

Routine ANNIV_SHOW_DATE - $7184/$718D

Parameters None
Purpose Displays date for the current anniversary entry

Routine ANNIV_SHOW_SCAN_DATE - $719F/$71A8

Parameters None
Purpose Displays date for the current anniversary scan date

Routine ANNIV_SHOW_CURRENT - $71AC/$71B5

Parameters None
Purpose Displays the current anniversary entry

Routine SHOWREMIND_SYM - $71D6/$71DF

Parameters None

Purpose Displays the reminder symbol if there are any anniversaries within this week. If one is today, this
will toggle the remind symbol each time this routine is called

Routine OFFREMIND_SYM - $71EE/$71F7

Parameters None
Purpose Turns off the reminder symbol

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 75 -

Routine SAY_NO_ANN_ENTRIES - $71F5/$71FE

Parameters None
Purpose Displays the message NO ANN ENTRIES on the display

Routine APPT_SHOW_TIME - $73D7/$73E0

Parameters SCAN_QHOUR – the quarter hour to display
Purpose This shows the appointment time on the display (including AM/PM indicator)

Routine APPT_SHOW_DATE - $7439/$7442

Parameters SCAN_MONTH,SCAN_DAY
Purpose This shows the appointment date on the display (including the day of the week)

Routine APPT_SHOW_SCAN - $7454/$745D

Parameters SCAN_MONTH,SCAN_DAY

Purpose This shows the scan date on the display (including the day of the week) with the year and a
message indicating that we are scanning

Routine APPT_SHOW_CURRENT - $7461/$746A

Parameters None
Purpose This shows the next upcoming appointment (if any)

Routine APPT_SHOW_UPCOMING - $748E/$7497

Parameters None
Purpose This shows the next upcoming appointment (if any)

Routine SAY_NO_APPT_ENTRIES - $74BD/$74C6

Parameters None
Purpose This puts NO APPT ENTRIES on the display

Routine COMM_CHECK_CRC - $7C56/$7C3C

Parameters None

Returns A - 0 CRC for the current packet matched
$ff - CRC for the current packet did not match

Purpose Compute and validate a CRC for the current packet

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Installing a Wristapp

Many people have asked how to install a Wristapp and download it to your watch. While there are people who are
using their DataLink with many different operating systems, these instructions only work for the Timex Data Link
software for Windows (what comes on the floppy disk with the watch). Note that this is different than Schedule+ or
another PIM downloading to the watch.

1. Locate the directory where the DataLink software is installed. Typically this will be C:\Datalink or
C:\Program Files\DataLink. In that directory will be a file called TimexDL.DAT

2. Using your favorite editor (Notepad will work just fine), bring in that file to edit.

3. Search in the file for the [WristApps] section. It will consist of several lines like:

[WristApps]

WristAppTotal=10

SelectedWristApp=9

WristAppSendOption=True

WristApp000=HEXDUMP0.ZAP

WristApp001=Melody17.ZAP

WristApp002=HELLO.ZAP

WristApp003=NUMBER.ZAP

WristApp004=Update.ZAP

WristApp005=Flash.ZAP

WristApp006=passwd.ZAP

WristApp007=dayfind.ZAP

WristApp008=testsnd.ZAP

WristApp009=endoff.ZAP

4. Note the number in the WristAppTotal and increment it by one. (In this case I would change the 10 to an
11)

5. Go to the last entry and add a new line just like the ones above it, but increment the WristApp number by
one. In this case, I would add a line after the WristApp009=endoff.ZAP and call that line WristApp010=.
 Put the name of the wristapp (don’t forget the .ZAP extension) on the line. In my example, it would look
like:

[WristApps]

WristAppTotal=11

SelectedWristApp=9

WristAppSendOption=True

WristApp000=HEXDUMP0.ZAP

WristApp001=Melody17.ZAP

WristApp002=HELLO.ZAP

WristApp003=NUMBER.ZAP

WristApp004=Update.ZAP

WristApp005=Flash.ZAP

WristApp006=passwd.ZAP

WristApp007=dayfind.ZAP

WristApp008=testsnd.ZAP

WristApp009=endoff.ZAP

WristAPP010=NewApp.ZAP

6. Save the file

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 77 -

7. Copy the .ZAP file into the APP subdirectory of the DataLink software and you are done.

8. Load up the Datalink Software, and click on the WristApps button.

9. Scroll to the bottom of the list to see your new WristApp

10. Select the wristapp and make sure that the bottom says to send the selected WristApp

11. Select OK and then proceed to download to your watch with the normal COMM mode

12. Enjoy!

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

My Wristapps

The wristapps that I have written so far. Everything here works for both the 150 and the 150s.

• TipCalc - Calculates 10, 15, 20% tips. Thanks to David M. Schreck <dschreck@csfbg.csfb.com> for the
idea!

• Hello - Tutorial #1 - Hello World! (Now where is my C Compiler?)

• Number - Tutorial #2 - Change a single number

• Update - Tutorial #3 - Update a number using a system routine

• Flash - Tutorial #4 - Blinks and changes the number.

• Passwd - Tutorial #5 - Blinks, changes, and selects numbers.

• DayFind - Tutorial #6 - gives you the day of the week

• Sound Test - Tutorial #7 - Plays one of the 14 possible tones on the watch.

• EndOff - Tutorial #8 - Turn off alarms on the weekend

• HexDump - Tutorial #9 - Dump out memory.

• PromDump - Tutorial #10 - Dump out the contents of the EEPROM.

• SpendWatch - Tutorial #11 - Track how much you spend in a day.

• Sound1 - Tutorial #12 - Create a simple soundscape.

• 3Ball - Tutorial #13 - Can’t make up your mind? Let 3Ball help you out. Thanks to Wayne Buttles
<timex@fdisk.com>

• ShipBell - Tutorial #14 - Beeps on the hour with the number of hours past a shift change. (suggested by
“Theron E. White, CPA” <twhite@mercury.peganet.com>).

• Data Hider - This works for both the 150 and the 150s.

• Segment Setter - This allows you to set all of the segments on the display on/off.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 79 -

Other People’s Wristapps

It is wonderful to now see other people creating Wristapps.

• NumPad - Michael Polymenakos <mpoly@panix.com> has created an excellent app which has two
functions in one. In his own words: “The first thing I miss from my old (and now non-functional) Casio is the
ability to record a number quickly when pen and paper are not available. I wrote a small wristapp,
NUMPAD, to let me record a 12 digit number... Any comments will be appreciated (especially on replacing
the ugly cursor with a ‘blink’ function that blinks only one digit at a time).” He has also incorporated a
chronometer wristapp in with the app to give you two apps in one.

• 3Ball - Wayne Buttles <timex@fdisk.com> created the first version of this fun app. It’s been updated here
as a tutorial.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Plans for Wristapps

The wristapps that I plan to create and know everything necessary to create them.

• WestMinister Chimes - For that ‘Big Ben’ sound. With thanks to Pigeon for the sound scheme to make it
possible.

Other wristapps that have been suggested (their original comments are presented. I also include my comments in
blue).

• Falling Blocks - I have been thinking about this for a while. There is really no reason that you can’t design
a game to take advantage of the segments to do a simple falling-blocks-like game. You would have to turn
the display sideways to play it.

• Slots - I have also wanted to do this game for a while. The basic idea is to have a slot machine in the watch
where you can press a button and take a whirl. The watch should keep track of your winnings. Because of
the way the segments are organized, I believe that you can even do a good imitation of the wheels
spinning.

• Dumper - We need to have a good application that allows the Datalink to talk back to the PC. The obvious
way here will be to use the sounds on the watch and listen to them with the SoundBlaster on the PC. Right
now the only thing holding us back is someone to create the PC end to listen. I have everything necessary
to generate the tones in a predictable manner.

• Phone Dialer - The Datalink is just screaming for this application that has been suggested by many people.
 It is not clear that this is beyond the capabilities of the DataLink, but so far I have only been able to emit the
14 basic tones in the watch. From my understanding of the watch and the hardware, I haven’t completely
ruled this out as a possibility.

• Info entry - “One of the reasons I like the DataLink is because it DOESN’T have an ugly 12 button keypad
on it, but I have to admit, it would be nice to be able to enter a phone number when needed. Granted, it
would cumbersome to enumerate the desired digits, but I think it would still be useful (could also be used to
enter the section # of a large parking lot that you left your car).” David M. Schreck
<dschreck@csfbg.csfb.com>. This is certainly doable, but it does have some issues to be considered in
dealing with the EEProm. See the EEProms information to understand why.

• Screen Saver - “Not in the true sense of the phrase, of course, and this one you would have to purposely
invoke. I imagine that those who are artistically inclined might think up a creative and interesting way to
cycle through the available display fields.” David M. Schreck <dschreck@csfbg.csfb.com>. If someone
proposes a suggested way that this might work, I certainly could implement it.

• Baseball counter - “This might be too simple to bother with, but people who are umpires (I’m mainly thinking
about the many folks who ump for little league games) use a little hand held clicker to keep track of balls,
strikes, and outs. This should be an easy applet to create.” David M. Schreck <dschreck@csfbg.csfb.com>
 This is one where I would love to hear from someone who would actually use it. I have a number of ideas
for user interface, but that would really depend on how someone would use it.

• Tennis counter - “Say I’m about to start a tennis game. I hit one button each time I score a point, and a
different one each time my opponent scores. The applet always displays the current score. It might even
display the word “deuce” when appropriate. Hopefully it could be programmed to be smart enough to know
when subsequent games begin, and even keep track of the set score.” David M. Schreck
<dschreck@csfbg.csfb.com>. Here is where I will let my lack of knowledge of tennis show. I simply don’t

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 81 -

know how the scoring works well enough to write this. I would like to have the person enter the two names
of the people playing and it would keep track of who has to serve, the current score, and the total match/set
score. If someone would toss me this information, I could create the app really quickly.

• Calorie Counter - “If someone wanted to keep track of their caloric intake for the day (or any other need
where you want to tally up a total but don’t feel like carrying around a paper and pencil) perhaps they could
just punch in the number to be added to the daily total each time they eat something. At the end of the day
they can glance at the total and then reset to zero. David M. Schreck <dschreck@csfbg.csfb.com>” This is
probably one of the more interesting apps to create. I might even take advantage of the EEProm to store
some of the basic foods and their calorie counts to make it easier.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Wristapp Programming Tutorial

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 83 -

A First Wristapp - Hello World

To illustrate, let us take our favorite C Program and figure out how to put it on the Datalink. The first step in creating
a wristapp is to decide on what the user interface will be. You would think that with only 5 buttons, this would be an
easy task, but in reality this can make or break a good application. For our application, we will have it so that when
you first enter the app, it puts “HELLO WORLD MODE” on the screen. If you press the PREV button, it will toggle to
turning on all segments. Pressing the PREV button will switch back to the “HELLO WORLD MODE”. The Next
button will take you out of the app and the SET/NEXT buttons will not do anything. Pressing the GLOW button will
activate the Indiglo light as expected. Here’s what the code would look like:

;Name: Hello World

;Version: HELLO

;Description: This is a simple Hello Program

;by John A. Toebes, VIII

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

; Bit 0 indicates that we want to show the segments instead of the message

;

START EQU *

;

; (2) System entry point vectors

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

 nop

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

 rts

L0123: jmp HANDLE_STATE0

 db STATETAB-STATETAB

;

; (3) Program strings

S6_HELLO: timex6 “HELLO “

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S6_WORLD: timex6 “WORLD “

;

; (4) State Table

; (4) State Table

STATETAB:

 db 0

db EVT_ENTER,TIM_ONCE,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_DNNEXT,TIM_ONCE,0 ; Next button

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events. We only see ENTER, RESUME, and DNNEXT events

;

HANDLE_STATE0:

 bset 1,$8f ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_DNNEXT ; Did they press the next button?

beq DOTOGGLE ; Yes, toggle what we are displaying

CLEARIT bclr 0,FLAGBYTE ; Start us in the show display state

REFRESH brclr 0,FLAGBYTE,SHOWDISP ; Do we want to see the main display?

jmp SETALL ; No, just turn on all segments

SHOWDISP jsr CLEARALL ; Clear the display

lda #S6_HELLO-START ; Get the offset for the first string

jsr PUT6TOP ; And send it to the top line

lda #S6_WORLD-START ; Get the offset for the second string

jsr PUT6MID ; and put it on the middle line

lda #SYS8_MODE ; Get the system offset for the ‘MODE’ string

jmp PUTMSGBOT ; and put it on the bottom line

;

; (6) Our only real piece of working code...

DOTOGGLE brset 0,FLAGBYTE,CLEARIT ; If it is set, just jump to clear it like normal

bset 0,FLAGBYTE ; Already clear, so set it

bra REFRESH ; and let the refresh code handle it

;

; (7) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

lda #$c0 ; We want button beeps and to indicate that we have been

loaded

sta $96

 clr FLAGBYTE ; start with a clean slate

 rts

Now all of that code needs a little explanation. As you can see from the numbers, we have 7 basic sections

1. Program specific constants - This is where you declare everything that you want to use. As a Wristapp, you
have only a limited amount of Ram (7 bytes to be specific) that you can store your stuff with, so be careful
here.

2. System entry point vectors - These are fixed and mandated for any Wristapp. If there is more than one
state, the JMP and db sequence is repeated for each state.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 85 -

3. Program strings - In order to provide addressability to the strings, you need to put them immediately after
the entry point vectors.

4. State Table(s) - This really tells the watch how we want to operate and what events we want to handle.
 See The State Table for a more complete explanation of this.

5. State Table Handler(s) - These are called to process the events for a particular state. Typically this is a
LDA BTNSTATE followed by a lot of CMP/Bcc instructions. You also need to do the BSET 1,$8f at the
start to allow the Wristapp to be suspendable.

6. Program Specific Code - The actual meat of the program. In our case, we simply have to toggle a value.

7. Main Initialization routine - This is called once when the wristapp is first loaded. We need to make sure that
we set the appropriate bits in WRISTAPP_FLAGS.

Now that we have a basic program working. Next Up: Getting Input - Numbers

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Getting Input

A program which just does output and really takes no input is not very useful. The first stage in making a program
more useful is to figure out how to allow the user to enter a value. With this first numbers program, we allow you to
enter a number by pressing the PREV/NEXT key to advance it by one each time you press the key. This allows us
to see how basic input works and a couple of the formatting/display routines.

;Name: Numbers

;Version: NUMBER

;Description: This is a simple number count program

;by John A. Toebes, VIII

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

; Bit 0 indicates that we want to show the segments instead of the message

;

CURVAL EQU $62 ; The current value we are displaying

START EQU *

;

; (2) System entry point vectors

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

 nop

 nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

 nop

 nop

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

 rts

L0123: jmp HANDLE_STATE0

db STATETAB-STATETAB

;

; (3) Program strings

S6_NUMBER: timex6 “NUMBER”

S6_COUNT: timex6 “COUNT “

;

; (4) State Table

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 87 -

STATETAB:

 db 0

 db EVT_ENTER,TIM2_8TIC,0 ; Initial state

 db EVT_TIMER2,TIM_ONCE,0 ; The timer from the enter event

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_DNNEXT,TIM_ONCE,0 ; Next button

 db EVT_DNPREV,TIM_ONCE,0 ; Prev button

 db EVT_DNSET,TIM_ONCE,0 ; Set button

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events. We will see ENTER, RESUME, DNNEXT, DNPREV, DNSET, and

TIMER2

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_DNNEXT ; Did they press the next button?

 beq DO_NEXT ; Yes, increment the counter

 cmp #EVT_DNPREV ; How about the PREV button

 beq DO_PREV ; handle it

 cmp #EVT_DNSET ; Maybe the set button?

 beq DO_SET ; Deal with it!

 cmp #EVT_ENTER ; Is this our initial entry?

 bne REFRESH

;

; This is the initial event for starting us

;

DO_ENTER

 bclr 1,FLAGBYTE ; Indicate that we need to clear the display

 jsr CLEARSYM ; Clear the display

 lda #S6_NUMBER-START

 jsr PUT6TOP

 lda #S6_COUNT-START

 jsr PUT6MID

 lda #SYS8_MODE

 jmp PUTMSGBOT

;

; (6) Our only real working code...

DO_NEXT

 inc CURVAL

lda CURVAL

cmp #100

bne SHOWVAL

DO_SET

clr CURVAL

SHOWVAL

brset 1,FLAGBYTE,NOCLEAR

REFRESH

 jsr CLEARALL

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 bset 1,FLAGBYTE

NOCLEAR

ldx CURVAL

 jsr FMTXLEAD0

jmp PUTMID34

DO_PREV

lda CURVAL

 beq WRAPUP

dec CURVAL

bra SHOWVAL

WRAPUP

 lda #99

sta CURVAL

bra SHOWVAL

;

; (7) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

 clr FLAGBYTE ; start with a clean slate

 clr CURVAL

rts

We have the same 7 basic sections, but some of them are a little more filled out.

1. Program specific constants - We have only two basic variables. The flagbyte and the current value.

2. System entry point vectors - We have nothing special this time..

3. Program strings - The strings go here for addressability.

4. State Table(s) - This really tells the watch how we want to operate and what events we want to handle.
 See The State Table for a more complete explanation of this. For this, we want to see the down events for
the NEXT, PREV, and SET buttons so that we can increment, decrement, or reset the counter as
appropriate. We also have coded the MODE button with the magic $FF which causes it to advance to the
next app.

5. State Table Handler(s) - Here we have the typical CMP/BEQ instruction sequence to quickly determine
what event happened. Note that the EVT_ENTER event causes a timer to go off which allows us to clear
the screen 8/10 second after they switch to the app.

6. Program Specific Code - The actual meat of the program. We really only have to deal with
advance/retreat/reset of the value and then displaying it after each change..

7. Main Initialization routine - This is called once when the wristapp is first loaded. We need to make sure that
we set the appropriate bits in WRISTAPP_FLAGS.

Just pressing a button for each increment can be tedious. Learn how to make it better with: Better Input - Update

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 89 -

Better Input - Update

Pressing the button for each time you want to increment or decrement a number can be very tedious. Fortunately,
the Datalink has a series of update routines that you can call to handle this automatically. The update routine takes
a few parameters. First is the type of update to do. The function limits

:

;Name: Update

;Version: UPDATE

;Description: This is a simple number update program

;by John A. Toebes, VIII

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

; Bit 1 indicates that we need to clear the display first

;

CURVAL EQU $62 ; The current value we are displaying

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE0

 db STATETAB-STATETAB

;

; (3) Program strings

S6_UPDATE: timex6 “UPDATE”

S6_SAMPLE: timex6 “SAMPLE”

;

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (4) State Table

;

STATETAB:

 db 0

 db EVT_ENTER,TIM_2_8TIC,0 ; Initial state

 db EVT_TIMER2,TIM_ONCE,0 ; The timer from the enter event

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_DNANY4,TIM_ONCE,0 ; NEXT, PREV, SET, MODE button pressed

 db EVT_UPANY4,TIM_ONCE,0 ; NEXT, PREV, SET, MODE button released

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, TIMER2, RESUME, DNANY4 and UPANY4 events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_DNANY4 ; Did they press a button?

 bne CHKENTER ; No, pass on to see what else there might be

 lda BTN_PRESSED ; Let’s see what the button they pressed was

 cmp #EVT_PREV ; How about the PREV button

 beq DO_PREV ; handle it

 cmp #EVT_NEXT ; Maybe the NEXT button?

 beq DO_NEXT ; Deal with it!

 cmp #EVT_SET ; Perhaps the SET button

 beq DO_SET ; If so, handle it

; In reality, we can’t reach here since we handled all three buttons

; in the above code (the MODE button is handled before we get here and the

; GLOW button doesn’t send in an event for this). We can just fall through

; and take whatever we get from it.

CHKENTER

 cmp #EVT_ENTER ; Is this our initial entry?

 bne REFRESH

;

; This is the initial event for starting us

;

DO_ENTER

 bclr 1,FLAGBYTE ; Indicate that we need to clear the display

 jsr CLEARSYM ; Clear the display

 lda #S6_UPDATE-START

 jsr PUT6TOP

 lda #S6_SAMPLE-START

 jsr PUT6MID

 lda #SYS8_MODE

 jmp PUTMSGBOT

;

; (6) Our real working code...

DO_NEXT

 bset 0,SYSFLAGS ; Mark our update direction as up

 bra DO_UPD

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 91 -

DO_PREV

bclr 0,SYSFLAGS ; Mark our update direction as down

DO_UPD

clra

 sta UPDATE_MIN ; Our low end is 0

 lda #99

 sta UPDATE_MAX ; and the high end is 99 (the max since this is a 2 digit value)

 ldx #CURVAL ; Point to our value to be updated

 lda #UPD_MID34 ; Request updating in the middle of the display

 jsr START_UPDATEP ; And prepare the update routine

 bset 4,BTNFLAGS ; Mark that the update is now pending

 bclr 1,FLAGBYTE

 lda #SYS8_SET_MODE

 jmp PUTMSGBOT

DO_SET

clr CURVAL ; When they hit the set button, we just clear to zero

SHOWVAL

brset 1,FLAGBYTE,NOCLEAR ; Do we need to clear the display first?

REFRESH

 jsr CLEARALL ; Yes, clear everything before we start

 bset 1,FLAGBYTE ; And remember that we have already done that

NOCLEAR

 bclr 7,BTNFLAGS ; Turn off any update routine that might be pending

 ldx CURVAL ; Get the current value

 jsr FMTXLEAD0 ; Convert it to the two ASCII digits

 jmp PUTMID34 ; And put it on the screen in the right place

;

; (7) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

 clr FLAGBYTE ; start with a clean slate

 clr CURVAL

rts

Now all of that code needs a little explanation. As you can see from the numbers, we have 7 basic sections

1. Program specific constants - This is where you declare everything that you want to use. As a Wristapp, you
have only a limited amount of Ram (7 bytes to be specific) that you can store your stuff with, so be careful
here.

2. System entry point vectors - These are fixed and mandated for any Wristapp. If there is more than one
state, the JMP and db sequence is repeated for each state. We haven’t started getting fancy so we still
have only one state table.

3. Program strings - In order to provide addressability to the strings, you need to put them immediately after
the entry point vectors. Our only strings are the two banner strings.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

4. State Table(s) - This really tells the watch how we want to operate and what events we want to handle.
 See The State Table for a more complete explanation of this. We accept the normal RESUME, ENTER,
and TIMER2 events for getting us running. We also handle the MODE button by allowing it to just bounce
us out of the application and into the next. It is important that this event be in the table before the
EVT_DNANY4 which allows for the NEXT, PREV, SET, and MODE buttons (it ignores the INDIGLO
button). If you press the mode button, it will be handled by the first entry and the application terminated
cleanly. Otherwise, we have to sort out which of the three buttons was pressed. This is easy to do since
BTN_PRESSED holds the actual code associated with the button that was selected.

5. State Table Handler(s) - These are called to process the events for a particular state. Typically this is a
LDA BTNSTATE followed by a lot of CMP/Bcc instructions. You also need to do the BSET 1,$8f at the
start to allow the Wristapp to be suspendable. In this case we introduce the use of the EVT_DNANY4 in
the basic state table logic testing. When we see the EVT_DNANY4 or EVT_UPANY4, we look at
BTN_PRESSED to identify what the user pressed.

6. Program Specific Code - The actual meat of the program. Again, the code is very simple. We have to
handle making sure that the screen is cleared at the appropriate times, but other than that, the majority of
the work is picking a direction and setting 0.SYSFLAGS appropriately before letting the system handle the
Update for us. Once we are set up, we set 4,BTNFLAGS and the system roms will handle updating the
number for us.

7. Main Initialization routine - This is called once when the wristapp is first loaded. We need to make sure that
we set the appropriate bits in WRISTAPP_FLAGS.

This has gotten a bit better for input, now you need to show them what they have selected with: Showing Selection
- Blink

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 93 -

Showing Selection - Blink routines

We can make our update program a bit smarter and more obvious to the user by blinking the digit when it is
available to be changed. Like the START_UPDATEP routine, there is an equivalent START_BLINKP routine which
handles blinking the display for you. I call this routine FLASH since it is not possible to put a K on the top two lines of
the display :-).

;Name: Flash

;Version: FLASH

;Description: by John A. Toebes, VIII

;This is a simple number update/flash program

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

; Bit 1 indicates that we need to clear the display first

;

CURVAL EQU $62 ; The current value we are displaying

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE0

 db STATETAB-STATETAB

;

; (3) Program strings

S6_FLASH: timex6 “FLASH “

S6_SAMPLE: timex6 “SAMPLE”

;

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (4) State Table

;

STATETAB:

 db 0

 db EVT_ENTER,TIM_2_8TIC,0 ; Initial state

 db EVT_TIMER2,TIM_ONCE,0 ; The timer from the enter event

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_DNANY4,TIM_ONCE,0 ; NEXT, PREV, SET, MODE button pressed

 db EVT_UPANY4,TIM_ONCE,0 ; NEXT, PREV, SET, MODE button released

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, TIMER2, RESUME, DNANY4 and UPANY4 events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_DNANY4 ; Did they press a button?

 bne CHKENTER ; No, pass on to see what else there might be

 lda BTN_PRESSED ; Let’s see what the button they pressed was

 cmp #EVT_PREV ; How about the PREV button

 beq DO_PREV ; handle it

 cmp #EVT_NEXT ; Maybe the NEXT button?

 beq DO_NEXT ; Deal with it!

 cmp #EVT_SET ; Perhaps the SET button

 beq DO_SET ; If so, handle it

; In reality, we can’t reach here since we handled all three buttons

; in the above code (the MODE button is handled before we get here and the

; GLOW button doesn’t send in an event for this). We can just fall through

; and take whatever we get from it.

CHKENTER

 cmp #EVT_ENTER ; Is this our initial entry?

 bne REFRESH

;

; This is the initial event for starting us

;

DO_ENTER

 bclr 1,FLAGBYTE ; Indicate that we need to clear the display

 jsr CLEARSYM ; Clear the display

 lda #S6_FLASH-START

 jsr PUT6TOP

 lda #S6_SAMPLE-START

 jsr PUT6MID

 lda #SYS8_MODE

 jmp PUTMSGBOT

;

; (6) Our real working code...

DO_NEXT

 bset 0,SYSFLAGS ; Mark our update direction as up

 bra DO_UPD

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 95 -

DO_PREV

bclr 0,SYSFLAGS ; Mark our update direction as down

DO_UPD

clra

 sta UPDATE_MIN ; Our low end is 0

 lda #99

 sta UPDATE_MAX ; and the high end is 99 (the max since this is a 2 digit value)

 ldx #CURVAL ; Point to our value to be updated

 lda #UPD_MID34 ; Request updating in the middle of the display

 jsr START_UPDATEP ; And prepare the update routine

 bset 4,BTNFLAGS ; Mark that the update is now pending

 bclr 1,FLAGBYTE

 lda #SYS8_SET_MODE

 jmp PUTMSGBOT

DO_SET

clr CURVAL ; When they hit the set button, we just clear to zero

SHOWVAL

brset 1,FLAGBYTE,NOCLEAR ; Do we need to clear the display first?

REFRESH

 jsr CLEARALL ; Yes, clear everything before we start

 bset 1,FLAGBYTE ; And remember that we have already done that

NOCLEAR

 bclr 7,BTNFLAGS ; Turn off any update routine that might be pending

 ldx #CURVAL

 lda #BLINK_MID34

 jsr START_BLINKP

 bset 2,BTNFLAGS ; Mark a blink routine as pending

rts

;

; (7) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

 clr FLAGBYTE ; start with a clean slate

 clr CURVAL

rts

This is code is basically identical to the Update sample with only a couple of minor changes.

1. Program specific constants - No Change.

2. System entry point vectors - We have nothing special this time..

3. Program strings - Gee, we changed the strings.

4. State Table(s) - We get to use exactly the same state table. See The State Table for a more complete
explanation of this.

5. State Table Handler(s) - Since the state table is the same, the state handling is the same.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

6. Program Specific Code - All we had to do different here was to call START_BLINKP and then set
2,BTNFLAGS to notify the system that we want the blink routine to run. The blink routine will automatically
handle putting up the number for us.

7. Main Initialization routine - No changes here either. This is called once when the wristapp is first loaded.
 We need to make sure that we set the appropriate bits in WRISTAPP_FLAGS.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 97 -

Entering Digits - PASSWD sample

This program is a bit more sophisticated to show off how you might go toward creating a complex app. I have not
made any attempts at optimizing the code here in order to be a bit more clear about how to go about writing this type
of app. There are a few new features with this code:

• We have two different display screens. When you first enter the app, it puts up one display. After it times
out, it puts up a different display which also has a scrolling message across the bottom.

• The set button brings you into a set mode where the mode button switches between digits to set.

• This app uses two state tables instead of one. It shows how to switch between the two states.

;Name: Password

;Version: PASSWD

;Description: This is a simple number update/passwd program

;by John A. Toebes, VIII

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

; Bit 0 indicates which digit we are working on (SET=SECOND DIGIT)

; Bit 1 indicates that we need to clear the display first

;

DIGIT0 EQU $62 ; The first digit to enter

DIGIT1 EQU $63 ; The second digit to enter

SYSTEMP0 EQU $A0

SYSTEMP1 EQU $A1

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

L011f: lda STATETAB0,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE0

 db STATETAB0-STATETAB0

L0127: jmp HANDLE_STATE1

 db STATETAB1-STATETAB0

;

; (3) Program strings

S6_TOEBES: timex6 “TOEBES”

S6_SAMPLE: timex6 “SAMPLE”

S6_PRESS: timex6 “PRESS “

S8_PASSWORD: Timex “PASSWORD”

SX_MESSAGE Timex “BY JOHN A. TOEBES, VIII”

 db SEPARATOR

;

; (4) State Table

;

STATETAB0:

 db 0

 db EVT_ENTER,TIM_2_8TIC,0 ; Initial state

 db EVT_TIMER2,TIM_ONCE,0 ; The timer from the enter event

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_SET,TIM_ONCE,1 ; SET button pressed

 db EVT_END

STATETAB1:

 db 1

 db EVT_RESUME,TIM_ONCE,1 ; Resume from a nested app

 db EVT_DNANY4,TIM_ONCE,1 ; NEXT, PREV, SET, MODE button pressed

 db EVT_UPANY4,TIM_ONCE,1 ; NEXT, PREV, SET, MODE button released

 db EVT_USER2,TIM_ONCE,0

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, TIMER2, and RESUME events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_ENTER ; Is this our initial entry?

 bne REFRESH0

;

; This is the initial event for starting us

;

DO_ENTER

 bclr 1,FLAGBYTE ; Indicate that we need to clear the display

 jsr CLEARSYM ; Clear the display

 lda #S6_TOEBES-START

 jsr PUT6TOP

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 99 -

 lda #S6_SAMPLE-START

 jsr PUT6MID

 lda #S8_PASSWORD

 jmp BANNER8

;

; We come here for a RESUME or TIMER2 event. For this we want to reset the display

;

REFRESH0

 brset 1,FLAGBYTE,NOCLEAR0 ; Do we need to clear the display first?

 bset 1,FLAGBYTE

 jsr CLEARSYM

NOCLEAR0

 lda #S6_PRESS-START

 jsr PUT6TOP

 lda #SYS6_SET

 jsr PUTMSG2

 lda #SX_MESSAGE-START

 jmp SETUP_SCROLL

;

; (6) State Table 1 Handler

; This is called to process the state events.

; We see SET, RESUME, DNANY4, and UPANY4 events

;

HANDLE_STATE1:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_UPANY4

 beq REFRESH

 cmp #EVT_DNANY4 ; Is this our initial entry?

 bne FORCEFRESH

 lda BTN_PRESSED ; Let’s see what the button they pressed was

 cmp #EVT_PREV ; How about the PREV button

 beq DO_PREV ; handle it

 cmp #EVT_NEXT ; Maybe the NEXT button?

 beq DO_NEXT ; Deal with it!

 cmp #EVT_MODE ; Perhaps the MODE button

 beq DO_MODE ; If so, handle it

; It must be the set button, so take us out of this state

 lda #EVT_USER2

 jmp POSTEVENT

;

; (7) Our real working code...

DO_NEXT

 bset 0,SYSFLAGS ; Mark our update direction as up

 bra DO_UPD

DO_PREV

bclr 0,SYSFLAGS ; Mark our update direction as down

DO_UPD

clra

 sta UPDATE_MIN ; Our low end is 0

 lda #99

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 sta UPDATE_MAX ; and the high end is 99 (the max since this is a 2 digit

value)

 brset 0,FLAGBYTE,UPD1

 ldx DIGIT1

 jsr FMTXLEAD0

 jsr PUTMID34

 ldx #DIGIT0 ; Point to our value to be updated

 lda #UPD_MID12 ; Request updating in the middle of the display

 bra UPD2

UPD1

 ldx DIGIT0

 jsr FMTXLEAD0

 jsr PUTMID12

 ldx #DIGIT1

 lda #UPD_MID34

UPD2

 jsr START_UPDATEP ; And prepare the update routine

 bset 4,BTNFLAGS ; Mark that the update is now pending

 bclr 1,FLAGBYTE

 lda #SYS8_SET_MODE

 jmp PUTMSGBOT

DO_MODE

 lda FLAGBYTE

 eor #1

 sta FLAGBYTE

REFRESH

brset 1,FLAGBYTE,NOCLEAR ; Do we need to clear the display first?

FORCEFRESH

 jsr CLEARALL ; Yes, clear everything before we start

 bset 1,FLAGBYTE ; And remember that we have already done that

NOCLEAR

 bclr 7,BTNFLAGS ; Turn off any update routine that might be pending

 brset 0,FLAGBYTE,SET1

 ldx DIGIT1

 jsr FMTXLEAD0

 jsr PUTMID34

 ldx #DIGIT0

 lda #BLINK_MID12

 bra SET2

SET1

 ldx DIGIT0

 jsr FMTXLEAD0

 jsr PUTMID12

 ldx #DIGIT1

 lda #BLINK_MID34

SET2

 jsr START_BLINKP

 bset 2,BTNFLAGS ; Mark a blink routine as pending

rts

;

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 101 -

; (8) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

 clr FLAGBYTE ; start with a clean slate

 clr DIGIT0

 clr DIGIT1

rts

;

; (9) This subroutine is useful for getting a scrolling string on the screen

;

;--

; Routine:

; SETUP_SCROLL

; Parameters:

; X - Offset from Start to the string

; Returns:

; MSGBUF - contains copied string

; Purpose

; This copies the current string into MSGBUF and calls the appropriate routines

; to start it scrolling on the bottom line.

;--

SETUP_SCROLL:

 clr SYSTEMP0

 sta SYSTEMP1

DO_COPY:

 ldx SYSTEMP1 ; Get the pointer to the source character

 lda START,X ; Get the character that we are copying

 ldx SYSTEMP0 ; Get the pointer to the output buffer

 sta MSGBUF,X ; and store the character away

 inc SYSTEMP0 ; Increment our count

 inc SYSTEMP1 ; As well as the pointer to the character

 cmp #SEPARATOR ; Did we get a terminator character

 bne DO_COPY ; No, go back for more

 ;

; The string is now in a buffer terminated by a separator character

 ;

 jsr PUTSCROLLMSG ; Initialize the scrolling support

 jmp SCROLLMSG ; And tell it to actually start scrolling

This is code is built on the Update and Blink samples with a few changes and additions.

1. Program specific constants - We now have two digits to care about.

2. System entry point vectors - Because we have gone to two state tables, we now have the extra jump
vector.

3. Program strings - Gee, we changed the strings. Plus we have a longer string which we pass to our
SETUP_SCROLL routine.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

4. State Table(s) - We now have two state tables. State table0 is pretty simple and is used only for when we
are in the normal state. State table 1 is used when we are in the set mode. See The State Table for a
more complete explanation of this.

5. State Table Handler0 - For state0, we only really need to handle the initial enter where we put up the
banner. After a while we time out and put up the ‘PRESS SET’ message with my name scrolling across the
bottom.

6. State Table Handler1 - This handler is used for when we are in the SET state for changing the numbers.

7. Program Specific Code - We use the same UPDATE and BLINK functions from the Blink sample. The only
extra work here is that we cause the display to update the other digit when we are setting one.

8. Main Initialization routine - No changes here. This is called once when the wristapp is first loaded. We need
to make sure that we set the appropriate bits in WRISTAPP_FLAGS.

9. SETUP_SCROLL subroutine - This is a useful routine that you may wish to copy for another wristapp.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 103 -

Getting time and Input - DAYFIND sample

This is the first real app with some attempt at optimization and a bit of planning for user input. It stems from a
suggestion by Roman Mazi. There are a lot of things in this code which build on the previous examples. The most
notable things in this one are:

• This code shows how to get the current date (and you can also get the time the same way).

• There are banner messages on the bottom of the display to provide a little help.

• Workarounds for a lack of update routines are given.

• Quite a few new routines are introduced here.

The code is reasonably commented:

;Name: Day Finder

;Version: DAYFIND

;Description: This will allow you to determine the date for a given day of the week and vice-versa.

;by John A. Toebes, VIII

;

;Press the prev/next buttons to advance by a single day. Press SET to access the ability to advance/backup

by

;weeks, months, days, and years. The MODE button advances through those different states

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

B_CLEAR EQU 0 ; Bit 0 indicates that we need to clear the display first

B_SCANUP EQU 1 ; Bit 1 indicates that we are scanning up

B_SCANNING EQU 2 ; Bit 2 indicates that we are in a fake scanning mode

DIGSEL EQU $62 ; Indicates which digit we are working on

 ; 0 = DAY OF WEEK

 ; 1 = Month

 ; 2 = Day

 ; 3 = Year

YEAR_DIG1 EQU $63 ; This is the first digit of the year to blink (the tens digit)

YEAR_DIG2 EQU $64 ; This is the second digit of the year to blink (the ones digit)

COUNTER EQU $65 ; A convenient counter for us to advance a week at a time

;

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

L011f: lda STATETAB0,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE0

 db STATETAB0-STATETAB0

L0127: jmp HANDLE_STATE1

 db STATETAB1-STATETAB0

;

; (3) Program strings

S6_DAY timex6 “DAY “

S6_FIND timex6 “ FIND”

S8_TOEBES Timex “J.TOEBES”

S8_DAYFIND Timex “DAY FIND”

S8_WEEK db C_LEFTARR

 Timex “ WEEK “

 db C_RIGHTARR

S8_MONTH db C_LEFTARR

 Timex “MONTH “

 db C_RIGHTARR

S8_DAY db C_LEFTARR

 Timex “ DAY “

 db C_RIGHTARR

S8_YEAR db C_LEFTARR

 Timex “ YEAR “

 db C_RIGHTARR

;

; (4) State Table

;

STATETAB0:

 db 0

 db EVT_ENTER,TIM1_4TIC,0 ; Initial state

 db EVT_TIMER1,TIM_ONCE,0 ; The timer from the enter event

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_SET,TIM_ONCE,1 ; SET button pressed

 db EVT_DNNEXT,TIM2_8TIC,0 ; NEXT button pressed

 db EVT_DNPREV,TIM2_8TIC,0 ; PREV button pressed

 db EVT_UPANY4,TIM_ONCE,0 ; The

 db EVT_TIMER2,TIM2_TIC,0 ; The timer for the next/prev button pressed

 db EVT_END

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 105 -

STATETAB1:

 db 1

 db EVT_RESUME,TIM_ONCE,1 ; Resume from a nested app

 db EVT_DNANY4,TIM_ONCE,1 ; NEXT, PREV, SET, MODE button pressed

 db EVT_UPANY4,TIM_ONCE,1 ; NEXT, PREV, SET, MODE button released

 db EVT_USER2,TIM_ONCE,0

 db EVT_USER3,TIM2_8TIC,1 ;

 db EVT_TIMER2,TIM2_TIC,1 ;

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, TIMER2, and RESUME events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_DNNEXT

 beq DO_NEXT0

 cmp #EVT_DNPREV

 beq DO_PREV0

 cmp #EVT_TIMER2

 beq DO_SCAN

 cmp #EVT_ENTER ; Is this our initial entry?

 bne REFRESH0

;

; This is the initial event for starting us up

;

DO_ENTER

;

; (6) This code gets the current date from the system

 jsr ACQUIRE ; Lock so that it doesn’t change under us

 ldx #TZ1_MONTH ; Assume that we are using the first timezone

 jsr CHECK_TZ ; See which one we are really using

 bcc COPY_TZ1 ; If we were right, just skip on to do the work

 ldx #TZ2_MONTH ; Wrong guess, just load up the second time zone

COPY_TZ1

 lda 0,x ; Copy out the month

 sta SCAN_MONTH

 lda 1,x ; Day

 sta SCAN_DAY

 lda 2,x ; and year

 sta SCAN_YEAR

 jsr RELEASE ; Unlock so the rest of the system is happy

 bclr B_CLEAR,FLAGBYTE ; Indicate that we need to clear the display

 clr DIGSEL ; Start us off on the week advance

 jsr CLEARSYM ; Clear the display

 lda #S6_DAY-START

 jsr PUT6TOP

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 lda #S6_FIND-START

 jsr PUT6MID

 lda #S8_TOEBES-START

 jmp BANNER8

DO_SCAN

brclr B_SCANUP,FLAGBYTE,DO_PREV0 ; Were we scanning up or down?

DO_NEXT0

 bset B_SCANUP,FLAGBYTE ; We are now scanning up

 jsr INCREMENT_SCAN_DATE ; Advance to the next date

 bra SHOW_DATE ; Comment this out and use the next one if you want

 ; jmp APPT_SHOW_SCAN ; to put the text ‘SCAN’ on the bottom when we are in scan

mode

DO_PREV0

 bclr B_SCANUP,FLAGBYTE ; We are now scanning down

 jsr DECREMENT_SCAN_DATE ; Back up to the previous date

 bra SHOW_DATE ; Show the date on the screen.

 ; jmp APPT_SHOW_SCAN ; Use this if you want ‘SCAN’ on the bottom of the display

;

; We come here for a RESUME or TIMER2 event. For this we want to reset the display

;

REFRESH0

 brset B_CLEAR,FLAGBYTE,NOCLEAR0 ; Do we need to clear the display first?

 bset B_CLEAR,FLAGBYTE ; Mark that the display has been cleared

 jsr CLEARALL ; and do the work of clearing

NOCLEAR0

 lda #S8_DAYFIND-START ; Put up the name of the app on the display

 jsr BANNER8

SHOW_DATE

 jsr APPT_SHOW_DATE ; Show the date on the screen

 ldx SCAN_YEAR ; as well as the year

 jmp PUTYEARMID

;--

; (7) State Table 1 Handler

; This is called to process the state events.

; We see SET, RESUME, USER3, TIMER2, DNANY4, and UPANY4 events

; We use the USER3 to trigger a delay which fires off a TIMER2 sequence of events.

; This allows us to have the PREV/NEXT buttons repeat for advancing the WEEK and YEAR

; since we can’t use the UPDATE routines for them.

;

HANDLE_STATE1:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_TIMER2 ; Was it a timer for a repeat operation?

 beq DO_UPD ; Yes, go handle it

 cmp #EVT_USER3 ; Was it the USER3 event fired from the PREV/NEXT buttons?

 bne TRY_UP ; No, try again

 rts ; Yes, just ignore it, it will cause a timer to go off

later

TRY_UP

 bclr B_SCANNING,FLAGBYTE ; We can’t be scanning any more, so turn it off

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 107 -

 cmp #EVT_UPANY4 ; Was it any button being released?

 bne TRY_DN ; No, try again

 jmp REFRESH ; Yes, go refresh the screen (note that the branch is out

of range)

TRY_DN

 cmp #EVT_DNANY4 ; Is this our initial entry?

 beq GET_DN ; No, try again

 jmp FORCEFRESH ; Yes, go setup the screen (note that the branch is out of

range)

GET_DN

 lda BTN_PRESSED ; Let’s see what the button they pressed was

 cmp #EVT_PREV ; How about the PREV button

 beq DO_PREV ; handle it

 cmp #EVT_NEXT ; Maybe the NEXT button?

 beq DO_NEXT ; Deal with it!

 cmp #EVT_MODE ; Perhaps the MODE button

 beq DO_MODE ; If so, handle it

; It must be the set button, so take us out of this state

 lda #EVT_USER2

 jmp POSTEVENT

;

; (8) Our real working code...

; We come here when they press the next/prev buttons. if we are in a timer repeat

; situation (triggered when they press prev/next for the WEEK/YEAR) then we skip right

; to processing based on the button that was previously pressed

;

DO_NEXT

 bset 0,SYSFLAGS ; Mark our update direction as up

 bra DO_UPD

DO_PREV

bclr 0,SYSFLAGS ; Mark our update direction as down

DO_UPD

 lda DIGSEL ; Which digit mode are we in?

 beq DO_UPD_DOW ; 0 - Handle the WEEK

 cmp #2

 blo DO_UPD_MONTH ; <2 = 1 - Handle the MONTH

 beq DO_UPD_DAY ; 2 - Handle the Day

DO_UPD_YEAR ; >2 = 3 - Handle the YEAR

 brclr 0,SYSFLAGS,LASTYEAR ; Were we in the down direction?

 ldx #99 ; Going up, let the WRAPX routine handle it for us

 lda SCAN_YEAR

 jsr INCA_WRAPX

 bra SAVEYEAR

LASTYEAR

 lda SCAN_YEAR ; Going down, get the year

 deca ; Decrement it

 bpl SAVEYEAR ; and see if we hit the lower end

 lda #99 ; Yes, 2000 wraps down to 1999

SAVEYEAR

 sta SCAN_YEAR ; Save away the new year

 bra SETUP_LAG ; And fire off an event to allow for repeating

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

DO_UPD_DOW ; 0 - Day of week

 lda #7 ; We want to iterate 7 times advancing by one day.

 sta COUNTER ; (this makes it much easier to handle all the fringe

cases)

WEEKLOOP

 brclr 0,SYSFLAGS,LASTWEEK ; Are we going backwards?

 jsr INCREMENT_SCAN_DATE ; Going forwards, advance by one day

 bra WEEKLOOPCHK ; And continue the loop

LASTWEEK

jsr DECREMENT_SCAN_DATE ; Going backwards, retreat by one day

WEEKLOOPCHK

 dec COUNTER ; Count down

 tst COUNTER ; See if we hit the limit

 bne WEEKLOOP ; and go back for more

; (9) Fake repeater

; This code is used for the Day of week and year modes where we want to have a

; repeating button, but the system routines won’t handle it for us

; It works by posting a USER3 event which has a timer of about ½ second.

; After that timer expires, we get a timer2 event which then repeats every tic.

; The only thing that we have to worry about here is to not go through this

; every time so that it takes ½ second for every repeat.

SETUP_LAG

 brset B_SCANNING,FLAGBYTE,INLAG ; If we were already scanning, skip out

 bset B_SCANNING,FLAGBYTE ; Indicate that we are scanning

 lda #EVT_USER3 ; and post the event to start it off

 jsr POSTEVENT

INLAG

jmp SHOW_DATE ; Put the date up on the display

; (10) Update routine usage

DO_UPD_MONTH ; 1 - Handle the month

 lda #MONTH_JAN ; The bottom end is January

 sta UPDATE_MIN

 lda #MONTH_DEC ; and the top end is December (INCLUSIVE)

 sta UPDATE_MAX

 lda #UPD_HMONTH ; We want the HALF-MONTH udpate function

 ldx #SCAN_MONTH ; To update the SCAN_MONTH variable

 bra SEL_UPD ; Go do it

DO_UPD_DAY ; 2 - Handle the day

 lda #1 ; 1 is the first day of the month

 sta UPDATE_MIN

 jsr GET_SCAN_MONTHLEN ; Figure out how long the month is

 sta UPDATE_MAX ; and make that the limit

 lda #UPD_HDAY ; We want the HALF-DAY update function

 ldx #SCAN_DAY ; to update the SCAN_DAY variable

SEL_UPD

 jsr START_UPDATEP ; And prepare the update routine

 bset 4,BTNFLAGS ; Mark that the update is now pending

rts

; (11) Making the mode button work

; when they press the mode button, we want to cycle through the various choices

; on the display.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 109 -

DO_MODE

 lda DIGSEL ; Figure out where we are in the cycle

 inca ; advance to the next one

 and #3 ; and wrap at 4 to zero

 sta DIGSEL

REFRESH

brset B_CLEAR,FLAGBYTE,NOCLEAR ; Do we need to clear the display first?

FORCEFRESH

 jsr CLEARALL ; Yes, clear everything before we start

 bset B_CLEAR,FLAGBYTE ; And remember that we have already done that

NOCLEAR

 clr BTNFLAGS ; Turn off any scrolling banners

 lda #ROW_TD23 ; Turn off the dash from the week blink

 sta DISP_ROW

 bclr COL_TD23,DISP_COL

 jsr SHOW_DATE ; Display the date

; (12) Establishing a blink routine

; This makes the appropriate section of the display blink based on what we are changing

 lda DIGSEL ; Get the digit we are on

 beq DO_BLINK_DOW ; 0 -> Update Day of week

 cmp #2

 blo DO_BLINK_MONTH ; <2 = 1 -> Update month

 beq DO_BLINK_DAY ; 2 - Update day of month

DO_BLINK_YEAR ; 3: Year

; (13) Calling BLINK_SECOND

; For BLINK_SECONDS, the UPDATE_PARM points to the 2 character format for the year.

 ldx SCAN_YEAR ; Get our year

 jsr GETBCDHI ; And extract out the high digit of it

 sta YEAR_DIG1 ; Save that away

 ldx SCAN_YEAR ; Do it again

 jsr GETBCDLOW ; to get the low digit

 sta YEAR_DIG2 ; and save that away

 ldx #YEAR_DIG1 ; the parm points to the first digit

 lda #BLINK_SECONDS ; and we want a BLINK_SECONDS function

 bra SETUP_BLINK ; so do it already

DO_BLINK_DOW ; 0: Day of week:

; (14) Calling BLINK_SEGMENT

; Unfortunately, there is no blink routine to blink the upper two letters on the display.

; To get around this, I have chosen to blink a single segment on the display (the dash

; after the day of the week). This routine was designed to blink the AM/PM or other

; symbols, but it works quite fine for our purposed. You need to set UPDATE_POS to have

; the row to be updated and UPDATE_VAL holds the mask for the COLUMS to be XORed.

; In this way, you might have more than one segment blinking, but there are few segments

; on the same row which would achieve a reasonable effect.

; UPDATE_POS ROW_TD23

; UPDATE_VAL (1<<COL_TD23)

 lda #ROW_TD23

; We want to blink the DASH after the day of week sta UPDATE_POS

; Store the ROW for it in UPDATE_POS lda #(1<<COL_TD23)

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; Get the mask for the column sta UPDATE_VAL

; And store that in UPDATE_VAL lda #BLINK_SEGMENT

; We want a BLINK_SEGMENT function bra SETUP_BLINK

; and get to it.

DO_BLINK_MONTH ; 1: Month

; (15) Calling BLINK_HMONTH, BLINK_HDAY

; These are the normal boring cases of calling the blink routine. They simply need the

; address of the byte holding the value to blink and the function to blink them with.

; UPDATE_PARM - Points to the month

 lda #BLINK_HMONTH ; We want a BLINK HALF-MONTH function

 ldx #SCAN_MONTH ; to blink our month

 bra SETUP_BLINK ; and do it

DO_BLINK_DAY ; 2: Day

; UPDATE_PARM - Points to the day

 lda #BLINK_HDAY ; We want a BLINK HALF-DAY function

 ldx #SCAN_DAY ; to blink our day

SETUP_BLINK

 jsr START_BLINKP ; Request the blink function

 lda digsel ; Figure out which one we are blinking

 lsla ; *2

 lsla ; *4

 lsla ; *8

 add #S8_WEEK-START ; And use that to index the banner to put on the bottom

 jsr BANNER8

 bset 2,BTNFLAGS ; Mark a blink routine as pending

rts

;

; (16) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

 clr FLAGBYTE ; start with a clean slate

rts

This is code is built on the passwd with a quite a few changes and additions.

1. Program specific constants - different uses for the flags and a couple of new local variables

2. System entry point vectors - No change here.

3. Program strings - Gee, we changed the strings. Note the four strings in a row which serve as help
messages when in set mode.

4. State Table(s) - State table0 is not radically changed (We added the next/prev buttons). State table 1 is
used when we are in the set mode. See The State Table for a more complete explanation of this. Note
the use of the USER3 event in this table

5. State Table Handler0 - For state0, we only really need to handle the initial enter where we put up the
banner. After a while we time out and put up the current day of the week and our banner.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 111 -

6. Get the system date - This shows how to get the current date.

7. State table 1 handler

8. Program Specific Code - We use the same UPDATE and BLINK functions from the Blink sample.

9. Fake Repeater - I’m pretty proud of this one...

10. Update routine usage - Look here for some clues on using the update routines.

11. Making the mode button work

12. Establishing a blink routine

13. Calling BLINK_SECOND

14. Calling BLINK_SEGMENT

15. Calling BLINK_HMONTH, BLINK_HDAY

16. Main initialization - Surprisingly, there is not much change here.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Playing With Sound - TestSnd example

This is a very simple program that I had put together to test out what sounds the watch can make. The program
doesn’t really do a lot except poke the hardware a little. It does use the update routine without the blinking. Unlike
programs which play a tune, this goes straight to the hardware to test out the capabilities and is completely
independent of any sound scheme that you might have loaded.

;Name: Test Sound

;Version: TESTSND

;Description: This routine tests the various sound capabilities of the DataLink.

;by John A. Toebes, VIII

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

CURRENT_VAL EQU $61

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

L011f: lda STATETAB0,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp DOEVENT0

 db TABLE0-TABLE0

L0127: jmp DOEVENT1

 db TABLE1-TABLE0

;

; (3) Program strings

S6_SOUND: timex6 “SOUND “

S6_TEST: timex6 “ TEST “

S8_TOEBES: Timex “J.TOEBES”

;

; (4) State Table

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 113 -

;

TABLE0:

 db 0

 db EVT_ENTER,TIM_LONG,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_TIMER2,TIM_ONCE,0 ;

 db EVT_DNNEXT,TIM_ONCE,1 ; Next button

 db EVT_DNPREV,TIM_ONCE,1 ; Prev button

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_DNSET,TIM_ONCE,0 ; Set button

 db EVT_UPSET,TIM_ONCE,0 ;

 db EVT_END

TABLE1:

 db 1

 db EVT_UPNEXT,TIM_ONCE,1 ; Releasing the next button

 db EVT_UPPREV,TIM_ONCE,1 ; Releasing the prev button

 db EVT_USER0,TIM_ONCE,0 ; Return to the main state table

 db EVT_END ; End of table

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, TIMER2, and RESUME events

;

DOEVENT0:

 bset 1,APP_FLAGS ; Allow us to be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_RESUME ; Did another app get called in the meantime?

 beq REFRESH ; We will refresh the display in this case

 cmp #EVT_TIMER2 ; Did the initial timer expire?

 beq REFRESH ; Yes, clean up the screen

 cmp #EVT_ENTER ; Is this the initial state?

 beq INITBANNER ; Yes, put up the banner

 cmp #EVT_DNSET ; Did they hit the set button

 beq PLAYIT

 cmp #EVT_UPSET

 beq SILENCE

rts

;

; (6) Sound playing code. Note that we go straight to the hardware here for this one

;

PLAYIT:

 lda #ROW_NOTE ; Turn on the little note symbol

 sta DISP_ROW

 bset COL_NOTE,DISP_COL

 lda CURRENT_VAL

 sta $28

rts

SILENCE:

 lda #ROW_NOTE ; Turn off the little note symbol

 sta DISP_ROW

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 bclr COL_NOTE,DISP_COL

 lda #15

 sta $28

rts

REFRESH:

 jsr CLEARALL ; Clear the display

 lda #S6_SOUND-START ; Put “SOUND” on the top of the display

 jsr PUT6TOP

 ldx CURRENT_VAL

 jsr FMTX

 jsr PUTMID34

 bra JBANNER

INITBANNER:

 jsr CLEARALL ; Clear the display

 lda #S6_SOUND-START ; Put ‘SOUND ‘ on the top line

 jsr PUT6TOP

 lda #S6_TEST-START ; Put ‘ TEST ‘ on the second line

 jsr PUT6MID

JBANNER

 lda #S8_TOEBES-START

 jmp BANNER8

;

; (7) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 bset 7,WRISTAPP_FLAGS ; Tell them that we are a live application

 clr CURRENT_VAL

rts

;

; (8) State Table 1 Handler

;

; This is called when we press the prev/next button or when the timer fires during that event

;

DOEVENT1:

 lda BTNSTATE

 cmp #EVT_DNPREV

 beq GO_DOWN

 cmp #EVT_DNNEXT

 beq GO_UP

 lda #EVT_USER0

 jmp POSTEVENT

GO_DOWN bclr 0,SYSFLAGS ; Mark update direction as down

 bra DOUPDN

GO_UP bset 0,SYSFLAGS ; Mark update direction as up

DOUPDN clra

 jsr CLEARMID

 sta UPDATE_MIN

 lda #99

 sta UPDATE_MAX

 ldx #CURRENT_VAL

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 115 -

 lda #UPD_MID34

 jsr START_UPDATEP

 bset 4,BTNFLAGS

rts

This code has a few notable sections.

1. Program specific constants - Nothing special here

2. System entry point vectors - Nothing new here either.

3. Program strings - Of course we changed the strings once again.

4. State Table(s) - We have two state tables. Both of these are pretty simple. StateTable0 has a lot of values
instead of using the EVT_DNANY event just for a little variety. StateTable1 is used just for the
increment/decrement mode. See The State Table for a more complete explanation of this.

5. State Table Handler0 - For state0, we only really need to handle the initial enter where we put up the
banner. It times out and puts up the sound banner. When you press the set button, it will play the sound.

6. Sound playing code - This code simply pokes the current value to the hardware at $28. When we let go of
the button, we make the hardware silent by poking a $0f to that same location.

7. Main Initialization routine - Nothing really significant here. This is called once when the wristapp is first
loaded. We need to make sure that we set the appropriate bits in WRISTAPP_FLAGS.

8. State Table Handler1 - Nothing really significant here, it uses the same update routines that most of the
other examples use.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Using Callbacks - Endoff example

Here is another pretty simple program that shows off a couple of useful features of a wristapp. This one stems from
a request several people have had (including myself) to turn off the alarms on the weekend. That’s really all this
does. To make it a little more fun, I decided that I wanted to call it “ WEEK “ “ENDOFF”, with the problem that there
is no letter K in the character set for the top line on the display. So, I figured out how to make a reasonably ok
looking letter. You will notice that this program seems to do very little...

;Name: Week End Off

;Version: ENDOFF

;Description: Week End Off - by John A. Toebes, VIII

;This application turns off all alarms on the weekend.

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

START EQU *

;

; (2) System entry point vectors

;

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: jmp CHECKSTATE ; Called to handle any timers or time events - WRIST_DOTIC

L0119: jmp ENABLE_ALL ; Called when the COMM app starts and we have timers pending -

WRIST_INCOMM

L011c: jmp CHECKSTATE ; Called when the COMM app loads new data - WRIST_NEWDATA

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE0

 db STATETAB-STATETAB

;

; (3) Program strings

;

S6_WEEK: timex6 “ WEEH “

S6_ENDOFF: timex6 “ENDOFF”

S8_TOEBES: Timex “J.TOEBES”

;

; (4) State Table

;

STATETAB:

 db 0

 db EVT_ENTER,TIM_LONG,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 117 -

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER and RESUME events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Allow us to be suspended

 jsr CLEARALL ; Clear the display

 lda #S6_WEEK-START ; Put ‘ WEEK ‘ on the top line

 jsr PUT6TOP

 lda #S6_ENDOFF-START ; Put ‘ENDOFF’ on the second line

 jsr PUT6MID

;

; (6) Faking a letter K

;

;

; We have We want it to look like:

; | | |

; | | | |

; | | | |

; |=====| |=====

; | | | |

; | | | |

; | | | |

; This means turning off T5B and turning on T5H

 lda #ROW_T5B

 sta DISP_ROW

 bclr COL_T5B,DISP_COL

 lda #ROW_T5H

 sta DISP_ROW

 bset COL_T5H,DISP_COL

 jsr CHECKSTATE ; Just for fun, check the alarm state

 lda #S8_TOEBES-START

 jmp BANNER8

;

; (7) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 bset 7,WRISTAPP_FLAGS ; Tell them that we are a live application

 lda #$C8 ; Bit3 = wristapp wants a call once a day when it changes (WRIST_DOTIC) (SET=CALL)

 ; Bit6 = Uses system rules for button beep decisions (SET=SYSTEM RULES)

 ; Bit7 = Wristapp has been loaded (SET=LOADED)

 sta WRISTAPP_FLAGS

; Fall into CHECKSTATE

;

; (8) Determining the day of the week

;

CHECKSTATE

 jsr ACQUIRE ; Lock so that it doesn’t change under us

 lda TZ1_DOW ; Assume that we are using the first timezone

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 jsr CHECK_TZ ; See which one we are really using

 bcc GOT_TZ1 ; If we were right, just skip on to do the work

 lda TZ2_DOW ; Wrong guess, just load up the second time zone

GOT_TZ1

 jsr RELEASE ; Unlock so the rest of the system is happy

 cmp #5 ; Time zone day of week is 0=Monday...6=Sunday

 bhs DISABLE_ALL ; Saturday, Sunday - disable them all

; Fall into ENABLE_ALL

;---

; Routine:

; (9) ENABLE_ALL/DISABLE_ALL

; Parameters:

; NONE

; Purpose:

; These routines enable/disable all of the alarms. It hides the disabled status of

; the alarm by storing it in bit 3 of the alarm flags.

; Bit0 = Alarm is enabled (SET=ENABLED)

; Bit1 = Alarm is masked (SET=MASKED)

; Bit2 = Current alarm is in 12 hour mode and is in the afternoon (SET=AFTERNOON)

; Bit3 = Alarm was enabled, but we are hiding it (SET=HIDDEN)

; It is safe to call these routine multiple times.

;---

ENABLE_ALL

ldx #4 ; We have 5 alarms to go through

ENABLE_NEXT

 lda ALARM_STATUS,X ; Get the flags for this alarm

 lsra ; Shift right 3 to get our hidden bit into place

lsra

lsra

 and #1 ; Mask out everything except the hidden bit (now in the enabled

position

 ora ALARM_STATUS,X ; Or it back into the flags

 and #7 ; and clear out our hidden bit

 sta ALARM_STATUS,X ; then save it out again.

 decx ; Count down the number of alarms

 bpl ENABLE_NEXT ; And go back for the next one

rts

DISABLE_ALL

ldx #4 ; We have 5 alarms to go through

DISABLE_NEXT

 lda ALARM_STATUS,X ; Get the flags for this alarm

 and #1 ; And extract our enabled bit

 lsla ; Shift left 3 to save as our hidden bit

lsla

lsla

 ora ALARM_STATUS,X ; Or it back into the flags

 and #$0e ; and clear out the enabled bit

 sta ALARM_STATUS,X ; then save it out again.

 decx ; Count down the number of alarms

 bpl DISABLE_NEXT ; And go back for the next one

rts

This code has a few notable sections.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 119 -

1. Program specific constants - We don’t have any

2. System entry point vectors - This is where we have a lot of fun. We are using three of the entry points which
we have never used before. The WRIST_DOTIC entry is enabled by us setting bit 3 in the Wristapp_flags
which causes us to get called once a day. While we could enable it to call us hourly, by the minute, or even
faster, it really doesn’t make sense to waste processing time. The WRIST_INCOMM entry point gives us a
chance to undo our hiding of the alarms just in case the downloaded data wants to mess with it. Lastly, the
WRIST_NEWDATA entry is called after the data has been loaded into the watch.

3. Program strings - Of course we changed the strings once again. Note that the one string says WEEH and
not WEEK since K is not a valid letter in the TIMEX6 alphabet. Don’t worry, we will fix it up at runtime.

4. State Table(s) - We are back to only one state table. In fact, you will see that this state table is even less
fancy than the hello world example. We really don’t have any input functions, so we pretty much ignore
everything.

5. State Table Handler0 - For state0, we only really need to handle the initial enter or resume where we put up
the banner.

6. Faking the letter K - All we need to do is turn off one segment and turn on another to turn the H into a K.

7. Main Initialization routine - Nothing really significant here. This is called once when the wristapp is first
loaded. We need to make sure that we set the appropriate bits in WRISTAPP_FLAGS. The new bit that we
set here is to enable the callback once a day.

8. Determining the Current Day - This really is pretty simple, we figure out the current time zone and grab the
day of the week from the right spot.

9. ENABLE_ALL/DISABLE_ALL - These routines are pretty simple also, all they have to do is hide the state of
the enabled bit in the third bit of the alarm status flags. These routines had to be constructed so that you
can call them many times in a row and not lose the original sense of the enabled bit for each alarm. We are
able to do that by making sure that we always OR together the bits before clearing out the other.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Using 3 States - HexDump example

Ok, so you have a computer on your wrist. What better way to show it off than by having a hex dump utility to
traipse through memory. This is a major overhaul of a previous version of the HexDump application that I have
posted. I have turned it into a real application instead of a simple test program. It also uses the .ZSM file format to
allow you to use it with ASM6805. You can download it here

;Name: Hex Dump

;Version: HEXDUMP

;Description: Hex Dumper - by John A. Toebes, VIII

;This Hex dump routine is a simple thing to test out dumping hex bytes...

;

; Press the NEXT/PREV buttons to advance/backup by 6 bytes of memory at a time

; Press the SET button to change the location in memory where you are dumping.

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

; Bit 0 indicates the direction of the last button

; The other bits are not used

CURRENT_DIGIT EQU $62

DIGIT0 EQU $63

DIGIT1 EQU $64

DIGIT2 EQU $65

DIGIT3 EQU $66

;

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

L011f: lda STATETAB0,X ; The state table get routine - WRIST_GETSTATE

rts

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 121 -

L0123: jmp HANDLE_STATE0

 db STATETAB0-STATETAB0

L0127: jmp HANDLE_STATE1

 db STATETAB1-STATETAB0

L012b: jmp HANDLE_STATE2

 db STATETAB2-STATETAB0

;

; (3) Program strings

;

S6_BYTE: timex6 “ BYTE “

S6_DUMPER: timex6 “DUMPER”

S8_LOCATION Timex “aaaa “

;

; (4) State Table

;

STATETAB0:

 db 0

 db EVT_ENTER,TIM2_12TIC,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_TIMER2,TIM_ONCE,0 ; This is the timer

 db EVT_DNNEXT,TIM2_8TIC,1 ; Next button

 db EVT_DNPREV,TIM2_8TIC,1 ; Prev button

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_SET,TIM_ONCE,2 ; Set button

 db EVT_USER0,TIM_ONCE,$FF ; Return to system

 db EVT_END

STATETAB1:

 db 0

 db EVT_UPANY,TIM_ONCE,0 ; Releasing the prev or next button

 db EVT_TIMER2,TIM2_TIC,1 ; Repeat operation with a timer

 db EVT_END ; End of table

STATETAB2:

 db 2

 db EVT_RESUME,TIM_ONCE,2 ; Resume from a nested app

 db EVT_DNANY4,TIM_ONCE,2 ; NEXT, PREV, SET, MODE button pressed

 db EVT_UPANY4,TIM_ONCE,2 ; NEXT, PREV, SET, MODE button released

 db EVT_USER2,TIM_ONCE,0 ; Return to state 0

 db EVT_END ; End of table

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, TIMER2, and RESUME events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_ENTER ; Is this the initial state?

 bne SHOWDATA ; no, just clean up the screen

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

;

; (6) Put up the initial banner screen

;

 jsr CLEARALL ; Clear the display

 lda #S6_BYTE-START ; Put ‘ BYTE ‘ on the top line

 jsr PUT6TOP

 lda #S6_DUMPER-START ; Put ‘DUMPER’ on the second line

 jsr PUT6MID

 lda #SYS8_MODE ; Put MODE on the bottom line

 jmp PUTMSGBOT

; (7) FMTHEX is a routine similar to FMTX, but it handles hex values instead

;===

; Routine: FMTHEX

; Purpose:

; Format a byte into the buffer

; Parameters:

; A - Byte to be formatted

; X - Offset into Message buffer to put the byte

;===

FMTHEX:

 sta S8_LOCATION,X ; Save the byte

 and #$0f ; Extract the bottom nibble

 sta S8_LOCATION+1,X ; Save the hex value of the nibble

 lda S8_LOCATION,X ; Get the value once again

 lsra ; Shift right by 4 to get the high order nibble

lsra

lsra

lsra

sta S8_LOCATION,X ; And put it back into the buffer

rts

;

; (8) This is called when we press the prev/next button or when the timer fires during that event

;

HANDLE_STATE1:

 lda BTNSTATE

 cmp #EVT_TIMER2 ; Is this a repeat/timer event?

 beq REPEATBTN ; yes, do as they asked

 bclr 0,FLAGBYTE ; Assume that they hit the prev button

 cmp #EVT_DNPREV ; Did they hit the prev button

 bne REPEATBTN ; Yes, we guessed right

 bset 0,FLAGBYTE ; No, they hit next. Mark the direction.

REPEATBTN:

brclr 0,FLAGBYTE,NEXTLOC ; If they hit the next button, go do that operation

;

; They pressed the prev button, let’s go to the previous location

;

PREVLOC:

 lda CURRENT_LOC+1

 sub #6

 sta CURRENT_LOC+1

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 123 -

 lda CURRENT_LOC

 sbc #0

 sta CURRENT_LOC

 bra SHOWDATA

NEXTLOC:

 lda #6

 add CURRENT_LOC+1

 sta CURRENT_LOC+1

 lda CURRENT_LOC

 adc #0

 sta CURRENT_LOC

;

; (9) This is the main screen update routine.

; It dumps the current memory bytes based on the current address. Note that since it updates the entire

; display, it doesn’t have to clear anything

;

SHOWDATA:

jsr CLEARSYM

clrx

 bsr GETBYTE

 jsr PUTTOP12

 ldx #1

 bsr GETBYTE

 jsr PUTTOP34

 ldx #2

 bsr GETBYTE

 jsr PUTTOP56

 ldx #3

 bsr GETBYTE

 jsr PUTMID12

 ldx #4

 bsr GETBYTE

 jsr PUTMID34

 ldx #5

 bsr GETBYTE

 jsr PUTMID56

 lda CURRENT_LOC ; Get the high order byte of the address

clrx

 bsr FMTHEX ; Put that at the start of the buffer

 lda CURRENT_LOC+1 ; Get the low order byte of the address

 ldx #2

 bsr FMTHEX ; Put that next in the buffer

 lda #S8_LOCATION-START

 jmp BANNER8

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (10) GETBYTE gets a byte from memory and formats it as a hex value

;===

; Routine: GETBYTE

; Purpose:

; Read a byte from memory and put it into DATDIGIT1/DATDIGIT2 as hex values

; Parameters:

; X - Offset from location to read byte

; CURRENT_LOC - Base location to read from

;===

GETBYTE

CURRENT_LOC EQU *+1 ; Self modifying code... Point to what we want to modify

 lda $4000,X ; Get the current byte

 sta DATDIGIT2 ; And save it away

 lsra ; Extract the high nibble

lsra

lsra

lsra

 sta DATDIGIT1 ; And save it

 lda DATDIGIT2 ; Get the byte again

 and #$0f ; Extract the low nibble

 sta DATDIGIT2 ; And save it

rts

;

; (11) State Table 2 Handler

; This is called to process the state events.

; We see SET, RESUME, DNANY4, and UPANY4 events

;

HANDLE_STATE2:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_UPANY4

 beq REFRESH2

 cmp #EVT_DNANY4 ; Is this our initial entry?

 bne FORCEFRESH

 lda BTN_PRESSED ; Let’s see what the button they pressed was

 cmp #EVT_PREV ; How about the PREV button

 beq DO_PREV ; handle it

 cmp #EVT_NEXT ; Maybe the NEXT button?

 beq DO_NEXT ; Deal with it!

 cmp #EVT_MODE ; Perhaps the MODE button

 beq DO_MODE ; If so, handle it

; It must be the set button, so take us out of this state

 bsr SHOWDATA

 lda #EVT_USER2

 jmp POSTEVENT

;

; (12) This handles the update routine to change a digit...

;

DO_NEXT

 bset 0,SYSFLAGS ; Mark our update direction as up

 bra DO_UPD

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 125 -

DO_PREV

bclr 0,SYSFLAGS ; Mark our update direction as down

DO_UPD

clra

 sta UPDATE_MIN ; Our low end is 0

 lda #$F

 sta UPDATE_MAX ; and the high end is 15 (the hes digits 0-F)

 bsr GET_DISP_PARM

 lda #UPD_DIGIT

 jsr START_UPDATEP ; And prepare the update routine

 bset 4,BTNFLAGS ; Mark that the update is now pending

rts

;

; (13) This is where we switch which digit we are changing...

;

DO_MODE

lda CURRENT_DIGIT

inca

 and #3

 sta CURRENT_DIGIT

;

; (14) Refresh the screen and start blinking the current digit...

;

REFRESH2

 lda DIGIT0 ; Get the first digit

 lsla ; *16

lsla

lsla

lsla

 add DIGIT1 ; Plus the second digit

 sta CURRENT_LOC ; To make the high byte of the address

 lda DIGIT2 ; Get the third digit

 lsla ; *16

lsla

lsla

lsla

 add DIGIT3 ; Plus the fourth digit

 sta CURRENT_LOC+1 ; To make the low byte of the address

FORCEFRESH

 bclr 7,BTNFLAGS ; Turn off any update routine that might be pending

 jsr SHOWDATA ; Format the screen

 ldx #4 ; We need to copy over 4 bytes from the buffer

COPYIT

 decx ; This will be one down.

 lda S8_LOCATION,X ; Get the formatted byte

 sta DIGIT0,X ; And store it for the update routine

 tstx ; Did we copy enough bytes?

 bne COPYIT ; No, go back for more

 bsr GET_DISP_PARM ; Get the parm for the blink routine

 lda #BLINK_DIGIT ; Request to blink a digit

 jsr START_BLINKP ; And do it

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 bset 2,BTNFLAGS ; Mark a blink routine as pending

rts

;

; (15) This gets the parameters for an UPDATE/BLINK routine

;

GET_DISP_PARM

 lda CURRENT_DIGIT ; Figure out what digit we are dumping

 sta UPDATE_POS ; Store it for the BLINK/UPDATE routine

 add #DIGIT0 ; Point to the byte to be updated

 tax ; And put it into X as needed for the parameter

rts

;

; (16) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

 clr CURRENT_DIGIT ; Start out on the first digit

rts

This code has a few notable sections.

1. Program specific constants - We only really need special storage for the 4 digits which the update/blink
routines will handle.

2. System entry point vectors - We only have a main. However, we also have 3 state tables.

3. Program strings - Nothing special here. We have two strings for the banner and one string that we show
the current location with.

4. State Tables - We have three state tables now. State table0 does very little other than handle getting into
states 1 and 2. State table 1 is for when you are pressing the prev/next buttons while in the main state to
allow you to advance/backup by 6 bytes at a time. State Table 2 handles all of the setting of the digits.
 Note that it would be possible to combine these two states, but it would make the code much more
complicated than it needs to be.

5. State Table 0 Handler - This is actually one of the simplest. All it has to do is put up the startup banner and
then show the current data once that times out.

6. Initial banner screen - Very simple code to display the name of the application.

7. FMTHEX is a routine similar to FMTX, but it handles hex values instead. It is up here in order to allow
several of the other BSR instructions to be able to reach the main update routine. Sometimes moving a
subroutine can save you quite a few bytes.

8. PREV/NEXT Handling This is called when we press the prev/next button or when the timer fires during that
event.

9. Main Update This is the main screen update routine. Note that we don’t have to refresh anything since the
entire screen is written.

10. GETBYTE gets a byte from memory and formats it as a hex value

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 127 -

11. State Table 2 Handler - This is very similar to the state handling in the passwd sample.

12. Changing Digits This handles the update routine to change a digit...

13. Switching Digits This is where we switch which digit we are changing...

14. Blinking Digits Refresh the screen and start blinking the current digit...

15. GET_DISP_PARM This gets the parameters for an UPDATE/BLINK routine. We made this a subroutine in
order to ensure that everything is kept in sync. It also saves a few bytes.

16. Main Initialization This is the main initialization routine which is called when we first get the app into
memory. As usual, there is not a lot that we have to do.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Dumping the EEPROM - promdump example

The HexDump program is great for dumping out the regular memory, but if you search and search, you will never
find any of your appointments, lists, phone numbers, or anniversaries in the memory. That is because they are
stored in an EEPROM outside of the address space. With a few simple modifications to the HexDump program,
you can use the system to dump out the contents of the EEPROM. You can download it here

;Name: Prom Dump

;Version: promdump

;Description: Prom Dumper - by John A. Toebes, VIII

;This Prom Dump routine shows you what is in the EEProm

;

; Press the NEXT/PREV buttons to advance/backup by 6 bytes of memory at a time

; Press the SET button to change the location in memory where you are dumping.

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

FLAGBYTE EQU $61

; Bit 0 indicates the direction of the last button

; The other bits are not used

CURRENT_DIGIT EQU $62

DIGIT0 EQU $63

DIGIT1 EQU $64

DIGIT2 EQU $65

DIGIT3 EQU $66

;

; These should have been in the Wristapp.i files, but I forgot them...

;

INST_ADDRHI EQU $0437

INST_ADDRLO EQU $0438

HW_FLAGS EQU $9e

;

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: rts ; Called to handle any timers or time events - WRIST_DOTIC

nop

nop

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 129 -

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

L011f: lda STATETAB0,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE0

 db STATETAB0-STATETAB0

L0127: jmp HANDLE_STATE1

 db STATETAB1-STATETAB0

L012b: jmp HANDLE_STATE2

 db STATETAB2-STATETAB0

;

; (3) Program strings

;

S6_EEPROM: timex6 “EEPROM”

S6_DUMPER: timex6 “DUMPER”

S8_LOCATION Timex “aaaa “

;

; (4) State Table

;

STATETAB0:

 db 0

 db EVT_ENTER,TIM2_12TIC,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_TIMER2,TIM_ONCE,0 ; This is the timer

 db EVT_DNNEXT,TIM2_8TIC,1 ; Next button

 db EVT_DNPREV,TIM2_8TIC,1 ; Prev button

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_SET,TIM_ONCE,2 ; Set button

 db EVT_USER0,TIM_ONCE,$FF ; Return to system

 db EVT_END

STATETAB1:

 db 0

 db EVT_UPANY,TIM_ONCE,0 ; Releasing the prev or next button

 db EVT_TIMER2,TIM2_TIC,1 ; Repeat operation with a timer

 db EVT_END ; End of table

STATETAB2:

 db 2

 db EVT_RESUME,TIM_ONCE,2 ; Resume from a nested app

 db EVT_DNANY4,TIM_ONCE,2 ; NEXT, PREV, SET, MODE button pressed

 db EVT_UPANY4,TIM_ONCE,2 ; NEXT, PREV, SET, MODE button released

 db EVT_USER2,TIM_ONCE,0 ; Return to state 0

 db EVT_END ; End of table

CURRENT_LOC

dw $0000 ; This is where we start in memory

;

; (5) State Table 0 Handler

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; This is called to process the state events.

; We see ENTER, TIMER2, and RESUME events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_ENTER ; Is this the initial state?

 bne SHOWDATA ; no, just clean up the screen

;

; (6) Put up the initial banner screen

;

 jsr CLEARALL ; Clear the display

 lda #S6_EEPROM-START ; Put ‘EEPROM’ on the top line

 jsr PUT6TOP

 lda #S6_DUMPER-START ; Put ‘DUMPER’ on the second line

 jsr PUT6MID

 lda #SYS8_MODE ; Put MODE on the bottom line

 jmp PUTMSGBOT

; (7) FMTHEX is a routine similar to FMTX, but it handles hex values instead

;===

; Routine: FMTHEX

; Purpose:

; Format a byte into the buffer

; Parameters:

; A - Byte to be formatted

; X - Offset into Message buffer to put the byte

;===

FMTHEX:

 sta S8_LOCATION,X ; Save the byte

 and #$0f ; Extract the bottom nibble

 sta S8_LOCATION+1,X ; Save the hex value of the nibble

 lda S8_LOCATION,X ; Get the value once again

 lsra ; Shift right by 4 to get the high order nibble

lsra

lsra

lsra

sta S8_LOCATION,X ; And put it back into the buffer

rts

;

; (8) This is called when we press the prev/next button or when the timer fires during that event

;

HANDLE_STATE1:

 lda BTNSTATE

 cmp #EVT_TIMER2 ; Is this a repeat/timer event?

 beq REPEATBTN ; yes, do as they asked

 bclr 0,FLAGBYTE ; Assume that they hit the prev button

 cmp #EVT_DNPREV ; Did they hit the prev button

 bne REPEATBTN ; Yes, we guessed right

 bset 0,FLAGBYTE ; No, they hit next. Mark the direction.

REPEATBTN:

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 131 -

brclr 0,FLAGBYTE,NEXTLOC ; If they hit the next button, go do that operation

;

; They pressed the prev button, let’s go to the previous location

;

PREVLOC:

 lda CURRENT_LOC+1

 sub #6

 sta CURRENT_LOC+1

 lda CURRENT_LOC

 sbc #0

 sta CURRENT_LOC

 bra SHOWDATA

NEXTLOC:

 lda #6

 add CURRENT_LOC+1

 sta CURRENT_LOC+1

 lda CURRENT_LOC

 adc #0

 sta CURRENT_LOC

;

; (9) This is the main screen update routine.

; It dumps the current memory bytes based on the current address. Note that since it updates the entire

; display, it doesn’t have to clear anything

;

SHOWDATA:

jsr CLEARSYM

clrx

 bsr GETBYTE

 jsr PUTTOP12

 ldx #1

 bsr GETBYTE

 jsr PUTTOP34

 ldx #2

 bsr GETBYTE

 jsr PUTTOP56

 ldx #3

 bsr GETBYTE

 jsr PUTMID12

 ldx #4

 bsr GETBYTE

 jsr PUTMID34

 ldx #5

 bsr GETBYTE

 jsr PUTMID56

 lda CURRENT_LOC ; Get the high order byte of the address

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

clrx

 bsr FMTHEX ; Put that at the start of the buffer

 lda CURRENT_LOC+1 ; Get the low order byte of the address

 ldx #2

 bsr FMTHEX ; Put that next in the buffer

 lda #S8_LOCATION-START

 jmp BANNER8

; (10) GETBYTE gets a byte from memory and formats it as a hex value

;===

; Routine: GETBYTE

; Purpose:

; Read a byte from memory and put it into DATDIGIT1/DATDIGIT2 as hex values

; Parameters:

; X - Offset from location to read byte

; CURRENT_LOC - Base location to read from

;===

GETBYTE

txa

 add CURRENT_LOC+1

 sta INST_ADDRLO

 lda CURRENT_LOC

 adc #0

 sta INST_ADDRHI

 bset 6,HW_FLAGS ; Tell them that it is an EEPROM address

 jsr GET_INST_BYTE ; Get the current byte

 sta DATDIGIT2 ; And save it away

 lsra ; Extract the high nibble

lsra

lsra

lsra

 sta DATDIGIT1 ; And save it

 lda DATDIGIT2 ; Get the byte again

 and #$0f ; Extract the low nibble

 sta DATDIGIT2 ; And save it

rts

;

; (11) State Table 2 Handler

; This is called to process the state events.

; We see SET, RESUME, DNANY4, and UPANY4 events

;

HANDLE_STATE2:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_UPANY4

 beq REFRESH2

 cmp #EVT_DNANY4 ; Is this our initial entry?

 bne FORCEFRESH

 lda BTN_PRESSED ; Let’s see what the button they pressed was

 cmp #EVT_PREV ; How about the PREV button

 beq DO_PREV ; handle it

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 133 -

 cmp #EVT_NEXT ; Maybe the NEXT button?

 beq DO_NEXT ; Deal with it!

 cmp #EVT_MODE ; Perhaps the MODE button

 beq DO_MODE ; If so, handle it

; It must be the set button, so take us out of this state

 bsr SHOWDATA

 lda #EVT_USER2

 jmp POSTEVENT

;

; (12) This handles the update routine to change a digit...

;

DO_NEXT

 bset 0,SYSFLAGS ; Mark our update direction as up

 bra DO_UPD

DO_PREV

bclr 0,SYSFLAGS ; Mark our update direction as down

DO_UPD

clra

 sta UPDATE_MIN ; Our low end is 0

 lda #$F

 sta UPDATE_MAX ; and the high end is 15 (the hes digits 0-F)

 bsr GET_DISP_PARM

 lda #UPD_DIGIT

 jsr START_UPDATEP ; And prepare the update routine

 bset 4,BTNFLAGS ; Mark that the update is now pending

rts

;

; (13) This is where we switch which digit we are changing...

;

DO_MODE

lda CURRENT_DIGIT

inca

 and #3

 sta CURRENT_DIGIT

;

; (14) Refresh the screen and start blinking the current digit...

;

REFRESH2

 lda DIGIT0 ; Get the first digit

 lsla ; *16

lsla

lsla

lsla

 add DIGIT1 ; Plus the second digit

 sta CURRENT_LOC ; To make the high byte of the address

 lda DIGIT2 ; Get the third digit

 lsla ; *16

lsla

lsla

lsla

 add DIGIT3 ; Plus the fourth digit

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 sta CURRENT_LOC+1 ; To make the low byte of the address

FORCEFRESH

 bclr 7,BTNFLAGS ; Turn off any update routine that might be pending

 jsr SHOWDATA ; Format the screen

 ldx #4 ; We need to copy over 4 bytes from the buffer

COPYIT

 decx ; This will be one down.

 lda S8_LOCATION,X ; Get the formatted byte

 sta DIGIT0,X ; And store it for the update routine

 tstx ; Did we copy enough bytes?

 bne COPYIT ; No, go back for more

 bsr GET_DISP_PARM ; Get the parm for the blink routine

 lda #BLINK_DIGIT ; Request to blink a digit

 jsr START_BLINKP ; And do it

 bset 2,BTNFLAGS ; Mark a blink routine as pending

rts

;

; (15) This gets the parameters for an UPDATE/BLINK routine

;

GET_DISP_PARM

 lda CURRENT_DIGIT ; Figure out what digit we are dumping

 sta UPDATE_POS ; Store it for the BLINK/UPDATE routine

 add #DIGIT0 ; Point to the byte to be updated

 tax ; And put it into X as needed for the parameter

rts

;

; (16) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

 clr CURRENT_DIGIT ; Start out on the first digit

rts

This code is virtually identical to the promdump example with a few minor changes

1. Program specific constants - I didn’t include these three important addresses in the Wristapp.i file, so you
have to define them here.

2. System entry point vectors - No change.

3. Program strings - Of course we change the name of the application.

4. State Tables - No change here.

5. State Table 0 Handler - No change here.

6. Initial banner screen - No change here.

7. FMTHEX - No change here.

8. PREV/NEXT Handling - No change here.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 135 -

9. Main Update - No change here.

10. GETBYTE This is the only real change. We have to call a system routine to read the byte from memory.
Before we do that, we need to store the address into the INST_ADDR:HI_INST_ADDRLO variables and set
the HW_FLAGS bit to indicate that it is an EEPROM address instead of a real memory address. Note that if
we clear the bit instead of setting it, this program will behave like the HEXDUMP program.

11. State Table 2 Handler - No change here.

12. Changing Digits - No change here.

13. Switching Digits - No change here.

14. Blinking Digits - No change here.

15. GET_DISP_PARM - No change here.

16. Main Initialization - No change here.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Tracking Money - Spend Watch example

David Andrews [david@polarnet.com] gets the credit for the inspiration on this example. Of course it turned out to
be a bit harder than I expected to write it - mostly due to the fact that I wanted it to be a full blown wristapp with lots
of features yet still fit on the watch. This one also takes advantage of the ‘parent’ app which allows setting
information in the applet without recompiling it.

What was the hardest about this application is making the user interface work and still be intuitive. Once I got past
that, coding was just an exercise left to the reader.

There are a lot of tricks in this code to make it fit. I created a lot of subroutines and learned some interesting tricks to
reduce code size. It currently sits at 713 bytes and I know how I can get 2 more bytes out of it, but I can’t find much
more fluff in the code to cut out. If you can find ways to make it smaller, I would be more than happy to hear about
them...

You can download the wristapp and set program here

;Name: spend watch

;Version: spend0

;Description: spend watch - by John A. Toebes, VIII

;This keeps track of how much is in one of 7 categories

;

; Press the NEXT/PREV buttons to advance/backup through the categories

; Press the SET button to add/subtract/set/clear the amounts in the categories

; If you press the set button while the action is blinking, it will be carried out, otherwise

; you can cancel the operation.

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

;Parent: SpendSet

;**

;* Copyright © 1997 John A. Toebes, VIII *

;* All Rights Reserved *

;* This program may not be distributed in any form without the permission of the author *

;* jtoebes@geocities.com *

;**

;

; History:

; 31 July 96 - Corrected problem with totals not being recalculated when you reenter

; the wristapp.

;

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

; We use a few extra bytes here in low memory. Since we can’t possibly

; be running while the COMM app is running, we have no chance of

; conflicting with it’s use of this memory.

;

BLINK_BUF EQU $5C ; 3 Byte Buffer for the blink routine

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 137 -

; EQU $5D

; EQU $5E

CAT_SAVE EQU $5F ; Temporary counter variable

COUNTER EQU $60 ; Temporary variable to hold the

FLAGBYTE EQU $61

; Bit 0 indicates that the display does not need to be cleared

; The other bits are not used

CURRENT_MODE EQU $62 ; The current mode that we are in

MODE_SELECT EQU 0 ; Set mode, selecting which category to modify

MODE_HUNDREDS EQU 1 ; Set mode, changing the hundreds of dollars digits

MODE_DOLLARS EQU 2 ; Set mode, changing the dollars digits

MODE_CENTS EQU 3 ; Set mode, changing the cents

MODE_ACTION EQU 4 ; Set mode, changing the action

MODE_VIEW EQU 5 ; Normal display mode

CATEGORY EQU $63 ; Current category

;

; These three bytes need to be contiguous. The represent the current

; value that is being operated on

;

HUNDREDS EQU $64

DOLLARS EQU $65

CENTS EQU $66

ACTION EQU $67 ; Selector for the current action

ACT_ADD EQU 0

ACT_SUB EQU 1

ACT_SET EQU 2

ACT_CLEAR EQU 3

AMT_BASE EQU $F0

;

;

; (2) System entry point vectors

;

START EQU *

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: jmp DO_UPD ; Called to handle any timers or time events - WRIST_DOTIC

L0119: rts ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

nop

nop

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

nop

nop

L011f: lda STATETAB0,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 db STATETAB0-STATETAB0

L0127: jmp HANDLE_STATE

 db STATETAB1-STATETAB0

;

; (3) Program strings

;

; These strings represent the 4 possible actions. They need to be early on in the data segment so that

; then can be pointed to by using 8-bit offset addressing. They are exactly 3 bytes long and are

; displayed by using the BLINK_TZONE routine

;

S3_MODE:

S3_ADD Timex “ADD”

S3_SUB Timex “SUB”

S3_SET Timex “SET”

S3_CLR Timex “CLR”

;

; These are the categories that the end user has configured. They are set by using the SPENDSET program

; which searches for the first string “TOTAL “. These strings must be exactly 8 bytes each in order

with

; total being the first one.

;

S8_TOTAL: Timex “TOTAL “

S8_CAT1: Timex “CAT1 “

S8_CAT2: Timex “CAT2 “

S8_CAT3: Timex “CAT3 “

S8_CAT4: Timex “CAT4 “

S8_CAT5: Timex “CAT5 “

S8_CAT6: Timex “CAT6 “

S8_CAT7: Timex “CAT7 “

;

; These are the running amounts for each category. Note that you can actually

; initialize them with some default and the code will run properly

;

AMT_TOTAL: db 0,0,0

AMT_CAT1: db 0,0,0

AMT_CAT2: db 0,0,0

AMT_CAT3: db 0,0,0

AMT_CAT4: db 0,0,0

AMT_CAT5: db 0,0,0

AMT_CAT6: db 0,0,0

AMT_CAT7: db 0,0,0

;

; These strings prompt for the current mode that we are in. They are displayed on the top line of

; the display.

;

S6_SELECT timex6 “SELECT”

S6_AMOUNT timex6 “AMOUNT”

S6_ACTION timex6 “ACTION”

S6_SPEND: timex6 “SPEND” ; save a byte by leaching off the space on the start of the next

string

S6_WATCH: timex6 “ WATCH”

;

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 139 -

; This table selects which string is to be displayed. It is directly indexed by the current mode

;

MSG_TAB db S6_SELECT-START ; 0 - MODE_SELECT

 db S6_AMOUNT-START ; 1 - MODE_HUNDREDS

 db S6_AMOUNT-START ; 2 - MODE_DOLLARS

 db S6_AMOUNT-START ; 3 - MODE_CENTS

 db S6_ACTION-START ; 4 - MODE_ACTION

 db S6_SPEND-START ; 5 - MODE_VIEW

;

; This is one of the magic tricks for providing the source for the blink routine.

; These are base pointers (offset from HUNDREDS) that we use to copy three bytes into

; BLINK_BUF. The interesting one here is the MODE_CENTS entry which points to DATDIGIT1

; This works because the last number that we format happens to be the cents amount,

; and the blink routine expects the two characters instead of the actual value.

;

DATASRC db HUNDREDS-HUNDREDS ; 1 - MODE_HUNDREDS

 db DOLLARS-HUNDREDS ; 2 - MODE_DOLLARS

 db DATDIGIT1-HUNDREDS ; 3 - MODE_CENTS

 db S3_ADD-HUNDREDS ; 4 - MODE_ACTION 0 - ACT_ADD

 db S3_SUB-HUNDREDS ; 4 - MODE_ACTION 1 - ACT_SUB

 db S3_SET-HUNDREDS ; 4 - MODE_ACTION 2 - ACT_SET

 db S3_CLR-HUNDREDS ; 4 - MODE_ACTION 3 - ACT_CLR

;

; This is the parameter to select which blink routine we want to use

;

BLINK_PARM db BLINK_MID12 ; 1 - MODE_HUNDREDS

 db BLINK_MID34 ; 2 - MODE_DOLLARS

 db BLINK_SECONDS ; 3 - MODE_CENTS

 db BLINK_TZONE ; 4 - MODE_ACTION

;

; (4) State Tables

;

; This set of state tables is a little special since we actually use the

; same state processing routine for both states. This saves us a lot of

; memory but still allows us to let the state table make it easy to exit

; the app with the MODE button

;

STATETAB0:

 db 0

 db EVT_ENTER,TIM2_12TIC,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_TIMER2,TIM_ONCE,0 ; This is the timer

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_SET,TIM_ONCE,1 ; Set button

 db EVT_DNANY4,TIM_ONCE,0 ; NEXT, PREV, SET, MODE button pressed

 db EVT_END

STATETAB1:

 db 1

 db EVT_RESUME,TIM_ONCE,1 ; Resume from a nested app

 db EVT_DNANY4,TIM_ONCE,1 ; NEXT, PREV, SET, MODE button pressed

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 db EVT_UPANY4,TIM_ONCE,1 ; NEXT, PREV, SET, MODE button released

 db EVT_USER2,TIM_ONCE,0 ; Return to state 0

 db EVT_END ; End of table

;

; (5) Put up the initial banner screen

;

HANDLE_ENTER

clra

 sta CATEGORY ; We start out displaying the totals

 jsr FETCH_CATEGORY

 jsr CLEARALL ; Clear the display

 lda #S6_SPEND-START ; Put ‘SPEND ‘ on the top line

 jsr PUT6TOP

 lda #S6_WATCH-START ; Put ‘ WATCH’ on the second line

 jsr PUT6MID

 clr FLAGBYTE ; Force us to clear the display

 lda #MODE_VIEW ; Start out in the VIEW mode

 sta CURRENT_MODE

 lda #SYS8_MODE ; Put MODE on the bottom line

 jmp PUTMSGBOT

;

; (6) This is the main screen update routine.

;---

; Routine:

; SHOWCURRENT

; Parameters:

; HUNDREDS,DOLLARS,CENTS - Current value to be displayed

; 0,FLAGBYTE - Screen state (CLR=Must clear it first)

; CATEGORY - the current category to be displayed

; Returns:

; DATDIGIT1,DATDIGIT2 - 2 digit characters for the cents value

; Purpose:

; This routine shows the current selected category and value for the category

;---

SHOWCURRENT

 brset 0,FLAGBYTE,NOCLEAR ; If we don’t need to clear the display, skip it

 jsr CLEARALL ; Clear the display

 bset 0,FLAGBYTE ; And remember that we did it

NOCLEAR

 lda #ROW_MP45 ; Turn on the decimal point

 sta DISP_ROW

 bset COL_MP45,DISP_COL

 ldx HUNDREDS ; Get the Hundreds

 jsr FMTBLANK0 ; Format it

 jsr PUTMID12 ; and display it

 ;

; We want to output the dollars, but if there were no hundreds, we want to let the

; first digit be a blank. To do this, we simply let it be a blank and set it to a zero

; if there was actually anything in the hundreds field

 ;

 ldx DOLLARS ; Get the Dollars

 jsr FMTX ; Format it

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 141 -

 tst HUNDREDS ; Do we need to have a leading zero?

 beq NOBLANKIT ; No, so it is fine

 ldx DOLLARS ; Yes, Get the Dollars again

 jsr FMTXLEAD0 ; And format it with a leading zero

NOBLANKIT

 jsr PUTMID34 ; Display the Dollars

 ldx CENTS ; Get the Cents

 jsr FMTXLEAD0 ; Format it (and leave it around for later)

 jsr PUTMID56 ; and display it.

 lda CATEGORY ; Get which category we want

 lsla ; *2

 lsla ; *4

 lsla ; *8

 add #S8_TOTAL-START ; *8+the start of the string

 jmp BANNER8 ; and display the right string

;

; (7) State Table 0 and 1 Handler

; This is called to process the state events.

; We see SET, RESUME, DNANY4, and UPANY4 events

;

HANDLE_STATE:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 lda BTNSTATE ; Get the event

 cmp #EVT_ENTER ; Is this the initial state?

 beq HANDLE_ENTER

 cmp #EVT_DNANY4 ; How about a button pressed?

 beq HANDLE_DNANY

 bclr 1,BTNFLAGS ; Turn off the repeat counter

 cmp #EVT_SET ; Did they press the set button

 bne SKIP2 ; No

 clr CURRENT_MODE ; Yes, Go to MODE_SELECT

SKIP2 bra GOREFRESH

;

; (8) They pressed a button, so handle it

;

HANDLE_DNANY

 lda BTN_PRESSED ; Let’s see what the button they pressed was

 beq DO_NEXT ; MODE=1, and NEXT=0, so if it is less, it must be the

next button

 cmp #EVT_SET ; MODE=1 SET=2 PREV=3, test all at once

 blo DO_MODE ; <2 = 1 so we have a EVT_MODE

 bhi DO_PREV ; >2 = 3 so we have a EVT_PREV

 ;

 ; They pressed the set button, so we want to carry out the operation IF they have

 ; one currently selected.

 ;

DO_SETOUT

 lda CURRENT_MODE ; See what mode we were in

 cmp #MODE_ACTION ; Is it the ACTION mode?

 bne NO_ACTION ; No, so just cancel the operation

 jsr DO_OPERATION ; Do what they requested

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 jsr DO_TOTAL ; And total up everything

 jsr PLAYCONF ; Plus tell them that we did it

NO_ACTION

 bclr 0,FLAGBYTE ; We need to clear the display

 lda #MODE_VIEW ; And switch back to VIEW mode

 sta CURRENT_MODE

 lda #EVT_USER2 ; And go back to state 0

 jmp POSTEVENT

;

; (9) This handles the update routine to change a digit...

;

DO_NEXT

 bset 0,SYSFLAGS ; Mark our update direction as up

 BRSKIP2 ; and skip over the next instruction

DO_PREV

 bclr 0,SYSFLAGS ; Mark our update direction as down

DO_UPD

 lda CURRENT_MODE ; Which mode are we in?

 beq CHANGE_CATEGORY ; 0=MODE_SELECT, so change the category

 cmp #MODE_VIEW ; 5=MODE_VIEW, so we also change the category

 bne TRYOTHERS

CHANGE_CATEGORY

; (10) updating the category

 ldx #CATEGORY ; Point to the category variable

 lda #7 ; get our range of values

 bsr ADJUST_PX_ANDA ; And let the routine do the adjust for us

 jsr FETCH_CATEGORY ; Update the current amount from the new category

GOREFRESH

 bra REFRESH

;

; (11) ADJUST_PX_ANDA - a routine to adjust a value based on the direction

;---

; Routine:

; ADJUST_PX_ANDA

; Parameters:

; A - Binary range to limit value within ((2**x)-1)

; 0,SYSFLAGS - Direction to adjust, SET=UP

; X - Pointer to value to be adjusted

; Returns:

; Value pointed to by X is adjusted

; Purpose:

; This routine adjusts a value up or down based on the current direction, wrapping

; it to the binary range indicated by the value in A. Note that this value must

; be a power of 2-1 (e.g. 1, 3, 7, 15, 31, 63, or 127)

;---

ADJUST_PX_ANDA

 inc ,X

 brset 0,SYSFLAGS,NODEC

 dec ,X

 dec ,X

NODEC and ,X

 sta ,X

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 143 -

 rts

;

; (12) Try updating one of the other modes

; We have already handled MODE_SELECT and MODE_VIEW. This code handles

; MODE_HUNDREDS, MODE_DOLLARS, MODE_CENTS, and MODE_ACTION

;

TRYOTHERS

 cmp #MODE_CENTS ; 3=MODE_CENTS

 bls TRYMORE ; If it is <=, then we leave only MODE_ACTION

; (13) updating the Action

 lda CATEGORY ; Which category is it?

 beq REFRESH ; If we are displaying the total, you can’t change the

action

 ldx #ACTION ; Point to the current action

 lda #3 ; and the range of actions

 bsr ADJUST_PX_ANDA ; and let our simple routine handle it for us

 bra REFRESH

TRYMORE

 beq DOCENTS ; If it is MODE_CENTS, go handle it

; (14) Update MODE_HUNDREDS=1 and MODE_DOLLARS=2

 clrx ; Set the lower limit =0

 stx UPDATE_MIN

 ldx #99 ; And the upper limit= 99

 stx UPDATE_MAX

 add #HUNDREDS-1 ; Point to the right byte to update

 tax ; And put it in X as the parameter

 lda CURRENT_MODE ; MODE=1 MODE=2

 deca ; 0 1

 lsla ; 0 2

 add #UPD_MID12 ; 5=UPD_MID12 7=UPD_MID34

 jsr START_UPDATEP ; And prepare the update routine

 bset 4,BTNFLAGS ; Mark that the update is now pending

 rts

;

; (15) This is where we switch which digit we are changing...

;

DO_MODE

 lda CURRENT_MODE ; Get the mode

 ldx #MODE_ACTION ; Limit it to the first 5 modes

 jsr INCA_WRAPX ; And let the system increment it for us

 sta CURRENT_MODE ; Save it back

 ; When we switch to the ACTION mode and we have the Totals category showing,

 ; we need to limit them to the single action of CLEAR

 ;

 cmp #MODE_ACTION ; Did we go to action mode?

 bne REFRESH ; No, nothing to do

 clr ACTION ; Reset the action to be add

 tst CATEGORY ; Are we displaying the totals

 bne REFRESH ; No, nothing more to do

 lda #ACT_CLEAR ; Yes, switch them to CLEAR

 sta ACTION

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

;

; (16) Refresh the screen and start blinking the current digit...

;

REFRESH

 ; 0 - SELECT <Category>

 ; 1 - AMOUNT (Blink hundreds)

 ; 2 - AMOUNT (Blink dollars)

 ; 3 - AMOUNT (Blink cents)

 ; 4 - ACTION

 jsr SHOWCURRENT ; Format the screen

 ldx CURRENT_MODE ; Get the mode

 lda MSG_TAB,X ; So that we can get the message for it

 jsr PUT6TOP ; And put that on the top of the display

 ;

 ; Now we need to make the right thing blink

 ;

 ldx CURRENT_MODE ; Are we in Select mode?

 beq NOBLINK2 ; Yes, don’t blink anything

 cpx #MODE_ACTION ; How about ACTION MODE?

 bhi NOBLINK2 ; >ACTION is VIEW mode, so if so, don’t blink either

 ; 1 -> BLINK_MID12 PARM=&HUNDREDS

 ; 2 -> BLINK_MID34 PARM=&DOLLARS

 ; 3 -> BLINK_SECONDS PARM=&2Characters

 ; 4 -> BLINK_TZONE PARM=&3Characters

 brset 1,BTNFLAGS,NOBLINK2 ; Also, we don’t want to be blinking if we are in an

update routine

 bne SETUP_BLINK ; If we were not in action mode, we have the right data

source

 ; Put a > on the display

 ldx #C_RIGHTARR ; Put a > sign right in front of the action

 lda #POSL3_5

 jsr PUTLINE3

 lda CURRENT_MODE ; Get the mode

 add ACTION ; And add in the action

 tax ; To compute our data source pointer

SETUP_BLINK

;

; (17) Set up the parameters for and call the blink routine

;

 ldx DATASRC-1,X ; Get the offsetted pointer to the right data

 lda HUNDREDS,X ; And copy the 3 bytes to our blink buffer

 sta BLINK_BUF

 lda HUNDREDS+1,X

 sta BLINK_BUF+1

 lda HUNDREDS+2,X

 sta BLINK_BUF+2

 ldx CURRENT_MODE ; Get our mode again

 lda BLINK_PARM-1,X ; and use it to pick up which parameter we are passing

 ldx #BLINK_BUF ; Point to the common blink buffer

 jsr START_BLINKP ; And do it

 bset 2,BTNFLAGS ; Mark a blink routine as pending

NOBLINK2

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 145 -

rts

;

; (18) Update MODE_CENTS

; This is a special case since we don’t have a system routine that allows updating

; the right most digits on the middle line. Fortunately we can fake it by turning

; on the tic timer and waiting until 8 tics have passed before going into a repeat

; loop. The code has been carefully constructed so that the tic timer can just go

; straight to the DO_UPD code to work.

DOCENTS

 ldx #COUNTER ; Point to the counter (saves code size)

 brset 1,BTNFLAGS,NOSTART ; Are we already in an update loop?

 lda #8 ; No, we need to wait 8 tics

 sta ,X ; X->COUNTER ; Save the value

 BSET 1,BTNFLAGS ; and start the timer

 bra DOIT ; But still do it once right now

;

DEC_DELAY

 dec ,X ; X->COUNTER ; We haven’t hit the limit, decrement it and try again

 rts

NOSTART

 tst ,X ; X->COUNTER ; We are in the loop, have we hit the limit?

 bne DEC_DELAY ; no, go off and delay once more

DOIT

 lda #99 ; Our upper limit is 99

 ldx #CENTS ; Point to the cents variable (saves code size)

 brset 0,SYSFLAGS,UPCENTS ; Are we in an up mode?

 dec ,X ; X->CENTS ; Down, decrement the value

 bpl REFRESH ; If we didn’t wrap, just go display it

 sta ,X ; X->CENTS ; We wrapped, save the upper limit

 bra REFRESH ; and go display it

UPCENTS

 inc ,X ; X->CENTS ; Up, increment the value

 cmp ,X ; X->CENTS ; Did we hit the limit?

 bpl REFRESH ; No, go display it

 clr ,X ; X->CENTS ; Yes, wrap to the bottom

 bra REFRESH ; and display it

;

; (19) DO_OPERATION - Perform the requested operation

;---

; Routine:

; DO_OPERATION

; Parameters:

; HUNDREDS,DOLLARS,CENTS - Amount to be added/subtracted/set

; CATEGORY - Item to be updated

; ACTION - 0 = ACT_ADD

; 1 = ACT_SUB

; 2 = ACT_SET

; 3 = ACT_CLEAR

; Purpose:

; Adjusts the corresponding category by the given amount

;---

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

DO_OPERATION

 lda CATEGORY ; Get our category

 bsr COMPUTE_BASE ; And point to the data for it

 lda ACTION ; Which action is it?

 beq DO_ADD ; 0=ADD, go do it

 cmp #ACT_SET ; 3 way compare here... (code trick)

 beq DO_SET ; 2=SET, go do it

 blo DO_SUB ; <2=1 (SUB), go do it

DO_CLR ; >2 = 3 (CLEAR)

 clr HUNDREDS ; Clear out the current values

 clr DOLLARS

 clr CENTS

 tst CATEGORY ; Were we clearing the total?

 bne DO_SET ; No, just handle it

 ;

; They want to clear everything

 ;

 ldx #(3*8)-1 ; Total number of categories

CLEAR_TOTALS

; Mini Routine here X=number of bytes to clear

 clra

CLR_MORE

 sta AMT_TOTAL,X ; Clear out the next byte

 decx ; Decrement the number to do

 bpl CLR_MORE ; And go for more

 rts

;

; (20) Handle Subtracting a value

;

DO_SUB

 neg HUNDREDS ; Just negate the value to be added

 neg DOLLARS

 neg CENTS ; And fall into the add code

;

; (21) Handle Adding a value

;

DO_ADD

 lda CENTS ; Add the cents

 add AMT_BASE+2,X

 sta CENTS

 lda DOLLARS ; Add the dollars

 add AMT_BASE+1,X

 sta DOLLARS

 lda HUNDREDS ; Add the hundreds

 add AMT_BASE,X

 sta HUNDREDS

 ldx #CENTS ; Point to the cents as it will be the first one we fix up

 tst ACTION ; See what type of operation we just did

 beq FIXUP_ADD ; Was it an ADD? If so, do do it

 bsr TRYDEC ; Decrement, fix up the Cents

 bsr TRYDEC ; Then fix up the dollars

 lda HUNDREDS ; Did the hundreds underflow as a result?

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 147 -

 bmi DO_CLR ; Yes, so just set everything to zero

 bra DO_SET ; No, so copy over the values to the current entry

TRYDEC

 lda ,X ; Get the current byte to check

 bpl RETDEC ; If it didn’t underflow, then skip to the next byte

 add #100 ; Add back the 100 that it underflowed

 sta ,X ; And save that away

 decx ; Back up to the next most significant byte

 dec ,X ; and borrow the one

 rts

RETDEC decx ; No need to do anything, so skip to the next byte

 rts

TRYADD

 lda ,X ; Get the current byte to check

 sub #100 ; See if it was less than 100

 bmi RETDEC ; If so, then it was already normalized so skip out

 sta ,X ; It was an overflow, so save the fixed value

 decx ; Skip to the next byte

 inc ,X ; And add in the overflow

 rts

FIXUP_ADD

 bsr TRYADD ; Fix up the cents

 bsr TRYADD ; and then fix up the dollars

;

; (22) Handle setting a value

;

DO_SET

 bsr COMPUTE_CATEGORY_BASE ; Point to the data for our category

 lda HUNDREDS ; Copy over the values to the current category

 sta AMT_BASE,X

 lda DOLLARS

 sta AMT_BASE+1,X

 lda CENTS

 sta AMT_BASE+2,X

 rts

;

; (23) COMPUTE_BASE - Computes an offset pointer to get to the total amounts

; This is a trick to save us a few bytes in the instructions.

;---

; Routine:

; COMPUTE_BASE

; Parameters:

; A - Offset into total

; Returns:

; X - Pointer relative to AMT_BASE to use

; Purpose:

; Computes an offset pointer to get to the total amounts

;---

COMPUTE_CATEGORY_BASE

 lda CATEGORY ; Get our category

COMPUTE_BASE

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 ldx #3

 mul

 add #AMT_TOTAL-AMT_BASE

 tax

 rts

;

; (24) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been

loaded

 sta WRISTAPP_FLAGS

; Fall into DO_TOTAL

;

; (25) DO_TOTAL - Recomputes the current total

;---

; Routine:

; DO_TOTAL

; Parameters:

; NONE

; Purpose:

; Recomputes the current total

;---

DO_TOTAL

 lda CATEGORY ; Remember our category

 sta CAT_SAVE

 clr ACTION ; Say that we want to add 0=ACT_ADD

 clr CATEGORY ; To the total category

 ldx #2 ; But we need to clear it first

 bsr CLEAR_TOTALS

 lda #7 ; And iterate over the 7 categories

 sta COUNTER

TOT_LOOP

 lda COUNTER ; Get our current category

 bsr FETCH_CATEGORY ; And fetch the data

 jsr DO_OPERATION ; Then add it to the total

 dec COUNTER ; Go to the next category

 bne TOT_LOOP ; Until we are done

 lda CAT_SAVE ; Restore the category

 sta CATEGORY

; fall into FETCH_CATEGORY

; (26) FETCH_CATEGORY - Retrieves the value of the total amount for the selected category

;---

; Routine:

; FETCH_CATEGORY

; Parameters:

; A - Category to be fetched

; Returns:

; HUNDREDS,DOLLARS,CENTS - Current value of selected category

; Purpose:

; Retrieves the value of the total amount for the selected category

;---

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 149 -

FETCH_CATEGORY

 bsr COMPUTE_BASE ; Get the pointer to the base

 lda AMT_BASE,X ; And retrieve the data

 sta HUNDREDS

 lda AMT_BASE+1,X

 sta DOLLARS

 lda AMT_BASE+2,X

 sta CENTS

 rts

;--------------------END OF CODE---

This is a pretty significant program and the sections are ordered to make the branches all work out. Here’s a quick
look around at the sections.

1. Program specific constants - It is worth noting that in this case, I actually intruded on the space which one
might consider reserved for the system applications. However, the only one that uses any of this memory is
the Comm app and there is no chance that we need to be running while it is. We are forced in several
instances to use this lower memory because the system roms need a pointer passed in X. Since our code
loads into 0110 and beyond, we have to use lower memory if we want to actually point to something.

2. System entry point vectors - Nothing really special here. However, we do have a timer routine that we
enable when we are inputting cents. What is nice in this case is that the code is constructed so that it jumps
right into the processing loop to act as if a timer event had occurred with the normal state processing.

3. Program strings - We have quite a few strings that we have created. We also take advantage of table of
pointers to save us code space.

4. State Tables - This is a pretty unusual program in that even though we have two state tables, they both
point to the same state table processing routine. This allows me to let the system handle knowing when we
are in set mode to allow for the mode button to advance us through states in the set mode and to take us
out of the wristapp when we are not in set mode.

5. Initial Banner Screen - No real surprises here.

6. This is the main screen update routine.

7. State Table 0 and 1 Handler

8. They pressed a button, so handle it

9. This handles the update routine to change a digit...

10. updating the category

11. ADJUST_PX_ANDA - a routine to adjust a value based on the direction

12. Try updating one of the other modes

13. updating the Action

14. Update MODE_HUNDREDS=1 and MODE_DOLLARS=2

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

15. This is where we switch which digit we are changing...

16. Refresh the screen and start blinking the current digit...

17. Set up the parameters for and call the blink routine

18. Update MODE_CENTS

19. DO_OPERATION - Perform the requested operation

20. Handle Subtracting a value

21. Handle Adding a value

22. Handle setting a value

23. COMPUTE_BASE - Computes an offset pointer to get to the total amounts

24. This is the main initialization routine which is called when we first get the app into memory

25. DO_TOTAL - Recomputes the current total

26. FETCH_CATEGORY - Retrieves the value of the total amount for the selected category

27. Handle the underflows when adding dollars and cents

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 151 -

Creating a Sound Scheme - Sound1 example

With a little prodding, I decided to update the assembler so that allows you to create a sound scheme automatically.
This is a very simple sound scheme which gives you the same sounds as the Datalink default ones. Use this as a
basis to create any new ones that you might want.

;Sound: Datalink Default

;Version: Sound1

;

; This sample corresponds to the default sounds that you get when you reset a DataLink

; watch to its default state.

;

;**

;* Copyright © 1997 John A. Toebes, VIII *

;* All Rights Reserved *

;* This program may not be distributed in any form without the permission of the author *

;* jtoebes@geocities.com *

;**

;

 INCLUDE “WRISTAPP.I”

;

; This is the default sound table

;

DEF_SOUNDS

 db SP_1-SD_1 ; 0000: 08

 db SD_1-DEF_SOUNDS ; 0001: 0b BUTTON BEEP

 db SD_2-DEF_SOUNDS ; 0002: 0c RETURN TO TIME

 db SD_3-DEF_SOUNDS ; 0003: 0d HOURLY CHIME

 db SD_4-DEF_SOUNDS ; 0004: 0e CONFIRMATION

 db SD_5-DEF_SOUNDS ; 0005: 0f APPOINTMENT BEEP

 db SD_5-DEF_SOUNDS ; 0006: 0f ALARM BEEP

 db SD_5-DEF_SOUNDS ; 0007: 0f PROGRAM DOWNLOAD

 db SD_5-DEF_SOUNDS ; 0008: 0f EXTRA

 db SD_6-DEF_SOUNDS ; 0009: 11 COMM ERROR

 db SD_7-DEF_SOUNDS ; 000a: 12 COMM DONE

;

; This is the soundlet count table which contains the duration

; counts for the individual soundlets

;

SD_1 db SND_END+1 ; 000b: 81

SD_2 db SND_END+1 ; 000c: 81

SD_3 db SND_END+2 ; 000d: 82

SD_4 db SND_END+4 ; 000e: 84

SD_5 db 10,SND_END+40 ; 000f: 0a a8

SD_6 db SND_END+10 ; 0011: 8a

SD_7 db SND_END+32 ; 0012: a0

;

; This is the soundlet pointer table which contains the pointers to the soundlets

;

SP_1 db SL_2-DEF_SOUNDS ; 0013: 1d

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

SP_2 db SL_1-DEF_SOUNDS ; 0014: 1b

SP_3 db SL_3-DEF_SOUNDS ; 0015: 1f

SP_4 db SL_2-DEF_SOUNDS ; 0016: 1d

SP_5 db SL_4-DEF_SOUNDS ; 0017: 22

 db SL_5-DEF_SOUNDS ; 0018: 27

SP_6 db SL_6-DEF_SOUNDS ; 0019: 2a

SP_7 db SL_2-DEF_SOUNDS ; 001a: 1d

;

; These are the soundlets themselves. The +1 or other number

; indicates the duration for the sound.

;

SL_1 db TONE_HI_GSHARP+1 ; 001b: 91

 db TONE_END ; 001c: 00

SL_2 db TONE_MID_C+1 ; 001d: 31

 db TONE_END ; 001e: 00

SL_3 db TONE_MID_C+2 ; 001f: 32

 db TONE_PAUSE+2 ; 0020: f2

 db TONE_END ; 0021: 00

SL_4 db TONE_HI_C+2 ; 0022: 22

 db TONE_PAUSE+2 ; 0023: f2

 db TONE_HI_C+2 ; 0024: 22

 db TONE_PAUSE+10 ; 0025: fa

 db TONE_END ; 0026: 00

SL_5 db TONE_HI_C+2 ; 0027: 22

 db TONE_PAUSE+2 ; 0028: f2

 db TONE_END ; 0029: 00

SL_6 db TONE_HI_C+3 ; 002a: 23

 db TONE_MID_C+3 ; 002b: 33

 db TONE_END ; 002c: 00

;

; This is the tone that the comm app plays for each record

;

 db TONE_MID_C/16 ; 002d: 03

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 153 -

Random Numbers and Marquis - 3Ball example

Wayne Buttles contributed the first version of this Wristapp which gives you a simple decision maker. It inspired me
to make a few adjustments to it and add a real random number generator that you can use. I’ve also included a little
busy wait Marquis while it is selecting a number to show off a use of the time. This Wristap also illustrates that you
don’t always have to put a JMP or RTS instruction in the entry point vectors.

;Name: 3BALL

;Version: 3BALL

;Description: An executive decision maker that will give a yes/no/maybe answer. Pressing Next will

generate another answer and beep (since it will be the same answer sometimes).

;

;© 1997 Wayne Buttles (timex@fdisk.com). Compiled using tools and knowledge published by John A. Toebes,

VIII and Michael Polymenakos (mpoly@panix.com).

; Some enhancements by John Toebes...

;

;HelpFile: watchapp.hlp

;HelpTopic: 100

;

; (1) Program specific constants

;

INCLUDE “WRISTAPP.I”

;

; Program specific constants

;

CURRENT_TIC EQU $27 ; Current system clock tic (Timer)

LAST_ANS EQU $61

RAND_SEED EQU $60

MARQ_POS EQU $62

START EQU *

;

; (2) System entry point vectors

;

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: bclr 1,BTNFLAGS ; Called when we are suspended for any reason - WRIST_SUSPEND

 rts

L0116: jmp FLASH ; Called to handle any timers or time events - WRIST_DOTIC

L0119: bclr 1,BTNFLAGS ; Called when the COMM app starts and we have timers pending - WRIST_INCOMM

 rts

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

 nop

 nop

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

 rts

L0123: jmp HANDLE_STATE0

 db STATETAB-STATETAB

;

; (3) Program strings

;

S6_MSG timex6 “3 BALL”

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S6_MAYBE timex6 “MAYBE”

S6_YES timex6 “ YES”

S6_NO timex6 “ NO”

S6_MARQ timex6 “ +O+ “

MARQ_SEL

 DB S6_MARQ+2-START

 DB S6_MARQ+3-START

 DB S6_MARQ+2-START

 DB S6_MARQ+1-START

 DB S6_MARQ-START

 DB S6_MARQ+1-START

MSG_SEL DB S6_YES-START

 DB S6_NO-START

 DB S6_MAYBE-START

 DB S6_YES-START

;

; (4) State Table

;

STATETAB:

 db 0

 db EVT_ENTER,TIM2_16TIC,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_DNNEXT,TIM2_16TIC,0 ; Next button

 db EVT_TIMER2,TIM_ONCE,0 ; Timer

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, RESUME, TIMER2 and NEXT events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 bclr 1,BTNFLAGS ; Turn off the MARQUIS tic event

 lda BTNSTATE

 cmp #EVT_DNNEXT ; Did they press the next button?

 beq DOITAGAIN

 cmp #EVT_ENTER ; Or did we start out

 beq DOITAGAIN

 cmp #EVT_RESUME

beq REFRESH

;

; (6) Select a random answer

;

SHOWIT

 bsr RAND

 and #3 ; go to a 1 in 4 chance

 sta LAST_ANS

;

; (7) Display the currently selected random number

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 155 -

;

REFRESH

 ldx LAST_ANS ; Get the last answer we had, and use it as an index

 lda MSG_SEL,X ; And get the message to display

 jsr PUT6TOP ; Put that on the top

BANNER

 lda #S6_MSG-START

 jsr PUT6MID

 lda #SYS8_MODE ; And show the mode on the bottom

 jmp PUTMSGBOT

;

; (8) This flashes the text on the screen

;

FLASH

 lda CURRENT_APP ; See which app is currently running

 cmp #APP_WRIST ; Is it us?

 bne L0113 ; No, so just turn off the tic timer since we don’t need it

 ldx #5

 lda MARQ_POS

 jsr INCA_WRAPX

 sta MARQ_POS

 tax

 lda MARQ_SEL,X

 jmp PUT6TOP

;

; (9) They want us to do it again

;

DOITAGAIN ; Tell them we are going to do it again

 clr MARQ_POS

 bset 1,BTNFLAGS

 bra BANNER

;

; (10) Here is a simple random number generator

;

RAND

 lda RAND_SEED

 ldx #85

 mul

 add #25

 sta RAND_SEED

 rola

 rola

 rola

 rts

;

; (11) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been loaded

sta WRISTAPP_FLAGS

 lda CURRENT_TIC

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 sta RAND_SEED

 rts

1. Program specific constants - We have two variables - RAND_SEED and CURRENT_TIC which we use for
the random number routine. RAND_SEED is used to keep track of the last random number returned so
that we continue to deliver random numbers. CURRENT_TIC is what is set by the system when it reads
the clock to keep the watch time up to date. We use it once to provide a seed for the random number
generator.

2. System entry point vectors - This one gets to be a little fun. Notice for the WRIST_SUSPEND and
WRIST_INCOMM routines that we don’t have a JMP instruction, but instead put the actual code in line.
 This saves use a couple of bytes.

3. Program strings - We are pretty frugal here in reusing blanks at the end of the string very liberally. Also
note the S6_MARQ string which has blanks at the start and end so that it can shuffle left and right on the
display but always have blanks visible. The MARQ_SEL and MSG_SEL tables are simply offsets that allow
us to select the message with a simple load instruction instead of having to calculate the offset.

4. State Table - This is pretty vanilla here except for the fact that we have a very long time interval after the
DNNEXT and ENTER events. It is during this time that the Marquis runs. We could make it even longer,
but this seems to be a good compromise between seeing something happen and actually getting a result in
a reasonable time.

5. State Table 0 Handler - Extremely simple, there are only four events that we want to see and this is the
typical test and branch one. The only unique thing here is that we turn off the Marquis timer as soon as we
get any event.

6. Select a random answer - As if life weren’t complicated enough. This is where we go when it is time to
make a decision. For this we get a random number and limit it to 1 in four.

7. Display the currently selected random number - Given a random number, we just get the message for it and
put it on the display.

8. This flashes the text on the screen - This is the cheap way to do a Marquis. Just have a string wider than
the display and change the offset from the start at which you start to display. For this one, there are only 6
states and we select the starting offset from the table based on our current cycle. Note that this routine is
called by the TIC timer which is enabled when they want a new random number. Eventually the timer for
the main event will run out and they will simply stop calling us.

9. They want us to do it again - Whenever we want to do a new random number, we just start the Marquis tic
timer and set up the display.

10. Here is a simple random number generator - This is a random number generator that you might want to
use. It is a derivative of the typical calculation rand = (seed*25173 + 13849) MOD 65536 which I have
chopped down to fit in the 8 bit world as rand = (seed * 85 + 25) MOD 256. Because the low order bits do
produce a pattern cycle which is fairly predictable, we rotate through to get a few of the more randomly
occurring bits.

11. This is the main initialization routine which is called when we first get the app into memory - Very boring
stuff here, but we do take a moment to initialize the random number seed with the current tic count just to
make it a little more variable.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 157 -

Playing Hourly Chimes - Ships Bells example

Theron E. White, CPA” <twhite@mercury.peganet.com> suggested a wristapp to allow the hourly chimes to play the
number of bells past a shift change. This would be 8 bells at midnight, 8AM, and 4PM, 1 bell at 1AM, 9AM, and
5PM, with one more bell for each hour after that. This wristapp is a little unique in that it doesn’t use the sound
playing routines directly, but instead goes straight to the hardware. This allows you to have whatever sound scheme
you want in the watch. The pattern for the bells and the actual tone is customizable below. This app is also a good
candidate for combining with another wristapp as this one has no real user input operations.

;Name: Ships Bells

;Version: SHIPBELL

;Description: Ships bells - by John A. Toebes, VIII

;This application turns makes the hour chime with nautical bells.

;

;TIP: Download your watch faster: Download a WristApp once, then do not send it again. It stays in the

watch!

;HelpFile: watchapp.hlp

;HelpTopic: 106

INCLUDE “WRISTAPP.I”

;

; (1) Program specific constants

;

START EQU *

CHANGE_FLAGS EQU $92 ; System Flags

SND_POS EQU $61

SND_REMAIN EQU $62

SND_NOTE EQU $63

NOTE_PAUSE EQU (TONE_PAUSE/16)

NOTE_BELL EQU (TONE_MID_C/16)

;

; (2) System entry point vectors

;

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: rts ; Called when we are suspended for any reason - WRIST_SUSPEND

nop

nop

L0116: jmp CHECKSTATE ; Called to handle any timers or time events - WRIST_DOTIC

L0119: jmp STOPIT ; Called when the COMM app starts and we have timers pending -

WRIST_INCOMM

L011c: rts

nop

 nop ; Called when the COMM app loads new data - WRIST_NEWDATA

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

rts

L0123: jmp HANDLE_STATE0

 db STATETAB-STATETAB

;

; (3) Program strings

;

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

S6_SHIPS: timex6 “SHIPS”

S6_BELLS: timex6 “ BELLS”

S8_TOEBES: Timex “J.TOEBES”

;

; Here is the pattern for the ships bells. We want to have a short bell followed by a very short silence

; followed by a longer bell. We use 3 tics for the short bell, 1 tic for the silence and 6 tics for the

longer

; bell. The last bell is 7 ticks.

; We then have to byte swap each of these because the BRSET instruction numbers from bottom to top.

;

; The string looks like:

; 111 0 111111 000000 111 0 111111 000000 111 0 111111 000000 111 0 111111 000000

; Taking this into clumps of 4 bytes, we get

; 1110 1111 1100 0000 1110 1111 1100 0000 1110 1111 1100 0000 1110 1111 1100 0000 1111 1110

;

Pattern DB $F7 ;1110 1111 ; 8 start here

 DB $03 ;1100 0000

P67 DB $F7 ;1110 1111 ; 6, 7 start here

 DB $03 ;1100 0000

P45 DB $F7 ;1110 1111 ; 4, 5 start here

 DB $03 ;1100 0000

P23 DB $F7 ;1110 1111 ; 2, 3 start here

 DB $03 ;1100 0000

P1 DB $7F ;1111 1110 ; 1 starts here

;

; This table indexes where we start playing the tone from

;

STARTS

 DB (Pattern-Pattern)*8 ; 0 (8 AM, 4PM, Midnight)

 DB (P1-Pattern)*8 ; 1 (1 AM, 9AM, 5PM)

 DB (P23-Pattern)*8 ; 2 (2 AM, 10AM, 6PM)

 DB (P23-Pattern)*8 ; 3 (3 AM, 11AM, 7PM)

 DB (P45-Pattern)*8 ; 4 (4 AM, NOON, 8PM)

 DB (P45-Pattern)*8 ; 5 (5 AM, 1PM, 9PM)

 DB (P67-Pattern)*8 ; 6 (6 AM, 2PM, 10PM)

 DB (P67-Pattern)*8 ; 7 (7 AM, 3PM, 11PM)

;

; (4) State Table

;

STATETAB:

 db 0

 db EVT_ENTER,TIM_LONG,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_END

;

; (5) State Table 0 Handler

; This is called to process the state events.

; We see ENTER and RESUME events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Allow us to be suspended

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 159 -

 jsr CLEARALL ; Clear the display

 lda #S6_SHIPS-START ; Put ‘SHIPS ‘ on the top line

 jsr PUT6TOP

 lda #S6_BELLS-START ; Put ‘ BELLS’ on the second line

 jsr PUT6MID

 bsr FORCESTATE ; Just for fun, check the alarm state

 lda #S8_TOEBES-START

 jmp BANNER8

;

; (6) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$C4 ; Bit2 = wristapp wants a call once an hour when it changes (WRIST_DOTIC)

(SET=CALL)

 ; Bit6 = Uses system rules for button beep decisions (SET=SYSTEM RULES)

 ; Bit7 = Wristapp has been loaded (SET=LOADED)

 sta WRISTAPP_FLAGS

 bclr 2,MODE_FLAGS ; Turn off the hourly chimes

 clr SND_REMAIN

;

; (7) Determining the current hour

;

CHECKSTATE

brclr 5,CHANGE_FLAGS,NO_HOUR ; Have we hit the hour mark?

FORCESTATE

 bclr 3,MAIN_FLAGS ; Make sure we don’t play the system hourly chimes

 jsr ACQUIRE ; Lock so that it doesn’t change under us

 lda TZ1_HOUR ; Assume that we are using the first timezone

 jsr CHECK_TZ ; See which one we are really using

 bcc GOT_TZ1 ; If we were right, just skip on to do the work

 lda TZ2_HOUR ; Wrong guess, just load up the second time zone

GOT_TZ1

;

; 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

; 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18

; deca FF 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17

; anda 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

 and #7 ; Convert the hour to the number of bells

 tax ; Save away as an index into the start position table

 bne NOTEIGHT ; Is it midnight (or a multiple of 8)

 lda #8 ; Yes, so that is 8 bells, not zero

NOTEIGHT

 lsla ; Multiple the number of bells by 8 to get the length

 lsla

 lsla

 sta SND_REMAIN ; Save away the number of bells left to play

 lda STARTS,X ; Point to the pattern of the first bell

 sta SND_POS

 bset 1,BTNFLAGS ; Turn on the tic timer

 JMP RELEASE ; And release our lock on the time

;

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

; (8) Playing the next note piece

;

NO_HOUR

 lda SND_REMAIN ; Do we have any more notes to play?

 bne DO_SOUND ; No, skip out

STOPIT

 lda #TONE_PAUSE ; End of the line, shut up the sound hardware

 sta $28

 clr SND_REMAIN ; Force us to quit looking at sound

 bclr 1,BTNFLAGS ; and turn off the tic timer

 rts

DO_SOUND

 deca ; Yes, note that we used one up

 sta SND_REMAIN

 lda SND_POS ; See where we are in the sound

 lsra ; Divide by 8 to get the byte pointer

 lsra

 lsra

 tax ; and make it an index

 lda Pattern,X ; Get the current pattern byte

 sta SND_NOTE ; And save it where we can test it

 lda SND_POS ; Get the pointer to where we are in the sound

 inc SND_POS ; Advance to the next byte

 and #7 ; and hack off the high bytes to leave the bit index

 lsla ; Convert that to a BRSET instruction

 sta TSTNOTE ; And self modify our code so we can play

TSTNOTE brset 0,SND_NOTE,PLAYIT ; If the note is not set, skip out

 lda #TONE_PAUSE ; Not playing, we want to have silence

 brskip2

PLAYIT lda #NOTE_BELL ; Playing, select the bell tone

 sta $28 ; And make it play

NO_SOUND

 rts

1. Program specific constants - We define the CHANGE_FLAGS because it is not currently in Wristapp.i. This
allows us to turn off the system attempts at playing hourly chimes. We also select the tone that we want to
play the bells with. This seems to work as the best one to be heard as bells.

2. System entry point vectors - The only interesting thing here is that we use the WRIST_INCOMM entry to
disable any bell playing that might have started.

3. Program strings - The pattern and starts tables are used to describe when we will be playing notes and
when we will be pausing.

4. State Table - Pretty boring here.

5. State Table 0 Handler - Also amazingly boring. The only interesting thing that we do here is to force the
current bells to play when you enter the app.

6. Main initialization routine - Nothing spectacular here, other than the fact that we save 1 byte by falling into
the code to determine if we have passed an hour.

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 161 -

7. Determining the current hour - This code looks to see if the hour has changed and if so, it latches in the time
based on the selected timezone. It also calculates the number of bells and the length of the sequence
necessary to play for that number of bells.

8. Playing the next note piece - The really tricky part here is that we have self-modifying code that generates a
BRSET instruction to test the next bit in the currently selected byte. Once we have done so, we load up a
tone and stuff it into the hardware.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

More Random Numbers and Marquis - PICK6 example

Philip Hudnott <Philip.hudnott@btinternet.com> came up with this idea for a wristapp to pick lottery numbers.
Overall, this is pretty simple wristapp to write, but it really showed the need for a decent random number generator.
Fortunately, Alan Beale <biljir@pobox.com> provided me with a great MWC (multiply-with-carry) algorithm. Feel free
to use the random number generator for other programs, it has some pretty good behavior. Overall, this program
has very little changes from the 3BALL example, so getting into it should be pretty easy.

;Name: PICK6

;Version: PICK6

;Description: A sample lottery number picker to pick 6 numbers out of a pool of 49 numbers (no duplicates

allowed).

; To use it, just select it as the current app and it will pick a set of 6 numbers for you. To get

another set,

; just press the next button. This is for amusement only (but if you win anything because of it, I would

welcome

; anything that you send me).

;

;by John A. Toebes, VIII

;

;HelpFile: watchapp.hlp

;HelpTopic: 100

;**

;* Copyright (C) 1997 John A. Toebes, VIII *

;* All Rights Reserved *

;* This program may not be distributed in any form without the permission of the author *

;* jtoebes@geocities.com *

;**

; (1) Program specific constants

;

 INCLUDE "WRISTAPP.I"

;

; Program specific constants

;

RAND_RANGE EQU 48 ; This is the number of items to select from (1 to RAND_RANGE+1)

CURRENT_TIC EQU $27 ; Current system clock tic (Timer)

RAND_WCL EQU $61

RAND_WCH EQU $62

RAND_WNL EQU $63

RAND_WNH EQU $64

THIS_PICK EQU $65 ; We can share this with MARQ_POS since we don't do both at the same time

MARQ_POS EQU $65

TEMPL EQU $66

TEMPH EQU $67

START EQU *

BASE_TAB EQU $FE

;

; (2) System entry point vectors

;

L0110: jmp MAIN ; The main entry point - WRIST_MAIN

L0113: bclr 1,BTNFLAGS ; Called when we are suspended for any reason - WRIST_SUSPEND

 rts

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 163 -

L0116: jmp FLASH ; Called to handle any timers or time events - WRIST_DOTIC

L0119: bclr 1,BTNFLAGS ; Called when the COMM app starts and we have timers pending -

WRIST_INCOMM

 rts

L011c: rts ; Called when the COMM app loads new data - WRIST_NEWDATA

 nop

 nop

L011f: lda STATETAB,X ; The state table get routine - WRIST_GETSTATE

 rts

L0123: jmp HANDLE_STATE0

 db STATETAB-STATETAB

;

; (3) Program strings

;

S6_MARQ timex6 " +O+ "

S8_TITLE Timex " PICK-6 "

MARQ_SEL

 DB S6_MARQ+2-START

 DB S6_MARQ+3-START

 DB S6_MARQ+2-START

 DB S6_MARQ+1-START

 DB S6_MARQ-START

 DB S6_MARQ+1-START

;

; (4) State Table

;

STATETAB:

 db 0

 db EVT_ENTER,TIM2_16TIC,0 ; Initial state

 db EVT_RESUME,TIM_ONCE,0 ; Resume from a nested app

 db EVT_DNNEXT,TIM2_16TIC,0 ; Next button

 db EVT_TIMER2,TIM_ONCE,0 ; Timer

 db EVT_MODE,TIM_ONCE,$FF ; Mode button

 db EVT_END

PICK_VALS db 0,0,0,0,0,0,0,$FF

;

; (5) This flashes the text on the screen

;

FLASH

 lda CURRENT_APP ; See which app is currently running

 cmp #APP_WRIST ; Is it us?

 bne L0113 ; No, so just turn off the tic timer since we don't need it

 ldx #5

 lda MARQ_POS

 jsr INCA_WRAPX

 sta MARQ_POS

 tax

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 lda MARQ_SEL,X

 jsr PUT6MID

 ldx MARQ_POS

 lda MARQ_SEL,X

 jmp PUT6TOP

;

; (6) They want us to do it again

;

DOITAGAIN ; Tell them we are going to do it again

 clr MARQ_POS

 bset 1,BTNFLAGS

 jsr CLEARALL

 jmp BANNER

;

; (7) State Table 0 Handler

; This is called to process the state events.

; We see ENTER, RESUME, TIMER2 and NEXT events

;

HANDLE_STATE0:

 bset 1,APP_FLAGS ; Indicate that we can be suspended

 bclr 1,BTNFLAGS

 lda BTNSTATE

 cmp #EVT_DNNEXT ; Did they press the next button?

 beq DOITAGAIN

 cmp #EVT_ENTER ; Or did we start out

 beq DOITAGAIN

 cmp #EVT_RESUME

beq REFRESH

;

; (8) Select a random answer

;

SHOWIT

 clra

 ldx #6

CLEARIT

 sta PICK_VALS-1,X

 decx

 bne CLEARIT

;

; We want to pick 6 random numbers. The first needs to be in the range 1 ... RAND_RANGE

; The second should be in the range 1 ... (RAND_RANGE-1)

; The third should be in the range 1 ... (RAND_RANGE-2)

; The fourth should be in the range 1 ... (RAND_RANGE-3)

; The fifth should be in the range 1 ... (RAND_RANGE-4)

; The sixth should be in the range 1 ... (RAND_RANGE-5)

;

 clr THIS_PICK

ONE_MORE_PICK

REPICK

 jsr RAND16

 and #63

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 165 -

 sta TEMPL

 lda #RAND_RANGE

 sub THIS_PICK

 cmp TEMPL

 blo REPICK

 lda TEMPL

 bsr INSERT_NUM

 inc THIS_PICK

 lda THIS_PICK

 cmp #6

 bne ONE_MORE_PICK

 bra REFRESH

;

; (9) Insert a number in the list

;

INSERT_NUM

 inca

 ldx #(PICK_VALS-1)-BASE_TAB ; Index so that we can use the short addressing mode

TRY_NEXT

 incx ; Advance to the next number

 tst BASE_TAB,X ; Is it an empty slot?

 bne NOT_END ; No, try some more

 sta BASE_TAB,X ; Yes, just toss it in there

 rts ; And return

NOT_END

 cmp BASE_TAB,X ; Non-empty slot, are we less than it?

 blo PUT_HERE ; Yes, so we go here

 inca ; No, Greater than or equal, we need to increment one and try

again

 bra TRY_NEXT

PUT_HERE

 sta TEMPL

 lda BASE_TAB,X

 sta TEMPH

 lda TEMPL

 sta BASE_TAB,X

 lda TEMPH

 incx

 tsta

 bne PUT_HERE

 rts

;

; (10) Display the currently selected random numbers

;

REFRESH

 ldx PICK_VALS

 bsr GOFMTX

 jsr PUTTOP12

 ldx PICK_VALS+1

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 bsr GOFMTX

 jsr PUTTOP34

 ldx PICK_VALS+2

 bsr GOFMTX

 jsr PUTTOP56

 ldx PICK_VALS+3

 bsr GOFMTX

 jsr PUTMID12

 ldx PICK_VALS+4

 bsr GOFMTX

 jsr PUTMID34

 ldx PICK_VALS+5

 bsr GOFMTX

 jsr PUTMID56

 lda #ROW_MP23

 sta DISP_ROW

 bset COL_MP23,DISP_COL

 lda #ROW_MP45

 sta DISP_ROW

 bset COL_MP45,DISP_COL

 lda #ROW_TP23

 sta DISP_ROW

 bset COL_TP23,DISP_COL

 lda #ROW_TP45

 sta DISP_ROW

 bset COL_TP45,DISP_COL

BANNER

 lda #S8_TITLE-START ; And show the mode on the bottom

 jmp BANNER8

GOFMTX JMP FMTX

; (11) Here is an excellent random number generator

; it comes courtesy of Alan Beale <biljir@pobox.com%gt;

; The following C code gives a good MWC (multiply-with-carry)

; generator. This type is generally superior to linear

; congruential generators. As a bonus, there is no particular advantage to using the high-order

; rather than the low-order bits.

; The algorithm was developed and analyzed by George

; Marsaglia, a very well-known scholar of random number lore.

;

; The code assumes 16 bit shorts and 32 bit longs (hardly surprising).

;

;static unsigned short wn,wc; /* random number and carry */

;

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 167 -

;unsigned short rand() {

; unsigned long temp;

; temp = 18000*wn + wc;

; wc = temp >> 16;

; wn = temp & 0xffff;

; return wn;

;}

;

;To seed, set wn to anything you like, and wc to anything between 0 and 17999.

;

; Translating this into assembler is

;nHnL*0x4650 + RAND_WCHcL

;

; unsigned long temp;

; temp = 18000*wn + wc;

; wc = temp >> 16;

; wn = temp & 0xffff;

; return wn;

; temp = 0x4650 * n + c

; temp = 0x4650 * nHnL + cHcL

; temp = (0x4600 + 0x50) * (nH00 + nL) + cHcL

; temp = 0x4600*nH00 + 0x4600*nL + 0x50*nH00 + 0x50*nL + cHcL

; temp = 0x46*nH*0x10000 + 0x46*nL*0x100 + 0x50*nH*0x1000 + 0x50*nL + cHcL

; We construct the 32bit result into tH tL cH cL and then swap the 16 bit values

; once we have no more need of the original numbers in the calculation

;

RAND_MULT EQU 18000 ; This is for the random number generator

RAND_MULTH EQU RAND_MULT/256

RAND_MULTL EQU RAND_MULT&255

RAND16

 lda RAND_WNL ; A=nL

 ldx RAND_MULTL ; X=0x50

 mul ; X:A = 0x50*nL

 add RAND_WCL ; A=Low(0x50nL)+cL

 sta RAND_WCL ; cL=Low(0x50nL)+cL

 txa ; A=High(0x50nL)

 adc RAND_WCH ; A=High(0x50nL)+cH

 sta RAND_WCH ; cH=High(0x50nL)+cH

 clra ; A=0

 sta TEMPH ; tH=0

 adc #0 ; A=Carry(0x50nL)+cH

 sta TEMPL ; tL=Carry(0x50nL)+cH

 lda RAND_WNL ; A=nL

 ldx RAND_MULTH ; X=0x46

 bsr RAND_SUB ; tL:cH += 0x46*nL tH=carry(0x46*nL)

 lda RAND_WNH ; A=nH

 ldx RAND_MULTL ; X=0x50

 bsr RAND_SUB ; tL:cH += 0x50*nH tH=carry(0x50*nH)

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

 lda RAND_WNH ; A=nH

 ldx RAND_WCL ; X=cL

 stx RAND_WNL ; nL=cL

 ldx RAND_WCH ; X=cH

 stx RAND_WNH ; hH=cH

 ldx RAND_MULTH ; X=0x46

 mul ; X:A=0x46*nH

 add TEMPL ; A=Low(0x46*nH)+tL

 sta RAND_WCL ; nL=Low(0x46*nH)+tL

 txa ; A=High(0x46*nH)

 adc TEMPH ; A=High(0x46*nH)+tH

 sta RAND_WCH ; nH=High(0x46*nH)+tH

 rts

RAND_SUB

 mul ; Compute the values

 add RAND_WCH ; A=LOW(result)+cH

 sta RAND_WCH ; cH=Low(result)+cH

 txa ; X=High(result)

 adc TEMPL ; X=High(result)+tL+Carry(low(result)+cH)

 sta TEMPL ; tL=High(result)+tL+Carry(low(result)+cH)

 clra ; A=0

 adc TEMPH ; A=carry(High(result)+tL+Carry(low(result)+cH))+tH

 sta TEMPH ; tH=carry(High(result)+tL+Carry(low(result)+cH))+tH

 rts

;

; (12) This is the main initialization routine which is called when we first get the app into memory

;

MAIN:

 lda #$c0 ; We want button beeps and to indicate that we have been loaded

sta WRISTAPP_FLAGS

 lda CURRENT_TIC

 sta RAND_WNL

 sta RAND_WNH

 sta RAND_WCL

 and #$3f

 sta RAND_WCH

 rts

1. Program specific constants - We have several variables - RAND_WCL, RAND_WCH, RAND_WNL and
RAND_WNH which we use for the random number routine. CURRENT_TIC is what is set by the system
when it reads the clock to keep the watch time up to date. We use it once to provide a seed for the random
number generator. Note that we are overlapping the use of THIS_PICK and MARQ_POS to save one byte
of low ram.

2. System entry point vectors - identical to the 3BALL example, This one gets to be a little fun. Notice for the
WRIST_SUSPEND and WRIST_INCOMM routines that we don't have a JMP instruction, but instead put
the actual code in line. This saves use a couple of bytes.

3. Program strings - We are pretty frugal here in reusing blanks at the end of the string very liberally. Also
note the S6_MARQ string which has blanks at the start and end so that it can shuffle left and right on the
display but always have blanks visible. The MARQ_SEL and MSG_SEL tables are simply offsets that allow
us to select the message with a simple load instruction instead of having to calculate the offset.

4. State Table - This is pretty vanilla here except for the fact that we have a very long time interval after the
DNNEXT and ENTER events. It is during this time that the Marquis runs. We could make it even longer,

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 169 -

but this seems to be a good compromise between seeing something happen and actually getting a result in
a reasonable time.

5. State Table 0 Handler - Extremely simple, there are only four events that we want to see and this is the
typical test and branch one. The only unique thing here is that we turn off the Marquis timer as soon as we
get any event.

6. This flashes the text on the screen - This is the cheap way to do a Marquis. Just have a string wider than
the display and change the offset from the start at which you start to display. For this one, there are only 6
states and we select the starting offset from the table based on our current cycle. Note that this routine is
called by the TIC timer which is enabled when they want a new random number. Eventually the timer for
the main event will run out and they will simply stop calling us.

7. They want us to do it again - Whenever we want to do a new random number, we just start the Marquis tic
timer and set up the display.

8. Select a random answer - This is really the meat of this wristapp. We need to pick 6 random numbers and
sort them. Fortunately, we can take advantage of the sorting as part of our random number selection.

9. Insert a number in the list - Given a random number, add it to the list of random numbers in sorted order.
Essentially, we start at the beginning of the list and go until we either find a slot where we need to insert the
number in order or we hit the end of the list. If we hit the end of the list, we store the number there and
return. Otherwise we insert the number at the appropriate spot. One additional thing that we do is increment
the number by 1 for each entry in the that is less than it. It makes sense, but you need to think about why
this works.

10. Display the currently selected random numbers - Given the 6 random numbers, we just put them on the
display separated by periods. Note the series of BSR instructions to the GOFMTX label. Since there were 6
calls to it, we were about to reduce the 6 3-byte instructions to 6 2-byte instructions plus one 3-byte
instruction to do the call for a savings of 3 bytes.

11. Here is a random number generator - This is great random number generator that you might want to grab
for any other code that you might write.

12. This is the main initialization routine which is called when we first get the app into memory - Very boring
stuff here, but we do take a moment to initialize the random number seed with the current tic count just to
make it a little more variable.

 ABOUT THE DATALINK DATALINK WRISTAPP PROGRAMMER’S REFERENCE

Index

1
150, 6, 8, 12, 24, 30, 31, 33, 38, 64, 65
150s, 6, 8, 24, 30, 31, 33, 38, 64, 65

3
3Ball, 65, 131

6
6805, 23, 24, 30

7
75, 6

A
Adjustable Timer, 6
Applet file header, 33
ASM6805, 30, 100
assemblers, 30

C
Character Set, 12
Conversion, 7
CopyMe, 7
CPACKET_ALARM, 10
CPACKET_BEEPS, 12
CPACKET_CLEAR, 10
CPACKET_DATA, 9, 10
CPACKET_END, 10
CPACKET_JMPMEM, 8, 9
CPACKET_MEM, 8, 11
CPACKET_SECT, 9, 10
CPACKET_SKIP, 9
CPACKET_START, 8, 24
CPACKET_TIME, 11
CRC, 8, 9, 10, 11, 12, 33, 34, 63

D
DAYFIND, 84, 85, 87
Display, 12
Download Protocol, 7

E
EEPROM, 9, 10, 24, 45, 46, 47, 48, 64, 107, 108, 109, 111,

114
ENDOFF, 96
EVENT_END, 35
EVT_ANY, 36
EVT_ANY4, 36

EVT_END, 37, 68, 70, 73, 76, 80, 86, 94, 97, 101, 108, 109,
118, 132, 136

EVT_ENTER, 35, 37, 67, 70, 72, 73, 76, 77, 80, 86, 93, 94,
97, 101, 108, 109, 118, 120, 132, 136

EVT_GLOW, 36
EVT_IDLE, 36
EVT_MODE, 36, 68, 70, 73, 76, 80, 81, 86, 88, 93, 97, 101,

104, 108, 112, 118, 120, 132, 136
EVT_NEST, 35, 37
EVT_NEXT, 36, 73, 77, 81, 88, 104, 112
EVT_PREV, 36, 73, 77, 81, 88, 104, 112, 120
EVT_RESUME, 35, 37, 67, 70, 73, 76, 80, 86, 93, 94, 97,

101, 108, 109, 118, 132, 136
EVT_SET, 35, 36, 73, 77, 80, 86, 101, 108, 118, 120
EVT_TIMER1, 36, 37, 86
EVT_TIMER2, 36, 37, 70, 73, 76, 80, 86, 88, 93, 94, 101,

102, 108, 109, 110, 118, 132
EVT_USER0, 36, 37, 94, 95, 101, 108
EVT_USER1, 36, 37
EVT_USER2, 36, 37, 80, 81, 86, 88, 101, 104, 109, 112,

118, 120
EVT_USER3, 36, 37, 86, 88, 89

G
Golf, 7

H
HexDump, 64, 100, 107

M
Melody Tester, 6

N
Note, 6, 8, 11, 12, 17, 25, 26, 32, 38, 46, 51, 60, 63, 72, 92,

94, 99, 103, 106, 110, 114, 117, 121, 134

P
Packet Format, 8
PASSWD, 78, 79
Preset Timer, 6
Pulse, 7

S
Ships Bells, 135
Sound Hardware, 25
sound scheme, 9, 26, 32, 65, 92, 129, 135
Sound Scheme, 26, 129
Sound Sequence, 26
Soundlet, 26

 DATALINK WRISTAPP PROGRAMMER’S REFERENCE ABOUT THE DATALINK

- 171 -

Spend Watch, 114
State Table, 32, 35, 36, 67, 68, 69, 70, 71, 72, 73, 75, 76,

78, 80, 81, 83, 84, 86, 87, 92, 93, 94, 95, 96, 97, 99,
101, 104, 106, 107, 108, 109, 112, 114, 120, 128, 132,
134, 136, 138

Stopwatch, 6
Strings, 33
Sync Bits, 7
Sync bytes, 7
Synchronization, 7
System Sound, 26

T
TestSnd, 92
TIMEX6, 13
Tone, 25, 26

W
Week of the Year, 6
World Time, 7
WRIST_DOTIC, 32, 34, 67, 69, 72, 76, 79, 85, 93, 96, 98,

99, 100, 108, 116, 131, 135, 137

WRIST_GETSTATE, 32, 67, 70, 73, 76, 79, 85, 93, 96, 100,
108, 116, 131, 135

WRIST_INCOMM, 32, 67, 69, 72, 76, 79, 85, 93, 96, 99,
100, 108, 116, 131, 134, 135, 138

WRIST_JMP_STATE0, 32
WRIST_JMP_STATE1, 32
WRIST_MAIN, 32, 53, 54, 67, 69, 72, 76, 79, 85, 93, 96,

100, 108, 116, 131, 135
WRIST_NEWDATA, 32, 67, 69, 72, 76, 79, 85, 93, 96, 99,

100, 108, 116, 131, 135
WRIST_OFF_STATE0, 32
WRIST_OFF_STATE1, 32
WRIST_SUSPEND, 32, 35, 67, 69, 72, 76, 79, 85, 93, 96,

100, 108, 116, 131, 134, 135
WRISTAPP_FLAGS, 34, 69, 71, 72, 74, 75, 78, 82, 84, 91,

95, 96, 98, 99, 106, 113, 127, 134, 137

Z
ZAP, 24, 31, 33, 63, 64
ZSM, 31, 100

