1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
#include "watch.h"
#include <stdlib.h>
//////////////////////////////////////////////////////////////////////////////////////////
// Initialization
void _watch_init() {
// Use switching regulator for lower power consumption.
SUPC->VREG.bit.SEL = 1;
while(!SUPC->STATUS.bit.VREGRDY);
// External wake depends on RTC; calendar is a required module.
CALENDAR_0_init();
calendar_enable(&CALENDAR_0);
// Not sure if this belongs in every app -- is there a power impact?
delay_driver_init();
}
//////////////////////////////////////////////////////////////////////////////////////////
// Segmented Display
static const uint8_t Character_Set[] =
{
0b00000000, //
0b00000000, // ! (unused)
0b00100010, // "
0b01100011, // # (degree symbol, hash mark doesn't fit)
0b00000000, // $ (unused)
0b00000000, // % (unused)
0b01000100, // & ("lowercase 7" for positions 4 and 6)
0b00100000, // '
0b00111001, // (
0b00001111, // )
0b00000000, // * (unused)
0b11000000, // + (only works in position 0)
0b00000100, // ,
0b01000000, // -
0b01000000, // . (same as -, semantically most useful)
0b00010010, // /
0b00111111, // 0
0b00000110, // 1
0b01011011, // 2
0b01001111, // 3
0b01100110, // 4
0b01101101, // 5
0b01111101, // 6
0b00000111, // 7
0b01111111, // 8
0b01101111, // 9
0b00000000, // : (unused)
0b00000000, // ; (unused)
0b01011000, // <
0b01001000, // =
0b01001100, // >
0b01010011, // ?
0b11111111, // @ (all segments on)
0b01110111, // A
0b01111111, // B
0b00111001, // C
0b00111111, // D
0b01111001, // E
0b01110001, // F
0b00111101, // G
0b01110110, // H
0b10001001, // I (only works in position 0)
0b00001110, // J
0b01110101, // K
0b00111000, // L
0b10110111, // M (only works in position 0)
0b00110111, // N
0b00111111, // O
0b01110011, // P
0b01100111, // Q
0b11110111, // R (only works in position 1)
0b01101101, // S
0b10000001, // T (only works in position 0; set (1, 12) to make it work in position 1)
0b00111110, // U
0b00111110, // V
0b10111110, // W (only works in position 0)
0b01111110, // X
0b01101110, // Y
0b00011011, // Z
0b00111001, // [
0b00100100, // backslash
0b00001111, // ]
0b00100011, // ^
0b00001000, // _
0b00000010, // `
0b01011111, // a
0b01111100, // b
0b01011000, // c
0b01011110, // d
0b01111011, // e
0b01110001, // f
0b01101111, // g
0b01110100, // h
0b00010000, // i
0b01000010, // j (appears as superscript to work in more positions)
0b01110101, // k
0b00110000, // l
0b10110111, // m (only works in position 0)
0b01010100, // n
0b01011100, // o
0b01110011, // p
0b01100111, // q
0b01010000, // r
0b01101101, // s
0b01111000, // t
0b01100010, // u (appears as superscript to work in more positions)
0b01100010, // v (appears as superscript to work in more positions)
0b10111110, // w (only works in position 0)
0b01111110, // x
0b01101110, // y
0b00011011, // z
0b00111001, // {
0b00110000, // |
0b00001111, // }
0b00000001, // ~
};
static const uint64_t Segment_Map[] = {
0x4e4f0e8e8f8d4d0d, // Position 0, mode
0xc8c4c4c8b4b4b0b, // Position 1, mode (Segments B and C shared, as are segments E and F)
0xc049c00a49890949, // Position 2, day of month (Segments A, D, G shared; missing segment F)
0xc048088886874707, // Position 3, day of month
0xc053921252139352, // Position 4, clock hours (Segments A and D shared)
0xc054511415559594, // Position 5, clock hours
0xc057965616179716, // Position 6, clock minutes (Segments A and D shared)
0xc041804000018a81, // Position 7, clock minutes
0xc043420203048382, // Position 8, clock seconds
0xc045440506468584, // Position 9, clock seconds
};
static const uint8_t Num_Chars = 10;
static const uint32_t IndicatorSegments[6] = {
SLCD_SEGID(0, 17), // WATCH_INDICATOR_SIGNAL
SLCD_SEGID(0, 16), // WATCH_INDICATOR_BELL
SLCD_SEGID(2, 17), // WATCH_INDICATOR_PM
SLCD_SEGID(2, 16), // WATCH_INDICATOR_24H
SLCD_SEGID(1, 10), // WATCH_INDICATOR_LAP
};
void watch_enable_display() {
SEGMENT_LCD_0_init();
slcd_sync_enable(&SEGMENT_LCD_0);
}
inline void watch_set_pixel(uint8_t com, uint8_t seg) {
slcd_sync_seg_on(&SEGMENT_LCD_0, SLCD_SEGID(com, seg));
}
inline void watch_clear_pixel(uint8_t com, uint8_t seg) {
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(com, seg));
}
void watch_display_character(uint8_t character, uint8_t position) {
uint64_t segmap = Segment_Map[position];
uint64_t segdata = Character_Set[character - 0x20];
for (int i = 0; i < 8; i++) {
uint8_t com = (segmap & 0xFF) >> 6;
if (com > 2) {
// COM3 means no segment exists; skip it.
segmap = segmap >> 8;
segdata = segdata >> 1;
continue;
}
uint8_t seg = segmap & 0x3F;
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(com, seg));
if (segdata & 1) slcd_sync_seg_on(&SEGMENT_LCD_0, SLCD_SEGID(com, seg));
segmap = segmap >> 8;
segdata = segdata >> 1;
}
}
void watch_display_string(char *string, uint8_t position) {
size_t i = 0;
while(string[i] != 0) {
watch_display_character(string[i], position + i);
i++;
if (i >= Num_Chars) break;
}
}
inline void watch_set_colon() {
slcd_sync_seg_on(&SEGMENT_LCD_0, SLCD_SEGID(1, 16));
}
inline void watch_clear_colon() {
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(1, 16));
}
inline void watch_set_indicator(WatchIndicatorSegment indicator) {
slcd_sync_seg_on(&SEGMENT_LCD_0, IndicatorSegments[indicator]);
}
inline void watch_clear_indicator(WatchIndicatorSegment indicator) {
slcd_sync_seg_off(&SEGMENT_LCD_0, IndicatorSegments[indicator]);
}
void watch_clear_all_indicators() {
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(2, 17));
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(2, 16));
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(0, 17));
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(0, 16));
slcd_sync_seg_off(&SEGMENT_LCD_0, SLCD_SEGID(1, 10));
}
//////////////////////////////////////////////////////////////////////////////////////////
// Buttons
void watch_enable_buttons() {
EXTERNAL_IRQ_0_init();
}
void watch_register_button_callback(const uint32_t pin, ext_irq_cb_t callback) {
ext_irq_register(pin, callback);
}
//////////////////////////////////////////////////////////////////////////////////////////
// LED
bool PWM_0_enabled = false;
void watch_enable_led(bool pwm) {
if (pwm) {
if (PWM_0_enabled) return;
PWM_0_init();
pwm_set_parameters(&PWM_0, 10000, 0);
pwm_enable(&PWM_0);
PWM_0_enabled = true;
} else {
watch_enable_digital_output(RED);
watch_enable_digital_output(GREEN);
}
watch_set_led_off();
}
void watch_disable_led(bool pwm) {
if (pwm) {
if (!PWM_0_enabled) return;
pwm_disable(&PWM_0);
PWM_0_enabled = false;
}
watch_disable_digital_output(RED);
watch_disable_digital_output(GREEN);
}
void watch_set_led_color(uint16_t red, uint16_t green) {
if (PWM_0_enabled) {
TC3->COUNT16.CC[0].reg = red;
TC3->COUNT16.CC[1].reg = green;
}
}
void watch_set_led_red() {
if (PWM_0_enabled) {
watch_set_led_color(65535, 0);
} else {
watch_set_pin_level(RED, true);
watch_set_pin_level(GREEN, false);
}
}
void watch_set_led_green() {
if (PWM_0_enabled) {
watch_set_led_color(65535, 0);
} else {
watch_set_pin_level(RED, false);
watch_set_pin_level(GREEN, true);
}
}
void watch_set_led_yellow() {
if (PWM_0_enabled) {
watch_set_led_color(65535, 65535);
} else {
watch_set_pin_level(RED, true);
watch_set_pin_level(GREEN, true);
}
}
void watch_set_led_off() {
if (PWM_0_enabled) {
watch_set_led_color(0, 0);
} else {
watch_set_pin_level(RED, false);
watch_set_pin_level(GREEN, false);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
// Real-time Clock
bool watch_rtc_is_enabled() {
return RTC->MODE0.CTRLA.bit.ENABLE;
}
void watch_set_date_time(struct calendar_date_time date_time) {
calendar_set_date(&CALENDAR_0, &date_time.date);
calendar_set_time(&CALENDAR_0, &date_time.time);
}
void watch_get_date_time(struct calendar_date_time *date_time) {
calendar_get_date_time(&CALENDAR_0, date_time);
}
static ext_irq_cb_t tick_user_callback;
static void tick_callback(struct calendar_dev *const dev) {
tick_user_callback();
}
void watch_register_tick_callback(ext_irq_cb_t callback) {
tick_user_callback = callback;
_prescaler_register_callback(&CALENDAR_0.device, &tick_callback);
}
//////////////////////////////////////////////////////////////////////////////////////////
// Analog Input
static bool ADC_0_ENABLED = false;
void watch_enable_analog(const uint8_t pin) {
if (!ADC_0_ENABLED) ADC_0_init();
ADC_0_ENABLED = true;
gpio_set_pin_direction(pin, GPIO_DIRECTION_OFF);
switch (pin) {
case A0:
gpio_set_pin_function(A0, PINMUX_PB04B_ADC_AIN12);
break;
case A1:
gpio_set_pin_function(A1, PINMUX_PB01B_ADC_AIN9);
break;
case A2:
gpio_set_pin_function(A2, PINMUX_PB02B_ADC_AIN10);
break;
default:
return;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
// Digital IO
void watch_enable_digital_input(const uint8_t pin) {
gpio_set_pin_direction(pin, GPIO_DIRECTION_IN);
gpio_set_pin_function(pin, GPIO_PIN_FUNCTION_OFF);
}
void watch_enable_pull_up(const uint8_t pin) {
gpio_set_pin_pull_mode(pin, GPIO_PULL_UP);
}
void watch_enable_pull_down(const uint8_t pin) {
gpio_set_pin_pull_mode(pin, GPIO_PULL_DOWN);
}
bool watch_get_pin_level(const uint8_t pin) {
return gpio_get_pin_level(pin);
}
void watch_enable_digital_output(const uint8_t pin) {
gpio_set_pin_direction(pin, GPIO_DIRECTION_OUT);
gpio_set_pin_function(pin, GPIO_PIN_FUNCTION_OFF);
}
void watch_disable_digital_output(const uint8_t pin) {
gpio_set_pin_direction(pin, GPIO_DIRECTION_OFF);
}
void watch_set_pin_level(const uint8_t pin, const bool level) {
gpio_set_pin_level(pin, level);
}
//////////////////////////////////////////////////////////////////////////////////////////
// I2C
struct io_descriptor *I2C_0_io;
void watch_enable_i2c() {
I2C_0_init();
i2c_m_sync_get_io_descriptor(&I2C_0, &I2C_0_io);
i2c_m_sync_enable(&I2C_0);
}
void watch_i2c_send(int16_t addr, uint8_t *buf, uint16_t length) {
i2c_m_sync_set_periphaddr(&I2C_0, addr, I2C_M_SEVEN);
io_write(I2C_0_io, buf, length);
}
void watch_i2c_receive(int16_t addr, uint8_t *buf, uint16_t length) {
i2c_m_sync_set_periphaddr(&I2C_0, addr, I2C_M_SEVEN);
io_read(I2C_0_io, buf, length);
}
void watch_i2c_write8(int16_t addr, uint8_t reg, uint8_t data) {
uint8_t buf[2];
buf[0] = reg;
buf[1] = data;
watch_i2c_send(addr, (uint8_t *)&buf, 2);
}
uint8_t watch_i2c_read8(int16_t addr, uint8_t reg) {
uint8_t data;
watch_i2c_send(addr, (uint8_t *)®, 1);
watch_i2c_receive(addr, (uint8_t *)&data, 1);
return data;
}
uint16_t watch_i2c_read16(int16_t addr, uint8_t reg) {
uint16_t data;
watch_i2c_send(addr, (uint8_t *)®, 1);
watch_i2c_receive(addr, (uint8_t *)&data, 2);
return data;
}
uint32_t watch_i2c_read24(int16_t addr, uint8_t reg) {
uint32_t data;
data = 0;
watch_i2c_send(addr, (uint8_t *)®, 1);
watch_i2c_receive(addr, (uint8_t *)&data, 3);
return data << 8;
}
uint32_t watch_i2c_read32(int16_t addr, uint8_t reg) {
uint32_t data;
watch_i2c_send(addr, (uint8_t *)®, 1);
watch_i2c_receive(addr, (uint8_t *)&data, 4);
return data;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Deep Sleep
void watch_store_backup_data(uint32_t data, uint8_t reg) {
if (reg < 8) {
RTC->MODE0.BKUP[reg].reg = data;
}
}
uint32_t watch_get_backup_data(uint8_t reg) {
if (reg < 8) {
return RTC->MODE0.BKUP[reg].reg;
}
return 0;
}
static void extwake_callback(struct calendar_dev *const dev) {
// this will never get called since we are basically waking from reset
}
void watch_enter_deep_sleep() {
// enable and configure the external wake interrupt
_extwake_register_callback(&CALENDAR_0.device, &extwake_callback);
_tamper_enable_debounce_asynchronous(&CALENDAR_0.device);
// disable SLCD
slcd_sync_deinit(&SEGMENT_LCD_0);
hri_mclk_clear_APBCMASK_SLCD_bit(SLCD);
// TODO: disable other peripherals
// disable EIC interrupt on ALARM pin (if any) and enable RTC interrupt.
ext_irq_disable(BTN_ALARM);
gpio_set_pin_direction(BTN_ALARM, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(BTN_ALARM, GPIO_PULL_DOWN);
gpio_set_pin_function(BTN_ALARM, PINMUX_PA02G_RTC_IN2);
// go into backup sleep mode
sleep(5);
}
|