1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <peripheral_clk_config.h>
#include "watch.h"
#include "watch_utility.h"
#include "spiflash.h"
#include "lis2dw.h"
#define ACCELEROMETER_DATA_ACQUISITION_INVALID ((uint64_t)(0b11)) // all bits are 1 when the flash is erased
#define ACCELEROMETER_DATA_ACQUISITION_HEADER ((uint64_t)(0b10))
#define ACCELEROMETER_DATA_ACQUISITION_DATA ((uint64_t)(0b01))
#define ACCELEROMETER_DATA_ACQUISITION_DELETED ((uint64_t)(0b00)) // You can always write a 0 to any 1 bit
typedef union {
struct {
struct {
uint16_t record_type : 2; // see above, helps us identify record types when reading back
uint16_t range : 2; // accelerometer range (see lis2dw_range_t)
uint16_t temperature : 12; // raw value from the temperature sensor
} info;
uint8_t char1 : 8; // First character of the activity type
uint8_t char2 : 8; // Second character of the activity type
uint32_t timestamp : 32; // UNIX timestamp for the measurement
} header;
struct {
struct {
uint16_t record_type : 2; // duplicate; this is the same field as info above
uint16_t accel : 14; // X acceleration value, raw, offset by 16384
} x;
struct {
uint16_t lpmode : 2; // low power mode (see lis2dw_low_power_mode_t)
uint16_t accel : 14; // Y acceleration value, raw, offset by 16384
} y;
struct {
uint16_t filter : 2; // bandwidth filtering selection (see lis2dw_bandwidth_filtering_mode_t)
uint16_t accel : 14; // Z acceleration value, raw, offset by 16384
} z;
uint32_t counter : 16; // number of seconds since timestamp in header
} data;
uint64_t value;
} accelerometer_data_acquisition_record_t;
static bool wait_for_flash_ready(void) {
watch_set_pin_level(A3, false);
bool ok = true;
uint8_t read_status_response[1] = {0x00};
do {
ok = spi_flash_read_command(CMD_READ_STATUS, read_status_response, 1);
} while ((read_status_response[0] & 0x3) != 0);
delay_ms(1); // why do i need this?
watch_set_pin_level(A3, true);
return ok;
}
static void write_buffer_to_page(uint8_t *buf, uint16_t page) {
uint32_t address = 256 * page;
wait_for_flash_ready();
watch_set_pin_level(A3, false);
spi_flash_command(CMD_ENABLE_WRITE);
wait_for_flash_ready();
watch_set_pin_level(A3, false);
spi_flash_write_data(address, buf, 256);
wait_for_flash_ready();
uint8_t buf2[256];
watch_set_pin_level(A3, false);
spi_flash_read_data(address, buf2, 256);
wait_for_flash_ready();
uint8_t used_pages[256] = {0xFF};
uint16_t address_to_mark_used = page / 8;
uint8_t header_page = address_to_mark_used / 256;
uint8_t used_byte = 0x7F >> (page % 8);
uint8_t offset_in_buf = address_to_mark_used % 256;
watch_set_pin_level(A3, false);
spi_flash_read_data(header_page * 256, used_pages, 256);
used_pages[offset_in_buf] = used_byte;
watch_set_pin_level(A3, false);
spi_flash_command(CMD_ENABLE_WRITE);
wait_for_flash_ready();
watch_set_pin_level(A3, false);
spi_flash_write_data(header_page * 256, used_pages, 256);
wait_for_flash_ready();
}
static void print_records_at_page(uint16_t page) {
accelerometer_data_acquisition_record_t records[32];
static uint64_t timestamp = 0;
// static uint16_t temperature = 0;
static lis2dw_range_t range = LIS2DW_RANGE_2_G;
static double lsb_value = 1;
static bool printing_header = false;
wait_for_flash_ready();
spi_flash_read_data(page * 256, (void *)records, 256);
for(int i = 0; i < 32; i++) {
switch (records[i].header.info.record_type) {
case ACCELEROMETER_DATA_ACQUISITION_HEADER:
printing_header = true;
timestamp = records[i].header.timestamp;
// temperature = records[i].header.info.temperature;
printf("%c%c.sample%lld.", records[i].header.char1, records[i].header.char2, timestamp);
range = records[i].header.info.range;
break;
case ACCELEROMETER_DATA_ACQUISITION_DATA:
if (printing_header) {
printing_header = false;
uint8_t filter = 0;
switch (records[i].data.z.filter) {
case LIS2DW_BANDWIDTH_FILTER_DIV2:
filter = 2;
break;
case LIS2DW_BANDWIDTH_FILTER_DIV4:
filter = 4;
break;
case LIS2DW_BANDWIDTH_FILTER_DIV10:
filter = 10;
break;
case LIS2DW_BANDWIDTH_FILTER_DIV20:
filter = 20;
break;
}
switch (range) {
case LIS2DW_RANGE_16_G:
lsb_value = (records[i].data.y.lpmode == LIS2DW_LP_MODE_1) ? 7.808 : 1.952;
break;
case LIS2DW_RANGE_8_G:
lsb_value = (records[i].data.y.lpmode == LIS2DW_LP_MODE_1) ? 3.904 : 0.976;
break;
case LIS2DW_RANGE_4_G:
lsb_value = (records[i].data.y.lpmode == LIS2DW_LP_MODE_1) ? 1.952 : 0.488;
break;
case LIS2DW_RANGE_2_G:
lsb_value = (records[i].data.y.lpmode == LIS2DW_LP_MODE_1) ? 0.976 : 0.244;
break;
}
printf("RANGE%d_LP%d_FILT%d.CSV\n", range, records[i].data.y.lpmode + 1, filter);
printf("timestamp,accX,accY,accZ\n");
}
printf("%lld,%f,%f,%f\n",
(timestamp * 100 + records[i].data.counter) * 10,
9.80665 * ((double)(records[i].data.x.accel - 8192)) * lsb_value / 1000,
9.80665 * ((double)(records[i].data.y.accel - 8192)) * lsb_value / 1000,
9.80665 * ((double)(records[i].data.z.accel - 8192)) * lsb_value / 1000);
break;
case ACCELEROMETER_DATA_ACQUISITION_INVALID:
case ACCELEROMETER_DATA_ACQUISITION_DELETED:
// don't print anything
break;
}
records[i].header.info.record_type = ACCELEROMETER_DATA_ACQUISITION_DELETED;
}
// uncomment this to mark all pages deleted
// write_buffer_to_page((uint8_t *)records, page);
}
static void print_records() {
uint8_t buf[256];
for(int16_t i = 0; i < 4; i++) {
wait_for_flash_ready();
spi_flash_read_data(i * 256, buf, 256);
for(int16_t j = 0; j < 256; j++) {
uint8_t pages_written = buf[j];
uint8_t start = 0;
if (i == 0 && j == 0) {
pages_written <<= 4;
start = 4;
}
for(int k = start; k < 8; k++) {
if ((pages_written & 0x80) == 0) {
print_records_at_page(i * 2048 + j * 8 + k);
}
pages_written <<= 1;
}
}
}
}
void app_init(void) {
}
void app_wake_from_backup(void) {
}
void app_setup(void) {
spi_flash_init();
delay_ms(5000);
// bool erase = false;
// if (erase) {
// printf("Erasing...\n");
// wait_for_flash_ready();
// watch_set_pin_level(A3, false);
// spi_flash_command(CMD_ENABLE_WRITE);
// wait_for_flash_ready();
// watch_set_pin_level(A3, false);
// spi_flash_command(CMD_CHIP_ERASE);
// delay_ms(10000);
// }
print_records();
}
void app_prepare_for_standby(void) {
}
void app_wake_from_standby(void) {
}
bool app_loop(void) {
delay_ms(5000);
return true;
}
|