/* * MIT License * * Copyright (c) 2023 Gabor L Ugray * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "chirpy_tx.h" static const uint32_t chirpy_min_freq = 2500; static const uint32_t cirpy_freq_step = 250; // This many bytes are followed by a CRC and block separator // It's a multiple of 3 so no bits are wasted (a tone encodes 3 bits) // Last block can be shorter static const uint8_t chirpy_default_block_size = 15; // The dedicated control tone. This is the highest tone index. static const uint8_t chirpy_control_tone = 8; // Pre-computed tone periods. This is allocated and populated on-demand. static uint32_t *chirpy_tone_periods = NULL; uint8_t chirpy_crc8(const uint8_t *addr, uint16_t len) { uint8_t crc = 0; for (uint16_t i = 0; i < len; i++) crc = chirpy_update_crc8(addr[i], crc); return crc; } uint8_t chirpy_update_crc8(uint8_t next_byte, uint8_t crc) { for (uint8_t j = 0; j < 8; j++) { uint8_t mix = (crc ^ next_byte) & 0x01; crc >>= 1; if (mix) crc ^= 0x8C; next_byte >>= 1; } return crc; } static void _chirpy_append_tone(chirpy_encoder_state_t *ces, uint8_t tone) { // This is BAD and should never happen. But if it does, we'd rather // create a corrupt transmission than corrupt memory #$^@ if (ces->tone_count == CHIRPY_TONE_BUF_SIZE) return; ces->tone_buf[ces->tone_count] = tone; ++ces->tone_count; } void chirpy_init_encoder(chirpy_encoder_state_t *ces, chirpy_get_next_byte_t get_next_byte) { memset(ces, 0, sizeof(chirpy_encoder_state_t)); ces->block_size = chirpy_default_block_size; ces->get_next_byte = get_next_byte; _chirpy_append_tone(ces, 8); _chirpy_append_tone(ces, 0); _chirpy_append_tone(ces, 8); _chirpy_append_tone(ces, 0); } static uint8_t _chirpy_retrieve_next_tone(chirpy_encoder_state_t *ces) { if (ces->tone_pos == ces->tone_count) return 255; uint8_t res = ces->tone_buf[ces->tone_pos]; ++ces->tone_pos; if (ces->tone_pos == ces->tone_count) { // End of buffer: reset buffer ces->tone_pos = 0; ces->tone_count = 0; } return res; } static void _chirpy_encode_bits(chirpy_encoder_state_t *ces, uint8_t force_partial) { while (ces->bit_count > 0) { if (ces->bit_count < 3 && !force_partial) break; uint8_t tone = (uint8_t)(ces->bits >> 13); _chirpy_append_tone(ces, tone); if (ces->bit_count >= 3) { ces->bits <<= 3; ces->bit_count -= 3; } else { ces->bits = 0; ces->bit_count = 0; } } } static void _chirpy_finish_block(chirpy_encoder_state_t *ces) { _chirpy_append_tone(ces, chirpy_control_tone); ces->bits = ces->crc; ces->bits <<= 8; ces->bit_count = 8; _chirpy_encode_bits(ces, 1); ces->bit_count = 0; ces->crc = 0; ces->block_len = 0; _chirpy_append_tone(ces, chirpy_control_tone); } static void _chirpy_finish_transmission(chirpy_encoder_state_t *ces) { _chirpy_append_tone(ces, chirpy_control_tone); _chirpy_append_tone(ces, chirpy_control_tone); } uint8_t chirpy_get_next_tone(chirpy_encoder_state_t *ces) { // If there are tones left in the buffer, keep sending those if (ces->tone_pos < ces->tone_count) return _chirpy_retrieve_next_tone(ces); // We know data is over: that means we've wrapped up transmission // Just drain tone buffer, and then keep sendig EOB if (ces->get_next_byte == 0) return _chirpy_retrieve_next_tone(ces); // Fetch next byte uint8_t next_byte; uint8_t got_more = ces->get_next_byte(&next_byte); // Data over: write CRC if we sent a partial buffer; send end signal if (got_more == 0) { ces->get_next_byte = 0; if (ces->bit_count > 0) _chirpy_encode_bits(ces, 1); if (ces->block_len > 0) _chirpy_finish_block(ces); _chirpy_finish_transmission(ces); return _chirpy_retrieve_next_tone(ces); } // Got more data: add to bits; convert uint16_t msk = next_byte; msk <<= (8 - ces->bit_count); ces->bits |= msk; ces->bit_count += 8; _chirpy_encode_bits(ces, 0); ++ces->block_len; ces->crc = chirpy_update_crc8(next_byte, ces->crc); if (ces->block_len == ces->block_size) _chirpy_finish_block(ces); return _chirpy_retrieve_next_tone(ces); } uint16_t chirpy_get_tone_period(uint8_t tone) { // Create pre-computed tone periods array on first use if (chirpy_tone_periods == NULL) { chirpy_tone_periods = malloc((chirpy_control_tone + 1) * sizeof(uint32_t)); for (uint8_t i = 0; i < chirpy_control_tone + 1; ++i) { uint32_t freq = chirpy_min_freq + i * cirpy_freq_step; uint16_t period = 1000000 / freq; chirpy_tone_periods[i] = period; } } // Return pre-computed value, but be paranoid about indexing into array if (tone > chirpy_control_tone) tone = chirpy_control_tone; return chirpy_tone_periods[tone]; }