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Foreword (to the first edition)

People who write their own computer programs often wonder why the machine
gives inaccurate planet positions, an unreal eclipse track, or a faulty Moon
phase. Sometimes they insist, bewildered, “and I used double precision, too.”
Even commercial software is sometimes afflicted with gremlins, which comes as
quite a shock to anyone caught up in the mystique and presumed infallibility of
computers. Good techniques can help us avoid erroneous results from a flawed
program or a simplistic procedure — and that’s what this book is all about.

In the field of celestial calculations, Jean Meeus has enjoyed wide acclaim
and respect since long before microcomputers and pocket calculators appeared
on the market. When he brought out his Astronomical Formulae for Calculators
in 1979, it was practically the only book of its genre. It quickly became the
“source among sources”, even for other writers in the field. Many of them have
warmly acknowledged their debt (or should have), citing the unparalleled clarity
of his instructions and the rigor of his methods.

And now this Belgian astronomer has outdone himself yet again! Virtually
every previous handbook on celestial calculations (including his own earlier
work) was forced to rely on formulae for the Sun, Moon, and planets that were
developed in the last century — or at least before 1920. The past 10 years,
however, have seen a stunning revolution in how the world’s major observatories
produce their almanacs. The Jet Propulsion Laboratory in California and the
U.S. Naval Observatory in Washington, D.C., have perfected powerful new
machine methods for modeling the motions and interactions of bodies within the
solar system. At the same time in Paris, the Bureau des Longitudes has been a
beehive of activity aimed at describing these motions analytically, in the form of
explicit equations.

Yet until now the fruits of this exciting work have remained mostly out of
reach of ordinary people. The details have existed mainly on reels of magnetic
tape in a form comprehensible only to the largest brains, human or electronic.
But Astronomical Algorithms changes all that. With his special knack for
computations of all sorts, the author has made the essentials of these modern
techniques available to us all.
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We also stand at a confusing crossroads for astronomy. In just the last few
years the International Astronomical Union has introduced subtle changes in the
reference frame used for the coordinates of celestial objects, both within and far
beyond our solar system. So sweeping are these revisions that a highly respected
work for professional astronomers, the Explanatory Supplement to the
Astronomical Ephemeris, published in 1961, is now seriously out of date. While
the technical journals have seen a flurry of scientific papers on these issues, the
book you’re holding now is the first to offer succinct and practical methods for
coping with the changeover. It will be many years before astronomical data bases
and catalogues are fully converted to the new system, and anyone who needs a
detailed understanding of what’s going on will appreciate this book’s many
comments about the FK4 and FKS reference frames, “equinox error” and the
distinction between “J” and “B” when placed before an epoch like 2000.0.

Scarcely any formula is presented without a fully worked numerical example
— 0 crucial to the debugging process. The emphasis throughout is on testing,
on the proper arrangement of formulae, and on not pushing them beyond the
time span over which they are valid. Chapter 2 contains much wisdom of this
sort, growing out of the author’s long experience with various computers and
their languages. He alerts us to other pitfalls throughout the text. Anyone who
tries to chart the path of a comet, for instance, soon encounters Kepler’s
equation. It has so vexed astronomers over the years that literally hundreds of
solutions have been proposed; the striking graphs in Chapter 30 give a good
idea why.

Whenever 1 read about interpolation techniques, as in Chapter 3, I'm
reminded poignantly of Comet Kohoutek. News of its discovery caused a great
stir in the spring of 1973, and then it let observers down with a lackluster
performance. But this comet also taught me an important mathematical lesson.
After preparing a chart of its motion from a list of ephemeris points, I noticed
that it was going to pass very near the Sun and tried several interpolation
schemes in hopes of finding out what the exact time and minimum distance
would be. Much to my surprise, they all failed to give an answer matching what
was perfectly obvious from my chart! Readers of this book can save themselves
a similar frustration by paying close attention to the remarks on page 111.

When he’s not busy writing or conducting seminars on computing techniques,
Meeus likes to seize hold of an astronomical problem with great zeal, especially
if he senses it is a calculation that has never been done before. Once I asked him
about the dates in the past and future when the Moon reaches its most extreme
near and far distances from the Earth. Within weeks he had created a table much
like that given in Table 50.C of this book. He later confided that this calculation
had taken 470 hours on his HP-85 computer, consuming 12 kilowatt-hours of
electricity.

On another occasion I heard about a program that was much too large for the
mainframe computer he was using at the time. So he devised a scheme to avoid
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storing the vast number of coefficients in the computer’s limited memory; his
Fortran program simply read and rewound the same magnetic tape 915 times in
the course of generating the hour-by-hour lunar ephemeris he sought. No
problem, except that the computer-room operators began to take notice, getting
mildly perturbed!

Astronomical calculations have a variety of uses, some scarcely foreseen by
the person making them. As long ago as 1962, for example, Meeus published an
article in the British Astronomical Association Jowrnal about a rare and
remarkable forthcoming event. If any observers happened to be on Mars on 1984
May 11, he explained, they should be able to see the silhouette of Earth pass
directly across the face of the Sun. Among his readers was the science-fiction
writer Arthur C. Clarke, who later incorporated the calculations in a short story,
Transit of Earth. The piece tells of an astronaut, stranded on the red planet, who
barely manages to witness this event before his oxygen supply runs out.

Many of the topics in this book are targeted at serious observers of the sky.
Thus, Chapter 53 can help in predicting the illumination at a specific spot on the
Moon, for any date and time. Observers often want to know the exact moments
when sunlight will just glance across a particular crater, sinuous rille, or gently
sloping lunar dome, because oblique lighting is ideal for telescopic scrutiny,
making subtle reliefs stand out better than in most of NASA’s closeup spacecraft
photographs. This chapter can also help us find when the Moon will undergo
extreme librations, turning craters near the limb our way.

Chapter 44 holds a special treat for students of Jupiter. First there is a simple
method for locating the four famous satellites, quite adequate for identifying them
in your own telescope or on historical drawings back to the time of Galileo. Then
comes a second set of formulae of the utmost accuracy. Here the computer
hobbyist can have a field day, creating observing schedules not only for ordinary
satellite eclipses and transits but also for the mutual events between one satellite
and another. Astronomy journals have been lax in forecasting these dramatic
events, so that many of them have gone unobserved except by accident. For
handling the Jovian moons, the routines presented in this book rival or exceed
in accuracy those used by the great national almanac offices.

Other unusual topics are offered, like the method in Chapter 52 for
computing the dates when the Moon’s declination becomes extreme. This is no
frivolous calculation, for the very issue came up in recent findings about a
century-old murder trial involving the Illinois lawyer and soon-to-be U.S.
President Abraham Lincoln. Historians had long tried to reconcile conflicting
testimony about the Moon and its role in allowing a witness to see the details of
the murder. Some suggested that Lincoln, as lawyer for the defense, may have
tampered with an almanac. Not until 1990 was this curious situation explained,
and Lincoln’s integrity upheld, when Donald W. Olson and Russell Doescher
noticed something quite unusual about the Moon on the night in question: 1857
August 29. As any user of this book can confirm, the Moon had a far southerly
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declination that night, nearly the most extreme value possible in its 18.6-year
cycle, and this circumstance made the time of moonset appear quite at odds with
its phase. Here is a beautiful instance of astronomers stepping in, bringing their
special knowledge and calculations to bear on a longstanding puzzle for
historians.

We now live in a thrilling time for practitioners of the number-crunching art.
The four-function pocket calculators that were so costly 20 years ago are now
incorporated as a gimmick on certain wristwatches. The memory capacity of the
1K RAM board in the pioneering MITS Altair microcomputer is exceeded
500-fold by a single chip in some of today’s laptop and notebook computers.
Who knows what other marvels lie just ahead? By presenting these astronomical
algorithms in standard mathematical notation, rather than in the form of program
listings, the author has made them accessible to users of a wide variety of
machines and computer languages — including those not yet invented.

Roger W. Sinnott
Sky & Telescope magazine



Introduction

When, in 1978, I wrote the first (Belgian) edition of my Astronomical Formulae for
Calcularors, the industry of microcomputers was just starting its worldwide expansion.
Because these “personal computers” were not yet within reach of everybody, the
aforesaid book was written mainly for the users of pocket calculating machines and
therefore calculation methods requiring a large amount of computer memory, or many
steps in a program, were avoided as far as possible, or kept to a minimum.

The present work is a greatly revised version of the former one. It is, in fact, a
completely new book. The subjects have been expanded and the content has been
improved. Changes were needed to take into account new resolutions of the
International Astronomical Union, particularly the adoption of the new standard
epoch J2000.0, while moreover I profited by the new planetary and lunar theories
constructed at the Bureau des Longitudes, Paris.

As Gerard Bodifée wrote in the Preface of my previous work:

Anyone who endeavours to make astronomical calculations has to be
very familiar with the essential astronomical conceptions and rules and
he must have sufficient knowledge of elementary mathematical
techniques. As a matter of fact he must have a perfect command of his
calculating machine, knowing all possibilities it offers the competent
user. However, all these necessities don’t suffice. Creating useful,
successful and beautiful programs requires much practice. Experience
is the mother of all science. This general truth is certainly valid for the
art of programming. Only by experience and practice can one learn the
innumerable tricks and dodges that are so useful and often essential in
a good program.

Astronomical Algorithms intends to be a guide for the (professional or amateur)
astronomer who wants to do calculations. An algorithm (from the Arabic
mathematician Al-Kharezmi) is a set of rules for getting something done; for us it is
a mathematical procedure, a sequence of reasonings and operations which provides the
solution to a given problem.

This book is not a general textbook on astronomy. The reader will find no
theoretical derivations. Some definitions are kept to a minimum. Nor is this a textbook
on mathematics or a manual for microcomputers. The reader is assumed to be able to
use his machine properly.
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Except in a few rare cases, no programs are given in this book. The reasons are
clear. A program is useful only for one computer language. Even if we consider
BASIC only, there are so many versions of this language that a given program cannot
be used as such by everybody without making the necessary changes. Every calculator
thus must learn to create his own programs. There is the added circumstance that the
precise contents of a program usually depend on the specific goals of the computation,
that are impossible to anticipate by anybody else.

The few programs we give are in standard BASIC. They can easily be converted
into FORTRAN or any other programming language.

Of course, in the formulae we still use the classical mathematical symbols and
notations, not the symbolism used in program languages. For example, we write Va
instead of SQR(A), or a (1 — ¢) instead of A * (1—E), or cos’x instead of COS(X)"2
or cos(X) % % 2.

The writing of a program to solve some astronomical problem will require a study
of more than one chapter of this book. For instance, in order to create a program for
the calculation of the altitude of the Sun for a given time on a given date at a given
place, one must first convert the date and time to Julian Day (Chapter 7), then
calculate the Sun’s longitude for that instant (Chapter 25), its right ascension and
declination (Chapter 13), the sidereal time (Chapter 12) and finally the required
altitude of the Sun (Chapter 13).

This book is restricted to the “classical”, mathematical astronomy, aithough a few
astronomy oriented mathematical techniques are dealt with, such as interpolation,
fitting curves, and sorting data. But astrophysics is not considered at all. Moreover,
it is clear that not all topics of mathematical astronomy could have been covered in
this book. So nothing is said about orbit determination, occultations of stars by the
Moon, meteor astronomy, or eclipsing binaries. For solar eclipses, the interested
reader will find Besselian elements and many useful formulae in Elements of Solar
Eclipses 1951 to 2200 by the undersigned (1989). Elements and formulae about
transits of Mercury and Venus across the Sun’s disk are provided in my Transits
(1989). These two books are published by Willmann-Bell, Inc.

The author wishes to express his gratitude to Dr. S. De Meis (Milan, Italy), to
A. Dill (Germany), and to E. Goffin and C. Steyaert (Belgium), for their valuable
advice and assistance.

Jean Meeus

Note to the second edition

In this second edition several misprints and errors have been corrected. The principal
change in the new edition is the addition of some material, such as expressions for the
times of the stations of the planets (Chapter 36), a list of constants (Appendix 1),
expressions for the heliocentric coordinates of the giant planets from 1998 to 2025
(Appendix 1V), and new chapters about the Jewish and Moslem Calendars, and the
satellites of Saturn. IM
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Some Symbols and Abbreviations

< R X w08

N R

€6 9N A dm >R

Semimajor axis (of an orbit)

Eccentricity (of an orbit)

Altitude above the horizon

Orbital inclination

Mean daily motion

Perihelion distance, in AU

Radius vector, or distance of a body to the Sun, in AU
True anomaly

Azimuth

Hour angle

Mean anomaly

Distance from Earth to Sun, in AU

Time in Julian centuries (36525 days) from J2000.0

Right ascension

Declination

Obliquity of the ecliptic (g, is used for the mean obliquity)
Sidereal time (0, is the sidereal time at Greenwich)
Parallax

Longitude of perihelion

Time in Julian millennia (365250 days) from J2000.0
Geographical latitude

Geocentric latitude

Distance to the Earth, in AU

is used to indicate a correction or a difference, for instance Ao
Difference TD — UT

Nutation in obliquity

Nutation in longitude

Astronomical Unit
Integer part of a number
Julian Day

Julian Ephemeris Day
Dynamical Time
Universal Time
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Following an old, general astronomical practice, small superior symbols are placed
immediately above the decimal point, not after the last decimal. For instance,
2825793 means 28.5793 degrees. See, for instance, the Circulars of the
International Astronomical Union, or the great astronomical almanacs.

Moreover, note carefully the difference between hours with decimals, and
hours-minutes-seconds. For example, 1830 is not 1 hour and 30 minutes, but 1.30
hours, that is 1 hour and 30 hundreths of an hour, or 1 hour and 18 minutes.

Do not use the symbols ' and ” for minutes and seconds of time: they are used
for minutes and seconds of a degree (or arcminutes and arcseconds, respectively).
Minutes and seconds of time have the symbols m and s. For example,

the angle 23°26'44”, but the instant 15722™07%.
Indeed, we have

Iy one minute of arc 1/60th of a degree
1™ = one minute of time = 1/60th of an hour

Do not use the symbol + for “approximately”. That symbol means “plus or
minus” (or “plus and minus”). For instance, the square root of 25 is +5, which
means +5 or —5. Writing # = +3 is incorrect, because = is equal to neither +3
nor —3. The correct symbol to be used here is =. For example, 1002 = 1000.

In general, we shall use the “scientific” form for calendar dates, which reads
from the largest to the smallest unit of time, for example 1993 November 6. It
contrasts with the common “American” form (November 6, 1993) and with the
“European” form (6 November 1993). Anyway, it is recommended to spell out the
month, because one person’s “11/6/93” is another’s “6/11/93”.

It is recommended to write the year number out in full, not trimmed to the last
two digits. For example, the solar eclipse of February 1998, not February 98 nor
February "98.



Chapter 1

Hints and Tips

To explain how to calculate or to program on a computer is out of the scope of this
book. The reader should, instead, study carefully his instructions manual. However,
even writing good programs cannot be learned in the lapse of time of one day. It is
an art which can be acquired only progressively. Only by practice can one learn to
write better and shorter programs. In this first Chapter, we will give some practical
hints and tips, which may be of general interest.

Trigonometric functions of large angles

Large angles frequently appear in astronomical calculations. In Example 25.a
we find that on 1992 October 13.0 the mean longitude of the Sun is —2318.19280
degrees. Even larger angles are found for rapidly moving objects such as the Moon
and the bright satellites of Jupiter, or the rotations of the planets (see, for instance,
the angle W in step 9 of Example 42.a).

It may be necessary to reduce the angles to the interval 0-360 degrees, because
some pocket calculators or some program languages give incorrect values for the
trigonometric functions of large angles. Try, for instance, to calculate the sine of
36000030 degrees. The result must be 0.5 exactly.

Angle modes

The majority of calculating machines do not calculate directly the trigonometric
functions of an angle which is given in degrees, minutes and seconds. Before
performing the trigonometric functions, the angle should be converted to degrees
and decimals. Thus, to calculate the cosine of 23°26'49", first convert this angle
to 23.44694444 degrees, and then use the COS function.

There is the added complication that most programming languages can calculate
only in radians, not in degrees. It is an infernal nuisance having to convert degrees
to radians all the time, but in most computer languages this has to be done before
calculating a trigonometric function of an angle given in degrees. To convert an
angle from degrees to radians, multiply it by «/180 = 0.017453292519942...

7
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Right ascensions

Right ascensions are generally expressed in hours, minutes, and seconds of time.
To calculate the trigonometric function of a right ascension, it is necessary to
convert that value to degrees (and then in radians, if needed). Remember that one
hour corresponds to 15 degrees.

Example 1.a — Calculate tan o, where o = 9P14™55%8.

We first convert o to hours and decimals:
9h14m5558 = 9 + 14/60 + 55.8/3600 = 9.248833333 hours.

Then, muitiplying by 15, we obtain o = 138°73250.

Multiplying this value by x/180 = 0.0174532925... gives « in radians. We then find
tana = -0.877517.

The correct quadrant

When the sine, the cosine or the tangent of an angle is known, the angle itself
can be obtained by using the “inverse” function arcsine (ASN or ASIN), arccosine
(ACS or ACOS), or arctangent (ATN or ATAN). Note that, unfortunately, the
functions arcsine and arccosine are absent in many programming languages.

The inverse trigonometric functions (arcsine, arccosine, arctangent) are not
single valued. For instance, if sin @ = 0.5, then o« = 30°, 150°, 390°, etc. For
this reason, the programming languages return inverse trigonometric functions
correctly over only half the range of 0 to 360 degrees: arcsine and arctangent give
an angle lying between —90 and +90 degrees (that is, between —=/2 and +#/2
radians), while arccosine gives a value between 0 and + 180 degrees (between 0 and
= radians).

For example, try cos 147°. The answer is —0.8387, which reverts to 147°
when you take the inverse function. But now try cos 213°. The answer is again
—0.8387 which, when you take its arccosine, gives 147°.

Hence, whenever the inverse function of SIN, COS, or TAN is taken, an
ambiguity arises which has to be cleared up by one or other means when it is
necessary. Each problem must be examined separately.

For instance, formulae (13.4) and (25.7) give the sine of the declination of a
celestial body. The function arcsine then will always give this declination in the
correct quadrant, because all declinations lie between —90 and +90 degrees. So,
no special test should be performed here.

This is also the case for the angular separation whose cosine is given by formula
(17.1). Indeed, any angular separation is in the range of 0° to +180°, which
matches the range of the inverse cosine function.
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But consider the conversion from right ascension (a) and declination (8) to
celestial longitude (A) and latitude (8) by means of the following formulae

sin & sin & + cos 6 cos € sin o
cos 6 cos o

cos B sin A
cos 3 cos A

Call A and B the second members. Then, dividing the first equation by the
second one, we obtain tan A = A/B. Applying the function arctangent to the
quotient A/B will yield the angle A between —90° and +90°, with an ambiguity
of 4+ 180°. This ambiguity can be removed with the following test: if B < 0, add
180° to the result. However, some computer languages contain the useful “second”
arctangent function, ATN2 or ATAN2, which uses the rwo arguments A and B
separately and returns the angle in the proper quadrant. For instance, suppose that
A = —0.5712, B = —0.9139; then ATN(4/B) will give the angle 32°, while
ATN2 (A, B) will yield the correct value —148°, or +212°,

The input of negative angles

Angles expressed in degrees, minutes, and seconds can be input as three
different numbers (in BASIC: INPUT D, M, S). For instance, the angle 21°44'07"
can be entered as the three numbers 21, 44, and 7. Then, in the program the angle
H in degrees is calculated by means of the instruction H = D + M/60 + $/3600.

In such a case, care must be taken for negative angles. If the angle is, for
example, —13°47'22", then this means —13° and —47’ and —22". In this case,
the three numbers are D = —13, M = —47, and S = —22. All three numbers have
the same sign!

Mislead by the notation —13°4722", one can have the tendency to input —13,
+47, and +22 instead, and in that case the angle entered would actually be
—12°12'38". It is possible to write the program in such a way that similar errors
are corrected automatically:

200 INPUT D, M, S
210 IF D<0 THEN M= —ABS(M) : S = —ABS(S)
220 H =D+ M/60+ S/3600

In line 210, the minutes and seconds are made negative when the degrees are
negative. The two ABS functions make sure that no error is made when M and S
are actually entered as negative numbers.

This procedure does not work, however, when the angle is between 0° and
—1°. If the angle is, for instance, equal to —0°32'41”, then we have D = —0,
which a computer automatically converts to 0, which is not negative, so the machine
will conclude that the angle is +0°32'41" instead. One solution (in BASIC) is to
enter the degrees as a “string” instead of a numeric variable, hence by means of
INPUT DS$ instead of INPUT D. Then one can use the VAL function and test on
the first character of the string DS$.
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Powers of time

Some quantities are calculated by means of a formula containing powers of the
time (T, T2, T3, ...). It is important to note that such polynomial expressions are
valid only for values of T that are not too large. For instance, the formula

e = 0.04638122 — 0.0000272937 + 0.000000078972 (1.1

gives the eccentricity e of the orbit of Uranus; T is the time measured in Julian
centuries (36525 days) from the beginning of the year 2000. It is evident that this
formula is valid for only a limited number of centuries before and after A.D. 2000,
for instance for T lying between —30 and +30. For | 7'| much larger than 30, the
above expression is no longer valid. For T = —3307.9 the formula would give e
= 1, and an incompetent person, thinking that “the computer cannot make errors”,
would deduce that in the year —328790 the orbit of Uranus was parabolic and hence
that this planet originates from outside our solar system — bringing us in the realm
of pseudoscience.

In fact, the eccentricity e of a planet’s orbit varies rather irregularly in the
course of time, though it cannot exceed a well-defined upper limit. But for a time
interval of a few millennia the eccentricity can be accurately represented by a
polynomial of the second degree such as (1.1).

One should further carefully note the difference between periodic terms (terms
in sine and/or cosine), which remain small throughout the centuries, and secular
terms (terms in T, T2, T3, ...) which increase more and more rapidly with time.
A term in T2, which is very small when T is small, becomes increasingly important
for larger values of | 7| . Thus, for large values of | 7| it is meaningless to take
into account small periodic terms if terms in T2, etc., are neglected in the
calculation.

Avoiding powers

Suppose that one wants to calculate the value of the polynomial
y = A + Bx + Cx* + Dx* + Ex*

with A, B, C, D, and E constants, and x a variable. Now, one may write the
program to calculate this polynomial directly term after term and adding all terms,
so that for each given x the machine obtains the value of the polynomial. However,
instead of calculating all the powers of x, it appears to be wiser to write the
polynomial as follows:

y=A+xB+x(C+x(D + xE)))

In this expression all power functions have disappeared and only additions and
multiplications are to be performed. This way of expressing a polynomial is called
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Horner’s method, an approach especially well suited for automatic calculation
because powers are avoided.

Also, it may be wise to calculate the square of a number 4 by means of A * A
instead of using the power function. We calculated the squares of the first 200
positive integers on the HP-85 microcomputer. Using the procedure

FOR I =1 TO 200
K =1"2
NEXT 1

The complete calculation took 10.75 seconds. But when the second line was
replaced by K = I, then the calculation time was only 0.96 second!

To shorten a program

To make a program as short as possible is not always an art for art’s sake, but
sometimes a necessity as long as the memory capacities of the calculating machine
have their limits.

There exist many tricks to make a program shorter, even for simple
calculations. Suppose that one wants to calculate the sum 5§ of many terms:

§ = 0.0003233 sin (2.6782 + 15.54204T)
+ 0.0000984 sin (2.6351 + 79.62980T)
+ 0.0000721 sin (1.5905 + 77.55226T)
+ 0.0000198 sin (3.2588 + 21.32993T)

First, because the coefficients of all sines are small numbers, one can avoid
typing in all those decimals by taking as unit the last decimal (1077 in this case).
So, instead of 0.0003233, etc., we use 3233, etc. Then, after the sum of the terms
has been calculated, we divide the result by 10.

Secondly, it would be unwise to write all those terms explicitly in the program.
Instead, we could make use of a so-called loop. Each of the above terms is of the
form A sin (B + CT), so we put all values A, B, C as DATA in the program.
Suppose there are 50 terms. Then the program will look like this:

100 S=0

110 RESTORE 170

120 FOR J =1 TO 50

130 READ A, B, C

140 S =S+ A*SIN@B + C*T)

150 NEXT J

160° S = $/10000000

170 DATA 3233, 2.6782, 15.54204, 984, efc. . ..
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Safety tests

Include a safety test in case an “impossible” situation might occur, for example
in order to stop the calculation when, after a specified number of iterations, the
required accuracy has not been reached.

Or consider the case of the occultation of a star by the Moon. In a program for
local circumstances, the times of disappearance and of reappearance of the star are
calculated. It may happen, however, that the star is not occulted as seen from the
given place; in such a case, the times of ingress and egress do not exist, and trying
to calculate them would correspond to calculating the square root of a negative
number. To avoid this problem, the program should be written in such a way that
first of all the value of the star’s least distance to the center of the lunar disk (as
seen from the given place) is calculated; if, and only if, this distance is smaller than
the radius of the Moon’s disk, can the times of ingress and egress be calculated.

Debugging

After a program has been written, it must be checked for errors, which are
called bugs. The process of locating the bugs and correcting them is known as
debugging. Several types of errors can occur when programming in any language:

a. syntax errors violate the rules of the language, such as spelling, a forgotten
parenthesis, or other conventions specific to each language. For instance, in
BASIC,

A = SIM(B) should be A = SIN(B)
P = SQR(ABS(A +B) shouldbe P = SQR(ABS(A + B))

b. semantic errors, such as a forgotten line. For instance, GOTO 800 when no line
labelled 800 exists in the program.

]

c. run-time errors, which occur during the execution of a program. For example:

A = SQR(B). The variable B is calculated during execution of the
program, but its value happens to be negative;

ON X GOTO 1000, 2000, 3000, but X is larger than 3.

d. other programmer’s errors. The following ones happen frequently:

® Typing the letter O (“oh”) instead of the digit zero (0 or @), or vice versa, or
typing the digit 1 instead of the letter 1.

® The name of a variable is used twice in the program (with different meanings).

® A variable has not been defined, and therefore the program assumes its value
is zero.

® FError in copying down a numerical constant (such as 127.3 instead of 127.03),
or 15 instead of .15), typing an * instead of a +, etc.
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Incorrect units are used. For instance, an angle is expressed in degrees instead
of radians, or a right ascension expressed in hours has not been converted to
degrees or radians.

The angle is in the wrong quadrant. See “The correct quadrant” on page 8.

The natural logarithm of a number has been used instead of its logarithm to the
base 10 — see Chapter 56.
Rounding errors. For example, the cosine of an angle d has been calculated,
from which one wants to deduce that angle. This does not work well when the
angle is very small. Indeed, if d is very small, its cosine is almost equal to 1
and varies quite slowly as a function of d. In that case, the value of 4 is ill-
defined and cannot be calculated accurately.

For instance, cos 15" = 0.999999997 but cos 0” is 1 exactly. If one
expects that the angle d can be very small, then its value should be calculated
by means of another method. See, for instance, Chapter 17.

Single precision is used instead of double precision. In QuickBASIC, even if the
variable G has been declared to be of the double-precision type, the statement
G = .1 gives a result of lower accuracy, namely 0.100000014 901 16. One
should write G = .1# here.

An iteration procedure which does not guarantee convergence in some cases.
See Chapters 5 (Iteration) and 30 (Equation of Kepler).

An incorrect method of calculation has been used. For example, to interchange
two numbers X and Y, an extra variable A is needed (*):

Incorrect procedure Correct procedure
Y=X A=Y
X=Y Y=X

X=A

In QuickBASIC, GWBASIC, and some other BASIC versions, there exists the
SWAP function: SWAP(X, Y) interchanges the numbers X and Y.

*)

This is not quite exact. Theoretically, it is possible to interchange two numbers
without using a third, auxiliary variable, as follows:

X=X+Y
Y=X-Y
X=X-Y

But, of course, this is rather a curiosity than a useful method, because the execution
of these operations requires extra computer time, and because rounding errors can
occur.



14 ASTRONOMICAL ALGORITHMS

Checking the results

Of course, a program should not only be “grammatically” correct: it must give
correct results. Test your program using a known solution. If, for instance, you
wrote a program for the calculation of planetary positions or for the times of lunar
phases, compare your results with the values given in an astronomical almanac.

Test your program for some “special” cases. For instance, are the results still
correct for a negative value of the declination? Or for a declination lying between
0° and —1°? Or if the observer’s latitude is exactly zero? Or for negative values
of the time 7T'?



Chapter 2

About Accuracy

The following topics will be considered in this Chapter: the accuracy needed for a
particular problem, the accuracy with which a given programming language works,
and finally the accuracy of the published results.

The accuracy needed for a given problem

The accuracy needed in a calculation depends on its aim. For example, if one
wants to calculate the position of a planet with the goal of obtaining the times of
rising and setting for a given place, an accuracy of 0.001 or even 0.01 degree will
be sufficient. The reason is evident: the apparent diurnal motion of the celestial
sphere corresponds to a rotation over one degree during a time interval of four
minutes, and so an error of (.01 degree in the object’s position will result in an
error of only 0.04 minute (approximately) in its time of rising or setting. Taking
hundreds of periodic terms into account in order to obtain the planet’s position to
an accuracy of 0”.01 would just be a waste of effort and of computer time for this
problem.

But if the position of the planet is needed to calculate the occultation of a star
by that planet, then an accuracy of better than 1” will be necessary by reason of the
small size of the planet’s disk.

A program written for one aim may not be suitable for another application.
Suppose that, for the calculation of the position of a star, a program uses the low-
accuracy method for the precession (see Chapter 21). While the results will be good
enough for the observer who wants to find celestial objects with a telescope on a
parallactic mounting, that program will be completely worthless when accurate
results are required, for instance in occultation work, or for the calculation of close
conjunctions.

If a given accuracy is required, one has to use an algorithm that really provides
this precision. John Mosley [1] mentions a commercially available program which
calculates planetary positions; but because perturbations are not taken into account,
the positions of Saturn, Uranus, and Neptune can be up to 1 degree off, even though
displayed to the nearest arcsecond!

15
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To obtain a better accuracy it is often necessary to use another method of
calculation, not just to keep more decimals in the result of an approximate
calculation. For example, if one has to know the position of Mars with an accuracy
of 0.1 degree, it suffices to use an unperturbed elliptical orbit (Keplerian motion).
But if the position of Mars is to be known with a precision of 10” or better,
perturbations due to the other planets have to be calculated and the program will be
a much longer one.

The programmer, who knows his formulae and the desired accuracy in a given
problem, must himself consider which terms, if any, may be omitted in order to
keep the program handsome and as short as possible. For instance, the mean
geometric longitude of the Sun, referred to the mean equinox of the date, is given
by

L = 280°27'59"245 + 129602 771”3807 + 1".09157?

where T is the time in Julian centuries of 36525 ephemeris days from the epoch
2000 January 1.5 TD. In this expression, the last term (secular acceleration of the
Sun) is smaller than 1" if |T| < 0.95, that is, between the years 1905 and 2095.
If an accuracy of 1” is sufficient, the term in T? may thus be dropped for any
instant in that period. But for the year +100 we have T = —19, so that the last
term becomes 394", which is larger than 0.1 degree.

The computer’s accuracy

This is a much more complex problem. The program language should work with
a sufficient number of significant digits. Note that this is not the same as the number
of decimals! For instance, the number 0.0000183 has seven decimals, but only three
significant digits. The significant digits of a number are those digits which are left
over when the leading and trailing zeros are suppressed.

On a machine rounding operations to 6 significant figures, the result of
1000000 + 2 will just be 1000000.

There can be dangerous situations, for instance when the difference is made of
two nearly-equal numbers. Suppose that the following subtraction is performed:

6.92736 — 6.92735 = 0.00001.

Each number is given to six figures, but subtracting them gives a number with just
one significant figure! Moreover, the two given numbers perhaps have already been
rounded. If such is the case, then the situation can even be worse. Suppose that the
two numbers are actually 6.927 3649 and 6.927 3451. Then the correct result of the
subtraction is 0.000 0198, which is almost twice the previous result!

Six or eight significant digits, as was the general rule for the early
microcomputers, or is nowadays often the case in “single precision”, are generally
not sufficient for mathematical astronomy.
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For many applications, it is necessary that the machine calculates with a larger
number of significant digits than it is required in the final result. Let us consider,
for example, the following formula giving the mean longitude L’ of the Moon for
any given instant, in degrees (Chapter 47):

L' = 218.3164477 + 481267.88123421 T — 0.0015786 T* + 0.0000019 7°

where T is the time measured in Julian centuries of 36525 days clapsed since the
standard epoch 2000 January 1.5 TD (JDE 2451545.0). Suppose now that we wish
to obtain the Moon’s mean longitude to an accuracy of 0.001 degree. Because
longitudes are restricted to the interval 0-360 degrees, one might think that a
language calculating with only six significant digits internally will be just sufficient
for our purpose (3 digits before, and 3 digits after the decimal point). This is not
the case in the present problem, however, because L’ can reach large values before
it is reduced to less than 360 degrees.

For instance, let us calculate L' for T = 0.4 which corresponds to 2040
January 1 at 12" TD. We find L' = 192 725°469, which reduced to 125469, the
correct answer. But if the machine works with only six significant digits, it will not
find L' = 192 725°469, but rather 192 725° (six digits!), which will reduce to 125°,
so in this case the final result is only to the nearest degree, and the error is 0.469
degree or 28’; and this happens for only 40 years after the starting epoch. Under
such circumstances it is just impossible to calculate eclipses or occultations.

To find out with which internal accuracy a programming language works, the
following short program (in BASIC) can be used.

10 X=1

20 1=0

30 X =X=%*2

40 IF X+ 1 <> X THEN 60
50 GOTO 80

60 J=J+1

70 GOTO 30

80 PRINT J, J=*0.30103

90 END

Here, J is the number of significant bits in the mantissa of a floating number,
while 0.30103J is the number of significant digits in a decimai number. The
constant 0.30103 is log,, 2. For instance, the HP-85 computer gives J = 39,
whence 11.7 digits. With the HP-UX Technical Basic 5.0, working on the HP-
Integral microcomputer, we find J = 52, whence 15.6 internal digits. The
QuickBASIC 4.5 gives J = 63, whence 19.0 digits.

However, this accuracy refers only to simple arithmetics, not to the
trigonometric functions. Although the GWBASIC has J = 55, that is 16.6 internal
digits, it gives the sines with only 7 correct decimals; the last nine figures are all
wrong!
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One rapid way to check the accuracy of trigonometric functions is PRINT
4 x« ATN(1). If the computer works in radians, this must give the famous number
7 = 3.14159265358979... Or one may calculate the sine of an angle whose
value is accurately known, for instance SIN(0.61 rad) = 0.57286746010048. ..

Rounding is inevitable in a computer. Consider for instance the value 1/3 =
0.33333333. .. Because the machine cannot handle an infinite number of decimals,
such a number must necessarily be truncated somewhere.

Rounding errors can accumulate from one calculation to the next. In most cases
this is of no important because the errors almost cancel each other, but in some
arithmetical applications the accumulated error can increase beyond any limit.
Although this topic is outside of the scope of this book, we shall mention two cases.

Consider the following program.

10 X =1/3

20 FORJ =1 TO 30

30 X=09*xX+DHxX~—-1
40 PRINT J, X

50 NEXTJ

60 END

The operation on line 30 actually replaces X by itself. Yet on most computers
the results diverge. The above-mentioned HP-UX Technical Basic yields

0.333333 333333308 after 4 steps
0.333326162 117054 after 14 steps
0.215 899 338 763 055 after 19 steps
286.423... after 24 steps

and a value of the order of 10?!7 after 30 steps!

The difference in accuracy between microcomputers or even hand-held
calculators can be demonstrated by a simple test [2]: repeatedly squaring the
number 1.0000001. After 27 times, the result to ten significant figures must be
674 530.4707. The results for some machines or programming languages are as
follows:

674 494.06 on the HP-67 calculator

674514.87 on the HP-85 and on the HP-48s calculator
674520.61 on the TI-58 calculator

674530.4755 on the HP-Integral (HP-UX Technical Basic)
674530.4755 in QuickBASIC 4.5

But that is still not the end of the story. There are two basically different ways
for the internal representation of numerical information into a computer. Some
machines, such as the older HP-85, use the BCD (Binary Coded Decimal) scheme
for representing numbers internally, but in most other cases the binary
representation is used.
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BCD is a scheme where the actual value of each digit of a number is stored
individually. This allows numbers to be represented exactly, to the specified digits
of precision of the given machine or programming language. Binary, on the other
hand, represents all numbers as some combination of powers of 2. In binary,
fractions are also represented as being powers of 2, so it is impossible to represent
numbers which are not exact combinations of negative powers of 2 in a binary
system. For instance, 1/10 is not rationally expressed as combinations of negative
powers of 2, because 1/10 = 1/16 + 1/32 + 1/128....

Binary arithmetic functions are usually faster in their execution than BCD
counterparts, but the inconvenience is that some numbers, even with a small number
of decimals, are not represented exactly.

As a consequence, the result of an arithmetic operation may be incorrect, even
when numbers with only a few decimals are involved. Suppose that X = 4.34. Then
the correct result of the operation H = INT (100 * (X — INT(X))) is 34. However,
many computer languages give H = 33 here. The reason is that in this case the
value of X is represented internally as 4.3399999998, or something like that.

Another surprising example is
2+02+02+02+02+02-3

On many computers, the result is not zero! On the HP-Integral, using the HP-UX
Technical Basic 5.0, the result is 8.88 X 107'¢, But on the same machine

02+02+02+02+02+2-3

does give zero, so the order in which the operations are performed can be of
importance here!

Surprisingly, 2 + (5 *0.2) — 3 gives exactly zero on the HP-Integral, and so
does the following:

A=02+02+02+02+02
B=2+A
C=B-3
PRINT C

Consider the following program:

10 FOR 1=0 TO 100 STEP 0.1

20 U =1
30 NEXT I
40 PRINT U
50 END

Here, I and U take the successive values from 0 to 100 with steps of 0.1, and the
last value of U must be exactly 100. The HP-85 does give 100 indeed, but
QuickBASIC 4.5 gives 99.999999 999 9986, which can have a disastrous con-
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sequence in some applications. The error is due to the fact that the step value of 0.1
is translated into binary as 0.0999999.... The difference with 0.1 is very small,
but because there are 1000 steps, the final error is 1000 times as large as that small
difference. In this case, one remedy may consist in taking an integer value for the
step:

10 FOR I = 0 TO 1000

20 T =1J/10
30 U=1
40 NEXT ]
50 PRINT U
60 END

We may find other surprises with A = 3 % (1/3), PRINT INT(A), whose
result is correctly 1 in some programming languages, but zero in others. Or try, for
instance, A = 0.1, PRINT INT(1000 = A).

Another interesting test is

INPUT A

B = A/10
C = 10%B
PRINT A-C

The result must be zero. But for some numbers 4 the answer can be different.

One easy way to find out if a computer language works in BCD or not, consists
of looking at the largest possible integer value, that is, a number defined as an
INTEGER. If this is a “nice, round” number, this indicates that the machine works
in BCD. For example, on the HP-85 that largest integer is 99999 (or 10° — 1).
But if the largest possible integer is a “strange” number (in fact, a power of 2 minus
one), this means that the computer does not work in BCD. On the old TRS-80, that
largest integer is 32767 (or 2!° — 1), while for QuickBASIC 4.5 it is 2 147483 647
(or 22! — 1).

Rounding by inexact arithmetics can yield other surprising results. In most
programming languages, the result of SQR(25) — 5 is nor zero! This can be a
problem when testing on the result. Is 25 a perfect square? One might think the
answer is no, since the computer tells us that SQR(25) — INT(SQR(25)) is not
zero!

Important! 1f you are comparing INTEGER numbers, no special precautions
are necessary. However, if you are comparing so-called REAL values, especially
those which are the results of calculations and functions, it is possible to run into
problems. The equality test may fail due to rounding or other errors caused by the
inherent limitations of machines. A repeating decimal or irrational number cannot
be represented exactly in any finite machine.
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Rounding the final result

Results should be rounded correctly and meaningfully, where it is necessary.
Rounding should be made to the nearest value. For instance, 15.88 is to be rounded
to 15.9, or to 16, not to 15. However, calendar dates and years are exceptions. For
example, March 15.88 denotes an instant belonging to March 15: it means 0.88 day
after March 15, 0", So, if we read that an event occurs on March 15.88, it takes
place on March 15, not on March 16. Similarly, 1987.69 denotes an instant
belonging to the year 1987, not 1988; it is 0.69 year after the start of A.D. 1987.

Only meaningful digits should be retained. For example, Miiller’s formula for
calculating the visual magnitude of Jupiter is

m = —8.93 + 5logra

where r is Jupiter’s distance to the Sun, A its distance to the Earth (both in
astronomical units), and the logarithm is to the base 10. Now, on 1992 May 14, at
0" TD, we have

5.417149
5.125382

whence m = —1.712514898. But giving all these decimals, under the pretext that
they were given like this by the computer, would be ridiculous and would give the
reader a false impression of high accuracy. Since the constant —8.93 in Miiller’s
formula is given to 0.01 magnitude, no higher accuracy can be expected in the
result. And, in any case, the meteorological phenomena in the atmosphere of Jupiter
are such that the magnitude of that giant planet cannot be predicted with an accuracy
better than 0.01 or even 0.1.

As another example, John Mosley [3] mentions a commercially available
program giving rising and setting times of heavenly bodies to the nearest 0.1
second, which is impossibly precise.

Some “feeling” and sufficient astronomical knowledge are necessary here. For
instance, it would be completely irrelevant to give the illuminated fraction of the
Moon’s disk accurate to 0.000000001.

The rounding should be performed afier the whole calculation has been made,
not before the start or before the input of the data into the computer.

Example: Calculate 1.4 + 1.4 to the nearest integer. If we first round the
given numbers, we obtain 1 + 1 =2, In fact, 1.4 + 1.4 = 2.8, which rounds to 3.

Here is another example. At its opposition date, 1996 July 18, the declination
of Neptune was 6 = —20°24'. What was the planet’s altitude #,, at the transit
through the southern meridian at Sonneberg Observatory, Germany, to the nearest
degree? The Observatory’s latitude is ¢ = +50°23'. The formula to be used is

h, = 90° -~ ¢ + 9
The answer is h,, = 90° — 50°23' — 20°24’ = 19°13‘, whence 19°. Rounding

p
A

W



22 ASTRONOMICAL ALGORITHMS

o and § to the nearest degree before the calculation would yield the incorrect result
90° — 50° — 20° = 20°.

A similar error occurs when distances, already rounded to the nearest mile, are
converted to kilometers. In this case the value of 17 km, for instance, will never be
reached, because

10 miles will give 16.09 km, which is rounded to 16 km,
11 miles will give 17.70 km, which is rounded to 18 km.

Right ascensions and declinations. — Since 24 hours correspond to 360 degrees,
one hour corresponds to 15°, one minute of time corresponds to 15 minutes of arc,
and one second of time to 15 seconds of arc: during a time interval of one second
the Earth rotates over an arc of 15”.

For this reason, if the declination of a celestial body is given, for instance, to
1", then its right ascension should be given to the nearest fenth of a second of time,
since otherwise the declination would be given with a much greater accuracy than
the right ascension. The following table gives the approximate correspondence
between the accuracies in right ascension (o) and in declination (8). For example,
if & is given with an accuracy of 1’, then o must be given to the nearest 0.1 minute
of time. As examples, the position of Nova Cygni 1975 with different accuracies is
given.

in a in & Example (Nova Cygni 1975)

I 071 a = 21"10™ 6 = +47°9

01 I 21h09m9 +47°S7

1° 0.1 21809 53¢ +47°56.7
0s1 1 21009™52¢8 +47°56'41"
0501 0”1 21809™ 52583 +47°56'41"2

As a final remark, let us mention that trailing zeros can be important. For
instance, 18.0 is not the same as 18. The former value means that the actual number
lies between 17.95 and 18.05, while the second value has been rounded to the
nearest integer and can actuaily be equal to any number between 17.5 and 18.5. For
this reason, trailing zeros must be given in the result to indicate the accuracy: a star
of magnitude 7 is not the same as a star of magnitude 7.00.
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Chapter 3

Interpolation

The astronomical almanacs or other publications contain numerical tables giving
some quantities y for equidistant values of an argument x. For example, y is the
right ascension of the Sun, and the values x are the different days of the year at 0,

Interpolation is the process of finding values for instants, quantities, etc.,
intermediate to those given in a table.

Of course, the “table” should not necessarily be taken from a book, but may
have been calculated in a computer program. Suppose that the position of the Sun
is to be calculated for many (> 3) instants of the same day. Then one may calculate
the Sun’s position for 0", 12", and 24" of that day, and then use these values to
perform the interpolation for every given instant. This will require less computer
time than calculating the position of the Sun directly for every instant.

In this Chapter we will consider two cases: interpolation from three or from five
tabular values. In both cases we will also show how an extremum or a zero of the
function can be found. The case of only two tabular values will not be considered
here, for in that case the interpolation can but be linear, and this will give no
difficulty at all.

Three tabular values

Three tabular values y;, y,, y; of the function y are given, corresponding to
the values x;, x,, x; of the argument x. Let us form the table of differences

x

i Yi a
X 2o, G.D
X3 Y3

where a =y, —y, and b = y; — y, are called the first differences. The second
difference c is equal to b — q, that is

c =y +y —2y

23
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Generally, the differences of the successive orders are gradually smaller in
absolute value. Interpolation from three tabular values is permitted when the second
differences are almost constant in that part of the table, that is, when the third
differences are almost zero. Some good sense and experience are needed here. For
example, the Moon’s position can be interpolated accurately from three positions
given at hourly interval, but not when the interval is one day.

Let us consider, for instance, the distance of Mars to the Earth from 5 to 9
November 1992, at 0" TD. The values are given in astronomical units, and the
differences are in units of the sixth decimal:

1992 November 5 0.898013

—6904

6 0.891109 +21
—6883 +2

7 0.884226 +23
—6860 +2

8 0.877366 +25
—6835

9 0.870531

Since the third differences are almost zero, we may interpolate from only three
tabular values.

The central value x, must be chosen in such a way that it is that value of x that
is closest to the value of x for which we want to perform the interpolation. For
example, if from the table above we must deduce the value of the function for
November 7 at 22"14™, then y, is the value for November 8.00. In that case we
should consider the tabular values for November 7, 8, and 9, namely the table

November 7 ¥y, = 0.884226
8 ¥y, = 0.877366 3.2)
9 y; = 0.870531
and the differences are
= —0.006860
¢ = +0.000025
b = —0.006835

Let n be the interpolating factor. That is, if the value y of the function is
required for the value x of the argument, we have n = x — x, in units of the
tabular interval. The value 7 is positive if x > x,, that is for a value “later” than
X,, or from x, towards the bottom of the table. If x precedes x,, then n < 0.

If y, has been correctly chosen, then n will be between ~0.5 and +0.5,
although the following formulae will also give correct results for all values of n
between —1 and +1.

The interpolation formula is

y=y2+-g—(a+b+nc) (3.3)
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Example 3.a — From the table (3.2), calculate the distance of Mars to the Earth on
1992 November 8, at 4021™ TD.

We have 4"21™ = 4.35 hours and, since the tabular interval is 1 day or 24 hours,
n = 4.35/24 = +0.18125.

Formula (3.3) then gives y = 0.876 125, the required value.

If the tabulated function reaches an extremum (that is, a maximum or a
minimum value), this extremum can be found as follows. Let us again form the
difference table (3.1) for the appropriate part of the ephemeris. The extreme value
of the function is

Ym = V2T g (3.4

and the corresponding value of the argument x is given by

a+b
2c

in units of the tabular interval, and again measured from the central value x,.

Ry = — 3.5

Example 3.b — Calculate the time of passage of Mars through the perihelion in May
1992, and the value of its radius vector at that instant.

The following values for the distance Sun—Mars have been calculated at intervals
of four days:

1992 May 12.0 TD 1.3814294 AU

16.0 1.3812213
20.0 1.3812453
The differences are
a = ~0.0002081
¢ = +0.0002321
b = +0.0000240

from which we deduce

Ym = 1.3812030 and »n, = +0.39660

m

Hence, the least distance from Mars to the Sun is 1.3812030 astronomical units. The
corresponding time is found by multiplying 4 days (the tabular interval) by +0.39660.
This gives 1.58640 days, or 1 day and 14 hours later than the central time, that is
1992 May 17, at 14" TD.

[Of course, if n,, were negative, the extremum would take place earlier than the
central time.]
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The value of the argument x for which the function y becomes zero can be
found by again forming the difference table (3.1) for the appropriate part of the
ephemeris. The interpolating factor corresponding to a zero of the function is then
given by

-2y,

n O R—
0 a+b+cny

3.6)

This equation can be solved by first putting ny, = 0 in the second member. Now
the formula gives an approximate value for ny. This value is then used to calculate
the right hand side again, which gives a still better value for n,. This process,
called iteration (Latin: iterare = to repeat), can be continued until the value found
for ny no longer varies, to the precision of the computer. )

Example 3.c — Given the following values for the declination of Mercury,

1973 February 26.0 TD —0°28'13"4
27.0 +0 06 46.3
28.0 +0 38 23.2

calculate when the planet’s declination was zero.

Firstly, we convert the tabulated values into seconds of a degree and then form
the differences:

¥, = —1693.4
a = +2099.7
y, = + 406.3 ¢ = —202.8
b = +1896.9
ys = +2303.2
Formula (3.6) then becomes
—812.6

Ny =

+3996.6 — 202.8n,

Putting ny = 0 in the second member, we find ny = —0.20332. Repeating the
calculation, we find successively —0.20125 and —0.20127. Hence, n, = —0.20127.
The tabular interval being one day, Mercury crossed the celestial equator on

1973 February 27.0 — 0.20127 = February 26.79873
= February 26, at 19*10™ TD.

For the calculation of the value of the interpolating factor 7y for which the
function is zero, formula (3.6) is excellent when, as in Example 3.c, the function
is “almost a straight line” in the interval considered. If, however, the curvature of
the function is important, use of the formula may require a large number of
iterations; moreover, it can lead to divergence even when starting from an almost
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correct value for ny In this case, a better method for calculating n, is as follows:
the correction to the assumed value of n, is

_ 2yt nga+ b+ cny
Ao a+ b+ 2cng @7

The calculation should be repeated, using the new value of ny, until 7y no

longer varies.

Example 3.d — Consider the following values of a function:
x = -1 = -2

xn = 0 Y = +3

x3 = +1 Y = +2

These three points actually define the
y parabola y = 3 + 2x — 3x?, which
has a strong curvature between x = —1

and x = +1 (see the Figure at left).

A
PES Starting with n, = 0, formula (3.6)
9 N gives successively
1 \
1 \ -1.5
! 142 b\ —0.461538. ..
) —0.886 363. ..
! —0.643902. ..
[T +1 -0.763027. ..
i -0.699450. ..
—'.1 Il +.l
o ) > X and so on. The correct value of the sixth
,' decimal is obtained after not less than 24
1 | iterations. But if we use formula (3.7),
" again starting with n, = zero, we find
I successively
-]
I —-1.5
~0.886363 636364
—0.732001 693959

—0.720818 540935
-0.720759221 726
—0.720759 220056
—0.720759220056

so the 12th decimal is correctly obtained
with only six iterations in this case.
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Five tabular values

When the third differences may not be neglected, more than three tabular values
must be used. Taking five consecutive tabular values, y, to ys, we form, as before,
the table of differences

b

A
E
)’2B
n[ys c £, K
}’4DG
Ys

where A =y, — y;, H=F — E, etc. If n is the interpolating factor, measured
from the central value y; in units of the tabular interval, positively towards y,, the
interpolating formula is

_ n n? nn*-1) nt(n?-1)

Yy =3t 5@+ + T F+ o H ) + K
which may also be written (3.8)
= Ei_c__ﬂ) 2(£_£) 3 H‘”) 4(5)

MR VI A XYY B S v B T

Example 3.¢ — Consider the following values of the equatorial horizontal parallax

of the Moon:
1992 February 27.0 TD 54'36".125
27.5 54 24.606
28.0 54 15.486
28.5 54 08.694
29.0 54 04.133
The differences in arcseconds are
A= —11.519
E = +2.399
B = -9.120 H = -0.071
F = +27328 K = —-0.026
C= —6.792 J = —-0.097
G = +2.231
D = -4561
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We see that the third differences (H and J) may not be neglected, unless an
accuracy of 0”1 is sufficient.

Let us now calculate the Moon’s parallax on February 28 at 3120™ TD. The
tabular interval being 12 hours, we have

3b20m 3333333
no= gp = g = +02777778

Formula (3.8) then gives
y = 54'15"486 — 2”117 = 54'13".369

The interpolating factor n,, corresponding to an extremum of the function can
be obtained by solving the equation

6B+ 6C—H-—J+3n2H+J)+2n,’K
K - 12F

n, =

3.9

As before, this may be performed by iteration, firstly putting n,, = 0 in the
second member. Once n,, is found, the corresponding value of the function can be
calculated by means of formula (3.8).

The interpolating factor n, corresponding to a zero of the function may be found
from
= —24y, + ne? (K — 12F) = 2n°(H+J) — ny'K
o~ 26B+6C—H~-1J)

(3.10)

where, again, n, can be found by iteration, starting by putting n = 0 in the second
member.

The remark made on pages 26-27 about formula (3.6) holds here too. If the
curvature of the function in the considered interval is important, a better method for
calculating n, is as follows. Calculate

K H+J F B+ C
M‘ﬁ N—-—lz— P_T_M Q= ) - N
Then the correction to the assumed value of n, is

Mny + Nng + Pny> + +
Ang = - Mo "o ne” + Qno + ys 3.11)

4Mny® + 3Nn® + 2Pny + Q

and, again, the calculation should be repeated with the new value of n, until ny no
longer varies.
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Exercise. — From the following values of the heliocentric latitude of
Mercury, find the instant when the latitude was zero, by using formula (3.10).

1988 January 25.0 TD —-1°11'21"23
26.0 -0 28 12.31
27.0 +0 16 07.02
28.0 +1 01 00.13
29.0 +1 45 46.33

Answer: Mercury reached the ascending node of its orbit for 7, = —0.361413,
that is on 1988 January 26.638 587, or January 26 at 15"20™ TD.

Using only the three central values and formula (3.6), one would find n, =
—0.362 166, a difference of 0.000753 day, or 1.1 minute, with respect to the
previous result.

Important remarks

1. Interpolation cannot be performed on complex (*) quantities directly. These
quantities should be converted, in advance, into a single, suitable unit. For instance,
angles expressed in degrees, minutes, and seconds should be converted either to
degrees and decimals, or to arcseconds, before they can be used for interpolation.

2. Interpolating times and right ascensions. — We draw attention to the fact that
times and right ascensions jump to zero when the value of 24 hours is reached. This
should be taken into account when interpolation is performed on tabular values.
Suppose, for example, that we wish to calculate the right ascension of Mercury for
the instant 1992 April 6.2743 TD, using the three following values:

1992 April 5.0 TD o = 23P51m56504
6.0 23 56 28.49
7.0 0 01 00.71

Not only is it necessary to convert these values to hours and decimals, but the
last value should be written as 24"01™00%71, otherwise the machine will consider
that, from April 6.0 to 7.0, the value of « decreases from 23"56™.... to 0"01™. ...

We find a similar situation in some other cases. For instance, here is the
longitude of the central meridian of the Sun for a few dates:

(*) By definition, a complex number is a number composed of different units, having
among them a ratio different from a power of 10. Examples of “complex” quant-
ities are 10h29™55°%; 23°26'44"; £, shillings, pence; yd, ft, inch; a + bi.
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1992 June 14.0 UT 37296
15.0 24.72
16.0 11.48
17.0 358.25

It is evident that the variation is approximately —13.24 degrees per day. Hence,
one should not interpolate directly between 11.48 and 358.25. Either the first
value should be written as 371948, or the second value should be considered as
being equal to —1.75 degrees.

3. As much as possible, avoid making an interpolation for |n| > 0.5. In any
case, the interpolating factor n should be restricted between the limits —1 and +1.
This same rule applies to the calculation of an extremum (n,,) or a zero (ny) of the
function. Choose the central value of y in such a way that this is the tabular value
which is closest to the extremum or to the zero. Of course, the exact value of n,,
or n, is not known in advance, but an approximate value can be calculated first,
after which the choice of the central value (y; or y,) of the function can be changed
accordingly.

If the chosen value is too far from the zero or from the extremum, the formulae
given in this Chapter for calculating these points will give incorrect or even absurd
results. Let us give an example. We know that sin x reaches a maximum for x =
90°. But consider the following sines, with ten decimals:

sin 29° 0.484 809 6202
sin 30° 0.500 000 0000
sin 31° 0.515038 0749
sin 32° 0.529919 2642
sin 33° 0.544 639 0350

Using the three central values, formula (3.4) gives y,, = 1.22827 instead of 1
exactly, and (3.5) yields n,, = +95.35, indicating that the maximum occurs for 31°
+ 95935 = 126235, instead of 90°.

Using all five values, formula (3.9) gives n,, = +57.30, whence the maximum
taking place at 88230, from which the value of 0.99348 is found for that maximum.
Although these results are much better than those obtained with only three points,
they are still unsatisfactory!

Interpolation to halves

If the values y,, y,, ¥3, Y4 oOf the function are given for four equally-spaced
abscissae x;, X, X3, and x4, then the value of the function for the point exactly
half-way between x, and x; is easily calculated by means of the following formula,
which is valid when the fourth differences of the tabulated values are negligible:
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902 +y3) — ¥ — Y
16

(3.12)

Example 3.f — Given the following values for the apparent right ascension of the
Moon, calculate the right ascension for 11"00™ TD.

1994 March 25 8" TD a = 10"18m483732

10 10 23 22.835
12 10 27 57.247
14 10 32 31.983

Converting the minutes and seconds, after 10, into seconds, we change the four
given data into

y; = 1128.732 seconds
y, = 1402.835
¥ = 1677.247
ys = 1951.983

Formula (3.12) then gives y = 1540.001 seconds = 25™405001, so that the
required right ascension is « = 10"25™40%001.

Interpolation with unequally-spaced abscissae :
Lagrange’s interpolation formula

When the abscissae (the values of the independent x coordinate) of the given
points are not equally spaced, the interpolation formula of Lagrange may be used.
(Of course, this formula may also be used when the points are evenly spaced).

This simple formula, developed by the French mathematician J.L. Lagrange
(1736-1813), determines a polynomial of degree # — 1 matching n given points
exactly. If the given points are x;, ¥, (i = 1 to n), the formula is, for a given x,

y=yL +yLl,+..... + y,L, (3.13)
where Y —x
_ i - _ .
Li—]I——-—--—--xi_xj (j=1ton, j#i)

The II means that the product of the fractions should be calculated for all values
j = 1ton, except for j = i. That is,
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- C=x)Ex=x) ... X=X )X .. (XX
(xi—-xl) (xi""xZ) ceea (xi"xi_l) (Xi—xi-'-]) veve (xi—xn)

i

Important : The values x; of the given points must all be different!

The following program in BASIC can be used.

10
20
30
40
50
60
70
80
90
100
110

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

DIM X (50), Y (50)

PRINT "NUMBER OF GIVEN POINTS = ";

INPUT N

IF N<2 OR N> 50 THEN 20

PRINT

FOR1=1TO N

PRINT "X, Y FOR POINT No."; I

INPUT X(), Y(D)

IF I = 1 THEN 130

FORJ=1TOI-1

IF X(I) = X(J) THEN PRINT "THIS VALUE OF X HAS ALREADY
BEEN USED!" : GOTO 70

NEXT J

NEXT I

PRINT : PRINT "POINT X FOR INTERPOLATION = ";

INPUT Z

V=20
FORI=1TON
C=1

FORJ=1TON

IF J = 1 THEN 220

C=Cx(Z - XDOYy/XD — X))

NEXT J

V=V+C*Y(Q)

NEXT I

PRINT : PRINT "INTERPOLATED VALUE = "; V
PRINT : PRINT "STOP (0) OR INTERPOLATION AGAIN (1) ";
INPUT A

IF A = 0 THEN END

IF A = 1 THEN 140

GOTO 260

The program first asks how many known values you are going to enter from a
table and allows you to input these one at a time. Then it asks you repeatedly for
intermediate values of interest, returning the interpolated value for each.
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A remarkable feature of Lagrange interpolation is that the values entered
initially do not have to be in order, or evenly spaced. Accuracy is usually better
with uniform spacing, however.

As an exercise, try the program on the following six given points.

x = angle in degrees y = sine
29.43 0.491 359 8528
30.97 0.514589 1926
27.69 0.464 687 5083
28.11 0.471 1658342
31.58 0.523 6885653
33.05 0.5453707057

Asking for the sine of 30°, you should obtain 0.5 exactly. It is remarkable that,
even for the remote values x = 0° and x = 90°, the Lagrange interpolation formula
performed with these six data points yields the still rather good values +0.0000482
and +1.00007, respectively, the correct values being 0 and +1 exactly.

The expression (3.13) is a polynomial of degree n — 1, and it is the unique
polynomial of that degree which takes the values y;, ¥, ..., Y, for x = x;, x,,
.., X;. But Lagrange’s formula has the disadvantage that in itself it gives no
indication of the number of points required to secure a desired degree of accuracy.
However, when we wish to express the interpolating polynomial explicitly as a
function of the variable x rather than making an actual interpolation, the use of
Lagrange’s formula is advantageous.

Example 3.g — Construct the (unique) 3rd-order polynomial passing through the
following values:

y: -6 6 9 15

By substituting the given values of x and y into (3.13), we obtain

i E-HE-H -6 C-1DE-4x~-6
y =(=6 1-31d-41-6 +® B-DC-H3B-6
+ ) c-H&x-3)x-6 + (15) C-DHx-3)x—-49

@4-1)@4-3@4-96 6-1)®—-3)®-4

which upon simplification reduces to

y = —;(x3 ~ 13x% + 69x — 87)




Chapter 4

Curve Fitting

In many cases, the result of a large number of observations is a series of points in
a graph, each point being defined by an x-value and an y-value. It may be necessary
to draw, through the points, the “best” fitting curve.

Several curves can be fitted through a series of points: a straight line, an
exponential, a polynomial, a logarithmic curve, and so on.

To avoid indivi-
dual judgment, it is
necessary to agree
on a definition of a
“best fitting” curve.
Consider Figure 1 in
which the N data
points are given by
(Xh Yl)a (XZ’ Y?))

.oy XN, Yn). The
values of X are sup-
posed to be rigor-
ously exact, while
the Y-values are
measured quantities,
hence subject to an
error.

For a given Figure 1
value of X, say X,
there will be a dif-
ference between the value Y, and the corresponding value as determined from the
curve C. As indicated in the figure, we denote this difference by D, which is
sometimes referred to as deviation, error, or residual and may be positive, negative,
or zero. Similarly, corresponding to the values X, , . .., X\y we obtain the deviations
D,, ..., Dy.

A measure of the “goodness of fit” of the curve C to the given data is provided
by the quantity D,2 + D,2 + .... + D> If this is small the fit is good; if it
is large the fit is bad. We therefore make the following definition: of all curves

35
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approximating a given set of data points, the curve having the property that D2
is a minimum, is called a best fitting curve. The £ means “sum of”,

A curve having this property is said to fit the data in the least square sense and
is called a least square curve.

As has been said above, all values of the independent variable X are supposed
to be exact. Of course, it is possible to define another least square curve by
considering perpendicular distances from each of the data points to the curve instead
of vertical distances; however, this is not used too often.

In this Chapter we will consider principally the case where the best fitting curve
is a straight line, a problem called linear regression.

The name “regression” may seem strange, because in the calculation of the best
curve nothing “regresses”! Alt [1] writes:

Die Benennung Regression wurde von Galton (1822-1911) eingefiihrt,
der die Korperlingen von Eltern und Kindern verglich und dabei
beobachtete, daBl zwar im allgemeinen groBe Viter groBe S6hne haben,
daf} diese Beziehung jedoch nicht immer stimmt, da die Koérpergrofie
der Sohne im Mittel etwas kleiner ist, als die der Viter, umgekehrt
aber kleine Eltern im Mittel etwas groBere Kinder haben. Diesen
‘Riickschlag’ in Richtung auf die DurchschnittgroBe der Bevolkerung
bezeichnete er als Regression.

A better term is curve fitting, and in the case of a straight line it is a linear
curve fitting.
Linear curve fitting (linear regression)
We wish to calculate the coefficients of the linear equation
=qax + b 4.1)

using the least-squares method. The slope a and the y-intercept & can be calculated
by means of the formulae

NXxy — ExZy
a = ——5—
NIx? — (Zx)?
4.2
b = LyZx? — IxIxy

NEx? — (Zx)®

where N is the number of points. Note that both fractions have the same
denominator. The sign T indicates the summation. Thus, Ex is the sum of all the
x-values, Ty the sum of all y-values, Zx2 the sum of the squares of all x-values,
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Lxy the sum of the products xy of all the couples of values, etc. Note that Zxy is
not the same as Xx X Xy (the sum of the products is not the same as the product
of the sums), and that (Ex)? is not the same as ILx? (the square of the sum is not
the same as the sum of the squares)!

An interesting astronomical application is to find the relation between the
intrinsic brightness of a comet and its distance to the Sun. The apparent magnitude
m of a comet can generally be represented by a formula of the form

m = g+ 5logA + xlogr

Here, A and r are the distances in astronomical units of the comet to the Earth
and to the Sun, respectively. The logarithms are to the base 10. The absolute
magnitude g and the coefficient x must be deduced from the observations. This can
be performed when the magnitude m has been measured during a sufficiently long
period. More precisely, the range of r should be sufficiently large. For each value
of m, the values of A and r must be deduced from an ephemeris or calculated from
orbital elements.

In this case, the unknowns are g and «x. The formula above can be written
m-—5logA = klogr+ g
which is of the form (4.1), when we write y =m — SlogA, and x = logr. The

quantity y may be called the “heliocentric” magnitude, because the effect of the
variable distance to the Earth has been removed.

Example 4.a — Table 4.A contains visual magnitude estimates m of the periodic
comet Wild 2 (1978b), made by John Bortle. The corresponding
values of r and A have been calculated from orbital elements [2].
The quantities x and y are used to calculate the sums Ix, Ly, Ix?, and Exy. We
find

N=19 Ix = 4.2805 Ix? = 1.0031
Ly = 192.0400 Zxy = 43.7943
whence, by formulae (4.2),
a = 13.67 b =103

Consequently, the “best” straight line fitting the observations is
y = 13.67x + 7.03
or m—5logA = 13.67 logr + 7.03

Hence, for the periodic comet Wild 2 in 1978, we have

m= 703+ 5logA + 13.67 logr
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TABLE 4.A
= y=
1978, UT m r A logr  m-5loga

Febr.  4.01 11.4 1.987 1249 02982 10.92
5.00 11.5 1.981 1252 0.2969 11.01

9.02 11.5 1.958 1.266  0.2918 10.99

10.02 11.3 1.952 1270 0.2905 10.78

25.03 11.5 1.865 1335 02707 10.87

March  7.07 11.5 1.809 1382 02574 10.80
14.03 11.5 1.772 1415 0.2485 10.75

30.05 11.0 1.693 1487  0.2287 10.14

April 3.0 11.1 1.674 1.504  0.2238 10.21
10.06 10.9 1.643 1532 02156 9.97

26.07 10.7 1.582 1592 0.1992 9.69

May 108 10.6 1.566 1.610  0.1948 9.57
3.07 10.7 1.560 1.617  0.1931 9.66

8.07 10.7 1.545 1.634  0.1889 9.63

26.09 10.8 1.507 1.696  0.1781 9.65

28.09 10.6 1.504 1703 0.17712 9.44

29.09 10.6 1.503 1707 0.1770 9.44

June  2.10 10.5 1.498 1721 0.1755 9.32
6.09 10.4 1.495 1736 0.1746 9.20

Coefficient of Correlation

A correlation coefficient is a statistical measure of the degree to which two
variables are related to each other. In the case of a linear equation, the coefficient
of correlation is

NIxy — ExE
r= Ay T LAY 4.3)

VNIx? — (zx)? Y NEy? - (Ty)?

This coefficient is always between +1 and —1. A value of +1 or —1 would
indicate that the two variables are totally correlated; it would denote a perfect linear
relationship, all the points representing paired values of x and y falling exactly on
the straight line representing this relationship. If r = +1, an increase of x
corresponds to an increase of y (Figure 2). If r = —1, there is again a perfect
linear relationship, but y decreases when x increases (see Figure 3).
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When r is zero, there is no relationship between x and y (Figure 4). In
practice, however, when there is no relationship, one may find that  is not exactly
zero, due to fortuitous coincidences that generally occur except for an infinite
number of points.

When |r| isbetween 0 and 1, there is a trend between x and ¥, although there
is no strict relationship (Fig. 5). Here, again, if there is actually a strict relationship
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between the two variables, the calculation may give a value of r that is not exactly
equal to +1 or to —1, by reason of inaccuracies inherent to all measures.

Note that r is a dimensionless quantity: it does not depend on the units
employed. The sign of r only tells us whether y is increasing or decreasing when
x increases. The important fact is not the sign, but the magnitude of r, because it
is this magnitude which indicates how well the linear approximation is.

It must be emphasized that the computed value of r in any case measures the
degree of relationship relative to the assumed type of function, namely the linear
equation. Thus, if the value of r appears to be nearly zero, it means that there is
almost no linear correlation between the variables. However, it does not necessarily
mean that there is no correlation at
all, since there may actually be a high
non-linear correlation between the
variables. As an example, consider the
seven points

v |=a]=s] 2| 1] o]+1]+2
y |—6|—1|+2|+3|+2I-—1I-—6

Formula (4.3) yields r = zero, al- +
though the points lie exactly on the
parabola y = 2 —2x —x? (Fig. 6).

We must be careful not to
improperly deduce causation from
correlation. A high correlation coef- +
ficient (that is, near +1 or —1) does |
not necessarily indicate a direct, . [
physical dependence of the variables. Figure &

Thus, if we consider a sufficiently

large number of administrative

territories, one can find a high correlation between the number of beds in the
psychiatric hospitals and the number of television receivers of each territory. A high
mathematical correlation, indeed, but a physical nonsense.

Example 4.b — Table 4.B gives, for each of the twenty-two sunspot maxima which
have occurred from 1761 to 1989, the time interval x, in months,
since the previous sunspot minimum, and the height y of the maximum (highest
smoothed monthly mean). We find
Lx = 1120; Ly =2578.9; Ix? =60608; Iy% =734022591;
Ixy = 122337.1; N = 22; and then, by formulae (4.2) and (4.1),
y = 244,18 — 2.49x 4.9
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y
200
150 |
100 |
50 F
Rise {months) x
10 30 50 80
TABLE 4.B

Epoc.'h of x y Epagh of x y
maximum maximum
1761 June 73 90.4 1884 Jan. 61 78.1
1769 Oct. 38 125.3 1893 Aug. 42 89.5
1778 May 35 161.8 1905 Oct. 49 63.9
1787 Nov. 42 143.4 1917 Aug. S0 112.1
1804 Dec. 78 52.5 1928 June 62 82.0
1816 March 68 50.8 1937 May 44 119.8
1829 June 74 71.5 1947 July 39 161.2
1837 Feb. 42 152.8 1957 Nov. 43 208.4
1847 Nov. 52 131.3 1969 Feb. s4 111.6
1860 July 54 98.5 1979 Nov. 44 167.1
1870 July 39 144 8 1989 Oct. 37 162.1
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Equation (4.4) represents the best straight line fitting the given 22 points. These

points and the line are shown in Figure 7.

From formula (4.3) we find r = —0.767. This shows that there exists an evident
trend to connection, and the negative sign of r indicates that the correlation between
x and y is negative: the longer the duration of the rise from a minimum to the next

maximum of the sunspot activity, the lower this maximum generally is.

Note that here, as in all statistic studies, the sample must be sufficiently large
in order to give a meaningful result. A correlation coefficient close to +1 or to —1
has no physical meaning if it is based on too small a number of cases. With too few
cases the correlation coefficient can accidentally be quite large.

TABLE 4.C

year x y |year x y |year x y |year x y

1901 2.7 7001925 443 1075|1949 1347 5211973 38.0 690
1902 5.0 7621926 63.9 8961|1950 83.9 951]|1974 34.5 1039
1903 244 85411927 69.0 837]1951 69.4 878|1975 155 734
1904 42.0 6631928 77.8 8821952 31.5 926|1976 12.6 541
1905 63.5 912 (1929 649 6881953 13.9 5571977 27.5 855
1906 53.8 8211930 357 1953|1954 44 7411978 925 767
1907 62.0 622 (1931 212 8581955 380 616|1979 1554 839
1908 48.5 678 11932 11.1 858 |1956 141.7 795 {1980 154.6 913
1909 439 84211933 5.7 738 | 1957 190.2 801 | 1981 140.5 1016
1910 18.6 990 | 1934 8.7 707 (1958 184.8 1834|1982 1159 800
1911 57 74111935 36.1 0916|1959 159.0 5601983 66.6 689
1912 3.6 9411936 79.7 763 | 1960 112.3 962 (1984 459 931
1913 1.4 80111937 1144 9001961 539 903 |1985 17.9 758
1914 9.6 87711938 109.6 7111962 37.5 862 |1986 13.4 946
1915 474 910]1939 88.8 92811963 279 7713|1987 29.2 908
1916 57.1 1054 (1940 67.8 837 {1964 10.2 785 |1988 100.2 1005
1917 103.9 851 (1941 47.5 744 (1965 15.1 1073 [ 1989 157.6 639
1918 80.6 848 {1942 30.6 8411966 47.0 1054 | 1990 142.6 759
1919 63.6 980 {1943 16.3 738 {1967 93.8 707 {1991 1457 794
1920 37.6 760 | 1944 9.6 766 1968 105.9 7761992 943 916
1921  26.1 4171|1945 33.2 7451969 1055 776 {1993 54.6 857
1922 142 938 (1946 92.6 861 (1970 1045 727 | 1994 299 8%
1923 5.8 91711947 151.6 6401971 666 691 1995 17.5 763
1924 167 849 1948 1363 7921972 68.9 7101996 8.6 745
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As an exercise, show that there is no correlation between the rainfall at the
Uccle Observatory, Belgium, and the sunspot activity, using the data of Table 4.C,
where

x = yearly mean of the definitive Ziirich sunspot numbers,

y = total annual rainfall at Uccle, in millimeters.

Answer: The correlation coefficient is r = —0.054, which shows that there is no
significant correlation between x and y.

Quadratic curve fitting

Suppose that we wish to draw, through a set of N given points (x, y), the best
quadratic function

y =ax?+bx+c

This is a parabola with vertical axis.
Let

= Lx
Ix?
x3
Lx*
Ly
Zxy
= Ix2y

D = NQS + 2PQR — Q3 — P2§ — NR? “.5)

<KTNLIQ0N
]

Then we have

NQV + PRT + PQU — QT — P2V — NRU 3
D

- 017 — -
b = NSU+PQV+QRTDQU PST — NRV > @.6)

QST + QRU + PRV — Q*V — PSU — R*T
D /
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General curve fitting (multiple linear regression)

The principle of the best fitting straight line can be extended to other functions
and with more than two unknown linear coefficients.

Let us consider the case of a linear combination of shree functions. Suppose that
we know that

Yy = afpx) + bfilx) + c/,(&x)

where fy, fi, and f, are three known functions of x, but that the coefficients a, b,
and ¢ are not known. Suppose, moreover, that the value of y is known for at least
three values of x. Then the coefficients a, b, ¢ can be found as follows. -

Calculate the sums

M = If U = Iy
P = Ifh V = Iyfi
0 = Lfufr W = Lyf,
R = If?
S =Ifify
T =Lf
Then
D = MRT + 2PQS — MS*> — RQ? — TP? \
0 = URT — §% + V(QS — PT) + W(PS — QR)
D
N .7
p = UGQ = PT)+ VIMT — Q%) + W(PQ — MS) >
D
c = U(PS — RQ) + V(PQ — MS) + WMR — P?)
P /

Example 4.c — We know that y is of the form
y = dsinx + bsin 2x + ¢ sin 3x

and that y takes the following values:
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X (degrees) y

3 0.0433
20 0.2532
34 0.3386
50 0.3560 +2
75 0.4983
88 0.7577
111 1.4585 +11
129 1.8628 ) .
143 1.8264 0 , 210" 360
160 1.2431 0° 90°
183 —0.2043
200 ~1.2431 Y
218 —1.8422
230 ~1.8726
248 —1.4889 Y
269 ~0.8372
290 -0.4377
303 —0.3640
320 -0.3508
344 -0.2126

Find the values of the coefficients a, b, c.
We leave it as an exercise to the reader. The function is
y = 1.2sinx — 0.77 sin 2x + 0.39 sin 3x

and is illustrated in the Figure above. The reader will not find 1.2, —0.77, and
+0.39 exactly, because in the table the values of y are given with only four decimals.

Let us consider the special case y = ax? + bx + c. Here we have

fo=x*
fi =x
H=1

resulting in 7 = N (the number of given points) and @ = R. The formulae (4.7)
then reduce to (4.5) and (4.6), with other notations.

As another special case, consider y = af(x) with only one unknown
coefficient. The latter is easily found from

= EY.f
a 17 4.%)
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Example 4.d — y = avx (x >=0)
Find a for the best fitting curve through the following points:

x: 0 1 2 3 4 5
y: 0 12 14 17 21 22

Here, f(x) = VX, so Ef? is simply the sum of the x-values. Formula (4.8) gives

15.2437
15

so the required function is
1.016 vx

<
i
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Chapter 5

Iteration

Iteration (from the Latin iterare = to repeat) is a method consisting of repeating a
calculation several times, until the value of an unknown quantity is obtained.
Generally, after each repetition of the calculation, one obtains a result that is closer
to the exact solution. We have already seen the use of iteration in Chapter 3, for
solving equations (3.6), (3.7), (3.9), (3.10), and (3.11).

Iteration is used, for instance, when there is no method for calculating the
unknown quantity directly in an easy way. Examples are:

— solving the equation of the fifth degree x* + 17x — 8 = 0;
— the calculation of the times of beginning and end of a solar eclipse, or of an
occultation of a star by the Moon, for a given place at the Earth’s surface;

— the equation of Kepler E = M + e sinE (see Chapter 30), where E is the
unknown quantity.

To perform an iteration, one must start with an approximate value for the
unknown quantity, and use must be made of a formula, or of a set of formulae, in
order to obtain a berter value for the unknown. This process is then repeated
(iteration) until the required accuracy is reached.

A classical example is the calculation of the square root of 2 number. Of course,
this method has nowadays lost its interest (except in special cases), because all
pocket calculators and all program languages already possess the function v or
SQR. The calculation proceeds as follows.

Let N be the number whose square root is requested. Start with an approximate
value n for this root; if none is known, the value 1 can be used. Divide N by n,
and take the arithmetic mean of the quotient and n. The result is a better value for

the square root. In other words, a better value is given by (n + N/n)/2. Then the
calculation must be repeated.

47
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Example 5.a — Calculate @ to eight decimals.
We know that 12 X 12 = 144, so that 12 is an approximate value of the square root
of 159. We divide 159 by 12, and find the quotient 13.25. The arithmetic mean of
12 and 13.25 is 12.625, which is a better value for the required square root.

We now divide 159 by 12.625; the quotient is 12.59406. The mean of 12.625 (the
previous result) and 12.59406 is 12.60953, which is a still better value for the square
root.

In that way, we find successively

12 = starting value
12.625 000 00
12.609 529 70
12.609 52021
12.609 520 21

As you see, 12.60952021 yields 12.60952021 again, so this is the required
square root of 159,

Example 5.b — Calculate the (only) real root of the equation
x>+ 17x -8=0 6.1

Because there is no method or formula for the direct calculation of the roots of
an equation of the fifth degree, we will have recourse to the iteration procedure. In
equation (5.1) we put x> in the second member and solve for x; this gives

8 —x°
x = 7 5.2)
The unknown quantity is now present in the right-hand member too, but that does
not matter, as we shall see. We start by letting x = 0 in the right-hand member.
Formula (5.2) then yields

x = 8/17 = 0.470588 235

which is already a better value than x = 0. We now put the value x = 0.470 588 235
in the right-hand member, and now the formula gives x = 0.469 230 684. After four
more iterations, we obtain the definitive value, namely x = 0.469 249 878.

The iteration process is not always without problems, however, as it is shown
in the following example.
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Example 5.c — Consider the equation x* + 3x — 8 = 0.

As in the preceding example, we put x> in the right-hand member, and we obtain

8 —x3

3

X =

If we start, here again, with x = 0, we obtain successively

0.0000 (starting value)
2.6667
~42.2826
45049099
—6.18 x 10%7
etc....

and so the method does not work in this case! The successive results diverge; in
absolute value they grow bigger and bigger. They go “in the wrong direction”.

Why did the method work in Example 5.b, but not in Example 5.c? When x
lies between 0 and 1, then x> too is between 0 and 1. Moreover, x> is then smaller
than x. This is the reason why in Example 5.b the results of the successive iterations
converge to a well-defined value, the root of the equation. This root lies between
0 and 1.

But, as we shall see, the root of the equation in Example S.c is larger than 1.
When x > 1, then x> > x > 1, and a small increase of x gives rise to a much
larger increase of x°. For x = 2, we have already x* = 32.

Consequently, the iteration procedure, performed in the same way as in
Example 5.b, cannot converge to the required result: the successive values diverge.
However, it is possible to get the answer, on the condition that we write the
iteration formula in another form.

Example 5.d — Let us again consider the equation x> + 3x — 8 = Q, but now we

take into account the fact that the root is larger than 1, and hence
that x> > x. For this reason, we do not put x° in the right-hand member here.
Instead, we keep x° in the first member, so the equation becomes

x3 =8 - 3x or x = V8 -3¢

Starting again with x = 0, we obtain the required root after 14 iterations, namely,
x = 1.321785627.
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In example 5.b, we searched for the root of the equation
¥+ 17x-8=0

However, we can write this equation as

8
4 +17) =8, hi X = —4/
x(x ) whence P

We now can use this latter formula instead of (5.2). As an exercise, solve this
equation by iteration; you should obtain the same result as in Example 5.b.
If we wish to work similarly for the equation of Example 5.c, we obtain the
iteration formula
8

x4+3

If we again start by putting the value x =0 in the right-hand member, we obtain
x = 8/3 = 2.666.... But then comes the surprise: after a few iterations, the
successive results jump unceasingly from 2.666 223 459 to 0.149 436 927, and back.
As you see, the iteration method does not succeed in all cases; much depends on the
form of the iteration formula.

As another example, consider the equation sin¢ = 3 cos ¢. Putting ¢ = 0° in
the right member yields sin ¢ = 3, an impossibility. Putting, instead, ¢ = 90° in
the second member gives sin ¢ = 0, whence ¢ = 0°, which brings us back to the
first case.

But if we write the equation as cos ¢ = (sin ¢)/3 then, starting with ¢ = 0°,
we reach the solution ¢ = 719565051 after a few iterations.

Or consider the equation sin ¢ = cos 2¢. Evidently, the solution is ¢ = 30°,
because sin 30° = cos 60°. If we start by putting ¢ = 29° in the second member
of that equation, the results of the successive iterations diverge. If, however, we
write the equation the other way, namely, cos 2¢ = sin ¢, then the successive
results converge!

As a further illustration of
the iteration procedure, let us
consider Newton’s method for
searching the solution of an
equation with one unknown by
successive approximations.

Let f(x) be a function of x,
and we want to find for what
value of x that function is zero.
Let f”(x) be the derivative func-
tion of f(x). If x, is an assumed
value for the root X, then
calculate the value y, of the

L S

Xn+1

=
=
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function f(x), and the value y; of the derivative f'(x), for that value of x. The
value y/, is the slope of the tangent to the curve at the point x,, y,, — see the Figure
on the preceding page. Then, a better value for the unknown quantity is given by

I

'
n

Xn+1 & Xp —

The calculation is then repeated using this new value
of x, until the final value X is reached.

In this procedure, the choice of a good starting value
for x can be a problem. For example, for the equation

¥ -3x-8=0

the derivative function is 5x* — 3 and, if we start with
x = 0, we obtain oscillating values, as shown in the box
at right.

The reason is that the function reaches a maximum
value for x = —0.88, so that the tangents on both sides
of that point have slopes in opposite directions.

But if we start with x = 1, then the correct value (to
9 decimal places) is reached after 11 iterations, as shown
in the second box.

Test on “smaller than”

When an iteration procedure is used, one should — as
has been mentioned above — repeat the calculation until
the result no longer varies. In other words, as long as the
last result differs from the previous one, a new iteration
must be performed. But here we are faced with a small
problem, due to the fact that the computer does not
calculate “exactly”.

Consider the following equation of the third degree
s2+35-W=0

0.000 000 000
—2.666 666 667
—2.126 929 222
~1.672 392941
~1.227532073
~0.376 965 299
—2.749 036 974
~2.194 266 642
—1.731 201 846
-1.293 218 529
—0.588 844 800
—3.216 865 068
~2.572967 056
—2.049930312
—1.603 831 481
—1.145 086 796

+ 1.000 000 000
+6.000 000 000
+4.803 458 391
+3.850 111311
+3.095 824 107
+2.510476 381
+2.080 081 724
+1.807461730
+1.690 945 284
+1.671 102262
+1.670579511
+1.670579 156
+1.670379 156

which appears in the calculation of the motion in a parabolic orbit (see Chapter 34).
W is a given constant, while s is the unknown quantity. This equation can very
easily be solved by iteration. Start from anry value; a good choice is 5 = 0. Then
a better value for s is

253 + W

362+ 1)
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After some iterations the correct value of s is obtained. Take, for instance, the
case W = 0.9. The calculation performed on the HP-85 microcomputer gives the
following successive results:

0.000 000 000 000
0.300 000 000 000
0.291743 119266
0.291724 443 641
0.291 724 443 546
0.291 724 443 548
0.291724 443548

and hence the exact value (with twelve significant digits) is 0.291 724 443 548. But
if we repeat the calculation on the same machine for W = 1.5, we have a surprise:
the machine does not stop and finds successively:

0.000 000 000 000
0.500 000 000 000
0.466 666 666 667
0.466220 600 162
0.466220523 909
0.466220523 911
0.466220523910
0.466 220 523 908
0.466220523911
0.466220523910
0.466 220523 908

and forever again ...911, ...910, ...908. However, we tried this calculation (for
W = 1.5) with two other programming languages, and the iteration procedure did
converge; but then it did not converge for other values of the constant W.

A remedy for this trouble consists of testing on “smaller than” instead of on
“equal to”. In other words, let the iteration process stop when the difference
between the new value of s and the previous one is, in absolute value, less than a
given quantity, for instance 107'°.

The binary search

There is a procedure which is absolutely foolproof, because it can neither stall
nor diverge, and always converges in a fixed amount of time to the most exact value
of the root the programming language is capable. The method does not try to find
successively better values of the root. Instead, it just uses a binary search to locate
the correct value of the root.



5. ITERATION 53

Let us explain the procedure by reconsidering the equation of Example 5.b,
namely x* + 17x — 8 = 0.

For x = 0 and x = 1, the first member of this equation takes the values —8
and +10, respectively. So we know that the root lies between 0 and 1 (*).

Let us now try x = 0.5, which is the arithmetical mean of 0 and 1. For x =
0.5, the function takes the value +0.53125, which has the opposite sign of the
function’s value for x = 0. So we now know that the root is between 0 and 0.5.

We now try x = 0.25, which is the arithmetical mean of 0 and 0.5. And so on.

After each step, the interval in which the root necessarily must be, is halved.
After 32 steps the value of the root is known with nine exact decimals. (In Example
5.b, the same accuracy was obtained after only six steps. But, as we already pointed
out, the binary search is a method which is absolutely safe, and it can be used when
the “ordinary” iteration procedure is likely to fail).

With the binary search, one knows in advance the accuracy after n steps: it is
the initial interval divided by 2°".

For the example given above, the program in BASIC can be written as follows.
Line 60 is not actually needed; it has been included to show the successively better
values of x.

10 DEF FNA(X) = X* (X4 + 17) — 8
20 X1 =0 : Yl = ENA(XD

30 X2=1: Y2 = FNA(X2)

40 FORJ =1 TO 33

50 X = (X1 + X2)/2

60 PRINT J, X

70 Y = FNA(X)

80 IF Y =0 THEN PRINT J, X : END
90 IF Y*YIl >0 THEN 120

100 X2=X: Y2=Y

110 GOTO 130

120 X1 =X : Yl=Y

130 NEXT I

140 END

(*) This is true only if the function is continuous in the interval considered. From
the fact that tan 86° > 0 and tan 93° < 0, we may nor conclude that tan x
becomes zero for a value of x between 86° and 93°.






Chapter 6

Sorting Numbers

Computers are more than calculating machines. They can store and handle data. One
example of handling is to rearrange or sort data. Sorting is a function with almost
universal application for all users of computers. In astronomy, examples are: sorting
stars by right ascension, or by declination; sorting times chronologically; sorting
minor planets by increasing semimajor axis, or sorting their names alphabetically.
Different algorithms are available to perform sorting. In this Chapter we shall give
three methods, provide the BASIC programs, and compare the calculation times.

One of the simplest sorting algorithms is given in Table 6.A under the name
“SIMPLE SORT”. We start from N numbers X(1), X(2), ..., X(N). The values of
these elements are arbitrary, and the same value may occur more than once.

After the execution of the routine the numbers X(I) are sorted in increasing
order. If one wants them in decreasing order, one should, on line 120, replace > =
by < =; or, alternatively, one may replace X(7) by —X(7).

At each step, two elements are permuted. Successively, the smallest element is
placed in front (for I = 1), then the second, and so on, up to N — 1. Note that on
line 100 the index I should go till N — 1, not till N.

This method is also called “straight insertion™. The time needed to sort N
numbers depends, of course, on the type of the computer and on the program
language, but in any case the sorting time will approximately be proportional to N2,
This means that the method is unsuitable for large N.

The method we called “BETTER” is somewhat faster, but again the sorting time
is approximately proportional to N2. Its principle is simple: find the smallest
element, and place it in front by permuting two elements.

When the set of data to be sorted is large, a much better method is
“QUICKSORT”, which was invented by C.A.R. Hoare. The program itself is
longer, but the computer time is considerably shorter. Moreover, when N is
sufficiently large, the computer time is approximately proportional to ¥, not to N2,
(In fact, it is nearly proportional to N log N).

55
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TABLE 6.A
Three sorting programs in BASIC

SIMPLE SORT QUICKSORT
100 FORI =1 TO N-~1 100 DIM L(30), R(30)
110 FOR J = I+1 TO N 110 S=1:L1)=1: R(1)=N
120 IF X({J) >=X(I) THEN 160 120 L =L(S) : R =R(®)
130 A = X(I) 130 $=8-1
140 XD = X 140 I=L :J=R
150 X(J) =A 150 V = X(INT((L.+R)/2))
160 NEXT J 160 IF X(I) >=YV THEN 190
170 NEXT I 170 1=1+1
180 GOTO 160
190 IF V >=X(J) THEN 220
200 1=J-1
210 GOTO 190

220 IF 1>] THEN 250
230 W =X : XD =X(0) :

BETTER X() =W
20 1=1+1:1=J-1
100 FOR I =1 TO N—1 250 IF I<=J THEN 160
110 M = X(I) 260 IF J—L < R—I THEN 320
120 K =1 270 IF L >=1J THEN 300
130 FOR J =I+1 TO N 280 S =S+1
140 IF X(J) <M THEN 290 L(S)=L : RS) =1
M=X{J) : K=1 300 L=1
150 NEXT J 310 GOTO 360
160 A=X(D):X(I)=M:X®K)=A | 320 IFI>=R THEN 350
170 NEXT I 330 S=S+1
340 L(S)=1: R(S) =R
350 R=1J

360 IF L <R THEN 140
370 IF S < > 0 THEN 120

The QUICKSORT sorting technique needs two small auxiliary one-dimensional
arrays: L(M) and R(M). M is at least the smallest integer larger than log, N. A
value of M = 30 is certainly sufficient for all practical purposes.

In Table 6.B we mention the calculation times for some values of N on the HP-
85 microcomputer for the three programs mentioned in Table 6.A. As we already
said, the times will be different on other computers, but in any case we find that
these times increase rapidly for larger values of N, except for the QUICKSORT
algorithm.
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TABLE 6.B

Calculation times (in seconds] of the three
sorting algorithms on the HP-85 microcomputer

N SIMPLE SORT BETTER QUICKSORT
10 0.73 0.51 0.70
20 3.92 2.11 1.84
40 15.4 7.81 4.43
60 38.0 17.0 8.63
80 63.8 29.1 11.3

100 104.3 44.6 14.6

150 254 98.6 24.1

200 453 174 32.9

300 1002 387 56.7

500 97.7

1000 218
1500 342
2000 472

57

To gain some idea of the calculation speeds for larger values of N, we did
appeal to a faster computer; the programs were written in FORTRAN and were
compiled. The results are given in Table 6.C. The superiority of QUICKSORT is
conspicuous here. For N = 300, the calculation time is still 15% of that with
BETTER (Table 6.B); but for 15000 numbers it is only one third of 1 per cent!

TABLE 6.C

Calculation times (in seconds) of the three
sorting algorithms on a “big” computer

N SIMPLE SORT BETTER QUICKSORT
1000 13 10 <1
2000 51 40 1
3000 114 90 1
4000 206 159 2
5000 321 249 2

10000 1272 994 5
15 000 2236 7
20000 10
25000 12
30000 15
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In some cases there is even no need to write a program. For instance, the old
TRS-80 Model I contained a built-in function which sorted 1000 numbers in 9
seconds, and 8000 numbers in 83 seconds. It appears that the sorting time is
approximately proportional to N here, not to N2, so probably the QUICKSORT
method was used.

To conclude, we can recommend the “straight insertion” (SIMPLE SORT) if
the set of data to be sorted is not too large, for instance for N < 200. For larger
sets it is well worth while to use QUICKSORT.

Besides numerical data, often strings (names) are to be sorted, such as X$(1) =
“Ceres”, X$(2) = “Pallas”, etc. Each character has its own value. The complete
list with all signs constitutes the so-called ASCII table, a part of which is given in
Table 6.D. [ASCII = “American Standard Code for Information Interchange”.]

TABLE 6.D
Visible ASCII Characters
After each character its decimal code is given

space 32 8 56 P 80 h 104
! 33 9 57 Q 81 i 105
" 34 : 58 R 82 j 106
# 35 ; 59 S 83 k 107
$ 36 < 60 T 84 1 108
% 37 = 6l U 85 m 109
& 38 > 62 v 86 n 110
! 39 ? 63 w 87 o 111
(40 @ 64 X 88 p 112
) 41 A 65 Y 89 q 113
* 42 B 66 z 90 r 114
+ 43 Cc 67 [ 91 s 115
s 44 D 68 \ 92 t 116

45 E 69 1 93 u 117
. 46 F 70 ~ 94 v 118
/ 47 G 71 _ 95 w 119
0 48 H 72 ¢ 96 X 120
1 49 | 73 a 97 y 121
2 50 J 74 b 98 z 122
3 51 K 75 c 99 { 123
4 52 L 76 d 100 | 124
5 53 M 77 e 101 } 125
6 54 N 78 f 10 ~ 126
7 55 0 79 g 103




Chapter 7

Julian Day

In this Chapter we give a method for converting a date, given in the Julian or in the
Gregorian calendar, into the corresponding Julian Day number (JD), or vice versa.

General remarks

The Julian Day number or, more simply, the Julian Day (*) (JD) is a continuous
count of days and fractions thereof from the beginning of the year —~4712. By
tradition, the Julian Day begins at Greenwich mean noon, that is, at 12" Universal
Time. If the JD corresponds to an instant measured in the uniform scale of
Dynamical Time, the expression Julian Ephemeris Day (JDE) (**) is often used.
For example,

1977 April 26.4 UT JD  2443259.9
1977 April 26.4 TD JDE 2443259.9

In the methods described below, the Gregorian calendar reform is taken into
account. Thus, the day following 1582 October 4 (Julian calendar) is 1582 October
15 (Gregorian calendar).

(*) In many books we read “Julian Date” instead of “Julian Day”. A daie consists
of a year number, a month, and a day of the month, in any calendar. For me, a
Julian date is a date in the Julian calendar, just as a Gregorian date refers to the
Gregorian calendar. The JD has nothing to do with the Julian calendar.

(**) Not JED as it is sometimes written. The “E” is a sort of index appended to “JD”:
JDE = (Julian Day)g pemesss The name Ephemeris comes from “Ephemeris
Time”, the old name for the uniform Dynamical Time. The abbreviation JDE has
been used in the Minor Planet Circulars until 1991 inclusively, when it was
changed to JDT. Here the “T” means Terrestrial Dynamical Time (see Chapter
10). But what if we want to refer to the Barycentric Dynamical Time, or in cases
where the very small difference between TDT and TDB does not matter? For this
reason, I prefer to continue to use the abbreviation JDE.
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The Gregorian calendar was not at once officially adopted by all countries. This
should be kept in mind when making historical research. In Great Britain, for
instance, the change was made as late as in 1752, and in Turkey not before 1927.

The Julian calendar was established in the Roman Empire by Julius Caesar in
the year —45 and reached its final form about the year +8. Nevertheless, we shall
follow the astronomers’ practice consisting of extrapolating the Julian calendar
indefinitely to the past. In this system we can speak, for instance, of the solar
eclipse of August 28 of the year —1203, although at that remote time the Roman
Empire was not yet founded and the month of August was still to be conceived!

There is a disagreement between astronomers and historians about how to count
the years preceding the year 1. In this book, the “B.C.” years are counted
astronomically. Thus, the year before the year +1 is the year zero, and -the year
preceding the latter is the year —1. The year which the historians call 585 B.C. is
actually the year —584. (Do nor use the mention “B.C.” when using negative years!
“—584 B.C.”, for instance, is incorrect.)

The astronomical counting of the negative years is the only one suitable for
arithmetical purposes. For example, in the historical practice of counting, the rule
of divisibility by 4 revealing the Julian leap years no longer exists; these years are,
indeed, 1, 5, 9, 13, ... B.C. In the astronomical sequence, however, these leap
years are called 0, —4, —8, —12 ..., and the rule of divisibility by 4 subsists.

We will indicate by INT(x) the greatest integer less than or equal to x. For example:

INT(7/4) = 1 INT(5.02) = 5
INT(8/4) = 2 INT(5.9999) = §

There may be a problem with negative numbers. In most programming
languages, INT(x) has the definition given above. In that case we have, for
instance, INT(—7.83) = —8, because —7 is indeed larger than —7.83.

But in other languages, such as FORTRAN 77, INT is the integer part of the
written number, that is, the part of the number that precedes the decimal point. In
that case, INT(—7.83) is —7. This is called fruncation, and some programming
languages have both functions: INT(x) having the first of the above-mentioned
meanings, and TRUNC(x) or FIX(x).

Hence, take care when using the INT function for negative numbers. (For
positive numbers, both meanings yield the same result). In the formulae given in
this Chapter, however, the argument of the INT function is always positive.

Calculation of the JD

The following method is valid for positive as well as for negative years, but not
for negative JD.

Let Y be the year, M the month number (1 for January, 2 far February, etc.,
to 12 for December), and D the day of the month (with decimals, if any) of the
given calendar date.
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® If M > 2, leave Y and M unchanged.

If M =1or2, replace Y by Y~ 1, and M by M + 12.

In other words, if the date is in January or February, it is considered to be in
the 13th or 14th month of the preceding year.

® In the Gregorian calendar, calculate

A=INT(—Y—) B=2—A+INT(%~)

In the Julian calendar, take B = Q.
® The required Julian Day is then

ID = INT (365.25 (Y + 4716)) + INT (30.6001 (M + 1))

(7.1)
+ D + B — 1524.5

The number 30.6 (instead of 30.6001) will give the correct result, but 30.6001
is used so that the proper integer will always be obtained. [In fact, instead of
30.6001, one may use 30.601, or even 30.61.] For instance, 5 times 30.6 gives 153
exactly. However, most computer languages would not represent 30.6 exactly — see
in Chapter 2 what we said about BCD — and hence might give a result of
152.9999998 instead, whose integer part is 152. The calculated JD would then be
incorrect.

In formula (7.1), the constant 4716 has been added to the argument of the first
INT function, in order to avoid trouble for negative years.

Example 7.a — Calculate the JD corresponding to 1957 October 4.81, the time of
launch of Sputnik 1.

Here we have Y = 1957, M = 10, D = 4.81.
Because M > 2, we leave Y and M unchanged.
The date is in the Gregorian calendar, so we calculate

A = INT(1957/100) = INT(19.57) = 19

B=2-19+INT(19/4) =2~-19+4 = -13

JD = INT(365.25 X 6673) + INT(30.6001 x 11) + 4.81 — I3 — 1524.5
ID = 2436 116.31

Example 7.b — Calculate the JD corresponding to January 27 at 12" of the year 333.
Because M =1, wehave ¥ =333 —1 =332 and M = 1+ 12 = 13.
Because the date is in the Julian calendar, we have B = 0.

JD = INT(365.25 X 5048) + INT(30.6001 X 14) + 27.5 + 0 — 15245
JD = 1842713.0
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The following list gives the JD corresponding to some calendar dates. These
data may be useful for testing a program.

2000 Jan. 1.5 2451545.0 1600 Dec. 31.0 2305 812.5
1999 Jan. 1.0 2451 179.5 837 Apr. 10.3 2026 871.8
1987 Jan. 27.0 2446 822.5 ~123 Dec. 31.0 1676 496.5
1987 June 19.5 2446 966.0 —122 Jan. 1.0 1676 497.5
1988 Jan. 27.0 24471875 —1000 July 12.5 1356 001.0
1988 June 19.5 2447 332.0 —1000 Feb. 29.0 1355 866.5
1900 Jan. 1.0 2415020.5 —1001 Aug. 179 1355671.4
1600 Jan. 1.0 2305447.5 —4712 Jan. 1.5 0.0

If one is interested only in dates between 1900 March 1 and 2100 February 28,
then in formula (7.1) we have B = —13.

In some applications it is needed to know the Julian Day JD, corresponding to
January 0.0 of a given year. This is the same as December 31.0 of the preceding
year. For a year in the Gregorian calendar, this can be calculated as follows.

Y = year — 1 A=INT(%)

A4

D, = INT(365.25Y) — 4 + INT( :

) + 1721424.5

For the years 1901 to 2099 inclusively, this reduces to
Dy, = 1721409.5 + INT(365.25 X (year — 1))

When is a given year a leap year ?

In the Julian calendar, a year is a leap (or bissextile) year of 366 days if its
numerical designation is divisible by 4.

All other years are common years (365 days).

For instance, the years 900 and 1236 were bissextile years, while 750 and
1429 were common years.

The same rule holds in the Gregorian calendar, with the foliowing exception :
the centurial years that are not divisible by 400, such as 1700, 1800, 1900,
2100, are common years. The other century years, which are divisible by 400,
are leap years, for instance 1600, 2000, and 2400.




7. JULIAN DAY 63

The Modified Julian Day (MJID) sometimes appears in modern work, for
instance when mentijoning orbital elements of artificial satellites. Contrary to the JD,
the Modified Julian Day begins at Greenwich mean midnighs. 1t is equal to

MJID = JD — 2400000.5
and therefore MJD = 0.0 corresponds to 1858 November 17 at O" UT.

Calculation of the Calendar Date from the JD

The following method is valid for positive as well as for negative years, but not
for negative Julian Day numbers.

Add 0.5 to the JD, and let Z be the integer part, and F the fractional (dec1mal)
part of the result.

If Z < 2299161, take A = Z
If Z is equal to or larger than 2291 161, calculate

o = INT( Z - 1867216.25)

36524.25
A =Z+1+oz-INT(-3—)

Then calculate

B =A+154
_ B - 122.1)
¢ = INT( 365.25
D = INT(365.25C)
B-D
E= INT( 30.6001)

The day of the month (with decimals, if any) is then
B — D — INT(30.6001E) + F

The month number m is E—-1 if E< 14
E — 13 if E=140r 15

The year is C—4716 ifm>2
C—471S ifm=1lor2

Contrary to what has been said about formula (7.1), in the formula for £ the
number 30.6001 may not be replaced by 30.6, even if the computer calculates
exactly. Otherwise, one would obtain February 0 instead of January 31, or April 0
instead of March 31.
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Example 7.c — Calculate the calendar date corresponding to JD 2436 116.31.
2436 116.31 + 0.5 = 2436 116.81
Z =2436116 and F = 0.81
Because Z > 2299 161, we have

_ 2436 116 — 1867216.25) _
= INT( 36524.25 =B
A = 2436116 + 1 + 15 — 1NT(-14§) = 2436129

Then we find
B = 2437653 C = 6673 D = 2437313 E =11
day of month = 4.81
month m = E -1 = 10 (because E < 14)
year = C — 4716 = 1957 (because m > 2)
Hence, the required date is 1957 October 4.81.

Exercise : Calculate the calendar dates corresponding to
JD = 1842713.0 and JD = 1507 900.13.
Answers: 333 January 27.5 and —584 May 28.63.

Time interval in days

The number of days between two calendar dates can be found by calculating the
difference between their corresponding Julian Days.

Example 7.d — The periodic comet Halley passed through the perihelion of its orbit
on 1910 April 20 and on 1986 February 5. What is the time
interval between these two passages?

1910 April 20.0 corresponds to JD 2418 781.5
1986 Febr. 9.0 corresponds to JD 2446 470.5

The difference is 27 689 days.

Exercise : Find the date exactly 10 000 days after 1991 July 11.
Answer: 2018 November 26.
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Day of the week

The day of the week corresponding to a given date can be obtained as follows.
Compute the JD for that date at 0" UT, add 1.5, and divide the result by 7. The
remainder of this division will indicate the weekday, as follows: if the remainder
is 0, it is a Sunday, 1 a Monday, 2 a Tuesday, 3 a Wednesday, 4 a Thursday, 5
a Friday, and 6 a Saturday.

The week was not modified in any way by the Gregorian reform of the Julian
calendar. Thus, in 1582, Thursday October 4 was followed by Friday October 15.

Example 7.e — Find the weekday of 1954 June 30.

1954 June 30.0 corresponds to JD 2434 923.5

24349235 + 1.5 = 2434925

The remainder of the division of 2434925 by 7 is 3. Hence it was a Wednesday.

Day of the Year

The number N of a day in the year can be computed by means of the following
formula [1].

2715 M
9

M+09
12

N==INT( )—KXINT( + D — 30

where M is the month number, D the day of the month, and

K =1 for aleap (bissextile) year,
K =2  for a common year.

N takes integer values, from 1 on January 1, to 365 (or 366 in leap years) on
December 31.

Example 7.f — 1978 November 14.

Common year, M =11, D =14, K= 2.
One finds N = 318,

Example 7.¢ — 1988 April 22.

Leapyear, M =4, D =22 K =1,
One finds N = 113.
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Let us now consider the reverse problem: the day number N in the year is
known, and the corresponding date is required, namely the month number M and
the day D of that month. The following algorithm was found by A. Pouplier, of the
Société Astronomique de Liege, Belgium [2].

As above, take
K =1 in the case of a leap year,
K =2 in the case of a common year.
_ 9(K+ N) )

M = INT(—«——275 + 0.98

If N< 32, then M =1

p = N-r(ZBM) 4 g 222) 430

REFERENCES

1. Nautical Almanac Office, U.S. Naval Observatory, Washington, D.C., Almanac for
Computers for the Year 1978, page B2.
2. A. Pouplier, letter to Jean Meeus, 1987 April 10.



Chapter 8

Date of Easter

In this Chapter we give a method for calculating the date of the Christian Easter
Sunday of a given year. For the Jewish Pesach, see next Chapter.

Gregorian Easter

The following method has been given by Spencer Jones in his book General
Astronomy (pages 73-74 of the edition of 1922). It has been published again in the
Journal of the British Astronomical Association, Vol. 88, page 91 (December 1977)
where it is said that it was devised in 1876 and appeared in Butcher’s Ecciesiastical
Calendar.

Unlike the formula given by Gauss, this method has no exception and is valid
for all years in the Gregorian calendar, hence from the year 1583 on. The procedure
for finding the date of Easter is as follows:

Divide by Quotient Remainder
the year x 19 — a
the year x 100 b c
b 4 d e
b+ 8 25 f —
b—f+1 3 g -
Y9a+b-d—-g+ 15 30 — h
c 4 i K
32+2e+2i—-h-k 7 - !
a+ 11h + 221 451 m —
h+1-7m+ 114 31 n P
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Then n = number of the month (3 = March, 4 = April),
p+1 day of that month upon which Easter Sunday falls.

If the programming language has no “modulo” function or no “remainder”
function, the calculation of the remainder of a division must be programmed
carefully. Suppose that the remainder of the division of 34 by 30 should be found.
On the HP-48s calculator, for instance, we find

34/30 = 1.13333333333

the fractional part of which is 0.133333 333 33. When multiplied by 30, this gives
3.9999999999. This result differs from 4, the correct value, and may give a wrong
date for Easter at the end of the calculation.

Try your program on the following years:

1991 - March 31 1954 ~> April 18
1992 —> April 19 2000 — April 23
1993 — April 11 1818 —> March 22

The extreme dates of Easter are March 22 (as in 1818 and 2285) and April 25
(as in 1886, 1943, 2038).

The rule for finding the date of Easter Sunday is well known: Easter is the first
Sunday after the Full Moon that happens on or next after the March equinox.
Actually, the rules for finding the Easter date were fixed long ago by the Christian
clergy. For the purposes of these rules, the Full Moon is reckoned according to an
ecclesiastical computation and is not the real, astronomical Full Moon. Likewise,
the equinox is always assumed to fall on March 21; actually, it can occur a day or
two sooner.

In 1967, for instance, the equinox was on March 21, and the Full Moon on
March 26 (UT dates). The first Sunday after March 26 was April 2. Nevertheless,
Easter Sunday was on March 26.

During the period 1900-2100, the purely astronomical rule yields another date
for Easter Sunday than the ecclesiastical rule for the following years: 1900, 1903,
1923, 1924, 1927, 1943, 1954, 1962, 1967, 1974, 1981, 2038, 2049, 2069, 2076,
2089, 2095, and 2096. See also Chapter 60 of my Mathematical Astronomy Morsels
(Willmann-Bell, ed.; 1997).

A period of 5700000 years is required for the cyclical recurrence of the
Gregorian Easter dates. It has been found that, in the long run, the most frequent
Gregorian Easter date is April 19.
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Julian Easter

In the Julian calendar, the date of Easter can be found as follows.

Divide by Quotient Remainder
the year x 4 —_ a
the year x 7 — b
the year x 19 — c
19¢ + 15 30 — d
2a+ 4b —d + 34 7 — e
d+e+ 114 31 f g

Then f
g+1

number of the month (3 = March, 4 = April),
day of that month upon which Easter Sunday falls.

The date of the Julian Easter has a periodicity of 532 years. For instance, we
find April 12 for the years 179, 711, and 1243.






Chapter 9

Jewish and Moslem Calendars

It is not the aim of this Chapter to describe the principles of the Jewish and Moslem
calendars. We shall just give some calculation methods which are easily
programmable on a computer or on a pocket calculator. The algorithms given here
were published by Denis Savoie in 1990 and 1991 in Observations et Travaux, a
publication of the Société Astronomique de France.

In what follows we will denote by [a], the remainder of the division of @ by b,
a and b being integers. For instance, [16], = 2 and [21], = 0.

INT (x) will mean the integer part of x. It is, in fact, the greatest integer which
is not greater than x. For instance, INT(19) and INT(19.95) are both equal to 19.
Great care should be taken when the value in negative. Some programming
languages have both the INT and the FIX functions. For positive numbers these
functions give the same results. But, for instance, INT(—2.4) = —3, the correct
answer, while FIX(—-2.4) = ~2,

Jewish Calendar

The Jewish (or Hebrew) calendar is luni-solar, being ruled by both the lunation
(the synodic lunar month) and the tropical year. The Jewish month has 29 or 30
days, and the year has 12 or 13 months. Moreover, both types of years can vary in
three ways, so a Jewish common year may contain 353, 354, or 355 days, and an
embolismic or leap year 383, 384, or 385 days. The names of the months and their
lengths are given in Table 9.A.

The Jewish Easter, or Pesach, always falls on 15 Nisan.

Let A be the year number in the Jewish calendar, and X the year in the Julian
or Gregorian calendar. Then the date in year X on which 15 Nisan occurs can be
found by the following formulae due to Gauss.

_ X _ 3c—s)
C‘INT(loo) S‘INT( 3
A = X + 3760 ¢ = [12X + 121, b = [XI.
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TABLE 9.A
Classification of Years in the Jewish Calendar
Common Year Embolismic (Leap) Year
Month
Deficient  Regular  Complete | Deficient  Regular ~ Complete
Tishri 30 30 30 30 30 30
Heshvan 29 29 30 29 29 30
Kislev 29 30 30 29 30 30
Tevet 29 29 29 29 29 29
Shevat 30 30 30 30 30 30
Adar 29 29 29 30 30 30
Veadar 29 29 29
Nisan 30 30 30 30 30 30
Iyar 29 29 29 29 29 29
Sivan 30 30 30 30 30 30
Tammuz 29 29 29 29 29 29
Av 30 30 30 30 30 30
Elul 29 29 29 29 29 29
Sum 353 354 355 383 384 385
Q = —1.904412361576 + 1.554241796621a + 0.25b
—0.003177794022X + §
j = [INT(Q) + 3X + 5b + 2 — S],

r =

Q — INT(Q)

If X < 1583, or in order to obtain Q in the Julian calendar, take § = 0.

One distinguishes the following four cases:

if j =
ifj =
ifj =

PN

2,4, or 6, then D = INT(Q) + 23;
1, @a > 6, and r > = 0.632870370, then D = INT(Q) + 24;
0, a > 11,and r > = 0.897723765, then D = INT(Q) + 23;

in all other cases, D = INT(Q) + 22.

The Pesach then falls on D March or, if D > 31, on (D — 31) April.

Once the date of the Pesach is obtained, just add 163 days to obtain the date of
the beginning (1 Tishri) of the next Jewish year. The Jewish year A always begins
in September or October of the Julian or Gregorian year X = A — 3761.

If A is the Jewish year number, then take the remainder [A] jo. If this remainder
is 0, 3, 6, 8, 11, 14, or 17, then that year has 13 months; otherwise it is a common
year of 12 months.




9. JEWISH AND MOSLEM CALENDARS 73

Example 9.a — Calculate the date of 15 Nisan in the Gregorian year X = 1990.

We find successively C = 19; S =13; a=9; b=2; Q = 19.2599537042;
INT(Q) =19; j =3; r=0.2599537042.

We are in the fourth case, so D = 19 + 22. Hence, the date is 19 + 22 —~ 31 =
10 April. The Jewish year is 4 = 1990 + 3760 = 5750.

Adding 163 days, we find 1990 September 20. This is the Gregorian date

corresponding to 1 Tishri 5751. Because [5751],4 = 13, the Jewish year 5751 is a
common year.

To find the number of days (whether 353, 354, or 355) in that year, the simplest
way is to search the Gregorian date corresponding to the beginning of the next Jewish
year, and to make the difference. We find that 1 Tishri 5752 corresponds to 1991
September 9, so the year 4 = 5751 has 354 days.

Moslem Calendar

The Moslem (or Islamic) calendar is purely lunar, as it follows the lunar phase
cycle without regard for the tropical year.

The year contains twelve months. The months have alternately 30 and 29 days,
except the last month which can have 29 or 30 days — see Table 9.B.
Consequently, the Moslem year has 354 or 355 days; it is shorter than the
Gregorian year by about 11 days. As a result, the cycle of twelve lunar months
regresses through the seasons over a period of about 33 Gregorian years.

TABLE 9.B
Months of the Moslem Calendar
1. Muharram 30 days 7. Rajab 30 days
2. Safar 29 8. Sha'ban 29
3. Rabi‘al-Awwal 30 9. Ramadan 30
4. Rabi‘ath-Thani 29 10. Shawwal 29
5. Jumada 1-Ula 30 11. Dhu I-Qa'da 30
6. Jumada t-Tania 29 12. Dhu I-Hijja 29 or 30

The algorithms given below, due to M. Francceur (1841) and modified by Denis
Savoie and the present author, will give meaningless results for dates earlier than
622 July 16 of the Julian calendar, corresponding to the beginning of the Islamic
era, 1 Muharram A.H. 1 (A.H. = Anno Hegirae).
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Conversion of a Moslem date to a Gregorian (or Julian) date

Let H, M, and D be the year, the month number, and the day of the month in
the Moslem calendar. Then calculate

N = D + INT(29.5001 (M — 1) + 0.99)
Q = INT(H/30)

R = [Hl;

A = INT((L1R + 3)/30)

W = 4040 + 354R + 208 + A
Q1 = INT(W/1461)
02 = [W]ye

G = 621 + 4 XINT(7Q + QI)
K = INT(Q2/365.2422)

E = INT(365.2422K)
J=Q-E+N-1
X=G+K

If J > 366 and [X], =0, then subtract 366 from J, and add 1 to X.
If J > 365 and [X], > 0O, then subtract 365 from J, and add 1 to X.

Then J is the number of the day in the Julian year X. To convert to the
Gregorian calendar (if the date is later than 1582 October 4), and to find the month
and the day of the month, one can proceed as follows.

JD = INT(365.25(X — 1)) + 1721423 + J

_ D - 1867216.25) _ _ (_o_t_)
o = INT{ =z B=JD+1+a~INT|Z

However, if JD < 2299 161, then take 38 = JD.

N B b — 122.1)

b =g+ 1524 ¢ = INT(—-365_25

d = INT(365.25¢) —INT(—b_d
= INT(365.25¢ €= 30.6001

Then the day of the month is & —d — INT (30.6001 ¢)

and the month number mis e — 1 ife< 14
e—13 ife>13

The year is ¢ — 4716 if m > 2, or ¢ — 4715 if m < 3.

If [11R + 3]35 > 18, then H is a leap year of 355 days, otherwise it is a
common year of 354 days.
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Example 9.b — Find the Julian or Gregorian date corresponding to the first day of
the Moslem year 1421.

Here we have H = 1421, M = 1, D = 1, and we find successively:
N=1; Q=47; R=11; A=4; W=23094; QI =15; Q2 = 1179;
G=1997; K=13; E=1095; J=84; X = 2000.

This gives the 84th day of the year 2000 in the Julian calendar. Continuing, we
obtain

JD = 2451641; o = 16; B = 2451654; b = 2453178; ¢ = 6716;
d =2453019; e =5; day =6; month =4; year = 2000.
Hence, 1 Muharram 1421 corresponds to 6 April of the Gregorian year 2000.

Because [11R + 3};, = 4, which is not larger than 18, the Moslem year 1421
is a common year of 354 days.

Conversion of a Gregorian (or Julian) date to a Moslem date
If the date is given in the Gregorian calendar, we first have to convert it to the
corresponding date in the Julian calendar. This can be done as follows.

Let X, M, D be the given year, month number, and day of the month in the
Gregorian calendar.

If M < 3, subtract 1 from X, and add 12 to M.
Calculate

a=INT(—1—§—O—) 3=2—a+1m(%)

b = INT(365.25X) + INT(30.6001 (M + 1)) + D + 1722519 + B

With this value of b, calculate c, d, e, and the new values (Julian calendar) for
the day D, the month number M, and the year X as before (page 74).

The date being now Julian, proceed as follows.
If [X], = O, then W = 1, otherwise W = 2.

N = INT(275M) — WXINT(M+9) + D - 30
9 12
A=X—-623
A
B = INT(T)
C = [4], Cl = 365.2501C C2 = INT(C])

If CI — C2 > 0.5, add 1 to C2.
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D' = 1461B + 170 + C2

_ D’ )
Q‘INT( 10631
R = [D'] 0631
_ R)
J‘INT( 354
K = [R]ss4
_ 111+14)
O“INT( 30
H=30+J+1 JJ=K-0+N~-1

JJ is the number of the day in the Moslem year H. If JJ > 354, we have to
look if H is a common year or a leap year, in order to know whether we should
subtract 354 or 355 days. This can be done as follows.

If DL < 19, subtract 354 from JJ, and add 1 to H.
If DL > 18, subtract 355 from JJ, and add 1 to H.
Finally, if JJ = 0, then put JJ = 355, and subtract 1 from H.

Now, the day number JJ should be converted to the month number 7 and the
day d of the month:

_ JJ——I)
5= INT( 295

If J7 = 355, then m = 12 and d = 30.

m=1+§ d = INT(JJ — 29.55)

Example 9.c — Find the Moslem date corresponding ta the Gregorian date 1991
August 13.

Here we have X = 1991, M = 8, D = 13. We find successively:
a=19; B =-13; b =2450006; c =6707; d = 2449731; e = 8;
D=31; M=17; X=1991.
So the date in the Julian calendar is 1991 July 31.
W=2; N=212; A=1368; B=342; C=Ci=C2=0;, D' = 499832;
Q=47, R=175; J =0, K=175; O0=0; H= 1411, JJ = 386.
Because JJ > 354, we calculate CL = 1 and DL = 14. Because DL is smaller
than 19, we subtract 354 from JJ and add 1 to A, obtaining JJ = 32, H = 1412.
Then m = 2, d = 2. So the date is 2 Safar of A.H. 1412.




Chapter 10

Dynamical Time and Universal Time

The Universal Time (UT), or Greenwich Civil Time, is based on the rotation of the
Earth. The UT is necessary for civil life and for the astronomical calculations where
local hour angles are involved. (Universal Time is erroneously called “Greenwich
Mean Time” in Great Britain and by most navigators. In astronomy, “mean” time
has a precise meaning. By definition, mean time is measured from the superior
transit of the mean Sun, hence from mean noon. It is the civil time which begins at
midnight, so GMT and UT differ by twelve hours.)

However, the Earth’s rotation is generally slowing down. Moreover, this occurs
with unpredictable irregularities. For this reason, the UT is not a uniform time.

But the astronomers need a uniform time scale for their accurate calculations
(celestial mechanics, orbits, ephemerides). From 1960 to 1983, in the great
astronomical almanacs such as the Astronomical Ephemeris, use was made of a
uniform time scale called the Ephemeris Time (ET) and defined by the laws of
dynamics: it was based on the planetary motions. In 1984, the ET was replaced by
the Dynamical Time, which is defined by atomic clocks. The Dynamical Time is,
in fact, a prolongation of the Ephemeris Time.

One distinguishes a Barycentric Dynamical Time (TDB) and a Terrestrial
Dynamical Time (TDT). These times differ by at most 0.0017 second, the
difference being related to the motion of the Earth on its elliptical orbit around the
Sun (relativistic effect). Because this very small difference can be neglected for most
practical purposes, we will make no distinction between TDB and TDT, and we will
name both simply “Dynamical Time”, or TD by dropping the last letter from both
TDB and TDT. Hence, our abbreviation TD does nor come from the French
“Temps Dynamique”, but should be considered as meaning Time pysamical-

TDT was later shortened to simply TT (“Terrestrial Time™), an odd name
because the mean solar time at Moscow, or the sidereal time at New York, are
“terrestrial” times too!

The exact value of the difference AT = TD — UT can be deduced only from
observations. Table 10.A gives the value of AT for the beginning of some vears.
For the years earlier than 1988, they are taken from the Astronomical Almanac for
1988 [1]. However, the values earlier than 1955 have been slightly corrected by
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using Chapront’s new value n’ = —25.7376 "/century® for the tidal acceleration of
the Moon [2].

For epochs in the near future, one may extrapolate the values of Table 10.A.
For instance, we can use the provisional values

AT +65 seconds in 2000
AT +69 seconds in 2005
AT = +80 seconds in 2015

For other epochs outside the time interval of Table 10.A, an approximate value
of AT (in seconds) can be calculated by means of the following expressions due to
Chapront and Francou [2]:

Let ¢ be the time measured in centuries from the epoch 2000.0 (¢ < 0 before
2000), that is,

_year — 2000
- 100
Then, before the year 4948,
AT = 2177 + 497t + 44.1¢2 (10.1)

From +948 to +1600, and after the year +2000,
AT = 102 + 102¢ + 25.3¢2 (10.2)

However, to avoid a discontinuity at A.D. 2000, it is advised to add the correction
+0.37 X (year — 2100) for the years 2000 to 2100.

With these expressions, the uncertainty of UT can reach as much as two hours
back to 4000 B.C. Future improvements of the formulae will benefit the user when
converting from TD to UT, but will not change the algorithms, programs,
ephemerides, or tables given with the uniform time scale of TD.

The quantity AT was slightly negative from A.D. 1871 to 1901. Note that AT
is positive both for the remote past and for the distant future.

Except for the years 1871-1901, an instant given in UT is later than the instant
in TD having the same numerical value. For example, 1990 January 27, 0" UT is
57 seconds later than 1990 January 27, 0" TD. We have UT = TD — AT.

Example 10.a — New Moon took place on 1977 February 18 at 3"37™40* Dynamical
Time (see Example 49.a).

At that instant, AT was equal to +48 seconds. Consequently, the corresponding
Universal Time of that lunar phase was

3h37m40° — 48° = 3h36mS52°,
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TABLE 10.A
AT = TD - UT (in seconds) for the beginning of some years

year AT year AT year AT year AT year AT
1620 +121 1700 + 7 1780 +16 1860 + 7.7 1940 +24.3
1622 112 1702 7 1782 16 1862 7.3 1942 25.3
1624 103 1704 8 1784 16 1864 6.2 1944 26.2
1626 95 1706 8 1786 16 1866 5.2 1946 27.3
1628 88 1708 9 1788 16 1868 2.7 1948 28.2
1630 +82 1710 +9 1790 +16 1870 + 1.4 1950 +29.1
1632 77 1712 9 1792 15 1872 —-1.2 1952 30.0
1634 72 1714 9 1794 15 1874 - 2.8 1954 30.7
1636 68 1716 9 1796 14 1876 - 38 1956 31.4
1638 63 1718 10 1798 13 1878 -~ 4.8 1958 32.2
1640 +60 1720 +10 1800 +13.1 1880 - 55 1960 +33.1
1642 56 1722 10 1802 12.5 1882 - 53 1962 34.0
1644 53 1724 10 1804 12.2 1884 - 5.6 1964 35.0
1646 51 1726 10 1806 12.0 1886 — 5.7 | 1966 36.5
1648 48 1728 10 1308 12.0 1888 — 5.9 | 1968 38.3
1650 +46 1730 +10 1810 +12.0 1890 - 6.0 | 1970 +40.2
1652 44 1732 10 1812 12.0 1892 - 6.3 | 1972 42.2
1654 42 1734 11 1814 12.0 1894 - 6.5 1974 44.5
1656 40 1736 11 1816 12.0 1896 — 6.2 | 1976 46.5
1658 38 1738 11 1818 11.9 1898 - 4.7 | 1978 48.5
1660 +35 1740 +11 1820 +11.6 1900 — 2.8 1980 +50.5
1662 33 1742 11 1822 11.0 1902 -~ 0.1 1982 522
1664 31 1744 12 1824 10.2 1904 + 2.6 1984 53.8
1666 29 1746 12 1826 9.2 1906 5.3 1986 54.9
1668 26 1748 12 1828 8.2 1908 7.7 1988 55.8
1670 +24 1750 +12 1830 + 7.1 1910 +104 1950 +56.9
1672 22 1752 13 1832 6.2 1912 13.3 1992 58.3
1674 20 1754 13 1834 5.6 1914 16.0 1994 60.0
1676 18 1756 13 1836 54 1916 18.2 1996 61.6
1678 16 1758 14 1838 5.3 1918 20.2 1998 63.0
1680 +14 1760 +14 1840 + 54 1920 +21.1

1682 12 1762 14 1842 5.6 1922 22.4

1684 11 1764 14 1844 5.9 1924 23.5

1686 10 1766 15 1846 6.2 1926 23.8

1688 9 1768 15 1848 6.5 1928 24.3

1690 + 8 1770 +15 1850 + 6.8 1930 +24.0

1692 7 1772 15 1852 7.1 1932 23.9

1694 7 1774 15 1854 73 1934 23.9

1696 7 1776 16 1856 7.5 1936 23.7

1698 7 1778 16 1858 7.6 1938 24.0
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Example 10.b — Suppose that the position of Mercury should be calculated for
February 6 at 6" Universal Time of the year +333.

Here we have T = (333.1 - 2000)/100 = ~16.669, for which formula (10.1)
gives the value AT = +6146 seconds, or 102 minutes. Hence, TD = 6" + 102
minutes = 7"42™, and the calculation of the position of Mercury must be performed
for 333 February 6 at 7%42™ TD.

The following approximation for AT, valid for the entire time span 1800-1997,
represents the values given in Table 10.A with a maximum error of 2.3 seconds.

AT = —1.02 + 91.026 + 265.906% — 839.166° — 1545.206*
+ 3603.62 6% + 4385.980° — 6993.23 67 — 6090.04 63
+ 6298.1260° + 4102.8660'° — 2137.64 6! — 1081.51 62

In this formula, AT is expressed in seconds, and @ is the time elapsed since
1900.0 and expressed in Julian centuries (hence & < 0 before 1900).

The following formula gives AT for the shorter time span 1800-1899 with a
maximum error of 0.9 second:

AT = —=2.50 + 228.9560 + 5218.61 0% + 56282.846° + 324011.786*
+ 1061 660.75 65 + 2087298.89 8% + 2513 807.786
+ 1818961.41 6% + 727058.63 6° + 123 563.95 9

For the years 1900 to 1997, the following expression gives AT with a maximum
error of 0.9 second:

AT = -2.44 + 87.240 + 815.206% — 2637.806°> — 18756.336*
+ 124906.156° — 303 191.196° + 372919.88 47
— 232424.66 0% + 58353.42¢°

where 6§ has the same meaning as for the first formula.

Note that these three expressions are empirical formulae, and that their use is
prohibited outside of their defined validity range! For instance, the second
expression would give a value of 70000 seconds for the year 1945!

REFERENCES

1. Astronomical Almanac for 1988 (Washington, D.C.), pages K8 and K9.

2. J.Chapront, M. Chapront-Touzé, and G. Francou, Nore SO33 issued by the Bureau
des Longitudes, Paris, in December 1997.



Chapter 11

The Earth’s Globe

The actual figure of the Earth’s surface, including all the inequalities of mountains
and valleys, is incapable of geometric definition. Therefore, the ideal figure used
in geodesy is that of the mean sea level, extended through the continents. This is the
geoid, whose surface at every point is perpendicular to the local plumb line.

However, the heterogeneity of the Earth’s interior and the aftraction of
mountains are such that the surface of the geoid is not rigorously represented by any
definable solid. An approximation sufficient for most geographical and astronomical
purposes is obtained by considering it to be an ellipsoid of revolution.

Geocentric rectangular coordinates of an observer

The Figure represents a meridian cross section of the Earth. C is the Earth’s
center, N its north pole, S its south pole, EF the equator, HK the horizontal plane
of the observer O, and OP the perpendicular to HK. The direction OM, parallel to

SN, makes with OH an angle ¢
which is the geographical latitude
m of 0. The angle OPF too is equal
to . The latitude is positive in the
H northern hemisphere, negative in
the southern hemisphere.

The radius vector OC, joining
p the observer to the center of the
Earth, makes with the equator CF
E F an angle ¢" which is the geocentric
c P latitude of O. We have ¢ = ¢’ at
the poles and at the equator; for all
other latitudes

S le’| < |el
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Let f be the Earth’s flattening, and b/a the ratio NC/CF of the polar radius
NC = b to the equatorial radius CF = g. In 1976 the International Astronomical
Union adopted the values

1
a = 6378.14 km, f= 258557
from which we have

b
b
a

a(l —f) = 6356.755 km

1—f = 0.996647 19

The eccentricity e of the Earth’s meridian is

e =V2f - f?

= 0.08181922
We have the relations
F= 42t 1—e? = (1 —f)
a
For a place at sea level,
2
tan ¢’ = —5 tang
a

If H is the observer’s height above sea level in meters, the quantities p sin ¢’

and p cos ¢’, which are needed in the calculation of diurnal parallaxes, eclipses and
occultations, may be calculated as follows:

b
tanu = —

u 2 tan ¢

. . H .
sin ¢’ = — + —————— 3sin
pSie ST 378140 ¢
pcose = cosu +

6378140 ¢ ¢

The quantity p sin ¢’ is positive in the northern hemisphere and negative in the
southern one, while p cos ¢’ is always positive.

The quantity p denotes the observer’s distance to the center of the Earth (OC
in the Figure), the Earth’s equatorial radius being taken as unity.

Example 11.a — Calculate p sin ¢’ and p cos ¢’ for the Palomar Observatory, for
which

¢ = +33°21'22", H = 1706 meters.
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We obtain
¢ = 332356111
u = 332267796
p sin ¢’ = +0.546 861
pcos ¢ = +0.836339

Other formulae concerning the Earth’s ellipsoid

For a given point on the ellipsoid, the difference between the geographic latitude
and the geocentric latitude can be found from

o — ¢ = 692"73sin2¢ — 1716 sin 4¢

The difference ¢ — ¢’ reaches a maximum value for u = 45°. If ¢, and ¢,’
are the corresponding geographic and geocentric latitudes, we have

tan @y’ = vo + @’ = 90°

b
tan = —_
Yo a

2
b
whence, for the IAU 1976 ellipsoid,
@y = 45°05'46"36 ¢o' = 44°54'13".64
Yo — ¢y = 11'32"73
The quantity p (for sea level) can be found from
p = 0.9983271 + 0.0016764 cos 2¢ — 0.0000035 cos 4¢
The parallel of latitude ¢ is a circle whose radius is

a cos
R, = £

P
V1 - e?sin’p

where, as above, e is the eccentricity of the meridian ellipse.
Hence, one degree of longitude, at latitude ¢, corresponds to a length of

i
180 R

The rotational angular velocity of the Earth (with respect to the stars, not with
respect to the moving vernal equinox) is

w = 7.292114992 X 10~° radian/second.

Strictly speaking, this is the value at the epoch 1996.5 [1]. It decreases slowly
with time because the rotation of the Earth is slowing down — see Chapter 10.
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The linear velocity of a point at latitude ¢, due to the rotation of the Earth, is
wR, per second.

The radius of curvature of the Earth’s meridian, at latitude ¢, is

a(l—-ed
(1 — e2 Siﬂ2<p)3/2

m

and one degree of latitude corresponds to a length of —1—%0- R,.

R, reaches a minimum value at the equator, a(l — e?) = 6335.44 km,

and a maximum value at the poles, a/V 1 —e? = 6399.60 kilometers. -

Example 11.b — For ¢ = +42°, the latitude of Chicago, we find
R, = 4747.001 km
1° of longitude = 82.8508 km
linear velocity = wR, = 0.34616 km/second
R,, = 6364.033 km
1° of latitude = 111.0733 km

Distance between two points on the Earth’s surface

If the geographic coordinates of two points on the surface of the Earth are
known, the shortest distance s between these points, measured along the Earth’s
surface, can be calculated. Let the first point having longitude and latitude L, and
¢, respectively. Let L, and ¢, be the coordinates of the second point. We will
suppose that these points are at sea level.

If no great accuracy is needed, we may consider the Earth as being spherical
with a mean radius of 6371 kilometers. Find the angular distance d between the
two points by means of the formula

cos d = sin ¢, sin ¢, + €os ¢, c0S ¢, cos (L — L,) (11.1)

which is similar to formula (17.1) for the angular separation between two celestial
bodies. Formula (11.1) does not work well when d is very small — see Chapter 17.
Then the required linear distance is

_ 6371 wd

180 kilometers (11.2)

where d is expressed in degrees.
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Higher accuracy is obtained by the following method, due to H. Andoyer [2];
the relative error of the result is of the order of the square of the Earth’s flattening.

As before, let a be the equatorial radius of the Earth, and f the flattening. Then
calculate

F=1te G= "9 )\_.Ll“Lz

2 2 N 2
S = sin?G cos?\ + cos?F sin®\

C = cos?G cos\ + sin®F sinh

tan w = %
SC . . .
R = o where w is expressed in radians
3R -1 3R + 1
D= 2oe =50 T

and the required distance will be

s = D (1 + fH, sin*F cos’G — fH, cos’F sin’G)

Example 11.c — Calculate the geodesic distance between the Observatoire de Paris
(France) and the U.S. Naval Observatory at Washington, D.C.,
adopting the following coordinates:

Paris : L, = 2°20'14" East = —2°20"14"
¢, = 48°50’11” North = +48°50"11"
Washington: L, = 77°03'56" West = +77°03'56"
¢, = 38°55'17" North = +38°55'17"
We find successively
F +43°878 8889
G + 42957 5000
A —392701 3839
S 0.216 426 96
C 0.783 573 04
w 272724274 = 0.483 879 87 radian
R 0.8510555
D 6172.507 km
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and finally s = 6181.63 kilometers, with a possible error of the order of 50 meters.

If we use the approximate expressions (11.1) and (11.2), we obtain

cosd = 0.567 146
d = 55°44855
s = 6166 km

REFERENCES

1. International Earth Rotation Service, Annual Report for 1996 (Observatoire de
Paris, 1997).

2. Annuaire du Bureau des Longitudes pour 1950 (Paris), page 145.



Chapter 12

Sidereal Time at Greenwich

We shall denote by ©, the sidereal time at Greenwich at 0" UT of a given date, and
by 6, the sidereal time at Greenwich for any given instant UT.

The sidereal time at the meridian of Greenwich, at 0" Universal Time of a given
date, can be obtained as follows.

Calculate the JD corresponding to that date at 0" UT (Chapter 7). Thus, this is
a number ending on .5. Then find T by

ID — 2451545.0
T= 36525 (12.1)

The mean sidereal time at Greenwich at 0" UT is then given by the following
expression which was adopted in 1982 by the International Astronornical Union:

O, = 6"41™50554841 + 8640 1845812866 T

12.2
+ 0093 104 T2 — 020000062 7° (122)
Expressed in degrees and decimals, this formula can be written

O, = 100.46061837 + 36 000.770053 608 T (12.3)

+ 0.000387933 72 — T3/38 710000

Important: the formulae (12.2) and (12.3) are valid only for those values of T
which correspond to 0" UT of a date. All other values would give incorrect results.

To obtain the sidereal time 6, at Greenwich for any instant UT of a given date,
multiply that instant by 1.002 737909 35 and add the result to the sidereal time 6,
at 0" UT.

The mean sidereal time at Greenwich, expressed in degrees, can also be found
directly for any instant as follows. If JD is the Julian Day corresponding to that
instant in UT (not necessarily 0"), find 7 by formula (12.1), and then
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6, = 280.46061837 + 360.985 64736629 (JD — 2451545.0)

(12.4)
+ 0.000387933 T2 — T3/38710000

If high accuracy is needed, this formula requires the use of a computer language
working with a sufficient number of significant digits.

The sidereal time obtained by formulae (12.2), (12.3), or (12.4) is the mean
sidereal time, that is, the Greenwich hour angle of the mean vernal point (the
intersection of the ecliptic of the date with the mean equator of the date).

The apparent sidereal time, or the Greenwich hour angle of the true vernal
equinox, is obtained by adding the correction Ay cos £, where Ay is the nutation
in longitude, and ¢ the true obliquity of the ecliptic (see Chapter 22). This
correction for nutation is called the nuration in right ascension or equation of the
equinoxes. Because Ay is a small quantity, the value of ¢ may be taken to the
nearest 10" here.

If Ay is expressed in arcseconds (seconds of a degree), the correction in
seconds of time is

Ay cos €
15

Example 12.a — Find the mean and the apparent sidereal time at Greenwich on
1987 April 10 at O® UT.

This date corresponds to JD 2446 895.5, and formula (12.1) gives
T = ~0.127 296 372 348
We then find by means of formula (12.2)
0, = 6"41™50:54841 — 1099 864.18158 seconds

or, by adding a convenient multiple of 86400 seconds (the number of seconds in one
day),
6"41™50°54841 + 23335581842

6841m50854841 + 6M28™55581842
= 131104613668

which is the required mean sidereal time.

6

From Example 22.a we have, for the same instant, AY = —3"788 and ¢ =
23°26'36"85. [In fact, these values are for O" TD, not for 0" UT, but here we will
neglect the very small variation of Ay during the time interval AT = TD — UT.]

3.788
15

Hence the nutation in right ascension is — cos 23°44357 = -052317,
and the required apparent sidereal time is

13810™46".3668 — 052317 = 13"10™4651351
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Example 12.b - Find the mean sidereal time at Greenwich on 1987 April 10 at
19"21™00° Universal Time.

First, we calculate the mean sidereal time for that date at 0® UT. We find
13"10™4653668 (see the previous Example). Then

1.002 73790935 x 19"21™00°
1.002 737909 35 X 69660 seconds
69 850.7228 seconds
194241057228

and the required sidereal time is

32h34m572 0896
8h34m5750896

13P10™4653668 + 19P24™1027228

Alternatively, we may use formula (12.4). The Julian Day corresponding to 1987
April 10 at 19721™00° UT is

JD = 2446 896.30625
and, by (12.1), the corresponding value of T is —0.127 274 30. Formula (12.4) then
gives

0, = —1677831.262 1266 degrees

or, by adding a convenient multiple of 360°,

6, = 12827378734

This is the required mean sidereal time in degrees. We obtain it in hours by
dividing it by 15 (since one hour corresponds to 15 degrees):
0, = 8858252489 = 8"34™5750896,

the same result as above.







Chapter 13

Transformation of Coordinates

We will use the following symbols:

o

1950
01950

=

PN S

right ascension. This quantity is generally expressed in hours, minutes,
and seconds of time, and hence should first be converted into degrees
(and decimals) and then, if necessary, into radians, before it is used in
a formula. Conversely, if o has been obtained by means of a formula
and a programming language, it is expressed in radians or in degrees;
it may be converted to hours by division of the degrees by 15, and
then, if necessary, be converted into hours, minutes, and seconds;

= declination, positive if north of the celestial equator, negative if south;

right ascension referred to the standard equinox of B1950.0;

= declination referred to the standard equinox of B1950.0;

right ascension referred to the standard equinox of J2000.0;

= declination referred to the standard equinox of J2000.0;

ecliptical (or celestial) longitude, measured from the vernal equinox along
the ecliptic;

ecliptical (or celestial) latitude, positive if north of the ecliptic, negative
if south;

galactic longitude;

galactic latitude;

altitude, positive above the horizon, negative below;

azimuth, measured westward from the Sowrh. Note that navigators and
meteorologists count the compass direction, or azimuth, from the North
(0°), through the East (90°), South (180°), and West (270°). But
astronomers disagree (see the box on next page) and we shall measure
the azimuth from the South, because the hour angles too are measured
from the South, at least for observers in the northern hemisphere.
Hence, a celestial body which is exactly on the southern meridian has
A =H = 0°

21



92 ASTRONOMICAL ALGORITHMS

The azimuth : from the North or from the South?

William Chauvenet, on page 20 of his Manual of Spherical and Practical
Astronomy (5™ edition, 1891), Vol. I, wrote: “The origin from which
azimuths are reckoned is arbitrary; so also is the direction in which they are
reckoned; but astronomers usually take the south point of the horizon as the
origin,... Navigators, however, usually reckon the azimuth from the north or
south points, according as they are in north or south latitude.”

S. Newcomb, on p. 95 of his Compendium of Spherical Astronomy: “in
practice it is measured either from the north or the south point, and in either
direction, east or west.” — so this great American astronomer had no specific
preference.

A. Danjon, on p. 39 of his excellent Astronomie Générale (Paris, 1959):
“Le point S, origine des azimuts, (...) est ’intersection du méridien et de
I’horizon, au sud.”

™
I

obliquity of the ecliptic; this is the angle between the ecliptic and the
celestial equator. The mean obliquity of the ecliptic is given by formula
(22.2). If, however, the apparent right ascension and declination are
used (that is, affected by the aberration and the nutation), the true
obliquity € + Ae should be used (see Chapter 22). If « and & are
referred to the standard equinox of J2000.0, then the value of € for that
epoch should be used, namely &,000 = 23°26'21".448 = 23°4392911.
For the standard equinox of B1950.0, we have £,450 = 237445 7889;

the observer’s latitude, positive if in the northern hemisphere, negative in
the southern one;

the local hour angle, measured westwards from the South.

A
1l

=
I

If 6 is the local sidereal time, 6, the sidereal time at Greenwich, and L the
observer’s longitude (positive west, negative east from Greenwich), then the local
hour angle can be calculated from

H=10-« or H=0-L-«

If o is affected by the nutation, then the sidereal time too must be affected by
it (see Chapter 12).

For the transformation from equatorial into ecliptical coordinates, the following
formulae can be used:
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Note on the geographic longitudes

In this work, the geographic longitudes are measured positively westwards
from the meridian of Greenwich, and negatively to the east. This convention
has been followed by most astronomers during more than one century — see
for instance References 1 to 6. For example, the longitude of Washington,
D.C., is +77°04'; that of Vienna, Austria, is —16°23'.

We cannot understand why the International Astronomical Union, having
first decided to measure all planetographic longitudes in the direction opposite
to that of rotation, then alters the system for the Earth (1982). We shall nor
follow this IAU resolution, and we shall continue to consider wes: longitudes
as positive. This is in conformity with the longitude systems on the other
planets. On Mars and Jupiter, for instance, the longitudes are measured
positively to the west, and this is why the longitude of their central meridian,
as seen from the Earth, is increasing with time.

sin o cos € + tan 6 sin &

tan A = 13.1n

COos o

sin 8
Transformation from ecliptical into equatorial coordinates:

sin A cos & — tan @ sin &

sin  cos & — cos & sin & sin o (13.2)

tan ¢ = (13.3)

cos A

sind = sinfB cose + cos B sin g sin A (13.4)

Calculation of the local horizontal coordinates:

sin H
tanA = -
cos H sin ¢ — tan § cos ¢
sinh = sin ¢ sin & + cos ¢ cos & cos H

(13.5)

(13.6)

If one wishes to reckon the azimuth from the North instead of the South, add

180° to the value of 4 given by formula (13.5).

Transformation from horizontal into equatorial coordinates:
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sin A
tan H = cos A sin ¢ + tan h cos ¢
sind = singsinh — cos g coshcos A

The current galactic system of coordinates has been defined by the International
Astronomical Union in 1959. In the standard equatorial system of B1950.0, the
galactic (Milky Way) North Pole has the coordinates

arg50 = 127497 = 192725, Broso = +27%4

and the origin of the galactic longitudes is the point (in western Sagittarius) of the
galactic equator which is 33° distant from the ascending node (in western Aquila)
of the galactic equator with the equator of B1950.0.

These values have been fixed conventionally and therefore must be considered
as exact for the mentioned equinox of B1950.0.

Transformation from equatorial coordinates, referred to the standard equinox of
B1950.0, into galactic coordinates:

sin (192225 — «)

BIX = o8 (192725 — a) sin 2754 — tan  cos 27°4 (13.7)
!l = 303° —x
sin b = sin & sin 2724 + cos & cos 27°4 cos (192225 — ) (13.8)

Transformation from galactic coordinates into equatorial coordinates referred to
the standard equinox of B1950.0:

sin (I — 123°)

@y = os(l— 123°%) sin 2754 — tan b cos 27°4
a = y+ 12925
sind = sin b sin 27°4 + cos b cos 27°4 cos (I — 123°)

If the 2000.0 mean place of the star is given insteac of the 1950.0 mean place,
then, before using formulae (13.7) and (13.8), convert oy and G000 10 @950
and 8;959. See Chapter 21.

The formulae (13.1), (13.3), etc., give tan A, tan a, €lc., and then A, o, etc.,
by the function arctangent. However, the exact quadrant in which the angle is
situated is then unknown. To remove the ambiguity of 180°, apply the ATN2
function to the numerator and the denominator of the function (instead of performing
the actual division), or use another trick. See “The correct quadrant” in Chapter 1.
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Example 13.a — Calculate the ecliptical coordinates of the star Pollux (8 Gem),
whose equatorial coordinates are

Qoo = TM45™185946, B0 = +28°01'34726.

Using the values o = 1169328942, & = +28°026183, and & = 2394392911,
formulae (13.1) and (13.2) give

+1.034 039 86

tan A = —_m whence A = 1139215630;

B

Because « and 8 are referred to the standard equinox of 2000.0, A and 8 too are
referred to that equinox,

+6°684 170.

Exercise. — Using the values of A and 8 found above, find o and & again by
means of formulae (13.3) and (13.4).

Example 13.b — Find the azimuth and the altitude of Venus on 1987 April 10 at
19%21™00° UT at the U.S. Naval Observatory at Washington,
D.C. (longitude = +77°03'56" = +5"08™15%7, latitude =

+38°55'17").
The planet’s apparent equatorial coordinates, interpolated from an ephemeris, are
o = 23P09™165641, 6 = —6°43'11"61

These are the apparent right ascension and declination of the planet. So we need
the apparent sidereal time for the given instant.

We first calculate the mean sidereal time at Greenwich on 1987 April 10 at
19P21™00¢ UT, and find 8"34™5750896 (see Example 12.b).

By means of the method described in Chapter 22, we find for the same instant:

—3".868
23°26'36".87

nutation in longitude : Ay
true obliquity of the ecliptic: &

The apparent sidereal time at Greenwich is

—3.868
15
Hour angle of Venus at Washington:
H = 00 bl L -
834562853 — 5%08™1557 — 23"09™16%641
—19"42m355488 = —19%709 8578 = —295°647 867
+64°352 133

Formulae (13.5) and (13.6) then give

6, = 8h34m5750896 + ( cos s) seconds = 8"34™56%853
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+0.901 4712 o
tanA = m whence A = +68°0337
h = +1591249

so the planet is 15 degrees above the horizon between the southwest and the west.

Note that formula (13.6) does not take into account the effect of the atmospheric
refraction, nor that of the planet’s parallax, nor the dip of the horizon. For the
atmospheric refraction, see Chapter 16. The correction for parallax is dealt with in
Chapter 40.

As an exercise, find the galactic coordinates of Nova Serpentis 1978, whose
equatorial coordinates are

0950 = 17748™59574, Sio50 = —14°43'08"2
Answer: 1= 1229593, b = +6°0463.
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Chapter 14

The Parallactic Angle, and three other Topics

Suppose that on a bright morning we are looking at the Sun through a piece of dark
glass, and that we see a large sunspot near the western (“right™) limb of the Sun
(Figure 1, A). At noon, the Sun being near the southern meridian, we notice that
the spot is lower (Figure 1, B). And in the afternoon, we see that the spot has
moved still farther along the Sun’s limb (Figure 1, C).

The spot did not actually move that much over the solar disk. It is the whole
image of the Sun which rotated clockwise. This can be seen easier with the Moon
(Figure 2).

This apparent rotation is easily understood when we consider the diurnal motion
of the celestial sphere. Each celestial body describes a parallel circle, a diurnal arc
(Figure 3). Only when the Sun (or the Moon) is exactly on the southern meridian,
will the celestial north be up, in the direction of the zenith.

The constellations show a similar effect. For an observer in the northern
hemisphere of the Earth, the constellation of Orion is inclined to the “left” in the
southeast, is upright in the south, and is inclined to the “right” in the southwest.

In Figure 4, the circle represents the disk of the Sun (or that of the Moon). The
arc AB is a part of its diurnal arc on the celestial sphere. C is the center of the disk.
The direction of the zenith and that of the celestial North are indicated. The latter
direction is perpendicular to the arc AB. Z is the zenith point of the disk; it is the
uppermost point of the disk at the sky as seen by the observer at the given instant.

o b

Fig. 1: The apparent displacement of a Fig. 2: The First-Quarier Moon
sunspot in the course of the day: in the Jor an observer in the northern
morning (A), near noon (B), and in the hemisphere: (A) near the south,
afternoon (C). In each of the three around the time of sunset; and
sketches, the circle represents the solar (B) later that evening. The zenith
disk, and the zenith is at the top. is up.
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East South West
horizon

Fig. 3

N is the north point of the disk; the direction CN points towards the northern
celestial pole.

The angle ZCN is called the parallactic angle and is generally designed by q.
This parallactic angle has absolutely nothing to do with the parallax! The name
arises from the fact that the celestial body moves along a paraliel circle. Compare
with the “parallactic” mounting of a telescope.

By convention, the angle ¢ is negative before, and positive after the passage
through the southern meridian. Exactly on the meridian, we have g = 0°.
The parallactic angle g can be calculated from
sin H

tang = tan ¢ cos 6 — sin & cos A (14.1)

where, as in the preceding Chapter, ¢ is the geographical latitude of the observer,
& the declination of the celestial body, and H its hour angle at the given instant.

Exactly in the zenith, the angle g is not defined. Indeed, in that case we have
H = 0° and & = ¢, so formula (14.1) yields tan ¢ = 0/0. This can be compared
with somebody who is exactly at the North Pole of the Earth: his geographical
longitude is not defined, because all meridians of the Earth converge to his place.
For that special observer, all points of the horizon are in the southern direction!

When a celestial body passes exactly through the zenith, the parallactic angle
g suddenly jumps from —90° to +90°.
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enith
‘ A North If the celestial body

4 is on the horizon (hence
! ,4 rising or setting), formula
Vg (14.1) simplifies greatly,
N namely

and in that case it is not
~ necessary to know the
N value of the hour angle.

Fig. 4 B

Ecliptic and Horizon

If & is the obliquity of the ecliptic, ¢ the latitude of the observer, and # the local
sidereal time, then the longitudes of the two points of the ecliptic which are (180
degrees apart) on the horizon, are given by

—cos §
= = : 14.2
tan A sin € tan ¢ + cos € sin § ( )

The angle I between the ecliptic and the horizon is given by

cosI = cos & sin g — sin € cos ¢ sin § (14.3)

Note that 7 is not the angle which the daily path of the Sun makes with the
horizon! In the course of one sidereal day, the angle / varies between two extreme
values. For example, for latitude 48°00’ North, with ¢ = 23°26’, the extreme
values of I are

90° — ¢ + ¢
90° —p — &

65°26' for & = 90°
18°34' for 8 = 270°

Example 14.a — For ¢ = 23°44, ¢ = +51°, 8 = 5"00™ = 75°, we find, from
formula (14.2), tan A = —0.1879, whence X = 169°21" and A = 349°21',
Formula (14.3) gives I = 62°.
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Ecliptic and Equator To the North

L. . celestial
Let A, B be the ecliptical longitude and pole

latitude of a star, and & the obliquity of the

A To the A
ecliptic. Then, the angle g between the pole of the

direction of the northern celestial pole and the ecliptic
direction of the north pole of the ecliptic, at the

star (see Figure at right), is given by

cos A tan &
sin B8 sin N tan € — cos 8 q

tanq =

If in this formula we make 8 = 0°, then
the formula reduces to

tan g, = —cos A tan & star

and ¢, is the angle between the ecliptic (at a given point of longitude A) and the
east-west direction on the celestial sphere — see the Figure below. This angle may
be of importance when preparing a diagram showing the path of the Moon through
the Earth’s shadow during a lunar eclipse.

- equator N

Diurnal path and Horizon

The angle J of the diurnal path of a celestial body (nor the ecliptic) relative to
the horizon at the time of its rising or setting can be found from

B = tan § tan ¢, c=y/1-B2, tanJ = Ccos & /tan ¢

where & is the declination of the body, and ¢ the observer’s latitude. In these
formulae, the declination of the body is supposed to be constant, and the
atmospheric refraction is neglected. When = 0°, then J = 90° ~ ¢.

For example, for the Sun at latitude 40° (north or south), J varies between 50°
at the equinoxes and 45°31’ at the solstices.

The error in J due to neglecting the variation of the declination will be at most
4’ in the case of the Sun. For the Moon, the error can exceed 1 degree.



Chapter 15

Rising, Transit, and Setting

The local hour angle corresponding to the time of rise or set of a celestial body is
obtained by putting # = 0 in formula (13.6). This gives

cos Hy = —tan ¢ tan

However, the instant so obtained refers to the geometric rise or set of the center
of the celestial body. By reason of the atmospheric refraction, the body is actually
below the horizon at the instant of its apparent rise or set. The value of 0°34’ is
generally adopted for the effect of refraction at the horizon. For the Sun, the
calculated times generally refer to the apparent rise or set of the upper limb of the
disk; hence, 0°16’ should be added for the semidiameter.

Actually, the amount of refraction changes with air temperature, pressure, and
the elevation of the observer (see Chapter 16). A change of temperature from winter
to summer can shift the times of sunrise and sunset by about 20 seconds in mid-
northern and mid-southern latitudes. Similarly, observing sunrise or sunset over a
range of barometric pressures leads to a variation of a dozen seconds in the times.
However, in this Chapter we shall use a mean value for the atmospheric refraction
at the horizon, namely, the value of 0°34’ mentioned above.

We will use the following symbols:

L = geographic longitude of the observer in degrees, measured positively west
from Greenwich, negatively to the east (see Chapter 13);
¢ = geographic latitude of the observer, positive in the northern hemisphere,
negative in the southern hemisphere;
AT = the difference TD — UT between Dynamical Time and Universal Time, in
seconds of time;
hy = the “standard” altitude, i.e., the geometric altitude of the center of the body
at the time of apparent rising or setting, namely,

hy = —0°34' —0°5667 for stars and planets;
hy = —0°50" = —0°8333 for the Sun.

101
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For the Moon, the problem is more complicated because 4, is not constant.
Taking into account the variations of semidiameter and parallax, we have hy =
0.72757 — 0°34’, where = is the Moon’s horizontal parallax. If no great
accuracy is required, the mean value hy = +0°?125 can be used for the Moon.

Suppose we wish to calculate the times, in Universal Time, of rising, of transit
(when the body crosses the local meridian at upper culmination), and of setting of
a celestial body at a given place on a given date D. We take the following values
from an almanac, or we calculate them ourselves with a computer program :

— the apparent sidereal time 6, at O" Universal Time on day D for the meridian of
Greenwich, converted into degrees;

— the apparent right ascensions and declinations of the body
oy and 8; on day D — 1 at 0" Dynamical Time

o, and 8, on day D -

a3 and 6; onday D+ 1 —
The right ascensions should be expressed in degrees, too.

We first calculate approximate times as follows.

sin by — sin ¢ sin &,
COS ¢ COS &,

cos Hy = (15.1)

Attention! First test if the second member is between —1 and +1 before
calculating H,. See Note 2 at the end of this Chapter.

Express H, in degrees. H, should be taken between 0° and +180°. Then we
have:

a,+L — € 3
for the transit: : 2
or the transi 360
H
for the rising : = my— = 15.2
or the rising my mgy 360 } ( )
for the setting : my = Mo + -l
g: 2 = My 360 J

These three values m are times, on day D, expressed as fractions of a day.
Hence, they should be between 0 and +1. If one or more of them are outside of
this range, add or subtract 1. For instance, -+0.3744 should remain unchanged, but
—0.1709 should be changed to +0.8291, and +1.1853 should be changed to
+0.1853.

Now, for each of the three m-values separately, perform the following
calculation.
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Find the sidereal time at Greenwich, in degrees, from
6, = Oy + 360.985647m
where m is either mgy, m,, or m,.

For n = m + AT/86400, interpolate o from «;, a,, as and & from §;, §,, 65,
using the interpolation formula (3.3). For the calculation of the time of transit, &
is not needed.

Find the local hour angle of the body from H = 6, ~ L — a, and then the
body’s altitude % by means of formula (13.6). This altitude is not needed for the
calculation of the time of transit.

Then the correction to m will be found as follows:

— in the case of a transit,

H
Am = - 2
" 360

where H is expressed in degrees and must be between —180 and + 180 degrees. (In
most cases, H will be a small angle and be between ~1° and +1°);

— in the case of a rising or a setting,

h"ho

Am = -
" 360 cos 6 cos ¢ sin H

where h and h, are expressed in degrees.

The corrections Am are small quantities, in most cases being between —0.01
and +0.01. The corrected value of m is then m + Am. If necessary, a new
calculation should be performed using the new value of m.

At the end of the calculation, each value of m should be converted into hours
by multiplication by 24.

Example 15.a — Venus on 1988 March 20 at Boston,

longitude = +71°05' = +71°0833,
latitude = +42°20' = +42°3333.

From an accurate ephemeris, we take the following values:
1988 March 20, 0" UT:  ©, = 11%50™58510 = 177374208

Coordinates of Venus at 0" TD:

March 19 o, = 2M42™43%25 = 40°68021 6, = +18°02'51"4 = +18204761
March 20 o, =2 46 55.51 = 41.73129 8, = +18 26 27.3 = +18.44092
March 21 a3 =2 51 07.69 = 42.78204 d; = +18 49 38.7 = +18.82742
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We take hy = —0°5667, AT = +56 seconds, and find by formula (15.1)
cos Hy, = —0.317 8735, H, = 108°5344, whence the approximate values:

transit : my, = —0.18035, whence my = +0.81965
my — 0.30148 = +0.51817
my + 0.30148 = +1.12113, whence m, = +0.12113

rising : my

setting : m,

Calculation of more exact times:

rising transit setting
m +0.51817 +0.81965 +0.12113
0, 4°79401 113262397 221°46827
n +0.51882 +0.82030 +0.12178
inter- o 42°27648 42°59324 41°85927
polation { 8 +18°64229 +18°48835
H —108°56577 —0°05257 +108252570
h —0244393 ~0°52711
Am —0.00051 +0.00015 +0.00017
corrected m +0.51766 +0.81980 +0.12130

A new calculation, using these new values of m, yields the new corrections
—0.000 003, —0.000004, and —0.000 004, respectively, which can be neglected.
So we have, finally:

rising : m, = +0.51766, 24" x 0.51766 = 12525™ UT

transit : my = +0.81980, 24" x 0.81980 = 19%41™ UT

setting : m, = +0.12130, 24h % 0.12130 = 2b55™ UT
Notes

1. In Example 15.a we found that at Boston the time of setting was 2"55™ UT on
March 20. However, converted to local standard time this corresponds to an
instant on the evening of the previous day! If really the time of setting on
March 20 is needed in local time, the calculation should be performed using the
value m, = +1.12113 first found, instead of +0.12113.

2. If the body is circumpolar, the second member of formula (15.1) will be larger
than 1 in absolute value, and there will be no angle H,. In such a case, the
body will remain the whole day either above or below the horizon.

3. If approximate times are sufficient, just use the inifial values my, m,, and m,
given by (15.2).



Chapter 16

Atmospheric Refraction

Atmospheric refraction is the bending of light while passing through the Earth’s
atmosphere. As a ray of light penetrates the atmosphere, it encounters layers of air
of increasing density, resulting in the continuous bending of the light. As a result,
a star (or the Sun’s limb, etc.) will appear higher in the sky than its true position.
The atmospheric refraction, which is zero in the zenith, increases towards the
horizon. At an altitude of 45°, the refraction is about one arcminute; at the horizon,
it amounts to about 35’. Thus, the Sun and the Moon are actually below the horizon
when they appear to be rising or setting. Moreover, the rapidly changing refraction
at low altitudes gives the rising or setting Sun its familiar oval appearance.

Allowance must be made for atmospheric refraction when determining positions,
and one distinguishes two cases:

— the apparent aititude 4, of a celestial body has been measured, and one should
find the refraction R to be subtracted from hq to obtain the true altitude #;

— the true “airless” altitude A has already been calculated from celestial
coordinates and formulae of spherical trigonometry, and we want to calculate
the refraction R to be added to h in order to predict the apparent altitude 4.

Almost all refraction formulae we have come across consider the first case only:
they are designed for deriving true altitudes from observed ones. But here we will
consider both cases.

For many purposes, “average” meteorological conditions may be assumed.
However, anomalous refraction near the horizon, exemplified by distortions of the
setting Sun, should remind us that rigorous exactness at very low altitudes cannot
be reached.

When the altitude of the celestial body is larger than 15°, one of the following
two formulae may be used, as the case may be:

R = 587294 tan (90° — hy) — 0"0668 tan’ (S0° — hg) (16.1)
R = 58”276 tan (90° — ) — 070824 tan®(90° — k) (16.2)
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The first formula was given by Smart [1], while the second one has been
derived by us from the first formula. For altitudes below 15°, these expressions will
give inaccurate, or even completely meaningless results.

It appears that, at high altitudes, the refraction is proportional to the tangent of
the zenithal distance.

A surprisingly simple formula for refraction, with good accuracy at all altitudes
from 90° to 0°, was given by G.G. Bennett of the University of New South Wales
[2]. If the refraction R is expressed in minutes of arc, Bennett’s formula is

1
R = (16.3)
131
anlho + i aa

where hy is the apparent altitude in degrees. According to Bennett, this formula is
accurate to 0.07 arcminute for all values of 7;. The largest error, 0.07 arcminute,
occurs at 12° altitude.

Note that for the zenith (h, = 90°) formula (16.3) yields R = —0"08 instead
of exactly zero. This can be rectified by adding +0.001 3515 to the second member
of the formula.

Bennett also showed how his formula can be refined. Calculate R by means of
formula (16.3); then a correction to R, expressed in minutes of arc, is

—0.06 sin (14.7R + 13)

where the expression between parentheses is expressed in degrees. Calculated in this
way, the maximum error is stated to be only 0.015 arcminute, or ¢".9, for the whole
range 90°-0°. [At the zenith, one finds R = —0".89, so expression (16.3), without
further correction, is better in this case.}

For the inverse problem, that of calculating the effect of refraction when the
true altitude A is known, S@mundsson, of the University of Iceland, proposed the
following formula [3]:

R = 1.02 (16.4)

10.3 )
tan{ k + 551

This formula is consistent with Bennett’s (16.3) to within 4”. Again, it does not
give exactly R = 0 for A = 90°. This can be remedied by adding +0.0019279 to
the second member.

Formulae (16.1) to (16.4) assume that the observation is made at sea level,
when the atmospheric pressure is 1010 millibars, and when the air temperature is
10° Celsius. The effect of refraction increases when the pressure /ncreases or when
the temperature decreases.

If the pressure at the Earth’s surface is P millibars, and the air temperature is
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T degrees Celsius, then the values of R given by the formulae (16.1) to (16.4)
should be multiplied by

P % 283
1010 273+ T

However, this is only approximately correct. The problem is more complicated
because the refraction depends on the wave-length of the light too! The expressions
given in this Chapter are for yellow light, where the human eye has maximum
sensitivity.

Example 16.a — Calculate the apparent flattening of the solar disk near the horizon,
when the lower limb is at an apparent altitude of exactly 0°30°.
Assume a true solar diameter of exactly 0°32’, and mean
conditions of air pressure and temperature.
For hy = 0°5, formula (16.3) gives R = 28'.754, so the true altitude of the Sun’s
lower limb is

0°30' — 0°28".754 = 0°01'.246
and hence the true altitude of the upper limb is
h = 0°01'.246 + 0°32' = 0°33'.246 = 07?5541

For this value of h, formula (16.4) yields R = 24'.618, so the apparent altitude
of the Sun’s upper limb is 33246 + 24'618 = 57'864, and the apparent vertical
diameter of the solar disk is 57'.864 — 30’ = 27'.864.

Consequently, the ratio of the apparent vertical diameter to the horizontal diameter
of the solar disk, under the conditions of this Problem, is 27.864 /32 = 0.871.

Note that, while of course the azimuth is unchanged by refraction, the horizontal
diameter of the solar disk is very slightly contracted by reason of the refraction. This
is due to the fact that the extremities of this diameter are raised along vertical circles
that meet at the zenith. Danjon [4] writes that the apparent contraction of the
horizontal diameter of the Sun is practically constant and independent of the altitude,
and that this contraction is approximately 0".6.

For heights of a few degrees the results of the formulae should be judged with
care. Near the horizon unpredictable disturbances of the atmosphere become rather
important. According to investigations by Schaefer and Liller {5], the refraction at
the horizon fluctuates by 0°3 around a mean value normally, and in some cases
apparently much more. Remembering our Chapter about accuracy, it should be
mentioned here that giving rising or setting times of a celestial body more accurately
than to the nearest minute makes no sense.
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Chapter 17

Angular Separation

The angular distance d between two celestial bodies whose right ascensions and
declinations are known is given by the formula

cos d = sin §, sin &, + cos &, cos , cos (a; — ;) 7.1

where «; and 8, are the right ascension and declination of one body, and a, and &,
those of the other body. This distance is measured along the great circle joining the
two bodies, which is the shortest possible arc between the two points.

The same formula may be used when the ecliptical (celestial} longitudes A and
latitudes 3 of the two bodies are given, provided that oy, o, &;, and 5, are
replaced by A\, Ay, B, and B,, respectively.

Formula (17.1) may not be used when d is very near to 0° or to 180° because
in those cases |cos d| is nearly equal to 1 and varies very slowly with d, so that
d cannot be found accurately. For instance,

cos 0°01'00” = 0.999 999958
cos 0°00'30" = 0.999 959989
cos 0°00'15" = 0.999 999997
cos 0°00'00" = 1.000 000000

If the angular separation is small, say less than 0°10’, then this separation may
be calculated by means of the approximate formula

d = Y (Aa.cos 8 + (A8)? (17.2)

where Aa is the difference between the right ascensions, Aé the difference between
the declinations, while 6 is the average of the declinations of the two bodies. Note
that Aa and Ad should be expressed in the same angular units,

If Aa is expressed in hours (and decimals), Ad in degrees (and decimals), then
d expressed in seconds of a degree (") is given by

d = 3600V (15 A« . cos 6) + (A8)? (17.3)
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If Ax is expressed in seconds of time (*), and A in seconds of a degree ("),
then d expressed in ” is given by

d = V (15 Ax. cos 8 + (A3 (17.4)

Formulae (17.2), (17.3), and (17.4) may be used only when d is small.
However, see also the alternative formulae further in this Chapter.

Example 17.a — Calculate the angular distance between the stars Arcturus (o Boo)
and Spica (a Vir).

The J2000.0 coordinates of these stars, as taken from a catalogue, are -

« Boo : o, = 14"15™39%7 = 213°9154
6, = +19°10'57" = +19°1825
a Vir: a, = 13"25™11%6 = 201°2983
8, = —11°09'41" = -11°1614

Formula (17.1) gives cos d = +0.840633, whence d = 3297930 = 32°48’.

Of course, this distance holds only for the epoch for which the stars’ coordinates
are given, namely 2000.0. It varies slowly with time, by reason of the proper motions
of the stars. It is, however, independent of the precession.

Exercise. — Calculate the angular distance between Aldebaran and Antares.
(Answer: 169°58").

One or both bodies may be moving objects. For example: a planet and a star,
or two planets. In that case, a program may be written where first the quantities §;,
05, and (a; — a,) are interpolated, after which d is calculated by means of the
formulae (17.1) or (17.2).

Exercise. — Using the following coordinates, calculate the instant and the value of
the least angular separation between Mercury and Saturn.

1978 Mercury Saturn
Oh TD . 5, a 8,
h m s L] ’ " h m S o 1 "

Sep 12 10 23 17.65 +11 31 46.3 10 33 01.23  +10 42 535
13 10 29 44.27 +11 02 05.9 10 33 29.64 +10 40 13.2
14 10 36 19.63  +10 29 51.7 10 33 5797 +10 37 334
15 10 43 01.75 + 9 55 16.7 10 34 26.22 +10 34 53.9
16 10 49 4885 + 9 18 34.7 10 34 54.39 +10 32 149
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Answer: The least angular separation between the two planets was 0°03'44”, on
1978 September 13 at 15706™5 TD = 15"06™ UT.

As we see, this was a rather close conjunction. We must insist on the fact that,
in such a case, first the quantities &,, 8,, and (a; — o,) should be interpolated, not
the distances themselves. The distance is to be deduced from the interpolared
coordinates.

Suppose that, nevertheless, we try to interpolate the distances themselves. By
means of formula (17.1), we find the following distances between Mercury and
Saturn, in degrees and decimals, for the five given times:

1978 Sep 12.0TD  d, = 2?5211

13.0 dy, = 0.9917
14.0 dy = 0.5943
15.0 d, = 2.2145
16.0 dy = 3.8710

It is evident that the least separation occurs between 13.0 and 14.0 September,
and closer to 14.0 than to 13.0.

If we now use the three central values d,, ds, d, and calculate the value of
the minimum by means of formula (3.4), we obtain 025017 = 0°30'06". Taking
the five values d, to ds, formula (3.9) yields a “better” value for n,,, after which
(3.8) is used to calculate the value of the function for that value of the interpolating
factor n; this gives 074865 = 0°29'11",

Both results are completely wrong, however. As has been mentioned above, the
correct value of the least distance is only 0°03’44". So, what happened?

The reason is that the conjunction was a close one. Until a short time before the
least distance, Mercury was moving almost exactly straight towards Saturn, and the
angular distance between the two planets was decreasing almost exactly linearly with
time. Similarly, some short time after the least distance, Mercury was moving
almost straight away from Saturn.

In the Figure on next page, the solid curve represents the true variation of the
angular separation between the two planets. Except very close to the least distance,
this curve consists of two almost exactly straight segments (one near B, the other
from C to D), and in such a case the interpolation formulae are no longer valid!

Formulae (3.3), (3.4) and (3.5), for instance, suppose that the function, in the
considered part of the curve, is a parabola. But the curve is not a parabola, except
very close to the minimum, inside the small rectangle.

If we make use of the three points B, C, D, corresponding to the three central
distances d,, dj, d4, then by the interpolation formula (3.3) we in fact draw a
parabola through those three points; it is the dashed curve in the Figure. This
parabola differs considerably from the true curve, and in particular its minimum is
too high.
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angular distance

> time

And it would be of no help to use the five values d, to ds instead of the three
central ones, because the solid curve differs even considerably from a polynomial
of the fourth degree!

Hence, performing an interpolation from the distances cannot give accurate
results. As we have said, we must interpolate the original coordinates separately,
and only then can the accurate distance for an intermediate instant be deduced.
Using the interpolation formula (3.8), we so find the value of the distance for
several values of the interpolating factor n:

n= —0.50 distance = 0.21437 degree

—0.45 0.14057
—0.40 0.07790
—0.35 0.07028
-0.30 0.12815

The least separation occurs for n between —0.40 and —0.35, so we calculate
the angular distance for three more values, at smaller intervals (but, again, from the
interpolated coordinates):

n= —0.38 distance = 0.06408 degree
-0.37 0.06229
—0.36 0.06448

The tabular interval is now small enough so that formulae (3.4) and (3.5) may
be used. We find that the least separation is 0206228 = 0°03’44", for n, =
—0.370502, corresponding to September 13.629498 = September 13 at 1570675
TD, as mentioned earlier.
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It is possible, however, to find the least angular separation without trying sev-
eral values of the interpolating factor n, namely, by using rectangular coordinates,
These coordinates u and v, in seconds of arc, can be calculated as follows [1].

Calculate the auxiliary quantity

206 264.8062
K =
Aa

1 + sin?j, tan Aa tan =

where 206 264.8062 is the number of arcseconds in one radian. Then
u = —K (1 — tan §; sin AS) cos §; tan Aw

K (sin A§ + sin §; coséltanAatan—A;)

<
i

In the above expressions, «;, §, are the right ascension and declination of the
first planet, and Aa = o, — oy, A8 = §, — §;, where «,, 5, are the right
ascension and declination of the second planet.

Calculate the values of u and v for three equidistant times. For any intermediate
time, then, their values can be interpolated by means of formula (3.3), while their
variation (in arcseconds per unit of the tabular interval) is given by

Wy — Uy

u = )

+n(u +u; — 2u)
where n is the interpolating factor, and u,, u,, u3 are the three calculated values
of u, and with a similar expression for the variation v'.

Start from any value for the interpolating factor r; a good choice is n = 0. For
this value of n, interpolate u and v by means of formula (3.3), and find the
variations ¥’ and v'. Then the correction to n is given by

uu' + vv'
An = — ———
u'? 4+ v
So the new value of n is n + An. Repeat the calculation for the new value of
n until the correction An is a very small quantity, for instance less than 0.000001
in absolute value.

For the final value of n, calculate u and v again. Then the least distance, in

arcseconds, will be Vv u? + v?.

Let us apply this method to the above-mentioned conjunction between Mercury
and Saturn. The three chosen instants are 13.0, 14.0, and 15.0 September 1978.
We find the following values for u# and v, retaining one extra decimal to avoid
rounding errors:
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u 1%
Sept. 13.0 —3322"44 ~1307".48
14.0 +2088.54 + 463.66
15.0 +7605.36 +2401.71
For n = 0, we have
u = +2088.54 u' = +5463.90
v = + 463.66 v = +1854.595

whence An = —0.368582, and the corrected value of n is 0 — 0.368582 =
—0.368 582. -

For this new value of n we find

u =+ 81.83 u' = +5424.89
v = —208.57 v = +1793.07
whence An = —0.002 142, and the new corrected value of 7 is

—0.368582 — 0.002142 = —0.370724.

A new iteration gives An = ~0.000003, so the final value of n is
—0.370724 — 0.000003 = -0.370727.

[This value differs from the value n = —0.370502 found before, because in
the present calculation we used the positions of the planets for only three instants
instead of five. But the difference is only 0.000225 day, or 19 seconds.]

For the value n = —0.370727, we find u = +70“20, v = —212"42, and
consequently the least distance between the two planets is

u? + vt = 224" = 344",

as found before.

The same method can be used if one of the bodies is a star. The latter’s
coordinates are then constant, but it is important to note that the o and & of the star
should be referred to the same equinox as that of the moving body.

If the moving body is a major planet whose apparent right ascension and dec-
lination referred to the equinox of the date are given, then for the star the apparent
coordinates too must be used. If one takes the star’s position from a catalogue,
where it is referred to a standard equinox (for instance that of 2000.0), then the
apparent « and § are found by taking into account the proper mation of the star and
the effects of precession, nutation, and aberration, as explained in Chapter 23.

If the « and & of the moving body are referred to a standard equinox
(astrometric coordinates), then the o and & of the star should be referred to this
same standard equinox, the only correction being those for the proper motion of the
star.
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Alternative formulae
Although formula (17.1) is truly exact, mathematically speaking, its accuracy

is very poor for small values of the angle d, as has been seen at the beginning of
this Chapter. For this reason, several alternative methods have been proposed.

One of them [2] consists in using the old haversine (hav) function, which can
be a great aid in certain astronomical calculations involving small angles, as it can
preserve significant digits. By definition, for any angle 6, we have

1 —cosé
2

hav § =
The cosine formula (17.1) for angular separation is precisely equivalent to
havd = hav A + cos §; cos §, hav Ax (17.5)

where Aa = a; —a,, Ad = §, — §,. To use this formula on a computer we can
get the help of another identity, namely

hav 8 = sinz(—%)

By means of formula (17.5), angular separations can be calculated accurately
for angles from nearly 180° all the way down to exactly 0 degree!

V.J. Slabinski [3] offers another approach that can be used:
sin?d = (cos 8, sin Aa)? + (sin 8, cos §; cos Aa — cos &, sin §;)°

However, this formula cannot distinguish between supplementary angles, for
instance 144° and 36°, and it has a poor accuracy when d is close to 90°.

Mr. Thierry Pauwels, of the Royal Observatory of Belgium, communicated the
following method. Calculate

x = cos §; sin §, — sin 8, cos &, cos (@ — a;)
y = cos 8, sin(oy — o))

z = sin §; sin §, + cos &; cos J, cos (ay — @)
and then
d = arctan(_x;_X__)

where d should be taken between 90 and 180 degrees if z is negative.
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Mathematically speaking, this method is completely identical to formula (17.1),
but a computer will yield more accurate results from an arctangent than from an
arccosine.

Example 17.b — Taking again the case described in Example 17.a, we find

x = —0.497 404
y = —0.214 303
z = +0.840 633

from which tand = 0.644 283, d = 3297930, as in Example 17.a.

Relative Position Angle

The Position Angle P of a body («;, 6;) with

respect to another body (a,, 6,) can be found from North
sin A
tan P = cos 8, tan 8, — sin &, cos Aa .
P
where Ao = o) — a,.
If the denominator of the fraction is negative, 2

then P lies in the range 90°-270°.

REFERENCES

1. A. Danjon, Astronomie Générale, page 36, formulae 3bis (Paris, 1959).
2. Sky and Telescope, Vol. 68, page 159 (August 1984).
3. Sky and Telescope, Vol. 69, page 158 (February 1985).



Chapter 18

Planetary Conjunctions

Given three or five ephemeris positions of two planets passing near each other, a
program can be written which calculates the time of conjunction in right ascension
and the difference in declination between the two bodies at that time. The method
consists in calculating the differences Aa of the corresponding right ascensions, and
then calculating the instant when Ao = 0 by means of formula (3.6) or (3.7) in the
case of three positions, or (3.10) or (3.11) in the case of five points. When that
instant is found, direct interpolation of the differences Ad of the declinations, by
means of formula (3.3) or (3.8), yields the required difference in declination at the
time of conjunction.

Conjunctions in celestial longitude can be calculated in the same way using, of
course, the planets’ geocentric ecliptical (celestial) longitudes and latitudes instead
of their right ascensions and declinations.

Note that neither the instant of the conjunction in right ascension, nor that of the
conjunction in longitude, coincides with that of the least angular separation between
the two bodies. By definition, conjunction is the phenomenon in which two bodies
have the same apparent right ascension or celestial longitude as viewed from a third
body (generally the Earth).

Example 18.a — Calculate the circumstances of the Mercury-Venus conjunction of
1991 August 7, using the following apparent positions, for 0" TD of the date,
which are taken from an accurate ephemeris:

Date, Mercury Venus
1991 o 6 o 8’
h m s o ! n h m s o i "

Aug. 5 10 24 30.125  +6 26 32.05 | 10 27 27.175 +4 04 41.83
6 10 25 00.342  +6 10 57.72 | 10 26 32410 +3 55 54.66
7 10 25 12.515 45 57 33.08 | 10 25 29.042  +3 48 03.51
8 10 25 06.235 +5 46 27.07 | 10 24 17.191  +3 41 10.25
9 10 24 41.185 +5 37 48.45 | 10 22 57.024 +3 35 16.61
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We first calculate the differences of the right ascensions (in seconds of time) and
those of the declinations (in degrees and decimals):

Aug. 5 Aa = —177.050 Ad = +2.363 950
6 - 92.068 +2.250 850
7 — 16.527 +2.158214
8 + 49.044 +2.088 006
9 +104.161 +2.042 178

Applying formula (3.10) to the values of Aa, we find that A« is zero for the value
n = +0.23797 of the interpolation factor. Hence, the conjunction in right ascension
took place on

1991 August 7.23797 1991 August 7 at 5°42™7 TD

1991 August 7 at 5"42™ UT

With the value of »n just found, and applying formula (3.8) to the values of Ad,
we find Ad = +2°213940 or +2°08’. Hence, at the time of the conjunction in right
ascension, Mercury was 2°08’ north of Venus.

If the second body is a star, its coordinates may be considered as being constant
during the time interval considered. We then have

all - azl = a3l - a4l - asf

611 — 621 - 63! = 64[ = 65!

The program should be written in such a way that, if the second object is a star,
its coordinates must be entered only once.

The important remark given on page 114 does apply here too: the coordinates
of the star and those of the moving body must be referred to the same equinox.
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As an exercise, calculate the conjunction in right ascension between the minor
planet 4 Vesta and the star § Librae in February 1996. The minor planet’s right
ascension and declination, referred to the standard equinox of J2000.0, are as follows
(from an ephemeris calculated by Edwin Goffin) :

Oh TD a0 83000
h m S [+ ! H
1996 Feb. 7 15 03 51.937 -8 57 34.51
12 15 09 57.327 ~9 09 03.88
17 15 15 37.898 —9 17 37.94
2 15 20 50.632 -9 23 16.25
27 15 25 32.695 ~9 26 01.01

The star’s coordinates for the epoch and equinox of 2000.0, taken from the FKS
star catalogue, are o' = 15"17™00%421 and §' = —9°22'58".54, and the centennial
proper motions (that is, the proper motions per 100 years) are —0%649 in right
ascension and —1"91 in declination.

Consequently, from the proper motions during the —3.87 years (—0.0387 century)

from 2000.0, we find that the star’s position referred to the equinox of 2000.0, but
for the epoch 1996.13, is

o' = 15P17m00%446, &' = —9°22'58".47
Now, calculate the conjunction.

Answer: Vesta passed 0°03'38” north of 8 Lib on 1996 February 18 at 6*37™
Dynamical Time.

North
A pla-
) net 1
A C
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Do not confuse conjunction with least angular separation. Twe planets are in
conjunction when their right ascensions (or their celestial longitudes) are equal. At left
in the Figure, the motion of planet 1 with respect to planet 2 is depicted. There is
conjunction when the first planet arrives in A, and this is not the instant of least
separation. In the drawing at right, the least angular separation occurs in C, but it
is clear that there is no conjunction here.






Chapter 19

Bodies in Straight Line

In this Chapter and in the next one, we shall deal with two problems which have no
importance “scientifically”, but which may be of value to persons interested in nice
celestial events or to authors of popular articles.

Let (a;, &), (o, 8,), (03, 83) be the equatorial coordinates of three heavenly
bodies. These bodies are in “straight line” — that is, they lie on the same great
circle of the celestial sphere — if

tan 61 sin ((12 - a3) + tan 52 sin ((13 - 011) + tan 53 sin (CY] - 122) =0 (19.1)

This formula is valid for ecliptical coordinates too, provided that the right
ascensions o are replaced by the longitudes A, and the declinations & by the
latitudes B.

Do not forget that the right ascensions are generally expressed in hours,
minutes, and seconds. They should be converted to hours and decimals, and then
into degrees by multiplication by 15.

If one or two of the bodies are stars, then once again the important remark

given on page 114 does apply: the coordinates of the star(s) must be referred to the
same equinox as that of the planets.

Example 19.a — Find the instant when Mars was seen in straight line with Pollux
and Castor in 1994.

From an ephemeris of Mars and a star atlas, it is found that the planet was in
straight line with the two stars about 1994 October 1. For this date, the apparent
equatorial coordinates of the stars were:

Castor (o Gem): o = 7834™16%40 = 113956833
§, = +31°53'51"2 = +31°89756
Pollux (8 Gem): o, = 7%5™00510 = 116°25042
4, = +28°02'12"5 = +28903681
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For our problem, these values of o, §;, a,, and 8, may be considered as being
constant for several days.

The apparent coordinates of Mars (a3, 85) are variable. Here are their values,
taken from an accurate ephemeris:

D o3 63
h m s ° °o v m °
1994 Sep. 29.0 | 7 55 55.36 = 118.98067 | +21 41 03.0 = +21.68417
30.0 | 7 58 22.55 = 119.59396 | +21 35 23.4 = +21.58983
Oct. 1.0 | 8 00 48.99 = 120.20413 | +21 29 382 = +21.49394
2.0 | 803 1466 = 120.81108 | +21 23 475 = +21.39653
3.0 | 805 39.54 = 121.41475 | +21 17 51.4 = +21.29761

Using these values, the first member of formula (19.1) takes the following values:

Sep. 29.0 +0.001 9767
30.0 +0.001 0851

Oct. 1.0 +0.000 1976
2.0 —0.000 6855

3.0 —0.001 5641

By means of formula (3.10), we find that the value is zero for
1994 October 1.2233 = 1994 October 1, at S* TD (UT)

In the preceding Example, we made use of geocentric positions of Mars. For
this reason the result is, strictly speaking, valid only for a geocentric observer, and
for an observer for whom Mars is at the zenith. But for the present problem, it is
not worthwhile to take into account the parallax of the planet, which is very small.
This is no longer true in the case of the Moon, whose parallax can reach one
degree. In this case, the topocentric position of the Moon should be used (see
Chapter 40).

Straight lines on the celestial sphere

Once on a winter evening I admired the constellation Orion, when suddenly I
thought about the following problem: the three stars of Orion’s “Belt” (6, &, and ¢
Orionis) are nearly on a “straight line” on the sky. But how nearly straight, precisely?
Then I remembered another nearly-straight-line: when, according to the well-known
rule, the line joining the stars o and § of Ursa Major is extended northward, we
arrive close to the Pole Star (o Ursae Minoris). But exactly how close?

I obtained the following formulae which I give here without proof. Remember
that a straight line on the celestial sphere is actually an arc of a great circle.
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Consider the three stars S}, S,, and S, whose right ascensions and declinations
are ay, 6;, a,, 05, and as, 85, respectively, in such a way that S, is the middle
star. The angle S, -, - S, that is, the angle which the arc §, 5, makes with the arc
§,S53, is equal to C; + C,, where the angles C, and C, are given by the following
formulae and should be taken between 0° and +180°:

sin (0(2 - al)
cos 0, tan §; — sin &, cos (o — o)

ta.nC1=

sin (o3 — o)
€os O, tan 83 — sin 8, cos (a3 — o)

tanC2=

The drawing represents the three stars S, S5, and S3. P is the northern celestial
pole. The arcs PS,, PS,, and PS; are the celestial meridians (the great circles of
constant right ascension) through the three stars. The Figure also illustrates the
meaning of the angles C, and C,.

If the three stars are taken in increasing order of their right ascension (that is,

a; < a, < ay), then C; + C, is the value of the northern angle at S,. Of course,
this angle can be larger as well as smaller than 180 degrees.

As an example, let us consider the three stars of Orion’s Belt. Their positions
for the epoch and equinox 2000.0 are:

o )
§0ri  5M32m00%40 —-0°17'56"9
eOri  5P36™12881 -1°12'07"0
¢ Ori 5h40™45%52 —1°56'33"3

We find C, = 4923622 and C, =
12321209. The sum is 172.4831 deg-
rees, or 172°29'. So the three stars of
Orion’s Belt indeed are not exactly
aligned. They form an obtuse angle of
172% degrees. Because C; + C, is
smaller than 180°, and we took the
stars in increasing order of their right
ascensions, the middle star (¢ Ori) is a
little south of the great circle through &
and { Ori.

At what angular distance is ¢ from
this great circle? This can be found as
follows. celestial equator
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We have the two stars S, (a;, 8,) and S, (@5, §,), and we wish to calculate the
angular distance of a third star Sy (o, 8¢) to the great circle §; - §,. Calculate

X, = cos §; cos o X, = cos 8, cos o, A =Y2Z,—- 27\,
Y, = cos §; sin Y, = cos §, sin o, B = Z,X, — X,Z,
Zl = sin 61 Zz = §in 62 C = X] Y2 - Y1X2
= _ _tan §,
m = tan 275 n = oS oy

The required angular distance w is then given by
A+ Bm+ Cn
VA?+ B2+ > Vi+m+n?

where w should be taken between 0° and 90°.

sinw =

As an example, let us again consider the three stars of Orion’s Belt. Now § Ori
and { Ori are the stars S, and S,, respectively, and we want to calculate the angular
distance of & Ori (= star Sp) to the line 6-{.

Using the stars’ positions mentioned above, we find v = 02089876 = 324",
or a little more than 5 arcminutes.

¢ Ori

As an exercise, the reader can calculate the distance of the Pole Star (o« UMi) to
the line, extended northward, joining o and 8 Ursae Majoris. The 2000.0 positions
of these stars are:

a UMa o = 11h03™432666 6 = +61°45'03".22
8 UMa 11"01™50%482 +56°22'56".65
o UMi 2h31™48%704 +89°1550".72

Answer: w = 1°55’. Hence, the line from o to 8 Ursae Majoris extended northward
misses « Ursae Minoris by almost two degrees.
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After the preceding formulae were published in the Belgian journal Heelal of
May 1988, we received a letter from Mr. Ben Piessens, of Mechelen, Belgium, who

gave another way to calculate the angle between two great circles on the celestial
sphere. He wrote:

The angle between two planes (or two great circles) as well as the angle
between a straight line and a plane can easily be calculated through
analytic geometry. For this, only one formula is needed, namely, the
expression for the angle between two directions. The angle between two
planes is equal to the angle between the perpendiculars to these planes.
The angle between a straight line and a plane is the complement of the
angle between that straight line and the perpendicular on that plane.

For our problem we then have, using the same symbols («, etc.) as before, and
O being the center of the celestial sphere, that is, the observer:

Direction numbers of the straight lines OS,, 0S,, 0S;:

a; = cos d; cos o b, = cos 8, sin o ¢, = sin §;
a, = cos &, Cos o, b, = cos &, sin o, €, = sin 6,
a; = cos d3 COS a; by = cos 83 sin oy €3 = sin 9,

Direction numbers of the perpendiculars to the planes 0§, S5,, 05,835, 0S85;:

I = bicy — by mp = €16y — G4 ny = a;by — ayb,
lz = b2C3 - b3C2 my = CpQ3 — €304 h, = azba - a3b2
l3 = bIC3 - b3C1 ms; = ciday — Caal hy = a]b3 - agbl

With these data one can calculate the angle between any two great circles, or
the angle between one of the straight lines 05, 0S,, OS; and the great circle
through the two other points. Let y be the angle between the great circles 05,5,
and 085,53, and w the angle between OS, and the plane 05,53 Then we have

L, + mmy, + nn,

cosy =
v 124+ m?+n? x/lzz + my? + ny?

ayly + byms + cyng

Va2 + b2 +c> Vi +md+ngd

sinw =

If we consider again the case of the stars §, &, ¢ Orionis, we find ¢ = 7°31',
in agreement with our previous result, 172°29’. Indeed, at the crossing point of two
arcs there are two angles which are supplementary: 172°29' + 7°31' = 180°.






Chapter 20

Smallest Circle containing three
Celestial Bodies

Let A, B, C be three celestial bodies situated not too far from each other on the
celestial sphere, say closer than about 6 degrees. We wish to calculate the angular
diameter of the smallest circle containing these three bodies. Two cases can occur:

type I : the smallest circle has as diameter the longest side of the triangle ABC,
and one point is inside of the circle;

type II : the smallest circle is the circle passing through the three points 4, B, C.

Type [/ Type Il

The diameter A of the smallest circle can be found as follows. Calculate the
lengths (in degrees) of the sides of the triangle ABC by means of the method given
in Chapter 17.

Let a be the length of the longest side of the triangle, and & and c¢ the lengths
of the two other sides.
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If @ > v b2+ c?, then the grouping is of type I, and A = a;
if @ <V b%+ c?, then the grouping is of type II, and

A= 2abc (20.1)

J@+b+c) (@+b-¢c) b+c~a) (a+c—b)

Example 20.a — Calculate the diameter of the smallest circle containing Mercury,
Jupiter, and Saturn on 1981 September 11 at 0" Dynamical Time.
The positions of these planets at that instant were:

Mercury o = 1244108563 6 = ~5°37'54"2
Jupiter 12 52 05.21 ~4 22 26.2
Saturn 12 39 28.11 -1 50 03.7

The three angular separations are found by means of (17.1):

Mercury -Jupiter 3200152
Mercury-Saturn 3.82028
Jupiter-Saturn 4.04599 = a

Because 4.04599 is smaller than v (3.00152)> + (3.82028)° , or 4.85836, we
calculate A by means of formula (20.1). The result is

A = 4%26364 = 4°16’
This is an example of type II.

As an exercise, perform the calculation for the planets Venus, Mars, and Jupiter
on 1991 June 20 at 0" TD, using the following positions:

Venus o = 9"05™41544 6 = +18°30"30".0
Mars 9 09 29.00 +17 43 56.7
Jupiter 8 59 47.14 +17 49 36.8

Show that this is a case of type I, and that A = 2°19"’.

A program can be written in which first the right ascensions and the declinations
of the planets are interpolated, after which a, b, ¢, and finally A are calculated.
With such a program, it is possible to calculate (by trial) the minimum value of A
of a grouping of three planets. Indeed, A varies with time, and the method described
in this Chapter provides the value of A for only one given instant.
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It is important to note that, while the positions of the planets can be interpolated
by means of the usual formulae, the values of the circle’s diameter A cannot. The
reason is that the variation of A generally cannot be represented by a polynomial.
See, for instance, the graph in Example 20.c, on the next page.

Example 20.b — In September 1981, there was a grouping of the planets Mercury,
Jupiter, and Saturn. The positions of these planets were as follows;
instead of right ascensions and declinations, we will use ecliptical
coordinates (longitudes and latitudes) here.

1981 Mercury Jupiter Saturn

Oh TD long. latiz. long. latit. long. latiz.

Sep. 7 186.045 —0.560 192.866 +1.117 189.324 +2.226
8 187.482 —0.696 193.069 +1.116 189.439 +2.225

9 188.897 —0.833 193.272 +1.114 189.555 +2.224

10 190.290 -0.971 193.476 +1.113 189.671 +2.223

11 191.661 -—1.109 193.681 +1.112 189.788 +2.222

12 193.008 —1.246 193.886 +1.110 189.906 +2.221

13 194.332 —1.384 194.092 +1.109 190.023 +2.220

14 195.631 -—1.521 194.299 +1.108 190.142  +2.219

We will not give details here, and leave it as an exercise to the reader. Let us just
mention that from September 7.00 to 8.81 the grouping was of type 1, the diameter
A of the smallest circle decreasing almost linearly from 7°01’ to 5°00'. From
September 8.81 to 12.19, the grouping was of type II, and A reached a minimum
value of 4°14’ on September 10.53. From September 12.19 on, the grouping was of
type I again, A increasing almost linearly with time.

Example 20.c — Let us now consider the following fictitious case. On March 12.0,
the ecliptical coordinates (in degrees) of three planets are as follows.

. . daily motion

longitude latitude in longitude
planet P1 214.23 +0.29 +0.11
planet P2 211.79 +0.48 +0.20
planet P3 208.41 +0.75 +1.08

We suppose that the latitudes are constant and that the longitudes increase at the
constant rates mentioned in the last column.

Again, we leave the actual calculation as an exercise to the reader. Let us just
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illustrate the variation of the diameter A of the smallest circle (see the Figure below).
Note the discontinuities at the points A and B. Except during two short periods
(March 15.87 to 15.91 near A, and March 17.93 to 18.05 near B), where the grouping

is of type II, we have type 1. The least value of A, namely 1°55', occurs at B on
March 17.94.
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days (March)

If one of the bodies is a star, once again the important remark made on page
114 does apply: the coordinates of the star should be referred to the same equinox
as that for the planets.



Chapter 21

Precession

The direction of the rotational axis of the Earth is not really fixed in space. Over
time it undergoes a slow drift, or precession, much like that of a spinning top. This
effect stems from the gravitational attraction of the Sun and the Moon on the Earth’s
equatorial bulge.

Due to the precession, the northern celestial pole (presently situated near the star
a Ursae Minoris, or Polaris) slowly turns around the pole of the ecliptic with a
period of about 26 000 years. As a consequence, the vernal equinox, the intersection
of equator and ecliptic, regresses by about 50” per year along the ecliptic.

Moreover, the plane of the ecliptic itself is not fixed in space. Due to the
gravitational attraction of the planets on the Earth, it slowly rotates around a “line
of nodes”, the speed of this rotation being presently 47" per century.

The plane of the ecliptic and that of the equator, and the vernal equinox, are the
fundamental planes and the origin of two important coordinate systems on the
celestial sphere: the ecliptical coordinates (longitude A and latitude () and the
equatorial coordinates (right ascension o and declination 6). So, due to the
precession, the coordinates of the “fixed” stars are continuously changing. Star
catalogues, therefore, list the right ascensions and declinations of stars for a given
epoch, such as 1900.0, or 1950.0, or 2000.0.

In this Chapter, we consider the problem of converting the right ascension o« and
the declination § of a star, given for an epoch and an equinox, to the corresponding
values for another epoch and equinox. Only the mean place of a star, and hence the
effects of the precession and proper motion, will be considered here. The problem
of finding the apparent place of a star will be considered in Chapter 23.
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Low accuracy
If no great accuracy is required, if the two epochs are not widely separated, and
if the star is not too close to one of the celestial poles, the following formulae may
be used for the annual precession in right ascension and declination :
Aa = m + nsin « tan § A = ncos o 21.1)

where m and n are two quantities which vary slowly with time. They are given by

3507496 + 0200186 T
1533621 — 0500057 T
= 20”0431 — 0"0085T

m
n

T being the time measured in centuries from 2000.0 (the beginning of the year
2000). Here are the values of m and n for some epochs:

Epoch m n n
§ s g
1700.0 3.069 1.338 20.07
1800.0 3.071 1.337 20.06
1900.0 3.073 1.337 20.05
2000.0 3.075 1.336 20.04
2100.0 3.077 1.336 20.03
2200.0 3.079 1.335 20.03

For the calculation of A the value of 7 expressed in seconds of time (§) must
be used. Remember that 1° corresponds to 15" (seconds of arc).

In the case of a star, the effect of the proper motion should be added to the
values given by formulae (21.1).

Example 21.a — The coordinates of Regulus (« Leonis) for the epoch and equinox
of 2000.0 are

oy = 10M08™22%3 8o = +11°58'02"
and the annual proper motions are

—0%0169 in right ascension,
+0"006 in declination.

Reduce these coordinates to the epoch and the equinox of 1978.0.
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Here we have o = 152°093, 6 = +119967, m = 35075, n = 13336 = 20".04.
From the formulae (21.1) we deduce Aa = +35208, A = ~17".71, to which we
must add the annual proper motion, giving finally an annual variation of +32191 in
right ascension, and —17"70 in declination.

Variations during —22 years (from 2000.0 to 1978.0) :

ina: +3%8191 X (—22) = —70%2 = —1™10%2

iné: —17"70 X (—22) = +389" = +6'29"
Required right ascension : a = ap - 171052 = 10h07™1281
Required declination : 8 = 6o+ 629" = +12°04'31"

Besselian and Julian Year

The International Astronomical Union has decided that from 1984 onwards the
astronomical ephemerides should use the following system.

The new standard epoch is 2000 January 1 at 12" TD, corresponding to JDE
2451 545.0. This epoch is designated J2000.0. For purposes of calculating positions
of stars, the beginning of a “year” differs from the standard epoch J2000.0 by an
integral multiple of the Julian year, or 365.25 days. For example, the epoch
J1986.0 is 14 X 365.25 days before J2000.0, and hence the corresponding JDE is
2451545.0 — 14 X 365.25 = 2446 431.50.

The letter J, in notations such as J2000.0 or J1986.0, indicates that the unit of
time (for star catalogues) is the Julian year. Previously, star position catalogues used
for a standard epoch the beginning of a Besselian year. The beginning of the
Besselian solar year is the instant when the mean longitude of the Sun, affected by
the aberration (—20"5) and measured from the mean equinox of the date, is exactly
280°. This instant is always near the beginning of the Gregorian civil year. The
length of the Besselian year, equal to that of the tropical year, was 365.242 1988
days in A.D. 1900, according to Newcomb.

To distinguish an old epoch, based on the Besselian year, from the new system,
the letter B is used. For example,

B1900.0 = JDE 2415020.3135 = 1900 January 0.8135

B1950.0 = JDE 2433282.4235 = 1950 January 0.9235
but

J2000.0 = JDE 2451 545.00 exactly

J2050.0 = JDE 2469 807.50 exactly

and so on. The notation .0 after a year number (as in 1986.0 or 2000.0) signifies
that the start of the year is meant.
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Rigorous method

Let T be the time interval, in Julian centuries, between J2000.0 and the starting
epoch, and let 7 be the interval, in the same units, between the starting epoch and
the final epoch.

In other words, if (JD)q and (JD) are the Julian Days corresponding to the initial
and the final epoch, respectively, we have

7 — D) — 2451545.0 ; = 9D — D)
36525 36525

Then the numerical expressions for the quantities ¢, z and § which are needed
for the accurate reduction of positions from one equinox to another are [1]:

(2306”2181 + 1"39656T — 0”000 13972) ¢
+ (0"30188 — 0”.000344T) 2 + 001799873

o~
Il

z = (2306”2181 + 1”.39656T — 0".0001397%)¢

+ (1".09468 + 0”.000066T) r* + 0018203 ¢ (21.2)

E
Il

(20043109 — 0"85330T — 0"000217T%)¢
— (0"42665 + 0".000217T) > — 0".041833¢°

If the starting epoch is J2000.0 itself, we have T = 0 and the expressions
(21.2) reduce to

¢ = 2306"2181¢ + 07301882 + 0".0179987°
z = 230621817 + 1".09468:% + 00182033 (21.3)
0 = 2004"3109¢ — 0"42665:> — 0".041833¢°

Then, the rigorous formulae for the reduction of the given equatorial coordinates
ag and & of the starting epoch to the coordinates o and & of the final epoch are:

A = cos § sin(ag + §)

B = cos 6 cos §, cos(ag + {) — sin 4 sin &
C = sin @ cos 6y cos(apg + §) + cos 8 sin §, 21.49)
tan(a—z)=% sind = C

The angle o — z can be obtained in the correct quadrant by applying the
“second” arctangent function ATN2 to the quantities A and B, or by another
procedure — see “The correct quadrant” in Chapter 1.
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If the star is close to the celestial pole, one should calculate the declination by
means of the formula cos & = V A% + B? instead of sin é = C.

Before making the reduction from «y, 8¢ to «, 8, the effect of the star’s proper
motion should be calculated.

Example 21.b — The star 6 Persei has the following mean coordinates for the epoch
and equinox of J2000.0:

Qg = 2"44™112986 8, = +49°13'42"48
and its annual proper motions referred to that same equinox are

+0%03425 in right ascension,
—0"0895 in declination.

Reduce the coordinates to the epoch and mean equinox of 2028
November 13.19 TD.

The initial epoch is J2000.0 or JD 2451 545.0. The final one is JD 2462 088.69.
Hence, t = +0.288 670 500 Julian centuries, or 28.867 0500 Julian years.

We first calculate the effect of the proper motion. The variations over 28.86705
years are

+0%03425 x 28.86705 +0%989 in right ascension,
—0".0895 x 28.86705 —2".58 in declination.

Thus the star’s coordinates, for the mean equinox of J2000.0, but for the epoch
2028 November 13.19, are

Qg

8o

2h44m115986 + 05989 = 2h44m12:975 = +412054 063
+49°13'42"48 — 2"58 = +49°13'39"90 = 4492227750

Since the initial equinox is that of J2000.0, we can use the expressions (21.3).
With the value ¢ = +0.288 670 500, we obtain

¢ = +665"7627 = +0°184 9341
z = 4665”8288 = +0°184 9524
0 = +578"5489 = +0°1607080
A = +0.43049405
B = +0.48894849
C = +0.758685 86
a—z = +41°362262
a = +41°547214 = 2h46™115331
5 = +49°348483 = +49°20'54"54
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Exercise. — The equatorial coordinates of o Ursae Minoris (the Pole Star), for the
epoch and mean equinox of J2000.0, are
o = 2431™485704, 6 = +89°15'50"72
and the star’s annual proper motions for the same equinox are

+0%19877 in right ascension,
—0"0152 in declination.

Find the coordinates of the star for the epochs and mean equinoxes of B1900.0,
J2050.0, and J2100.0.

Answer: B1900.0 o = 1%22m33590 6 = +88°46'26".18
J2050.0 3 48 16.43 +89 27 15.38
J2100.0 553 29.17 +89 32 22.18

Note that the formulae (21.2) and (21.3) are valid only for a limited period of
time. If we use them for the year 32 700, for instance, we find for that epoch that
a UMi will be at declination —87°, a completely wrong result!

Using ecliptical coordinates

If, instead of the equatorial coordinates (right ascension and declination) of a
body, we use its ecliptical coordinates (longitude and latitude), the following
rigorous method can be used [2].

T and ¢ having the same meaning as before, calculate

n = (47"0029 — 0".06603T + 0".0005987T%)¢
+ (—0".03302 + 0”.0005987) 2 + 0".000060:°

II = 174°876384 + 3289".4789T + 0".60622T>

— (869".8089 + 0".50491T) ¢ + 0".03536¢2 L.5)

p = (5029".0966 + 2".22226T — 0".0000427T%)¢
+ (111113 ~- 0".000042T) > — 0".000006:°

The quantity » is the angle between the ecliptic at the starting epoch and the
ecliptic at the final epoch.

If the starting epoch is J2000.0, we have 7 = 0 and the expressions reduce to

n = 47".0029¢ — 07.03302¢2 + 0”.000 060+
Il = 174°876384 — 869".8089: + 0”.03536¢2 21.6)
p = 5029709667 + 1".11113¢% — 0".000006¢°
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Then, the rigorous formulae for the reduction of the given ecliptical coordinates
N and B, of the starting epoch to the coordinates \ and 8 of the final epoch are:

A' = cos 5 cos Bg sin (I — Ag) — sin 5 sin By )
B’ = cos B3 cos II — Ap)
C' = cos q sin By + sin 5 cos B¢ sin (II — Ap) > 21.7)
ta.n(p+II—)\)=ﬁ1—l sinf = C’
B’ /

Example 21.c — The following astrometric ecliptical coordinates of Venus have been
calculated for the instant —214 June 30.0 TD, but in the reference
frame J2000.0:

Ao = 149248194, Bo = +1276549
Reduce them to the mean equinox of that date.

The date corresponds to JDE = 1643 074.5, whence

t = (1643074.5 — 2451 545.0)/36525 = —22.134716
and we find successively:

7 —1057"225 = —-0°293673
I 180°22924
4 —110773"167 = -302770324

A" +0.5111611
B’ +0.8590225
C'  +0.028 1891
p+I—N  30°75475
A 1189704
B +1%l5

In the case of a star, one should take the proper motion into account. Proper
motions, however, are generally given in equatorial, not in celestial (ecliptical)
coordinates. The proper motions in longitude p(A) and in latitude u(B) can be
obtained by means of the formulae given at the top of next page, where u(a) and
u(6) are the proper motions in right ascension and in declinations, respectively.
They should be expressed in arcseconds. Generally, u(c) is given in seconds of time;
multiplication by 15 will convert it to arcseconds. The resulting u(A) and p(3) will
be in arcseconds too.

In the formulae, ¢ is the obliquity of the ecliptic, o the star’s right ascension,
é its declination, and @ its latitude.
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u(d) sin & cos o + ufa) cos & (cos £ cos 6 + sin € sin § sin «)

cos?8

u(d) (cos & cos & + sin & sin & sin o) — u(a) sin £ cos o cos &

cos B8

TABLE 21.A

Proper motions of some stars in celestial longitude and latitude
expressed in arcseconds per century for the epoch 2000.0

Star #(N) ()] Star #N) 1(®
Alcyone (7 Tau) + 0.82 — 490 | Regulus —23.48 - 8.13
Aldebaran + 3.55 — 19.68 | Spica - 275 - 4.15
Rigel + 0.04 ~ 0.13 | Arcturus —-28.10 —226.49
Capella + 4.47 — 4295 | a Lib - 8.17 - 948
8 Tau + 1.20 — 17.61 | % Sco ~ 0.60 - 273
Betelgeuse + 2.69 + 0.85 | B Sco - 0.18 - 198
u Gem + 5.86 —~ 10.88 | ¢ Sco - 0.67 - 221
v Gem + 4.51 — 3.87 | Antares - 0.63 - 215
¢ Gem — 0.45 — 1.38 | o Sgr + 0.81 - 552
Sirius —55.56 —125.50 | 7 Sgr ~ 0.44 - 3.51
& Gem - 2.42 — 1.57 | Altair +69.67 + 26.35
Castor —15.57 — 12.52 | B Cap + 4.16 - 082
Procyon —54.28 —113.08 | & Cap +14.96 - 36.73
Pollux —61.37 — 15.67 | Fomalhaut +25.26 — 28.68
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The old precessional elements

As we have said earlier, for star catalogues and for the purpose of calculating
star positions, the standard epoch is now J2000.0 and the unit of time is now the
Julian year (365.25 days) or the Julian century (36525 days). Previously the
beginning of the Besselian year was taken as reference instant and the unit of time
was the tropical year or the tropical century.

However, these are not the only differences between the old system (the FK4)
and the new one, the FK5. [“FK” means Fundamental Katalog.]

Firstly, there is a small error (the “equinox correction”) in the zero point of the
right ascensions of the FK4. ’

Secondly, as we shall see in Chapter 23, the aberrational displacements of a star
in longitude (AN) and in latitude (AB) resulting from the motion of the Earth in its
elliptical orbit are given by

AN = —x cos (O —N\) ¥ oex cos(m — N)
cos B cos B
AB = —ksin(®© —N) sin 8 + exsin(w—N) sin

where © is the longitude of the Sun, = the longitude of the perihelion of the
Earth’s orbit, e the eccentricity of this orbit, and « the constant of aberration.

Now, the second terms in the right-hand sides of these expressions are almost
constant for a given star, because e, 7 — A, and 8 vary extremely slowly with time.
For this reason, it has been astronomical practice to leave this part of the aberration
(the so-called E-terms) in the mean positions of the stars.

Presently, the terms depending on the ellipticity of the Earth’s orbit are no
longer included in the mean places of stars; they are, instead, calculated in the
reduction from mean to apparent places (see Chapter 23).

A procedure for performing the conversion of mean positions and proper
motions of stars referred to the mean equinox and equator B1950.0 and based on
Newcomb’s expressions for the precession (the FK4) to the new IAU system at
J2000.0 (the FKS) can be found, for instance, in the Astronomical Almanac for
1984 [3].

The precessional formulae (21.2) and (21.3) may be used only for the stars
referred to the FK5 system. If only FK4 positions and proper motions are available,
then one should proceed as follows to calculate apparent star positions in the FK5
system:

1. use must be made of Newcomb’s precessional formulae (see below);

2. in the reduction from mean to apparent place, the E-terms of the aberration
should be dropped;

3. to the final right ascension of the star, add the equinox correction
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Aa = 090775 + 0%0850T

where T is the time in Julian centuries from J2000.0.

Newcomb’s precessional expressions are the following ones.

Let (JD), and (JD) be the Julian Days corresponding to the initial and the final
epoch, respectively. Then

7 — D) — 24150203135 . - D) — (D),
36524.2199 36524.2199

¢ = (2304”250 + 1"396T)t + 0"302¢2 + 0"018¢
z = ¢+ 0779172 + 070013
9 = (2004”682 — 0"853T)r — 0742612 — 0"042¢°

If the starting epoch is B1950.0, we have T = 0.5, and the above expressions
become

¢ = 2304"948¢ + 073022 + 0"018¢°
z = 2304”9481 + 17093 + 0"01973
0 = 2004”255t — 0"426¢% — 0".042¢1°

Motion in space

So far, we have assumed that the proper motion of a star across the sky is
uniform. In other words, we considered its proper motions in right ascension and
in declination to be constant. This is not correct, however. In fact, the proper
motion should be combined with the radial velocity and distance to obtain the star’s
true motion through space relative to the Sun. Over thousands of years, the proper
motion of a star will vary, as the star is approaching the Sun or is receding from it.

Let us disregard the precession here. That is, we will work in an invariable
reference frame, for instance that of J2000.0. Then the method for calculating the
effect of proper motion by taking into account the star’s motion in space is as
follows.

Let aq, 6y be the star’s right ascension and declination for the starting epoch,
r its distance in parsecs, and Ar its radial velocity in parsecs per year (with proper
sign!).

If the star’s distance is given in light-years, multiply it by 0.30660 to convert
it to parsecs. If, instead, the star’s parallax = (in arcseconds) is given, the distance
in parsecs is 1/
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Radial velocities of stars are generally given in kilometers per second. They
should be divided by 977792 in order to have them in parsecs per year.

Let Ax and Ad be the proper-motion components in radians per year. They are
found by dividing the annual proper motion u(w) listed in seconds of time by
13751, and the annual proper motion u(8) listed in seconds of arc by 206265,
respectively. Then calculate [4]

X = r cos §; €OS ¢
y = rcos §g sin o
V4

= r sin §,
Ax = (x/r)Ar — zAd cos oy — YA
Ay = /P Ar — zAd sin oy + xAa
Az = (/) Ar + rAd cos §,

Then, if ¢ is the number of years from the starting epoch, negative in the past,
positive in the future,

x' = x+ tAx
y' =y + tAy
' =2z+1tAz

The final right ascension and declination for time ¢, but still in the reference
frame of the starting epoch, are then given by

tan @ = —))_c’—’ (sin a having the same sign as y’)

1

Z

tan 6 =

Example 21.d — Let us calculate the position (mean place) of Sirius for several
epochs in the past, but still referred to the equinox of 12000.0, using
the following starting values:

Qa0 = 6"45™08%871 = 101°286962
= —16°42'57"99 = —162716 108
proper motions per year:
—0%03847 in right ascension
—1"2053 in declination
distance = 2.64 parsecs
radial velocity = —7.6 km/second

We find Ar = —0.000007 773, Aa = —0.0000027976, As = —0.000005 8435
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This method Using uniform
Epoch : {motion in space) proper motions
a 6 o é
h m s o ? ” h m S o ’ n

1000.0 [ —1000 | 6 45 47.16 | =16 22 56.0| 6 45 4734 | —16 22 52.7
00| —2000 | 646 25.09 | ~16 03 00.8| 6 46 25.81 | —16 02 47.4
—1000.0 | —3000 | 6 47 02.67 | —15 43 12.3| 6 47 04.28 -15 42 429
—2000.0 | —4000 | 6 47 3991 | —15 23 30.6| 6 47 42.75 -15 22 36.8
—10000.0| —12000| 6 52 25.72 | —12 50 06.7 | 6 52 50.51 ~12 41 54.4

However, an extreme accuracy cannot be obtained, because the results depend
on the values adopted for the distance and the radial velocity of the star. In most
cases, these values are not known with high accuracy. In the case of Sirius, if we
use a radial velocity (at the epoch 2000.0) of —7.7 km/second instead of —7.6, the
declination at —10000.0 becomes —12°50'13"0 instead of —12°50'06".7.

The “classical” method, consisting in adopting a uniform proper motion, is good
for modern epochs, for instance for the calculation of occultations of stars by the
Moon. Indeed, the difference between the results of the two methods varies
approximately as the square of the time elapsed. Between the years 1900 and 2100,
the error in the declination of Sirius, due to the fact that a uniform proper motion
is adopted, is not larger than 0.04 arcsecond. And note that Sirius is only one of a
Sew stars with large proper motion and close to the solar system. Therefore, the
“classical” method will give no appreciable errors for epochs which are not too far
from A.D. 2000.

Moreover, even the second method (taking the motion in space into account) is not
valid ad infinitum. It will indeed give more precise results than the classical method
for time lapses of many millennia, but even its validity is limited in time. Indeed,
no star has a truly uniform and linear motion in space with respect to the Sun. All
stars, including the Sun, describe orbits in our Galaxy system!
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4. A. Hirshfeld and R.W. Sinnott, Sky Catalogue 2000.0, Vol. 1, page xiv (Sky
Publishing Corporation, Cambridge, Mass.; 1982).



Chapter 22

Nutation and the Obliquity of the
Ecliptic

The nutation, discovered by the British astronomer James Bradley (1693-1762), is
a periodic oscillation of the rotational axis of the Earth around its “mean” position.
Due to the nutation, the instantaneous pole of rotation of the Earth oscillates around
a mean pole which advances by the precession around the pole of the ecliptic.

The nutation is due principally to the action of the Moon, and can be described
by a sum of periodic terms. The most important term has a period of 6798.4 days
(18.6 years), but some other terms have a very short period (less than 10 days).

Nutation is conveniently partitioned into a component parallel to and one
perpendicular to the ecliptic. The component along the ecliptic is denoted by Ay and
is called the nutation in longitude; it affects the celestial longitude of all heavenly
bodies. The component perpendicular to the ecliptic is denoted by Ae and is called
the nutation in obliquity, since it affects the obliquity of the equator to the ecliptic.
The nutation does not affect the latitude of the heavenly bodies.

The quantities Ay and Ae are needed for the calculation of the apparent place
of a heavenly body and for that of the apparent sidereal time. For any given instant,
Ay and Ag can be calculated as follows.

Find the time 7, measured in Julian centuries from the Epoch J2000.0 (JDE
2451545.0),

_ JDE — 2451545
T = eoos (22.1)

where JDE is the Julian Ephemeris Day; it differs from the Julian Day (JD) by the
small quantity AT (see Chapter 7). Then calculate the following angles expressed
in degrees and decimals. These expressions are those which are provided by the
International Astronomical Union [1]. They differ slightly from those used in
Chapront’s lunar theory (Chapter 47).
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Mean elongation of the Moon from the Sun:

D = 297.85036 + 445267.111480T — 0.001914272 + 73/189474

Mean anomaly of the Sun (Earth):
M = 357.52772 + 35999.050340T — 0.000 160372 ~ 73/300 000

Mean anomaly of the Moon:

M’ = 134,96298 + 477198.867398T + 0.008697272 + T3/56250

Moon’s argument of latitude:

F = 93.27191 + 483202.017538T — 0.003682572 + T3/327270

Longitude of the ascending node of the Moon’s mean orbit on the ecliptic, measured
from the mean equinox of the date:

Q = 125.04452 — 1934.136261 T + 0.0020708 7% + T3/450000

The nutations in longitude (Ay) and in obliquity (Ag) are then obtained by
making the sum of the terms given in Table 22.A, where the coefficients are given
in units of 0”0001. These terms are those of the “1980 IAU Theory of Nutation”
[2] where, however, we have neglected the terms with a coefficient smaller than
070003. The argument of each sine (for Ay) and cosine (for Aeg) is a linear
combination of the five fundamental arguments D, M, M’, F, and ). For instance,
the argument on the second line is —2D + 2F + 29Q.

Of course, if no great accuracy is needed, only the periodic terms with the
largest coefficients can be used.

If an accuracy of 0”5 in Ay and of 0”1 in A¢ are sufficient, then we may drop
the terms in 72 and in T? in the above expression for , and then use the following
simplified expressions:

Ay = —17"20sin @ — — 1".32 sin 2L — 0723 sin 2L’ + 0“21 sin 2Q
Ae = +9"20cos @ + 0”57 cos 2L + 0710 cos 2L" — 0".09 cos 20

where L and L' are the mean longitudes of the Sun and the Moon, respectively:

L = 280°4665 + 36000°7698T
L' = 2183165 + 481267788137
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TABLE 22.A

Periodic terms for the nutation in longitude (Ay)
and in obliquity (Ae). The unitjs 07.0001.

145

Argument Ay Ag
multiple of Coeﬁ‘icignt of the Coeﬁicier'tt of the
sine cosine
D M M F Q of the argument of the argument
0 0 0 o0 1 ~171996 -174.27 | +92025 +89T
-2 0 o 2 2 —13187 ~1.6T +5736 -3.1T
0 0 o 2 2 -2274 -0.2T +977 -0.5T
0 60 0 o 2 +2062  +0.2T -895 +0.5T
0 1 0 0 0 +1426  ~3.4T +54 -0.1T
0 0 1 0 0 +712 +0.1T -7
-2 1 0 2 2 =517 +1.2T +224 ~0.6T
0 0 0o 2 1 -386 04T +200
0 0 1 2 2 ~301 +129 -0.1T7
-2 -1 0 2 2 +217  -0.5T =95 +0.3T
-2 0 1 0 © -158
-2 0 0o 2 1 +129  +0.17T =70
0o 0 -1 2 2 +123 -53
2 0 0 o0 ©o© +63
0 0 1 0 1 +63 +0.1T -33
2 0 -1 2 2 -59 +26
0 0 -1 0 1 =58 -0.1T +32
0 0 1 2 1 =51 +27
-2 0 2 0 0 +48
0 0 -2 2 1 +46 —-24
2 0 0o 2 2 -38 +16
0 0o 2 2 2 =31 +13
0 0 2 0 0 +29
-2 0 1 2 2 +29 -12
0 0 0 2 0 +26
-2 0 0 2 0 =22
0 0 -1 2 1 +21 -10
0 2 0 0 0 +17 -0.1T
2 0 -1t 0 1 +16 -8
-2 2 0o 2 2 -16 +0.1T +7
0 1 0 0 1 —-15 +9
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The obliquity of the ecliptic

The obliquity of the ecliptic, or inclination of the Earth’s axis of rotation, is the
angle between the equator and the ecliptic. One distinguishes the mean and the rrue
obliquity, being the angles which the ecliptic makes with the mean and with the true
(instantaneous) equator, respectively. In other words, the adjective mean indicates
that the correction for nutation is not taken into account.

The mean obliquity of the ecliptic is given by the following formula, adopted
by the International Astronomical Union [1]:

g, = 23°26'21".448 — 46"8150T — 0”.0005972 + 0”001 81373 (22.2)

where, again, T is the time measured in Julian centuries from the epoch J2000.0.

The accuracy of formula (22.2) is not satisfactory over a long period of time:
the error in &, reaches 1” over a period of 2000 years, and about 10" over a period
of 4000 years. The following improved expression is due to Laskar [3]. Here, U
is the time measured in units of 10000 Julian years from J2000.0, or U = 7/100.

g = 23°26'21"448 — 4680”93 U
1.55U?
1999.25 U3
51.38 U*
249.67U° (22.3)
- 39.05U°
+  7.12U7
+ 27.87U%
+
+

—+

5.79U°
2.45U1°

The accuracy of this expression is estimated at 0”01 after 1000 years (that is,
between A.D. 1000 and 3000), and a few seconds of arc after 10000 years.

It is important to note that formula (22.3) is valid only over a period of 10000
years on each side of J2000.0, that is, for |U] < 1. For U = +2.834 for
example, the formula would yield ¢, = 90°, a completely wrong result!

The Figure on the next page shows the variation of g, from 10000 years before
to 10000 years after A.D. 2000. According to Laskar’s formula, the inclination of
the Earth’s axis of rotation was a maximum (24°14'07) about the year —7530.
And near the year +12030 a minimum (22°36'41”) will be reached. By a mere
chance we are presently approximately half- way between these extreme values, near
the middle of the curve in the Figure. Here the curve is almost linear, this is the
reason why in (22.3) the coefficient of U? is very small.

The true obliquity of the ecliptic is € = g, + Ag, where Ag is the nutation in
obliquity.
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€o
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Example 22.a — Calculate Ay, Ag, and the true obliquity of the ecliptic for 1987
April 10 at 0" TD.

This date corresponds to JDE 2446 895.5, and we find

T —0.127296 372348

D  —-5638320377 = 13629623
M —4225°0208 = 94°9792
M’ —-6061077216 = 22992784
F  —61416°5921 = 143°407%
Q 37122531 = 1122531
Ay  —3"788

Ae 497443

& 23°26'27"407

& 23°26'36"850

REFERENCES

1. Astronomical Almanac for the year 1984 (Washington, D.C.; 1983), page $26.
2. Ibid., page S23.
3. J. Laskar, Astronomy and Astrophysics, Vol. 157, page 68 (1986).



Chapter 23

Apparent Place of a Star

The mean place of a star at any time is its apparent position on the celestial sphere,
as it would be seen by an observer at rest on the Sun (or, more exactly, at the
barycenter of the solar system), and referred to the ecliptic and mean equinox of the
date (or to the mean equator and mean equinox of the date).

The apparent place of a star at any time is its position on the celestial sphere
as it is actually seen from the center of the moving Earth, and referred to the
instantaneous equator, ecliptic, and equinox. Note that:

— the mean equinox is the intersection of the ecliptic of the date with the mean
equator of the date;

— the true equinox is the intersection of the ecliptic with the true (instantaneous)
equator, that is, the equator affected by the nutation;

— there is no “mean” ecliptic, because the ecliptic has a regular motion — the
slow rotation mentioned on page 131.

mean equator €0 M

true equator

M = mean equinox
T = true equinox
arc MT = Ay

149
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The problem of the reduction of the place of a star from the mean place at one
time (for instance, of a standard epoch and equinox, such as J2000.0) to the
apparent place at another time involves the following corrections:

(A) The proper motion of the star between the two epochs. We may assume that
by its proper motion each star moves on a great circle with an invariable
angular speed — however, see also “Motion in space” in Chapter 21. Except
when the proper motion is an important fraction of the polar distance of the
star, not only the proper motion itself, but also its components in right
ascension and declination with respect to a fixed equinox may be considered as
constants during several centuries. Therefore, we start by finding the effect of
the proper motion when the axes of reference remain fixed, as in Example 21.b;

(B) The effect of precession. This has been explained in Chapter 21;
(C) The effect of nutation (see below);
(D) The effect of annual aberration (see below);

(E) The effect of the annual parallax. Of course, stellar parallaxes are of
fundamental importance in astronomy. As George Lovi wrote [1]:
Parallax is the only true geometrical link between us and our nearer
neighbors in that vast interstellar void. It has enabled astronomers to
create and calibrate procedures to take us much farther out.

However, for the person wishing to calculate accurate star positions, the stellar
parallax is a nuisance. Fortunately, stellar parallaxes never exceed 0”8 and they
may be neglected in most cases. According to R. Burnham [2], only 13 stars
brighter than magnitude 9.0 are nearer than 13 light-years (4 parsecs) and have
a parallax exceeding 0".25. These stars are o Centauri, Lalande 21185 (in Ursa
Major), Sirius, & Eridani, 61 Cygni, Procyon, ¢ Indi, £2398 (in Draco),
Groombridge 34 (in Andromeda), 7 Ceti, Lacaille 9352 (in Piscis Austrinus),
Cordoba 29191 (in Microscopium), and the Star of Kapteyn (in Pictor). None
of these stars is near the ecliptic, and so none is involved in occultations by the
Moon or in close conjunctions with planets.

For this reason, in what follows we shall neglect the effect of the annual
parallax in the calculation of the apparent position of a star.

(F) The gravitational deflection of light. The path of light is bent by the
gravitational field of the Sun in the direction toward the Sun (Einstein effect).
Formulae for calculating this effect are given in [3]. However, for any
elongation larger than 15° the effect is smaller than 0"03. For this reason, we
will neglect this effect here.

The effect of nutation

The simplest and most direct method of applying the effect of nutation to mean
position is to add Ay to the ecliptical longitude of the objects. The ecliptic and
therefore the latitude of a body is unchanged by nutation.
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This procedure can profitably be used in the calculation of apparent positions
of planets, where ecliptical coordinates are calculated first. Stellar positions,
however, are generally given in the equatorial system, so we prefer to calculate the
corrections in right ascension and in declination directly.

First-order corrections to a star’s right ascension « and declination & due to the
nutation are

AOII
A8,

(cos € + sin ¢ sin « tan §) Ay — (cos « tan §) Ag

(sin & cos @) Ay + (sin @) Ae (23.1)

These expressions are invalid if the star is close to one of the celestial poles. If
this is the case, it is better to work in ecliptical coordinates and just add Ay to the
longitude, as mentioned above.

The quantities Ay and A¢ can be calculated by means of the method described
in Chapter 22, while ¢ is the obliquity of the ecliptic given by formula (22.2).

The effect of aberration

Let A and 8 be the star’s celestial longitude and latitude, k the constant of
aberration (20"49552), © the true (geometric) longitude of the Sun, e the
eccentricity of the Earth’s orbit, and = the longitude of the perihelion of this orbit.

O can be calculated by the method described in Chapter 25, while

e = 0.016708 634 — 0.000042 037 7 — 0.000000 1267 7'*
7 = 102993735 + 1271946 T + 0°00046 T2

where T is the time in Julian centuries from the epoch J2000.0, as obtained by
formula (22.1).

Then the changes in longitude and in latitude of the star due to the annual
aberration are

—K cos(®© —N) + ekcos(w—N)

AN = cos B

23.2)
AB

—k sin B (sin(© —N) — e sin(r —\))

In equatorial coordinates, the changes in the right ascension « and in the
declination ¢ of the star due to the annual aberration are
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cos o cos © cos € + sin o sin ©
cos o

COS & COS 7 COS € + sin o sin =«

cos &
} (23.3)

A, = —kK [cos © cos € (tan & cos & — sin a sin §)
+ cos « sin é sin O ]

+ ek

+ ek [cos 7 cos & (tan & cos & — sin o sin &)
+ cos « sin & sin 7 ] }

The total corrections to o and 8, due to the nutation and the aberration, are
therefore Aoy + Ao, and A9, + Ad,, respectively. Calculated from the above
formulae, both are expressed in seconds of a degree (if Ay, Ae and « are expressed
in the same units).

Important remark. — Formulae (23.2) and (23.3) are the complete expressions for
the components of the aberration. They include the so-called E-terms and should be
used for the star positions given in the FKS5 [4] and in all catalogues based on it.

If, however, FK4 positions are used, those parts of formulae (23.2) and (23.3)
that contain the eccentricity e of the orbit of the Earth should be dropped, as
explained in Chapter 21.

Example 23.a — Calculate the apparent place of 8 Persei for 2028 Nov. 13.19 TD.

The mean position of this star for that instant, including the effect of proper
motion, was found in Example 21.b, namely

a = 2M6™M113331 = 4195472 6 = +49°20°'54"54 = +4993485

The nutations in longitude and in obliquity, for the same instant, can be found by
means of the method given in Chapter 22. We obtain

Ay = +14"861 Ag = +27705

Formula (22.2) gives ¢ = 23%436, while the Sun’s true longitude, calculated by
means of the method “low accuracy” of Chapter 25, is @ = 2312328, (An accuracy
of 0.01 degree is sufficient in this case.) We further find

T = +0.288 6705 e = 0.016 69649 T = 1032434

Putting the values of a, 8, &, AY, A¢g, O, ¢, and 7 in formulae (23.1) and (23.3),
one finds



23. APPARENT PLACE OF A STAR 153

Aal
Aaz

+15".843 A8,
+30".045 As,

+6"218
+6".697

and the total corrections in right ascension and in declination are

Ao = +15"843 + 30”045 = 45”888 = +3:059
A = +6"218 + 6"697 = +12"91

Hence, the required apparent coordinates of the star are

a = 2M6™11°331 + 3059 = 2"46™14%390
8 = +49°20'54"54 + 12791 = +49°21'07"45

The Ron-Vondrdk expression for aberration

Expressions (23.2) and (23.3) contain the effect of the eccentricity of the Earth’s
orbit and will provide quite accurate results. Nevertheless, these results are not
rigorously exact because the said formulae are based on an unperturbed motion of
the Earth in its elliptical orbit. Actually, the Earth’s motion is somewhat perturbed
by the attraction of the Moon and that of the planets. And the Sun itself is slowly
moving around the center of mass of the solar system, mainly due to the action of
the giants Jupiter and Saturn.

If a very accurate result is required, stellar aberration must, in fact, be
computed from the total velocity of the Earth referred to this barycenter. One
method of performing this calculation has been presented by Ron and Vondrik [5].

If T = (JD — 2451545)/36525 is, as before, the time in Julian centuries
elapsed since J2000.0, then calculate, for the given instant, the following angles
expressed in radians:

L2 = 3.1761467 + 1021.3285546 T
L3 = 1.7534703 + 628.3075849T
L4 = 6.2034809 + 334.0612431T
L5 0.5995465 + 52.9690965 T
L6 0.8740168 + 21.3299095T
L7 = 5.4812939 + 7.4781599 T

L8 = 5.3118863 + 3.8133036 T
L' = 3.8103444 + 8399.6847337T
D = 5.1984667 + 7771.377 1486 T

M’ = 2.3555559 + 8328.6914289 T
F = 1.6279052 + 8433.466 1601 T
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The quantities L2 up to L§ are
the mean longitudes of the planets
Venus to Neptune referred to the
mean equinox of J2000.0 (the effects

of Mercury and Pluto are negligible),
while L’ is the mean longitude of the
Moon.

Then the components X', Y', Z'
of the velocity of the Earth with

respect to the barycenter of the solar
system, in the equatorial J2000.0
reference frame, are equal to the
Nt Oonn sums of the terms given in Table
b b 23.A. Here, the argument of each
sine and cosine is a linear combina-

(cont.)

tion of some of the angles L2, L3,
etc. For instance, the terms on line
12 of the table have as argument the
§eeTe angle

A = 5L3 — 8L4 + 3L5

-9
-9
-7
-7

TABLE 23.A
-5

and the contributions to the velocity
components are:

— O~ O

. to X' : + 8sinAd —28 cos A
to Y : —25sin4 — 8cos A
toZ': —11sinAd — 3cos A

The values of X', ¥', Z’ thus
obtained are expressed in units of
107# astronomical unit per day. Let
¢ be the velocity of light in the same
units, namely

L'+2D-M
8L2 — 12L3
8L2 — 14L3

2L2 — 4L3
2L4

3L3 —2L4

2L6

¢ = 17314463 350.

25
26
27
28
29
30
31

N on o<t

NSRS . _

‘1" T 'T ‘T ] Then the changes in the star’s right

N | ascension and declination due to the

Aa33n annual aberration are, in radians,
given by formulae (23.4).

NN N \Q

[alianll oo T sl o0
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Y cosa — X'sin o
C cos &

Aa =

(23.9)
(X'cosa + Y'sina)sind — Z'cos &
c

A = -

Important: the Earth’s velocity components, as calculated by means of Table
23.A, are given in a rectangular coordinate system based on the fixed equator and
equinox of FKS5 for the epoch J2000.0, nor with respect to the mean equinox of the
date. Consequently, if the Ron-Vondrdk method for the calculation of the aberration
is preferred instead of the formulae (23.3), then the corrections (23.4) should be
performed before the calculation of the effects of precession and nutation. In other
words, the sequence of the calculations will be: FKS position (J2000.0), proper
motion, aberration (Table 23.A and expressions 23.4), precession (expressions 21.3
and 21.4), nutation (Chapter 22 and expressions 23.1).

Example 23.b — Let us again calculate the apparent place of 8 Persei for 2028
November 13.19 TD, but now using the Ron-Vondrdk algorithm.

As in Example 21.b, we find that the star’s coordinates for the epoch 2028
November 13.19, but referred to the mean equinox of J2000.0, are (allowing for
proper motion)

o = 2P44m12:9747 +412054 0613
6 +49°13'39".896 = +49°9227 7489

We keep extra decimals here, in order to avoid rounding errors. We further find

T  +0.288 670 500 L’ 2428.551 5363 rad.

L2 298.003 5712 rad. D 2248.5657939

L3 183.127 3350 M’ 2406.603 0750

L4 102.637 1070 F  2436.120 7984

Ls 15.890 1621

L6 7.0313324 X' —1363700

L7 7.640 0181 Y+ 990286

L3 6.412 6746 Z'  + 429285

Formulae (23.4) then give
Ao = +0.000 145 252 radian +0°2008 3223
Ad = +0.000032723 radian = +02001 8749

so that the new values for « and 6, corrected for aberration but still in the J2000.0
reference frame, are

4120540613 + 0°008 3223 419062 3836

& = 4992277489 + 0°001 8749 = 49°229 6238
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The effect of precession is obtained by means of formulae (21.4). The values of
¢, z, and 8, for the same instant, were found in Example 21.b. We now find

A
B
Cc

+0.430 549 036
+0.488 867 290
+0.758 706 993

= 41?555 5635
= 49?350 3415

new o
new o

Finally, the corrections for the nutation are given by (23.1). As in Example 23.a,
we have Ay = +14"861, Ae = +2"705, and & = 23°436. We find

Aoy

+15"844
+6"217

+0°004 4011
+0°001 7270

Hence, the required apparent right ascension and declination of the star are

a = 41°5555635 + 0°0044011 = 41°559 9646
= 2h46™145392
8 = 4923503415 + 020017270 +49°352 0685

i

+49°21'07"45

Compare these results with those of Example 23.a.
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Chapter 24

Reduction of Ecliptical Elements from one
Equinox to another one

For some problems, it may be necessary to reduce the orbital elements of a planet,
a minor planet, or a comet from one equinox to another one. Of course, the
semimajor axis a and the eccentricity e do not change when the orbit is referred to
another equinox, and hence only the three elements

i = inclination,
» = argument of perihelion,
2 = longitude of ascending node
should be taken into consideration here. Let iy, wy, @ be the known values of these
elements at the initial epoch, and i, w,  their (unknown) values at the final epoch.

In the Figure on the preceding page, E; and 7y, are the ecliptic and the (mean)
vernal equinox at the initial epoch, and E and + the ecliptic and (mean) equinox at
the final epoch. The angle between the two ecliptics is denoted by %, and the orbit’s
perihelion by P.

As in Chapter 21, let T be the time interval, in Julian centuries, between
J2000.0 and the initial epoch, and ¢ the time interval, in the same units, between the
initial epoch and the final epoch.

Then calculate the angles 4, II, and p by means of formulae (21.5) or, if the
initial epoch is J2000.0, by means of (21.6).

Find ¢y = IT + p. Then the quantities i and {! — ¢, and hence (2, can be found
from

cos i = ¢os iy cos i + sin i, sin 5 cos (Qy — II) (24.1)

sin i sin (Q — ¢) sin iy sin (Qp — IT)

., . . . 24.2
sin i cos (! —y) = —sin n cos iy + cos g sin iy cos (Oy — IT) ( )

Formula (24.1) should not be used when the inclination is too small.
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Then v = wy + Aw, where Aw is found from

sin i sin Aw = —sin 7 sin (Q, — II) 24.3)
sin i cos Aw = sin iy cos n — ¢os iy sin 5 cos (Q — 1) )

If iy = 0, then Qq is not determined, and we have i = » and @ = { + 180°.

It is important to note that the method described here reduces the orbital
elements i, w, and @ from one equinox to another one, but the new orbital elements
remain valid for the same epoch as the initial elements. Itis, in fact, the same orbit.
The calculation of the orbital elements for another epoch is a completely different
problem (celestial mechanics!) which we cannot discuss here.

Example 24.a — In their Catalogue Général des Orbites de Cométes de l'an —466
a 1952 (Observatoire de Paris, Section d’Astrophysique de
Meudon; 1952), F. Baldet and G. De Obaldia give the
following orbital elements for comet Klinkenberg (1744),
referred to the mean equinox of B1744.0 :

iy = 47°1220
wp = 151°4486
Q, = 45°7481

Reduce these elements to the standard equinox of B1950.0.

The final epoch is B1950.0, or (JD) = 2433 282.4235 (see Chapter 21), and the
initial epoch is 206 tropical years earlier (because both epochs correspond to the
beginning of a Besselian year), whence

(ID), = 2433282.4235 — (206 X 365.242 1988) = 2358 042.5305.
We then find

T  —2.559958097

t +2.059 956 002

] +97".0341 = +0°026 954

II  174°876384 — 10205".9108 = 1722041409
p +10352"7137 = +2°875754

¥ 1742917 163

Then formulae (24.2) give

sin i sin (@ — ¢)
sin i cos (2 — )

—0.5906 3831
—0.4340 8084

A
B

from which we deduce sini = ¥ A% + B? = 0.73299372, i = 47°1380
Q—y = ATN2(4,B) = —126°313473
Q = 48°6037
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Formulae (24.3) give  sini sin Aw = +0.0003 7917
sin i cos Aw = +0.7329 9362
whence Aw = +0°0296, and w = 151%4782.

In his Caralogue of Cometary Orbits, sixth edition (1989), Marsden gives the
values i = 4771378, w = 15194783, Q = 48°6030. The discrepancy of 070007
between the values of Q results from the fact that the new IAU precession formulae
yield for the general precession in longitude a value which is a little larger (41”1 per
century) than that adopted by Newcomb. The effect over 206 years (from 1744 to
1950) amounts to 0.0006 degree.

If the initial equinox is that of B1950.0, and the final equinox that of J2000.0,
the formulae simplify to the following ones.
S = 0.0001139788 C = 0.9999999935 \
W = Q, — 1742298782

A = sin iy sin W
B = Csin iy cos W — S cos iy

sini = V42 + B? tanx=% > (24.4)

Q = 1742997194 + x
and finally w = wy + Aw, with

tan Aw = .—'SsmW .
Csin iy — S cos iy cos W )

Care must be taken for the correct quadrant of the angles x and Aw. For safety,
they should be calculated by means of the ATN2 function, if the latter is available
in the programming language, for instance x = ATN2 (4, B). Except when the
orbital inclination is very small, the new value of Q should be approximately 027
larger than the initial value Q,, and Aw must lie near 0°, not near 180°.

Example 24.b — S. Nakano calculated the following orbital elements for the 1990
return of periodic comet Encke (Minor Pilaner Circular 12577) :

Epoch = 1990 November 5.0 TD = JDE 2448 200.5
T = 1990 October 28.54502 TD
g = 0.3308858 i = 11293911 }
a = 2.209 1404 2 = 334204096 1950.0
e = 0.8502196 w = 186224444
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We wish to reduce i, 2, and w to the equinox J2000.0, and we find successively

W +159°742178 x  +159°752 866

A +0.071628 4465 Q334275006

B —0.194 1873149 Aw —0°01092
sini  0.206 9767 w 186923352

i 11994524

The other orbital elements (7, g, a, e¢) remain unchanged, and the Epoch is still
1990 November 5.0.

However, formulae (24.4) assume that the elements i,, w,, and 2, are given in
the FKS system. To convert elements from B1950.0/FK4 to J2000.0/FKS5, one
may use the following algorithm due to Yeomans (note from D. K. Yeomans,
Chairman AU System Transition Committee, to Richard West, President of IAU
Commission 20; 1990 August 10).

Let

L' = 4500016 88 degrees
L =5.19856209 degrees
J =0.00651966 degrees

w =L+Q°

Then we have

sin (w —wg) sini = sinJ sin W

cos (w — wp) sini = sin iy cos J + cos i sin J cos W
cosi = cos iy cos J — sin iy sin J cos W

sin (L'+ Q) sini = sin i, sin W

cos(L'+ Q) sini = cos iy sinJ + sin i, cos J cos W

from which i, @, and w can be deduced.

Example 24.c — Same starting values iy, Qp, and w, as in Example 24.b.

We obtain

i = 11094521
334975043 » FKS5, J2000.0
= 186923327

€ 2
il




Chapter 25

Solar Coordinates

Low accuracy

When an accuracy of 0.01 degree is sufficient, the geocentric position of the
Sun may be calculated by assuming a purely elliptical motion of the Earth; that is,
the perturbations by the Moon and the planets may be neglected. The calculation can
be performed as follows.

Let JD be the Julian (Ephemeris) Day, which can be calculated by means of the
method described in Chapter 7. Then the time 7, measured in Julian centuries of
36525 ephemeris days from the epoch J2000.0 (2000 January 1.5 TD), is given by

JD — 2451545.0
T = 36525 (25.1)
This quantity should be calculated with a sufficient number of decimals. For
instance, five decimals are not sufficient (unless the Sun’s longitude is required with
an accuracy not better than one degree): remember that 7 is expressed in centuries,
so that an error of 0.00001 in T corresponds to an error of 0.37 day in the time.

Then the geometric mean longitude of the Sun, referred to the mean equinox of
the date, is given by

L, = 280°46646 + 36000°769837 + 02000303272 (25.2)
The mean anomaly of the Sun is

M = 357°52911 + 359992050297 — 0°000 1537T* (25.3)

(The mean anomaly of the Sun is the same as the mean anomaly of the Earth.
For the definition of the mean anomaly, see Chapter 30.)

The eccentricity of the Earth’s orbit is

e = 0.016708 634 — 0.000042037T — 0.000000 126772 (25.4)
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Find the Sun’s equation of the center C as follows:

C = + (12914602 — 0°004 8177 —~ 0°000014 72 sin M
+ (02019993 — 0°000 1017) sin 2M
+ 02000289 sin 3M

Then the Sun’s true longitudeis © = Ly + C
and its true anomaly is 12 M+ C

The Sun’s radius vector, or the distance between the centers of the Sun and the
Earth, expressed in astronomical units, is given by

1.000001018 (1 —e?)

R =
1 +ecosv

(25.5)

The numerator of the fraction is a quantity which varies slowly with time. It is
equal to

0.9997190 in the year 1800

0.999 7204 1900
0.9997218 2000
0.999 7232 2100

The Sun’s longitude ©, obtained by the method described above, is the true
geometric longitude referred to the mean equinox of the date. This longitude is the
quantity required for instance in the calculation of geocentric planetary positions.

If the apparent longitude A of the Sun, referred to the true equinox of the date,
is required, © should be corrected for the nutation and the aberration. Unless high
accuracy is required, this can be performed as follows.

Q 125204 — 1934°136T
A = O — 0°00569 — 0°00478 sin £

In some instances, for example in meteor work, it is necessary to have the Sun’s
longitude referred to the standard equinox of J2000.0. Between the years 1900 and
2100, this can be performed with sufficient accuracy from

O = © — 0901397 (year — 2000)

If the Sun’s longitude, referred to the standard equinox of J2000.0, should be
obtained with a higher accuracy than 0.01 degree, the method given in Chapter 26
can be used.

Due to the actions of the Moon and the planets, the Sun’s latitude is not exactly
zero. Referred to the ecliptic of the date, it never exceeds 1.2 arcseconds. Unless
high accuracy is required, this latitude may be put equal to zero. In that case, the
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Sun’s right ascension « and declination & can be calculated from the following
expressions where ¢, the obliquity of the ecliptic, is given by (22.2).

__ cos g sin O
tan o = T s O (25.6)
sin § = sin & sin O (25.7)

If the apparent position of the Sun is required, then in formulae (25.6) and
(25.7) one should use A instead of ©, and ¢ should be corrected by the quantity

+ 0200256 cos Q (25.8)

Formula (25.6) may of course be transformed to tan oo = cos & tan © but then
it must be remembered that o must be in the same quadrant as ©. However, if the
ATN2 function is available in the programming language, it is better to leave
formula (25.6) unchanged and to apply the ATN2 function to the numerator and the
denominator of the fraction: o« = ATN2 (cos € sin O, cos O).

Example 25.a — Calculate the Sun’s position on 1992 October 13 at 0® TD.
This date corresponds to JDE 2448 908.5, and we find successively:

T  —0.072183436

L, —2318°19280 = 201°80720

M —2241°00603 = 278°99397

e 0.016711668

C -1°89732

O  199°90988 = 199°54'36"

R 0.99766

Q  264°65

A 199990895 = 199°54'32"

g 23°26'24"83 = 23°44023 [by (22.2)]
e 23°43999

g = —161°61917 = +198°38083 = 137225389 = 13413™31%4
8, = —7°78507 = —7°47'06"

38
°

The correct values, calculated by means of the complete VSOP87 theory (see
Chapter 32), are:

199°5426".18
199°54'21".56

geometric long., mean equinox of date :
apparent longitude :

apparent latitude : +0°72
radius vector : 0.997608 53
apparent right ascension : 13713™305749
apparent declination : —=7°47'01"74

RSN O)
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Higher accuracy

In their book Planetary Programs and Tables from —4000 to +2800 (Wilmann-
Bell, Richmond; 1986), Bretagnon and Simon give a method for the calculation of
the longitude of the Sun with an accuracy that is sufficient for many applications.
Their method yields an accuracy of 0.0006 degree (2”2) between the years 0 and
+2800, and of 0.0009 degree (3"2) between —4000 and +8000, yet only 49
periodic terms are used.

A very high accuracy, better than 0.01 arcsecond, is obtained when use is made
of the complete VSOP87 theory (see Chapter 32), but for the Earth this theory
contains 2425 periodic terms, namely 1080 terms for the Earth’s longitude, 348 for
the latitude, and 997 for the radius vector. Evidently, this big amount of numerical
data cannot be reproduced in this book. Instead, we give in Appendix III the most
important terms from the VSOP87, allowing the calculation of the position of the
Sun with an error not exceeding 1” between the years —2000 and +6000. The
procedure is as follows.

Using from Appendix III the data for the Earth, calculate the latter’s
heliocentric longitude L, latitude B, and radius vector R for the given instant, as
explained in Chapter 32. Don’t forget that the time 7 is measured from JDE
2451 545.0 in Julian millennia (365250 days), not in centuries, and that the final
values obtained for L and B are in radians.

To obtain the geocentric longitude © and latitude 8 of the Sun, add 180° (or
« radians) to L, and change the sign of B:

O =L + 180°, B = -B

Conversion to the FK5 system. — The Sun’s longitude © and latitude £ obtained
thus far are referred to the mean dynamical ecliptic and equinox of the date defined
by the VSOP planetary theory of P. Bretagnon. This reference frame differs slightly
from he standard FKS system mentioned in Chapter 21. The conversion of © and
8 to the FKS system can be performed as follows, where 7 is the time in centuries
from 2000.0, or T = 107.

Calculate
N = O — 1°397T - 0°00031 T2

Then the corrections to © and § are

AQ
AB

—07.09033
+0"03916 (cos A’ — sin \')

(25.9)

These corrections are needed only for very accurate calculations. They may be
dropped when use is made of the abridged version of the VSOP87 given in
Appendix III.
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Apparent place of the Sun. — The Sun’s longitude O obtained thus far is the true
(“geometric”) longitude of the Sun referred to the mean equinox of the date. To
obtain the apparent longitude A, the effects of nutation and aberration should be
taken into account.

For the nutation, simply add to © the nutation in longitude Ay (Chapter 22).
To take the aberration into account, apply to the Sun’s geometric longitude the
correction

204898

h (25.10)

where R is the Earth’s radius vector in AU. The numerator of the fraction is equal
to the constant of aberration (k = 20"49552) multiplied by @ (1 — ¢?), the same as
the numerator in formula (25.5). Therefore, the numerator of (25.10) actually varies
very slowly with time, from 20”4893 in the year 0 to 20”4904 in the year +4000.

But, more important, formula (25.10) will not give a rigorously exact result,
because it assumes an unperturbed motion of the Earth in its elliptical orbit. By
reason of perturbations, mainly due to the Moon, the result can be up to 0.01
arcsecond in error.

When a very high accuracy is needed — this is not the case when the data of
Appendix III are used for the calculation — the correction to the Sun’s longitude due
to the aberration can be obtained as follows. Find the variation AN of the Sun’s
longitude, in arcseconds per day, as explained below. The correction for aberration
is then

= 0.005775518 R AN (25.11)

where R is, as before the Sun’s radius vector in astronomical units. The numerical
constant is the light-time for unit distance, in days (= 8.3 minutes).

After the Sun’s longitude has been corrected for nutation and aberration, we
have obtained the Sun’s apparent longitude \. The apparent longitude A and latitude
B of the Sun can then be transformed into the apparent right ascension « and
declination § by means of formulae (13.3) and (13.4), where ¢ is the true obliquity
of the ecliptic, that is, affected by the nutation in obliquity Ae.

The variation AN of the geocentric longitude of the Sun, in arcseconds per day,
in the fixed reference frame J2000.0, can be obtained by means of the formula
given on the next page, where 7 is the time in millennia from J2000.0 (as in
Chapter 32), and the arguments of the sines are in degrees and decimals.

In that expression, only the most important periodic terms have been retained.
Consequently, the result will not be rigorous, but A\ will not be more than 0”1 in
error. If the resulting value of AN is used to calculate the Sun’s aberration by means
of (25.11), the error will be less than 0”.001.

If, for some other application, the value of A\ is needed with respect to the
mean equinox of the date instead of to a fixed reference frame, the constant term
3548.193 should be replaced by 3548.330.
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Daily variation, in arcseconds, of the geocentric longitude
of the Sun in a fixed reference frame

The time t is measured from J2000.0
(JDE 2451 545.0) in Julian millennia.

The arguments of the sines are in degrees.

AN = 3548.193

+ 118.568 sin ( 87.5287 + 359993.72867)
2.476 sin ( 85.0561 + 719987.4571 1)
1.376 sin ( 27.8502 + 4452 671.11527)
0.119 sin ( 73.1375 + 450368.8564 1)
0.114 sin (337.2264 + 329644.67187)
0.086 sin (222.5400 + 659289.34367)
0.078 sin (162.8136 + 9224 659.7915 7)
0.054 sin ( 82.5823 + 1079 981.1857 7)
0.052 sin (171.5189 + 225184.4282 1)
0.034 sin ( 30.3214 + 4092 677.3866 7)
0.033 sin (119.8105 + 337 181.4711 )
0.023 sin (247.5418 + 299295.6151 7)
0.023 sin (325.1526 + 315559.5560 7)
0.021 sin (155.1241 + 675553.284617)
7.311 7 sin(333.4515 + 359993.7286 1)
0.305 7 sin (330.9814 + 719987.4571 1)
0.010 7 sin (328.5170 + 1079981.1857 )
0.309 7% sin (241.4518 + 359993.72867)
0.021 7% sin (205.0482 + 719987.45717)
0.004 72 sin (297.8610 + 4452671.11527)
0.0107° sin (154.7066 + 359993.72861)

+H++++ A+

The periodic terms where 7 has the coefficient 359993.7, 719987, or
1079981, are due to the eccentricity of the Earth’s orbit. The terms with
4452 671, 9224 660, or 4092677 are due to the action of the Moon; those
with 450369, 225184, 315560, or 675553 are due to Venus; those with
329645, 659289, or 299296 are due to Jupiter; finally, the term with
337 181 is due to the action of Mars.
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Example 25.b — Let us again, as in Example 25.a, calculate the position of the Sun
for 1992 October 13.0 TD = JDE 2448 908.5.

Using from Appendix III the data for the Earth, we find by the method explained
in Chapter 32,

L = —43.634 84796 radians = —2500.092 628 degrees
= +19.907 372 degrees
B = —0.000003 12 radian = —0°000179 = —0"644
R = 099760775
Whence
O} L + 180° = 1999907372

B +0".644

Converting to the FKS system, we find
A = 200°01 AO = -0"09033 = —0°000 025 AB = —~0"023

whence

© = 1992907347 = 199°54'26".449 g = +0"62

The nutation is calculated by means of the method described in Chapter 22.
Ay = +15"908 Ae = —0"308 true &€ = 232440 1443

and by (25.10) the correction for aberration is —20".539.

Hence, the Sun’s apparent longitude is

A= O + 157908 — 20”539 = 199°54'21".818

Then, by (13.3) and (13.4),

198°378 178 13113m30°763
6 = —7°783871 = —7°47'01"94

Resuming, the final results are

O = 199°54'26".45 R = 0.997607 75
A = 199°54'21".82 o = 13713302763
g = +0"62 6 = —7°47'01"94

Compare these results with the correct values mentioned at the end of Example 25.a.
Our results are now much better than those obtained with the low-accuracy method.







Chapter 26

Rectangular Coordinates of the Sun

The rectangular geocentric equatorial coordinates X, Y, Z of the Sun are needed for
the calculation of an ephemeris of a minor planet (see Chapter 33) or a comet. The
origin of these coordinates is the center of the Earth. The X-axis is directed towards
the vernal equinox (longitude 0°); the Y-axis lies in the plane of the equator too and
is directed towards longitude 90°, while the Z-axis is directed towards the north
celestial pole.

The values of X, Y, Z are given for each day at 0" TD in the great astronomical
almanacs; they are expressed in astronomical units. Generally they are not referred
to the mean equator and mean equinox of the date, but to a standard equinox, for
instance that of J2000.0.

Reference to the mean equinox of the date

Calculate the geometric coordinates of the Sun by means of the method “higher
accuracy” described in Chapter 25, with the corrections (25.9) for reduction to the
FKS system, but without the corrections for nutation and aberration.

If © and B are the geometric longitude and latitude of the Sun, and R its radius
vector in astronomical units, then the required rectangular coordinates of the Sun,
referred to the mean equator and equinox of the date, are given by

X = Rcos B cos O
Y = R (cos 8 sin © cos & — sin 8 sin &) (26.1)
Z = R (cos B sin O sin & + sin 8 cos &)

where ¢ is the mean obliquity of the ecliptic given by (22.2).

Since the Sun’s latitude, referred to the ecliptic of the dare, never exceeds 1.2
arcsecond, one may safely put cos 8 = 1 in the formulae (26.1).
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Example 26.a — For 1992 October 13.0 TD = JDE 2448 908.5, we have found in
Example 25.b:

© = 1992907 347 g = +0"62 R = 099760775
For the same instant, formula (22.2) gives & = 23°26'24".827 = 23°440 2297

whence, by (26.1),
—0.937 9952
—0.311 6544

X
Y
VA ~-0.135 1215

Reference to the standard equinox J2000.0

As explained in Chapter 32, calculate for the given instant the Earth’s
heliocentric longitude L and latitude B referred to the equinox of J2000.0, and its
radius vector R. For this purpose, use from Appendix III the data for the Earth,
with the following exceptions :

— in section LI, replace the first value of the coefficient “A”, namely
628331966747, by 628307584 999;

— sections L2, L3, and L4 should be replaced by those given in Table 26.A (next
page);

— drop section LS5;

— for the calculation of the latitude B, use section BO from Appendix III, but
sections B1 to B4 from Table 26.A.

Obtain the geocentric longitude O of the Sun by adding 180° (or = radians)
to L, and the Sun’s latitude 8 by changing the sign of B. That is,

O =L + 180° and g =-B
At this stage, if only the Sun’s geometric longitude referred to the standard
equinox of J2000.0 is required, subtract 0”.09033 from © in order to convert the

longitude from the VSOP dynamical equinox to the FKS equinox, as in (25.9). —
Otherwise, do not perform this correction and proceed as follows.

Calculate

X = Rcos B cos ©
Y = Rcos B sin © 26.2)
Z = Rsinf

Of course, these expressions are equivalent to X = —R cos B cos L,

= —RcosBsinL, and Z = —R sin B, respectively.
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EARTH J2000.0

TABLE 26.A

(some terms only}

173

No. A B c
L2 1 8722 1.0725 6283.0758
2 991 3.1416 o]
3 295 0.437 12 566.152
4 27 0.05 3.52
5 16 5.19 26.30
6 16 3.69 155.42
7 9 0.30 18849.23
8 9 2.06 77713.77
9 7 0.83 775.52
10 5 4.66 1577.34
11 4 1.03 7.11
12 4 3.44 5573.14
13 3 5.14 796.30
14 3 6.05 5507.55
15 3 1.19 242.73
16 3 6.12 529.69
17 3 0.30 398.15
18 3 2.28 553.57
19 2 4.38 5223.69
20 2 3.75 0.98
L3 1 289 5.842 6283.076
2 21 6.05 12 566.15
3 3 5.20 155.42
4 3 3.14 0
5 1 4.72 3.52
6 1 5.97 242.73
7 1 5.54 18849.23
L4 1 8 4.14 6283.08
2 1 3.28 12 566.15
Bl 1 227778 3.413766 6283.075 850
2 3806 3.3706 12566.1517
3 3620 0 o]
4 72 3.33 1884%9.23
5 8 3.89 5507.55
6 8 1.79 5223.69
7 6 5.20 2 352.87
B2 1 9721 5.1519 6283.075 8%
2 233 3.1416 0
3 134 0.644 12 566.152
4 7 1.07 1884%9.23
B3 1 276 0.595 6283.076
2 17 3.14 0
3 4 0.12 12 566.15
B4 1 6 2.27 6283.08
2 1 0 o]
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The rectangular coordinates X, Y, Z calculated by means of (26.2) are still
defined in the ecliptical dynamical reference frame (VSOP) of J2000.0. They can
be transformed into the equatorial FK5 J2000.0 reference frame as follows:

X, = X + 0.000000440360 ¥ — 0.000000 190919 Z

Y, = —0.000000479966X + 0.917482 137087 ¥ — 0.397 776982902 Z

Zy = 0.397776982902 Y + 0.917482 1370872
26.3)

Reference to the mean equinox of B1950.0

Proceed as above for 72000.0, except that expressions (26.3) should be replaced
by the following ones.

Xo = 0.999925702634X + 0.012189716217Y + 0.000011134016Z
Y, = —0.011179418036X + 0.917413998946Y — 0.397777041885Z
Zy = —0.004859003787X + 0.397747363646Y + 0.917482111428Z

Note that the rectangular coordinates obtained in this way are referred to the
mean equator and equinox of the epoch B1950.0 in the FKS system, not in the FK4
system which is affected by the “equinox error” as mentioned in Chapter 21.

Reference to any other mean equinox

First, calculate the Sun’s rectangular equatorial coordinates Xy, ¥, Z, referred
to the standard equinox of J2000.0 as explained above, that is, by means of the
expressions (26.2) and (26.3).

Then, if ID is the Julian Day corresponding to the epoch of the given equinox,
calculate

JD — 2451545.0
36525

and then the angles ¢, z, and 6 from (21.3).

Then the required rectangular coordinates of the Sun are given by

X = XxXo + Yx Yo + ZxZo
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where

Xy = cos{coszcosf — sin{sinz
Xy = sin{cosz + cos{ sin z cos 6
X; = cos{sind

Yy = =cos {sinz — sin { cos z cos 8
Yy = cos {cosz — sin { sin z cos 4
Y, = —sin{sind

Zy = —coszsin§

Zy = —sinz sin ¢

Z; = cosf

Note that the coordinates X', ¥’, Z' are referred to the mean equinox of an
epoch which differs from the date for which the values are calculated.

Example 26.b — For 1992 October 13.0 TD = JDE 2448 908.5, calculate the
equatorial rectangular coordinates of the Sun referred to

(a) the standard equinox of J2000;
(b) that of B1950.0;
(c) the mean equinox of J2044.0.

We find successively

7 = —0.007 218 343 6003

L = —43.633088 03 radians = —2499.991 791 degrees
= +20.008 209 degrees

B = +0.000003 86 radian = +0°000221 = +0"796
R = 0.99760775 (as in Example 25.b, of course)

X = —0.93739575 ] ecliptic,

Y = —0.34133625 ¢ dynamical equinox,
Z = -0.00000385 J J2000.0

X, = —0.93739590 ] equatorial,

Y, = —0.31316793 » FKS frame,

Z, = —0.13577924 j J2000.0
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The correct values, obtained by means of an accurate calculation using the
complete VSOP87 theory, are —0.937 39707, —0.313 16725, and ~0.135778 42,
respectively.

Xo = —0.941487 equatorial,
Yy, = —0.302666 p FKS5 system,
Zy, = —0.131214 J B1950.0 frame

JD = 2467616.0
(since the epoch J2044.0 is 44 X 365.25 days later than J2000.0)

t = +0.440000

¢ = +1014"7959 = +0°281 8878

z = +1014"9494 = +0°2819304

0 = + 881”8106 = +0°244 9474
Xy = +0.999 9424 Yy = —0.009 8403 Z, = —0.004 2751
Xy = +0.009 8403 Yy = +0.999 9516 Zy = —0.000 0210
X, = +0.004 2751 Y, = —0.0000210 Z; = +0.999 9909

X' = -0.933680 equatorial,

Y = -0.322374 FKS system,

Z' = —-0.139779 J2044.0 frame




Chapter 27

Equinoxes and Solstices

By definition, the times of the equinoxes and solstices are the instants when the
apparent geocentric longitude of the Sun (that is, calculated by including the effects
of aberration and nutation) is an integer multiple of 90 degrees. (Because the
latitude of the Sun is not exactly zero, the declination of the Sun is not exactly zero
at the instant of an equinox.)

Approximate times can be obtained as follows. First, find the instant of the
“mean” equinox or solstice, using the relevant expression in Table 27.A or in Table
27.B, on the next page. Note that Table 27.A should be used for the years ~1000
to +1000 only, and Table 27.B for the years + 1000 to +3000. In fact, Table 27.A
may also be used for several centuries before the year —1000, and Table 27.B for
several centuries after +3000; the errors will still be quite small.

Important: in the formula for Y, given at the top of each table, “year” is an
integer; other values for “year” would give meaningless results!

Then find
JDE, — 2451545.0

r= 36525
W = 35999°373T — 2°47
AN = 1 + 0.0334 cos W + 0.0007 cos 2W

Calculate the sum S of the 24 periodic terms given in Table 27.C. Each of these
terms is of the form A cos (B + CT), and the argument of each cosine is given in
degrees. In other words,

S = 485 cos(324°96 + 1934°136T)
+ 203 cos (337223 + 329642467T)
+ ...

177
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The required time, expressed as a Julian Ephemeris Day (hence, in Dynamical

Time), is then

days

.00001 S
AN

JDE = IDE, + 0

This final JDE can be converted into the ordinary calendar date by means of the
method described in Chapter 7. The result will be expressed in Dynamical Time.

For the years 1951-2050, the accuracy of this method is seen from Table 27.D.
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TABLE 27.C

§ = L[Acos(B+CT)]

B and C in degrees!

179

A B C A B C
485 324.96 1934.136 45 247.54 29929.562
203 337.23 32964.467 44 325.15 31555.956
199 342.08 20.186 29 60.93 4443.417
182 27.85 445267.112 18 155.12 67555.328
156 73.14 45036.886 17 288.79 4562.452
136 171.52 22518.443 16 198.04 62894.029 -

77 222.54 65928.934 14 199.76 31436.921

74 296.72 3034.906 12 95.39 14577.848

70 243.58 9037.513 12 287.11 31931.756

58 119.81 33718.147 12 320.81 34777.259

52 297.17 150.678 9 227.73 1222.114

50 21.02 2281.226 8 15.45 16859.074

TABLE 27.D
Number of Number of Largest
errors errors error
< 20 seconds | < 40 seconds (seconds)

March equinox 76 97 51

June solstice 80 100 39

September equinox 78 99 44

December solstice 68 99 41
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Example 27.a — Find the time of the June solstice of A.D. 1962,

We find successively

Y = —0.038
JDE, = 2437 837.38589
T = -0.375294 021
AN = 0.9681
S = +635
0.00635
JDE = 2437837.38589 + 09681 — 2437 837.39245

which corresponds to 1962 June 21 at 21"25™08° TD.

The correct instant, as calculated with the complete VSOP87 theory, is 21"24m42°
Dynamical Time.

Of course, higher accuracy can be obtained by actually calculating the value of
the apparent longitude of the Sun for two or three instants, and then finding by
interpolation the time when that longitude is exactly 0°, or 90°, or 180°, or 270°.

One should keep in mind that the motion of the Sun along the ecliptic is only
3548 arcseconds per day, approximately. Hence, an error of 1” in the calculated
longitude of the Sun results in an error of approximately 24 seconds in the times of
the equinoxes or solstices.

Alternatively, one may start from any approximate time. The value obtained
from Table 27.A or 27.B is more than sufficient. For that instant, calculate the
Sun’s apparent longitude A as explained in Chapter 25, including the corrections for
reduction to the FKS system, for aberration and for nutation. Then the correction
to the assumed time, in days, is given by

+58 sin (k.90° — \) (27.1)
where
k = 0 for the March equinox,
1 for the June solstice,
2 for the September equinox,
3 for the December solstice.

The calculation is then repeated until the new correction is very small or,
equivalently, until the new value for the Sun’s apparent longitude is exactly k£.90°.

Example 27.b — Let us again calculate the instant of the June solstice in 1962.

In Example 27.a, we found that the “mean” solstice took place at JDE, =
2437 837.38589 (from Table 27.B). Let us start from this approximate time, and
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calculate the Sun’s apparent longitude for this instant, using the “higher accuracy”
procedure (Chapter 25). We find

L = —234.048 59559 radians = 270°003 272

R = 1.0163018

Nutation in longitude : Ay = —12"965 (Chapter 22)
FKS correction : — 0709033 (formula (25.9))
aberration : -20"161 (formula (25.10))

Apparent longitude of the Sun:
A = 270°003272 — 180° — 12”965 — 009033 — 20".161 = 897994 045

Formula (27.1) then gives the correction to the assumed value of JDE,:
correction = +58 sin (90° — \) = +0.00603
and hence the corrected time is
JDE = 2437 837.38589 + 0.00603 = 2437 837.39192
Repeating the calculation for this new instant, we find

A = 899999797,

resulting in the correction +0.00021 day. This gives the improved instant JDE =
2437 837.39213.

A final calculation, performed for this new instant, yields A = 897999998 and
a correction smaller than 0.000 005 day.

Hence, the final instant is JDE = 2437 837.39213, which corresponds to 1962
June 21 at 21"24™40° TD.

This differs by only two seconds from the correct time mentioned at the end of
Example 27.a.

In 1962, the difference TD — UT was 34 seconds (see Table 10.A), so our result
may be rounded to 2124™ Universal Time.

Table 27.E gives the times of the equinoxes and solstices for the years 1996 to
2005, to the nearest second of time.

Table 27.F gives the durations of the four astronomical seasons for some
epochs. About the year —4080, the Earth was in perihelion at the beginning of the
autumn, and consequently the summer had the same duration as the antumn, and the
winter had the same duration as the spring. In A.D. 1246, the Earth was in
perihelion at the time of the winter solstice, and consequently the spring had the
same duration as the summer, and the autumn had the same duration as the winter.
Since the year +1246, the winter is the shortest season; it will reach its minimum
value by about A.D. 3500, and remain the shortest season till about A.D. 6427,
when the Earth will be in perihelion at the time of the March equinox.



182 ASTRONOMICAL ALGORITHMS
TABLE 27.E
Equinoxes and Solstices, 1996 -2005, calculated by means of
the complete VSOP87 theory. Instants are in Dynamical Time.
Year | March equinox June solstice Sept. equinox Dec. solstice
d h m s| d h m s| d h m s| d h m s
1996 | 20 804 07| 21 22446 (22 1801 08| 21 14 06 56
1997 | 20 1355421 21 82059 |22 23564921 200805
1998 {120 195535 (21 140338 | 23 5315 22 157 31
1999 | 21 1465321 195011 )23 1132341} 22 7 44 52
2000 | 20 736 19121 148 46 | 22 17 28 40 | 21 13-38 30
2001 | 20 13 31 47 | 21 73848 |22 230532 |21 192234
2002 (20 191713 4§21 13252923 45628 | 22 11526
2003 | 21 100507 21 19 1132 |23 104753 | 22 7 04 53
2004 | 20 649 42 | 21 05757 {22 163054 | 21 12 42 40
2005 [ 20 123429 | 21 647 12 |22 222414 |21 183601
TABLE 27.F
Duration of the astronomical seasons, in days
Year Spring Summer Autumn Winter
—4000 93.55 89.18 89.07 93.44
-3500 93.83 89.53 88.82 93.07
~3000 94.04 89.92 88.61 92.67
-2500 94.20 90.33 88.47 92.25
—-2000 94.28 90.76 88.39 91.81
—1500 94.30 91.20 88.38 91.37
—1000 94.25 91.63 88.42 90.94
- 500 94.14 92.05 88.53 90.52
0 93.96 92.45 88.69 90.13
+ 500 93.73 92.82 88.91 89.78
1000 93.44 93.15 89.18 89.47
1500 93.12 93.42 89.50 89.20
2000 92.76 93.65 89.84 88.99
2500 92.37 93.81 90.22 88.84
3000 91.97 93.92 90.61 88.74
3500 91.57 93.96 91.01 838.71
4000 91.17 93.93 91.40 88.73
4500 90.79 93.84 91.79 88.82
5000 90.44 93.70 92.15 88.96
5500 90.11 93.50 92.49 89.15
6000 89.82 93.25 92.79 89.38
6500 89.58 92.96 93.04 89.66




Chapter 28

Equation of Time

Due to the eccentricity of its orbit, and to a much less degree due to the
perturbations by the Moon and the planets, the Earth’s heliocentric longitude does
not vary uniformly. It follows that the Sun appears to describe the ecliptic at a non-
uniform rate. Due to this, and also to the fact that the Sun is moving in the ecliptic
and not along the celestial equator, its right ascension does not increase uniformly.

Consider a first fictitious Sun travelling along the ecliptic with a constant speed
and coinciding with the true Sun at the perigee and apogee (when the Earth is in
perihelion and aphelion, respectively). Then consider a second fictitious Sun
travelling along the celestial equator at a constant speed and coinciding with the
first fictitious Sun at the equinoxes. This second fictitious Sun is the mean Sun, and
by definition its right ascension increases at a uniform rate — that is, there are no
periodic terms, but its expression contains small secular terms in 72, 73, ....

When the mean Sun crosses the observer’s meridian, it is mean noon there.
True noon is the instant when the true Sun crosses the meridian. The equation of
time is the difference between apparent and mean time. In other words, it is the
difference between the hour angles of the true Sun and the mean Sun.

Defined in this manner, the equation of time E, at a given instant, is given by
E =Ly— 020057183 — o + Ay .cos ¢ (28.1)

In this formula, L, is the Sun’s mean longitude. According to the VSOP87
theory (see Chapter 32) we have, in degrees,

Ly = 280.4664567 + 360007.698 2779
+0.03032028 7% + 73/49931 (28.2)
— 74/15300 ~ 75/2000000

where 7 is the time measured in Julian millennia (365250 ephemeris days) from

J2000.0 = JDE 2451545.0. L, should be reduced to less than 360° by adding or
subtracting a convenient multiple of 360°.

183
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In the French almanacs and in older textbooks, the equation of time is defined
with opposite sign, hence being equal to mean time minus apparent time.

In formula (28.1), the constant 0°005 7183 is the sum of the mean value of the
aberration in longitude (—20"49552) and the correction for reduction to the FKS5
system (—07”.09033); « is the apparent right ascension of the Sun, calculated by
taking into account the aberration and the nutation. The quantity Ay .cos &, where
Ay is the nutation in longitude and ¢ the obliquity of the ecliptic, is needed to refer
the apparent right ascension of the Sun to the mean equinox of the date, as is the
mean longitude L,.

In formula (28.1), the quantities L, o, and Ay should be expressed in degrees.
Then the equation of time E will be expressed in degrees, too; it can be converted
to minutes of time by multiplication by 4.

The equation of time E can be positive or negative. If £ > 0, the true Sun
crosses the observer’s meridian before the mean Sun.

The equation of time is always smaller than 20 minutes in absolute value. If
| E| appears to be too large, add 24 hours to or subtract it from your result.

Example 28.a — Find the equation of time on 1992 October 13 at O TD.
This date corresponds to JDE = 2448 908.5, from which we deduce

JDE — 24515450 _
T = 365 250 = —0.007 218343 600

L, = —2318°192807 = +201°807193

For the same instant we have, from Example 25.b,

o = 1987378178
Ay = +15"908 = +0°004 419
& = 23°440 1443

whence, by formula (28.1),

E = +3%427351 = +13.70940 minutes = +13™42%6

Alternatively, the equation of time can be obtained, with somewhat less
accuracy, by means of the following formula given by Smart [1]:
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E = ysin2L, — 2esin M + 4eysin M cos 2L,

- —; y2sin 4L, — -—2—- e’ sin 2M (28.3)
where R
y = tan® = » € being the obliquity of the ecliptic,
L, = Sun’s mean longitude,
e = eccentricity of the Earth’s orbit,
M = Sun’s mean anomaly.

The values of ¢, Ly, e, and M can be found by means of the formulae (22.2),
(28.2) or (25.2), (25.4), and (25.3), respectively.

The value of E given by formula (28.3) is expressed in radians. The result may
be converted into degrees, and then into hours and decimals by division by 15.

Example 28.b — Find, once again, the value of the equation of time on
1992 October 13.0 TD = JDE 2448 908.5.

We find successively

T = —0.072183436 e =0.016711668
& = 23244023 M = 27899397
L, = 201°80720 y = 0.043 0381

Formula (28.3) then gives E +0.059 825572 radian
+3.427 753 degrees

+13 minutes 42.7 seconds

The curve representing the variation of the equation of time during the year is
well-known and can be found in many astronomy books. Presently, the curve has
a deep minimum near February 11, a high maximum near November 3, and a
secondary maximum and minimum about May 14 and July 26, respectively.

However, the curve of the equation of time is gradually changing in the course
of the centuries, because the obliquity of the ecliptic, the eccentricity of the Earth’s
orbit, and the longitude of the perihelion of this orbit are all slowly changing. The
figure on the next page shows the curve of the equation of time at intervals of 1000
years, from —2000 to +5000. On the vertical scale, the tics are given at intervals
of five minutes of time; the horizontal line represents the value £ = zero. The tics
on this horizontal line divide the year in four periods of three months each,
beginning from January 1 at left. We see, for instance, that the minimum of
February will be less deep in the future.
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Between A.D. 1600 and 2100, the extreme values of the equation of time vary
as shown in Table 28.A. These are “mean” values: the calculation is based on a
non-perturbed elliptical motion of the Earth, and the nutation has not been taken into
account.

In A.D. 1246, when the Sun’s perigee coincided with the winter solstice, the
curve representing the annual variation of the equation of time was exactly
symmetrical with respect to the zero-line: the minimum of February was exactly as
deep as the height of the November maximum, and the smaller May maximum was
exactly as high as the value of the July minimum — see the last line of the Table.

TABLE 28.A
The extreme values of the equation of time in modern times

Minimum Maximum Minimum | Maximum

Year of of of of
February May July November
m s m s m s m s
1600 -15 01 +4 19 -5 40 +16 03
1700 -14 50 +4 09 -5 53 +16 09
1800 —14 38 +3 59 -6 05 +16 15
1900 —-14 27 +3 50 -6 18 +16 20
2000 —-14 15 +3 41 -6 31 +16 25
2100 —14 03 +3 32 -6 44 +16 30
1246 -15 39 +4 58 -4 58 +15 39

REFERENCE

1. W.M. Smart, Text-Book on Spherical Astronomy; Cambridge (U.K.), University
Press (1956); page 149.






Chapter 29

Ephemeris for Physical Observations
of the Sun

The formulae given in this Chapter are based on the elements determined by
Carrington (1863), which have been in use for many years. For a given instant, the
required quantities are:

P = the position angle of the northern extremity of the axis of rotation, measured
eastwards from the North Point of the solar disk;

the heliographic latitude of the center of the solar disk;
the heliographic longitude of the same point.

By
Ly

Although position angles are generally counted from 0° to 360° (this is the case
for the Moon, the planets, double stars, etc.), in the case of the Sun it is customary
to keep P, in absolute value, less than 90°, and to assign to it a plus or a minus sign:
P is positive when the northern extremity of the rotation axis of the Sun is tilted to
the East, negative if towards the West. Celestial and solar north can differ by up
to 26 degrees. P reaches a minimum of —26°3 about April 7, a maximum of
+26°3 about October 11, and is zero near January 5 and July 7.

B, represents the tilt of the Sun’s north pole toward (+) or away (—) from
Earth. It is zero about June 6 and December 7, and reaches a maximum value about
March 6 (—7225) and September 8 (+7°25).

Ly decreases by about 13.2 degrees per day. The mean synodic period is
27.2752 days. The beginning of each “synodic rotation” is the instant at which L,
passes through 0°. Rotation No. 1 commenced on 1853 November 9.

Let JD be the Julian Ephemeris Day, which can be calculated by means of the
method described in Chapter 7. If the given instant is in Universal Time, add to JD
the value AT = TD — UT expressed in days (see Chapter 10). If AT is expressed
in seconds of time, the correction to JD will be +AT/86400.

Then calculate the following quantities:

189
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B 360°

0 = (D - 2398220) X —e=

I =725 = 7°15'

K = 7396667 + 193958333 2 = 26758

36525

where I is the inclination of the solar equator on the ecliptic, and X is the longitude
of the ascending node of the solar equator on the ecliptic. In the formula for 6,
25.38 is the Sun’s sidereal period of rotation in days. This value has been fixed
conventionally by Carrington. It defines the zero meridian of the heliographic
longitudes and therefore must be treated as exact. Strictly speaking, bécause the
plane of the ecliptic slowly rotates (presently by 47" per century) while the rotation
axis of the Sun is supposed to be fixed in space, the angle / slowly varies over time.
However, it is astronomical practice to assign I the constant value 7°25.

Calculate the apparent longitude A of the Sun (including the effect of aberration,
but not that of nutation) by the method described in Chapter 25, and the obliquity
of the ecliptic ¢ (including the effect of nutation) as explained in Chapter 22. Let
A’ be A corrected for the nutation in longitude.

Then calculate the angles x and y by means of

tan x = —cos A’ tan ¢
tany = —cos(A — K) tan /

where both x and y should be taken between —90° and +90°. Then the required
quantities P, By, and L, are found as follows:

P=x+y
sin By, = sin(A — K) sin /

—sin(A — K) cos /
—cos (A —- K)

tann = = tan(A — K) cos /

71 being in the same quadrant as A — K + 180°,

Ly = 9 —40, tobe reduced to the interval 0-360 degrees.

Example 29.a — Calculate P, By, and L, for 1992 October 13 at 0® Universal Time
= JD 2448 908.5.

We will use the value AT = +59 seconds = +0.000 68 day. Consequently the
corrected JD, or Julian Ephemeris Day, is 2448 908.50068 and we find successively
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0 = 71898598252 = 65°8252
I = 7225
K = 75%6597
From Chapters 25 and 22:
L (Earth) = —43.634 83622 radians = +19°908 045
R = 0.997 608
Ay = +15"908 = +0°004419
& = 23°440 144
correction for aberration = — 2(2;;?9_8 = —0°005 705

whence
A =L + 180° — 0°005705 = 199°902 340
AN o= N+ Ay = 1992906759

tanx = +0.407 664 X = +22°1790

tany = +0.071 584 y = + 4°0945

P = 26°27

sin By = +0.104 324 By = +5°99
—0.820 053 .

@nm = 70562 699 n = —5575431

Ly = —12193683 = 238263

As mentioned above, a solar “synodic rotation” begins when Ly is equal to 0°.
An approximate time for the beginning of Carrington’s synodic rotation No. C is

Julian Ephemeris Day = 2398 140.2270 + 27.2752316C 29.1)

where, of course, C is an integer. The instant so obtained will be at most 0. 16 day
in error. However, the time obtained from the formula above can be corrected as
follows. Calculate the angle M, in degrees, from

M = 281.96 + 26.882476 C
Then the correction in days is
+0.1454 sin M

—0.0085 sin 2M (29.2)
—0.0141 cos 2M
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Between the years 1850 and 2100, the resulting time will be less than 0.002 day
in error.

Of course, a correct value for the time of the beginning of a synodic rotation
can be obtained by calculating L, for two instants near the time given by the
formula above, and then by performing an inverse interpolation to find when L, is
Zero.

Example 29.b — Find the instant of the beginning of solar rotation No. 1699.
For C = 1699, formula (29.1) gives JDE = 2444 480.8455.

We further find M = 459559287 = 2359287, and the correction as given by
(29.2) is —0.1225 day.

To convert from Dynamical Time to Universal Time, there is a further correction
of —0.0006 day, because in 1980 the value of AT = TD ~ UT was 51 seconds.

Hence, the final instant is
JD = 2444 480.8455 — 0.1225 — 0.0006 = 2444 480.7224
which corresponds to 1980 August 29.22.

The Astronomical Ephemeris for 1980, page 359, gives the same value.

It is customary to give the times of the commencement of the Sun’s synodic
rotations to the nearest 0.01 day, hence in days and decimals, not in hours and
minutes.



Chapter 30

Equation of Kepler

There are several methods for calculating the position of a body (planet, minor
planet, or periodic comet) on its elliptical orbit around the Sun at a given instant:

— by numerical integration, a subject which is outside the scope of this book;

— obtaining the body’s heliocentric coordinates (longitude, latitude, and radius
vector) by calculating the sum of periodic terms, as will be explained in Chapter 32;
— from the orbital elements of the body, as explained in Chapter 33.

In the latter case, we need to find the true anomaly of the object. This can be
achieved either by solving Kepler’s equation or, when the orbital eccentricity is
not too large, by using series expressions (see “The Equation of the Center” in
Chapter 33).

auxiliary .- ~
circle - - ! ~

Figure 1
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In Figure 1 we represent one half of an elliptical orbit PKA4. The Sun is situated
in the focus §; the other, empty focus of the ellipse is F. The straight line AP is
the major axis of the orbit. The center C of the ellipse is exactly half-way between
the perihelion P and the aphelion A4, as well as half-way between the foci F and S.

Suppose that, at a given instant, the moving body is at K. The distance SK is
the radius vector of the body at that instant; this distance r is expressed in
astronomical units. The true anomaly (v) at the same instant is the angle between
the directions SP and SK;; it is the angle over which the object moved, as scen from
the Sun, since the previous passage through the perihelion P.

The semimajor axis, CP in Figure 1, is generally designated by a4 and is
expressed in astronomical units. By definition, the eccentricity e of the orbit is equal
to the ratio of the distances CS and CP,or ¢ = CS/CP. The eccentricity of an
orbit is a measure of how much that orbit deviates from a circle. It takes values
between 0 and 1 for an ellipse, 1 for a parabola, and larger than 1 for a hyperbola.
For a perfect circle, ¢ = 0.

The perihelion and aphelion distances are designated by g and @, respectively.
In the perihelion, v = 0° and r = ¢, while in the aphelion we have v = 180° and
r = Q. It follows that

distance CS = ae

distance SP = g = a(l —¢)
distance SA = Q = a(l +e¢)
distance PA = 2a = g+ Q

Let us now consider (Figure 2) a fictitious planet or comet K’ describing around
the Sun a circular orbit, hence with a constant velocity, with the same period as the
real planet or comet K. Moreover, let us suppose that this fictitious body is at P’,
on the line SP, at the instant when the real body is at the perihelion P. Some time
later, when the true body is at K, the fictitious body is at K’. As we have seen, the
angle v = angle PSK is the true anomaly of the body (at the given instant). The
angle PSK’ at the same instant is called the mean anomaiy and is generally
designated by M.

In other words, the mean anomaly is the angular distance from perihelion which
the planet would have if it moved around the Sun with a constant angular velocity.
By definition, the angle M increases uniformly with time. The value of M at a given
instant is easily found, for M = 0° when the planet is at perihelion, and it increases
by exactly 360° in the course of one complete revolution of the planet.

The problem consists in finding the true anomaly v when the mean anomaly M
and the orbital eccentricity e are known. Unless use is made of series expressions
such as those given in Chapter 33, one has to solve Kepler’s equation.

In this connection, it is necessary to introduce an auxiliary angle E, called the
eccentric anomaly, whose definition is illustrated in Figure 1. The exterior, dashed
circle has diameter AP. We draw KQ perpendicular to AP. The angle PCQ is the
eccentric anomaly.
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When the planet is at peri-
helion the angles v, E, and M are
all zero. Near the perihelion, the
true planet moves at a greater
speed than the mean, fictitious
planet. Hence, between perihelion
and aphelion, when the planet
moves away from the Sun, we
have v > M and, because E is
always between v and M, we then
have

0° <M< E < v< 180°.

In the aphelion, v, E, and M
are all equal to 180°, and after
aphelion passage, on its way back
to perihelion, the true planet
remains behind the mean planet.

Figure 2

When E is known, v can be
obtained from

v o_ l1+e E
7 =Vi—e ®7 (301

while the radius vector can be calculated from one of the following expressions:

r=a(l —ecoskE) (30.2)
_ a1l -¢€Y»

"= T¥ecosv (30-3)
- g +e

= T ¥ ecosv (30.4)

But let us now consider the problem of finding the eccentric anomaly E. The
equation of Kepler is

E=M+esnE (30.5)

This equation must be solved for E. It is, however, a transcendental function
which cannot be solved directly. Hundreds of methods of solution to the equation
exist. An account of the history of solving the famous equation can be found in
Colwell’s book [1]. We will describe three iteration methods for finding the
eccentric anomaly E, and finally give a formula which yields an approximate result.
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First Method

In formula (30.5) the angles M and E should be expressed in radians. Hence
the calculation should be performed in “radian mode”, which is the case for many
programming languages. If the calculation is made in “degree mode”, then in (30.5)
one should multiply e by 180/=, or 57.295 7795, the factor for converting radians
into degrees. Let e, be the thus “modified” eccentricity. Kepler’s equation is then

E =M+ ¢sinE (30.6)

and now we can calculate with ordinary degrees.

To solve equation (30.6), give an approximate value to E in the right side of the
formula. Then the formula will give a better approximation for E. This is repeated
until the required accuracy is obtained. This process can be performed automatically
in a computer program. For the first approximation, we may use £ = M.

We thus have

Ey=M

E, =M+ esinkE,

E, = M + esin E,

E; = M+ esinE,
etc.

E,, E,, E;, etc., are successive and better approximations for E.

Example 30.a — Solve the equation of Kepler for ¢ = 0.100 and M = 5°, to an
accuracy of 0.000 001 degree.

We have ¢, = 0.100 X 180/ = 5°72957795, and the equation of Kepler
becomes

E =5+572957795sin E

where all quantities are in degrees. We must now, of course, work in degree mode.
Starting with E = M = 5°, we obtain successively

5.499 366
5.549 093
5.554 042
5.554535
5.554 584
5.554 589
5.554 589

Hence, the required value is E = 52554 589.
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This method is very simple and does always converge. There will be no
problems when e is small. However, the number of required iterations is generally
increasing with e. For example, for e = 0.990 and M = 2°, the successive results
of the iteration procedure are as follows:

2.000000 15.168909 24.924579 29.813009
3.979598 16.842404 25.904 408 30.200 940
5.936 635 18.434 883 26.780556 30.533515
7.866 758 19.937269 27.557863 30.817592
9.763 644 21.341978 28.242483
11.6192%4 22.643349 28.841471
13.424417 23.837929 29.362 399

After the 50th iteration, the result (329345 452) still differs from the correct
resuit (32.361007) by more than 0.01 degree.

Figure 3, due to the Belgian calculator Edwin Goffin, is a three-dimensional
representation of the number of iterations needed to obtain an accuracy of 107°
degree, as a function of the orbital eccentricity and the mean anomaly. We see that
the number of required iterations becomes large when the eccentricity approaches
1 and when the mean anomaly is close to 0° or to 180°. — Note that 10~ degree
(4 millionths of an arcsecond) is an absurdly high accuracy; it has been retained
here merely as a mathematical exercise.

At the bottom of the drawing we notice a horizontal straight “valley”. This
valley extends from the point e =0, M = 90° to the point e = 1, M = 32°42',
(This latter value is equal to w/2 — 1 radians.) This means that, for any eccentricity
e, there is a value M, of the mean anomaly for which the number of iterations (to
solve Kepler’s equation by the method described above) is a minimum. This
“particular” mean anomaly is given by M, = (#/2 — e) radians and corresponds
to the solution E = «/2 radians = 90° exactly.

The number of required iterations increases as M differs more from M, on both
sides of the “valley”. For instance, for e = 0.75 we have M, = 47.03 degrees,
and the number of steps needed to obtain E with an accuracy of 0.000001 degree
is as follows:

M iter. M Iter.
5° 51 60° 11
10° 37 70° 12
20° 23 90° 21
30° 15 110° 32
40° 9 130° 43
47° 5 150° 54

55¢ 8 170° 59
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An interesting fact is that, when M is between M, and 180°, the results of the
successive iterations oscillate while converging to the exact value: they do not
constantly vary in the same direction as was the case in Example 30.a. For ¢ = (.75
and M = 70°, the results of the successive iterations are

707000000 starting value
110.380 316 larger
110.281 870 smaller
110.307 524 larger
110.300 850 smaller
110.302 587 larger
110.302 135 smaller

etc.

Second Method

When the orbital eccentricity e is larger than 0.4 or 0.5, the convergence of the
method described above can be so slow that it may be advisable to use a better
iteration formula. A better value E, for E is

M + esin E; — E,

E =E +
1= E 1 — e cos E,

30.7)

where E; is the last obtained value for E. In this formula, the angles M, E,, and
E, are all expressed in radians. If one wishes to work in “degree mode”, then in
the numerator only of the fraction the eccentricity e should be replaced by the
“modified” eccentricity e, = 180 e/x.

Here, again, the process should be repeated as often as is necessary.

Note the difference between formulae (30.6) and (30.7). The first one directly
gives a new approximation for E. While formula (30.7) too gives a new
approximation E; for the eccentric anomaly, the fraction in the second member is
actually a correction to the previous value E,.

Example 30.b — Same problem as in Example 30.a, but now using formula (30.7).
We shall work in degree mode, so in this case formula (30.7) takes the following
form:

5 + 5.72857795sin E; ~ E,
1 — 0.100 cos E,

Starting with E, = M = 5°, we obtain the following values:
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E, correction E,
5.000 000 000 +0.554 616 193 5.554616 193
5.554616 193 —0.000 026 939 5.554 589254
5.554 589 254 —0.000 000 001 5.554 589253

In this case, an accuracy of 0.000000001 degree is obtained after only three
iterations.

We solved Kepler’s equation for some values of e and M; see Table 30.A,
where the successive columns give the orbital eccentricity e, the mean anomaly M,
the corresponding value of E, and the number of iterations needed by using the first
(1) and the second (2) method, starting with E = M as the first approximation.
A computer working with twelve significant digits was used, and iterations were
performed until the new value of E differed from the previous one by less than
0.000001 degree.

It appears that, generally speaking, a larger value of e requires a larger number
of iterations, for the first method as well as for the second one. But with the second
method the number of these iterations is much smaller.

For small values of the eccentricity, say for e < 0.3, the first method still
seems the best one: we may prefer to perform 5 or 10 easy iterations instead of two
iterations with the more complicated formula (30.7). Only for larger values of the
eccentricity is formula (30.7) to be preferred.

In some cases, the first method is disastrous. See the next-to-last line of the
table, where no less than 150 iterations are needed to obtain E.

Finally, Table 30.A shows
that the number of steps needed

TABLE 30.A to obtain a given accuracy does
not only depend on the value of
¢ M E @@ ¢, but on that of M too. See
0.1 5° 52554589 6 2 the last line of the table, where
0.2 5 6.246908 9 2 the first method requires only
0.3 5 7.134960 122 six iterations, in spite of the
0.4 5 8.313903 16 2 large value of the orbital eccen-
0.5 5 9.950063 21 2 tricity, e = 0.95.
0.6 5°  12.356653 28 3 Although for large values
0.7 5 16.167990 39 3 of the eccentricity formula
0.8 5 22.656579 52 4 (30.7) is superior to (30.6),
0.9 5 33.344447 58 5 there can still be problems. We
0.99 5 45.361023 50 11 performed some calculations
0.99 1° 24.725822 150 8 with formula (30.7) on the old
0.99 33 89.722155 6 5 HP-85 microcomputer, each




time taking M as starting value for E. Table 30.B gives the successive “better”
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values of E (in degrees) for three cases.

TABLE 30.B

= 0.99

M=2°

e = 0.999

M=6°

e = 0.999

188.700250865
90.0043959725
58.7251974236
41.762008288
34.1821261793
32.4485414136
32.361223124
32.3610074734
32.3610074722
32.3610074722

930.362114752
418.384869795
-345.064633754
10182.3247508
1840.68260539
—5573.41581953
—2776.37618814
—478.97469399
—185.902957505
—86.6958017962
—48.9711628749
—14.7148241705
168.189220986
92.1098260913
64.2252288664
52.4123211568
49.7106850572
49.5699983807
49.5696248567
49.5696248539

832.86912333
275.954959759
~87.610596019
~48.5623921307
~11.225108839
340.962715254
—5996.93473678
~2079.96780001
511.49423506
257.391360843
5.969894505
1094.05946279
~33606.763133
—12599.3759885
11889243.763
3642203.90477
—432120.48862
—145379.711482
142691.415319
56806.8295471

M=7°

In the first example (e = 0.99, M = 2°) we start with £ = 2°. The first
iteration gives E = 188?7, which is even farther away from the solution! But
thereafter come the values 90°, 59°, 42°, and then the procedure converges rapidly:
after the eighth iteration the result is reached with an accuracy of 0.000004
arcsecond.

In the second case (e = 0.999, M = 6°), the first iterations give bizarre values,
almost as if by a random-number generator! There is no convergence at all, until
after the 13th iteration the value 168° is obtained; seven more steps then give us the
correct solution.

Third case: same eccentricity, but now M = 7°. Here, too, the successive
results jump irregularly back and forth, and after 20 steps still nothing reasonable
is reached. Not before the 47th iteration (not shown in the table) do we obtain the
correct solution, namely 52°2702615.

It is truly remarkable that for the same eccentricity 0.999, but for M = 7201
instead of 7°00, the correct value of E is reached after only fwelve iterations.
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The HP-85 worked with 12 significant digits. If you use another computer with
another programming language, the number of iterations can sometimes differ
appreciably from those we mention here. When one calculates the second case
(e = 0.999, M = 6°) with the HP-67 pocket calculator, which works with 10
significant digits, the successive results (in degrees) are

930.3621195
418.3848584
—345.0649049
10182.69391
1883.665232
—162.6729360
—85.06198931
—47.82386405
—13.18454655
211.0527629
84.65261970
60.76546811
51.35803706
49.62703439
49.56968687
49.56962485
49.56962485

It is interesting to compare these values with those of Table 30.B. After the
third iteration, the difference with the value obtained with the HP-85 is still 0.00027
degree only. After the next iteration, the difference is 0237, and after the next one
it is 43 degrees! Nevertheless, convergence to the exact value is eventually
achieved.

It is evident that, when e is large, formula (30.7) guarantees only a local
convergence. The successive results jump irregularly back and forth, and only when
by chance a result falls into the “right domain” do the next results converge rapidly.

Figure 4, due to Goffin, is a three-dimensional representation of the number of
steps needed to obtain E with an accuracy of 1072 degree, as a function of the
orbital eccentricity and the mean anomaly, when formula (30.7) is used. As before,
M is used as the starting value for E. The left corner, near e =1 and M =0°, is
the “dangerous zone”. Figure 5 shows a magnification of that zone: we see a large
number of peaks which are close together; the number of iterations needed to obtain
the stated accuracy differs considerably even when e or M is changed very little.

Consequently, formula (30.7) is rather worrying for large values of e and small
values of M. In some cases, the computer runs the risk of overflowing because the
denominator of the fraction becomes almost zero. This trouble can be avoided by
choosing, as a starting value for E, a better value than just M.

Mikkola [2] proposed a procedure to find such a good starting value. It was
reproduced in the first edition of this book [3].
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However, there are easier ways to avoid the (sometimes) many irregular jumps
of the results of the successive iterations when e is large. We note that Kepler’s
equation can be written as £ — M = e sin E, the second member of which can
never exceed 1 in absolute value, and has the same sign as E. Therefore, the
fraction term in (30.7) should never be allowed to exceed a magnitude of 1.

One method is to take the arcsine of the sine of the fraction. This will result in
a value which is always between —90° and +90°. This trick was mentioned to the
author by Kurt Leingértner, of Kassel, Germany.

As an example, consider the case ¢ = 0.99, M = 0.2 radian. We will work in
radian mode. On the first step, the fraction in formula (30.7) takes the value
6.614 719035 698 radians which, by taking the arcsine of its sine, changes to
0.331533728518. The successive iterations yield the following results:

correction to E new value of E
0.331533728 518 0.531533728 518
1.161431415069 1.692 965 143 587
—0.455 401 365518 1.237 563 778 069
—0.150884 433 942 1.086 679 344 127
—0.019 368 331 549 1.067 311012 578
—0.000313 565 645 1.066 997 446 933
—0.000 000 081 651 1.066 997 365 282
< 1074 1.066 997 365 282

Hence, the final result is 1.066997 365 282 radians, or 61.134 44578 degrees.

Another interesting trick, which avoids the extra functions sine and arcsine, was
devised by John M. Steele, of Bloomfield Hills, Michigan [4]. If the absolute value
of the fraction in formula (30.7) is larger than 0.5, it is replaced by 0.5, preserving
the sign. In BASIC, w being the value of the fraction:

IF ABS (w) > 0.5 THEN cor = 0.5 * SGN(w) ELSE cor = w

According to Steele, a “limit value” of 1 (instead of 0.5) works, although
smaller values in the range 0.4-0.6 seem to work better.

Let us again consider the case e = 0.99, M = 0.2 radian. On the first step, the
fraction in formula (30.7) takes the value 6.614 719035698 radians, which is
changed to the “limit value” 0.5. The successive iterations yield the following results :

correction (rad) changed to new value of E (rad)

6.614 719035 698 0.5 0.7

0.567 429870979 0.5 1.2
—0.120513 681 086 unchanged 1.079486318914
—0.012 361504 682 unchanged 1.067 124 814 232
—0.000 127 435 465 unchanged 1.066997 378 767

—0.000 000013 485 unchanged 1.066957 365282
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Third Method

Roger Sinnott [S] devised a method using a binary search to locate the correct
value of E. The binary search was already mentioned at the end of Chapter 5. The
procedure is absolutely foolproof, it always converges to the most exact value of
which the machine is capable, and it works for any eccentricity between 0 and 1.
The relevant part of Sinnott’s program, in BASIC, is given below. Here, E is the
orbital eccentricity, and M the mean anomaly in radians. The result of the program
is the eccentric anomaly E, expressed in radians, too.

For a computer language with 10-digit accuracy, 33 steps are needed in the
binary search. The number of loops in line 180 should be increased to 53 if you are
using a 16-digit BASIC. The number of steps needed is 3.32 X the number of

required digits, where 3.32 is equal to 1/log,, 2.

100 P1 = 3.14159265359

110 F=SGN(M) : M = ABS (M)/(2 * P1)
120 M = (M~ INT(M)) 2Pl x F

130 IFM<0 THEN M =M + 2Pl

140 F =1

150 IF M >Pl THEN F = -1

160 IF M>Pl THEN M = 2%Pl — M
170 EO0 = P1/2 : D = Pl/4

180 FOR J =1 TO 33

190 MI = EO — E * SIN (E0)

200 EO = E0 + D*SGN(M~-Ml) : D = D2
210 NEXT J

220 EO = EQ*F

Fourth Method

The formula

sin M
tan E = s M —o (30.8)

gives an approximate value for E, and is valid only for small values of the
eccentricity.

For the same data as in Example 30.a, the formula (30.8) gives

. _+0.08715574 _
an B = 080610470 009725090
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whence E = 57554599, the exact value being 52554 589, so the error is only
07.035 in this case. But for the same eccentricity and M = 82°, the error amounts
to 35".

The greatest error due to the use of formula (30.8) is

0°0327 for e = 0.15
0.0783 for e = 0.20
0.1552 for e = 0.25
1.42 for e = 0.50
24.7 for e = 0.99

For the orbit of the Earth (¢ = 0.0167), the error is less than 0".2. In that case,
formula (30.8) can safely be used unless high accuracy is needed.
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Chapter 31

Elements of the Planetary Orbits

Although Appendix III mentions the principal periodic terms needed to calculate the
heliocentric positions of the planets (with explanations given in Chapter 32), it may
be of interest to have information about the mean orbits of these bodies.

The orbital elements of the major planets can be expressed as polynomials of
the form

ay + alT + 02T2 + a3T3
where T is the time measured in Julian centuries of 36525 ephemeris days from the
epoch J2000.0 = 2000 January 1.5 TD = JDE 2451 545.0.

In other words,

IDE — 2451 545.0
r= 36525 GLD

This quantity is negative before the beginning of the year 2000, positive afterwards.
The orbital elements are:

mean longitude of the planet;
semimajor axis of the orbit;
eccentricity of the orbit;

inclination on the plane of the ecliptic;
longitude of the ascending node;
longitude of the perihelion.

N 0O ~0 8 N
S O

Many authors denote the longitude of the perihelion by w, which is a modified
form of «. But this may be confusing because the argument of the perihelion has
the symbol w. For this reason, we prefer the symbol « for the longitude of the
perihelion, and we have 7 = @ + w. (But don’t confuse 7 with the parallax ar with
the number 3.14159...1)

Note that the angles L and 7 are measured in two different planes, namely from
the vernal equinox along the ecliptic to the orbit’s ascending node, and then from
this node along the orbit. See the Figure on next page.

209



210 ASTRONOMICAL ALGORITHMS

44— ccliptic
xll

The arc yNX" is a part of the ecliptic as seen from the Sun, and NPXX' is a part of
the orbit of the planet (the intersection of the orbital plane with the celestial sphere).
7 is the vernal equinox (longitude 0°), N the ascending node of the orbit, P the

planet’s perihelion. At a given instant, the mean planet is at X, the true planet at X'.
Then we have

= arc yN = longitude of the ascending node,
arc NP = argument of the perihelion,
arc YN + arc NP = Q + w = longitude of the perihelion,
arc yN + arc NX = Q + w + M = mean longitude of the planet,
arc PX = planet’s mean anomaly,
arc XX' = equation of the center,
arc PX' = M + C = planet’s true anomaly,
inclination of the orbit = angle between arcs NP and NX".

~<aREthaE D
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The planet’s mean anomaly is given by
M=L-n71

Table 31.A gives the coefficients a, to a; for the orbital elements of the planets
Mercury to Neptune. The values for the semimajor axes are in astronomical units.
Those for the angular quantities L, i, ?, and = are expressed in degrees and
decimals; they are referred to the ecliptic and mean equinox of the date.

The values have been deduced from a study by Simon e.a. [1]. However, in the
case of the planets Mercury to Mars we added the correction +0"2766T to a, for
the elements L, 2, and 7 in order to bring them in accordance with the VSOP87
theory. The elements L, i, Q, and = are actually referred to the mean dynamical

ecliptic and equinox of the date, which differ very slightly from the FK5 system (see
Chapter 25).

In some cases, it may be desirable to refer the elements L, i, Q, and 7 to a
standard equinox. This is the case, for instance, when one wishes to calculate the



31. ELEMENTS OF PLANETARY ORBITS 211

least distance between the orbit of a comet and that of a major planet, when the
elements of the first orbit are referred to a standard equinox.

By means of Table 31.B, it is possible to calculate these elements for the major
planets, referred to the standard equinox of J2000.0. The elements a and e are not
modified by a change of reference frame, of course. They should be calculated by
means of Table 31.A.

For the Earth, in order to avoid a discontinuity in the variation of the inclination
and a jump of 180° in the longitude of the ascending node at the epoch J2000.0, the
inclination on the ecliptic of 2000.0 is considered as negative before A.D. 2000.

Example 31.a — Calculate the mean orbital elements of Mercury on 2065 June 24
at 0" TD.

We have (see Chapter 7)
2065 June 24.0 = JDE 2475460.5
whence, by formula (31.1),
T = +0.654 770704 997
Consequently, from Table 31.A we find:

L = 252°250906 + (149 47420722491 x 0.654 770 704 997)
+ (0.000 303 50) (0.654 770 704 997)2
+ (0.000 000 018) (0.654 770704 997)°

98 1232494701 = 203°494 701

a = 0.387098310 T = 782475382

e = 0.20564510 from which we deduce

i = 7°006171 M =L—-7 = 1259019319
Q = 49?107 650 w=71—Q = 292367732

From Tables 31.A and 31.B it appears that the inclination of the orbit of
Mercury on the ecliptic of the date is increasing, but that it is decreasing with
respect to the fixed ecliptic of 2000.0. The opposite occurs for Saturn and Neptune.

Between T = —30 and T = +30, Venus’ orbital inclination on the ecliptic of
the date is continuously increasing, but with respect to the fixed ecliptic of 2000.0
Venus’ inclination reached a maximum about the year +690.

Uranus’ orbital inclination on the ecliptic of the date reached a minimum about
the year +1000, but with respect to the fixed ecliptic of 2000.0 its value is
continuously decreasing during the time period considered here.

The longitudes of the nodes, referred to the equinox of the date, are increasing
for all planets. But with respect to the fixed equinox of 2000.0 these longitudes are
decreasing, except for Jupiter and Uranus.
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TABLE 31.A
Orbital Elements for the mean equinox of the date

a a, a, a;
MERCURY

L |252.250906 | +149474.0722491 | +0.00030350 | -+0.000000 018

a | 0.387098310 4

e | 020563175 |+0.000020407 | ~0.0000000283 | —0.000000 000 18
i | 7.004986 | +0.0018215 ~0.000018 10 | +0.000 000 056

0 | 48330893 | +1.1861883 +0.00017542 | +0.000000215

x| 77456119 | +1.5564776 +0.00029544 | +0.000 000 009
VENUS

L |181.979801 | +58519.2130302 | +0.00031014 | +0.000000015
a | 0723329820

e | 000677192 | —0.000047765 | +0.0000000981 | +0.000000 00046
i | 3.394662 | +0.0010037 ~0.00000088 | —0.000 000 007

Q | 76.679920 | +0.901 1206 +0.000406 18 | —0.000 000 093

® |131.563703 | +1.4022288 —0.00107618 | —0.000 005 678
EARTH

L |100.466457 | +36000.7698278 | +0.00030322 | +0.000000020

a | 1.000001018

e | 0.01670863 | ~0.000042037 | —0.000000 1267 | +0.000000 000 14
i| 0

7 |102.937348 | +1.7195366 +0.00045688 | —0.000000018
MARS

L |355.433000 | +19141.6964471 |-+0.00031052 | +0.000000 016

a | 1523679342

e | 0.09340065 |+0.000090484 | —0.0000000806 | ~0.000 000 00025
i | 1.849726 | —0.0006011 +0.00001276 | —0.000 000 007

Q | 49558093 | +0.7720959 +0.00001557 | +0.000 002 267

© 1336060234 | +1.8410449 +0.000 13477 | +0.000000 536
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TABLE 31.A (cont.)
ag a; a, a;

JUPITER
L 34.351 519 +3036.302 7748 +0.000223 30 +0.000 000 037
a 5.202 603 209 | +0.000000 1913
e 0.04849793 | +0.000 163 225 —0.000 0004714 —0.000 000 002 01
i 1.303 267 -0.005 4965 +0.000 004 66 -(.000 000 002
Q | 100.464 407 +1.0209774 +0.000403 15 +0.000 000 404
T 14.331 207 +1.612 6352 +0.001 03042 —0.000 004 464
SATURN
L 50.077 444 +1223.511 0686 +0.000 51908 ~0.000 000 030
a 9.554 909 192 | —0.000 002 1390 +0.000 000 004
e 0.055548 14 | —0.000 346 641 —0.000 000 6436 +0.000 000 003 40
i 2.488 879 —0.003 7362 —-0.000015 19 +0.000 000 087
Q |113.665503 +0.877 0880 —0.000 12176 —0.000 002 249
T | 93.057237 +1.963 7613 +0.000837 53 +0.000 004 928
URANUS
L |314.055005 +429.864 0561 +0.000 303 90 +0.000 000 026
a 19.218 446 062 | —0.000 0000372 +0.000 000 000 98
e 0.046 38122 | —0.000027 293 +0.000 000 0789 +0.000 000 000 24
i 0.773 197 +0.000 7744 +0.000 037 49 —0.000 000 092
Q0 74.005 957 +0.521 1278 +0.001 33947 +0.000018 484
7 | 173.005 291 +1.486 3790 +0.000 214 06 +0.000 000 434
NEPTUNE
L | 304.348 665 +219.883 3092 +0.000 308 82 +0.000 000018
a 30.110386 869 | —0.000 000 1663 +0.000 000 000 69
e 0.00945575 | +0.000006033 +0.000 000 0000 —0.000 3000 000 05
i 1.769 953 —0.009 3082 —0.000 007 08 +0.000 000027
Q {131.784057 +1.102 2039 +0.00025952 —0.000 000637
g 48.120276 +1.426 2957 +0.000384 34 +0.000 000 020
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TABLE 31.B
Orbital Elements for the standard equinox J2000.0
Qo ay a, as
MERCURY
L 1252.250906 +149472.674 6358 | —0.000 005 36 +0.000 000 002
i 7.004 986 —0.0059516 +0.000 000 80 +0.000 000 043
Q 48.330893 —0.125 4227 —0.000 088 33 —0.000 000 200
™ 77.456 119 +0.158 8643 —0.000013 42 —0.000 000 007
VENUS
L }181.979801 +58517.815 6760 | +0.000 001 65 ~0.000 000 002
i 3.394 662 —0.000 8568 —-0.00003244 +0.000 000 009
Q 76.679 920 —0.278 0134 —0.000 142 57 —0.000000 164
« | 131.563 703 +0.004 8746 —0.001 384 67 —0.000 005 695
EARTH
L | 100.466 457 +35999.372 8565 | —0.000 005 68 —0.000 000 001
i 0 +0.013 0548 —0.000 009 31 —0.000 000 034
Q |174.873176 —0.241 0908 +0.000 042 62 +0.000 000 001
w | 102.937 348 +0.322 5654 +0.000 147 99 —0.000 000 039
MARS
L 1355.433000 +19140.299 3039 | +0.000 002 62 —0.000 000 003
i 1.849726 —0.008 1477 —0.000 022 55 —0.000 000 029
Q 49.558 093 —0.295 0250 ~0.000 640 48 —0.000 001 964
w | 336.060234 +0.443 9016 —0.000173 13 -+0.000 000 518
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TABLE 31.B (cont.}
ao a, a, as
JUPITER
L 34.351519 +3034.905 6606 ~0.000 085 01 +0.000 000 016
i 1.303 267 —0.001 9877 +0.000 033 20 +0.000000 097
Q |100.464 407 +0.176 7232 +0.000 907 00 ~0.000007 272
T 14.331 207 +0.215 5209 +0.000722 11 —0.000004 485
SATURN
L 50.077 444 +1222.113 8488 +0.00021004 ~0.000 000 046
i 2.488 879 +0.002 5514 —0.000 049 06 +0.000 000 017
Q |113.665503 —0.256 6722 —0.000 18399 +0.000 000 480
™ 93.057 237 +0.566 5415 +0.000 528 50 +0.000004 912
URANUS
L |314.055 005 +428.466 9983 —0.000 004 86 +0.000 000 006
i 0.773 197 —0.001 6869 +0.000 003 49 +0.000000 016
Q2 74.005 957 +0.074 1431 +0.000 405 39 +0.000000 119
7 | 173.005 291 +0.089 3212 —0.000094 70 +0.000000414
NEPTUNE
L |304.348 665 +218.486 2002 +0.000 000 59 —0.000 000 002
i 1.769 953 +0.000 2256 +0.000 00023 —0.000 000 000
Q |131.784 057 —0.006 1651 —0.000002 15 —0.000 000078
w 48.120276 +0.029 1866 +0.000076 10 +0.000 000 000
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Chapter 32

Positions of the Planets

In 1982, P. Bretagnon of the Bureau des Longitudes of Paris published his planetary
theory VSOP82. The acronym VSOP means “Variations Séculaires des Orbites
Planétaires”. The VSOP82 consists of long series of periodic terms for each of the
major planets Mercury to Neptune. When, for a given planet, the sums of these
series are evaluated for a given instant, one obtains the values of the following
quantities for the osculating orbit. The osculating orbit is the “instantaneous” orbit
of the planet; see more about this notion in the next Chapter.

semimajor axis of the orbit
mean longitude of the planet
esin T

e cos T

sin 141 sin Q

= sin 4i cos

ol

QW x>
I

where e is the orbital eccentricity, = the longitude of the perihelion, i the
inclination, and  the longitude of the ascending node.

Once a, N, e and 7 (from 4 and k), i and Q (from p and g) are known, the true
position in space can be obtained for the given instant.

The inconvenience of the VSOPS82 solution is that one does not know where the
several series should be truncated when no full accuracy is required. Fortunately,
in 1987 Bretagnon and Francou constructed the version called VSOP87, which gives
periodic terms for calculating the planets’ heliocentric coordinates directly, namely

L, the ecliptical longitude

B, the ecliptical latitude
R, the radius vector (= distance to the Sun)

217
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Note that L is really the planet’s ecliptical longitude, not the orbital longitude.
In the figure on page 210, the orbital longitude of the planet is the sum of the arcs
yN and NX' (in two different planes). Through the planet’s position X', a great
circle X'X"” is drawn perpendicularly to the ecliptic. Then the planet’s ecliprical
longitude is the measure of the arc yX".

Although the methods used for the construction of the VSOP82 and VSOP87
have been described in the astronomical literature (see the References 1 and 2),
these theories themselves are available only on magnetic tape or on CD-ROM. By
kind permission of Messrs. Bretagnon and Francou, we give in Appendix III the
most important periodic terms from the VSOP87 theory. For each planet, series
labelled LO, L1, L2, ..., BO, B1, ..., RO, R1, ... are provided.

The series LO, L1, ... are needed to calculate the planet’s heliocentric ecliptical
longitude L, the series BO, B1, ... are needed for the ecliptical latitude B, and the
series RO, R1, ... are for the radius vector R.

Each horizontal line in the list represents one periodic term and contains four
numbers:

— the current No. of the term in the series. It is not needed in the actual calculation
and is given for reference purpose only;

— three numbers which we shall call here 4, B, and C, respectively.

Let JDE be the Julian Ephemeris Day corresponding to the given instant.
Calculate the time 7 measured in Julian millennia from the epoch J2000.0

IDE — 2451545.0
T = 365250 (32.1)

The value of each term is given by
Acos(B + CT1)

For example, the ninth term of the series LO for Mercury is equal to
1803 cos (4.1033 + 5661.33207).

In the lists of Appendix III, the quantities B and C are expressed in radians.
The coefficients A are in units of 1078 radian in the case of the longitude and the
latitude, in units of 10~% astronomical unit for the radius vector.

When a coefficient A has less decimals, then less decimals too are given for the
corresponding B and C. This is merely done to avoid keypunching extraneous digits
which do not influence the result.

To obtain the heliocentric ecliptical longitude L of a planet at a given instant,
referred to the mean equinox of the date, proceed as follows. Calculate the sum LO
of the terms of series LO, the sum LI of the terms of the series L1, etc. Then the
required longitude in radians is given by

L= @O+ LIT+ L27% + L37% + L47* + L579) /108 32.2)
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Proceed similarly for the heliocentric latitude B and for the radius vector R.

The planet’s heliocentric longitude L and latitude B, obtained thus far, are
referred to the mean dynamical ecliptic and equinox of the date defined by
Bretagnon’s VSOP planetary theory. This reference frame differs very slightly from
the standard FK5 system mentioned in Chapter 21. The conversion of L and B to
the FKS system can be performed as follows, where T is the time in centuries from
2000.0, or T = 107.

Calculate

L' = L — 1°397T — 0°0003172

Then the corrections to L and B are

AL -0"09033 + 0”.03916 (cos L' + sin L') tan B 32.3)
AB = +0"03916 (cos L' — sin L")

These corrections are needed only for very accurate calculations. They may be
dropped when use is made of the abridged version of the VSOP87 given in
Appendix III.

How to obtain the geocentric positions of the planets will be explained in
Chapter 33.

Example 32.a — Calculate the heliocentric coordinates of Venus on 1992 Dec. 20
at 0" Dynamical Time.

This instant corresponds to JDE 2448 976.5, from which
7 = —0.007 032 169 747.

For Venus, series LO has 24 terms in Appendix III (there are many more in the
original VSOP87 theory), L1 has 12 terms, L2 has 8 terms, L3 and L4 both have
3 terms, while L5 contains just a single term. For the sums of these series, we find

L0 = +316402122 L3 = -56
L1 = +1021353038718 L4 = -109
L2 = +50055 L5 = -1

Hence, by formula (32.2), we find that the heliocentric longitude of Venus, for
the given instant and referred to the mean equinox of the date, is

L = —68.6592582 radians = —3933°88572 = +26711428

We calculate the heliocentric latitude B and the radius vector R in the same way.
Note that, in the case of Venus, the series B5 and R5 do not exist. The results are

B = —0.0457399 radian = —2°762070, R = 0.724603 AU
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Accuracy of the results

When high accuracy is desired, it appears that the periodic terms in the VSOP87
solution converge rather slowly. What is the magnitude of the errors in the
coordinates if one truncates the list of terms at any point? The following empirical
rule has been given by Bretagnon and Francou [3]:

If n is the number of retained terms, and A the amplitude of the
smallest retained term, the accuracy of the thus truncated series is about
nVn X A, where 7 is a number smaller than 2.

As an example, consider the heliocentric longitude of Mercury. In Appendix I1I,
series LO for this planet contains 38 terms, and the coefficient of the smallest
retained term is 100 X 107® radian. Therefore, we may expect that the greatest
possible error in Mercury’s heliocentric longitude, as calculated by means of that
truncated series, is approximately

2 x /38 x 100 x 10~8 radian = 2"54.

Of course, series L1, L2, etc., are truncated too, which gives rise to additional
uncertainties of the order of 0”417, 00872, etc.

Polynomial Expressions

The giant planets Jupiter, Saturn, Uranus, and Neptune move so slowly on their
orbits around the Sun, that it is possible to construct polynomial expressions giving
their heliocentric coordinates, each expression being valid for one year.

We choosed polynomials of the fifth degree, so that the required value of the
heliocentric longitude, latitude, or radius vector is given by

Ag + Ayt + Axtr + A3 + Ayt + Agr® (32.4)

where ¢ is the time (in the scale of Dynamical Time) measured from January 0.0 of
the given year in units of 365 days. In other words, if d is the day of the year (with
decimals, if any), then ¢ = d/365. Note that even in the case of a bissextile (leap)
year, the denominator in this formula is still 365.

The constants A, to A5 are given in Appendix IV for the years 1998 to 2025.
For each planet there are three polynomials per year: one for the heliocentric
longitude (L), one for the latitude (B), and one for the radius vector (R). The
coefficients are expressed in degrees for the longitude and the latitude, in
astronomical units for the radius vector.

The coordinates so obtained are geometric, and they are referred to the mean
equinox of the date in the FKS reference frame.
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For the years 1998 to 2012, January 0.0 corresponds to the following Julian
Days:

Year JD Year JD Year JD

1998 2450813.5 2003 2452639.5 2008 2454465.5
1999 2451178.5 2004 2453004.5 2009 2454 831.5
2000 2451543.5 2005 2453370.5 2010 2455196.5
2001 2451909.5 2006 2453735.5 2011 2455561.5
2002 2452274.5 2007 2454100.5 2012 2455926.5

Example 32.b — Calculate the heliocentric longitude of Saturn on 1999 July 26 at o
Dynamical Time, referred to the mean equinox of the date.

July 26 being the 207th day of the year, we have
d =207 and = 207/365 = 0.567 123288
From Appendix IV we take for the longitude (L) of Saturn in 1999:

A, = 32.5784232 A, = —0.0105762
A, = 12.9666139 A, = 0.0076613
A, = 0.129 4965 As = —0.003 6652

whence, by formula (32.4), [ = 3929723901 = 39°58'20"60
This is indeed the result obtained directly from the VSOP87 theory.

Calculated by means of these polynomial expressions, the maximum error in the
heliocentric longitude will not exceed 0.05 arcsecond in the case of Jupiter, and
0.02 arcsecond for Saturn. For the much slower planets Uranus and Neptune, the
error will even be less as compared with the VSOP87 theory.
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Chapter 33

Elliptic Motion

In this Chapter we will describe two methods for the calculation of geocentric
positions in the case of an elliptic orbit. In the first method, the geocentric ecliptical
longitude and latitude of a major planet (Mercury to Neptune) are obtained from the
heliocentric ecliptical coordinates of the planet and the Earth. In the second method,
which is better suited for minor planets and periodic comets, the right ascension and
declination of the body, referred to a standard equinox, are obtained directly, and
use is made of the geocentric rectangular coordinates of the Sun.

First Method

We will describe how the apparent right ascension and declination of a major
planet can be calculated for a given instant.

For the given instant calculate, by means of the appropriate series given in
Appendix III and using the method described in Chapter 32, the heliocentric
coordinates L, B, R of the planet, and the heliocentric coordinates Lo, By, R, of the
Earth. Do not convert from the dynamical ecliptic and equinox to the FKS ecliptic
and equinox at this stage.

Then calculate

x = RcosBcosL — Rycos By cos Ly
= Rcos Bsin L — Ry cos B sin L, (33.1)
z = RsinB — Ry sin By

The geocentric longitude X and latitude 8 of the planet are then given by

tan A = tan B =

y
2 (33.2)

x2 +y?

Look out for the proper quadrant of A. One may use the “second” arctangent
function, N = ATN2(y, x) or use the fact that, if x < 0, then cos A < 0.
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However, the geocentric coordinates N and 8 obtained in this way are the
planet’s geometric coordinates referred to the mean equinox of the date. If high
accuracy is needed, it is necessary to take into account the apparent displacement
of the planet from its true position due to the finite velocity of light. This apparent
displacement includes:

(a) the effect of light-time, the planet being seen where it was when the light
left it;

(b) the effect of the Earth’s motion which, combined with the velocity of light,
causes an apparent displacement of the object, just as the annual
aberration in the case of a star.

The combination of the two effects is often called “planetary aberration”.
However, we prefer to reserve the term aberration to the effect (b) alone, because
this effect is of the same nature as the aberration of the stars. Moreover, for some
applications it is not necessary to take effect (b) into account. Suppose we want to
calculate occultations of stars by planets. Then the effect of light-time must be taken
into account in the calculation of the position of the planet; but we may drop effect
(b) on the condition that the effect of aberration on the star’s position is dropped
too. Similarly, the effect of nutation can be neglected for both bodies in that
particular case. The reason is evident: because the planet and the star are close
together on the celestial sphere, the effects of aberration and nutation will not
change their relative positions.

(@) effect of light-time: at time ¢, the planet is seen where it was at time ¢ — 7,
hence in the direction obtained by combining the Earth’s position at time ¢ with
that of the planet at time ¢ — 7, where 7 is the time taken by the light to reach
the Earth from the planet. This time is given by

7 = 0.0057755183 A days (33.3)

where A is the planet’s distance to the Earth in astronomical units, given by
A = yx2+y2+ 22 (33.4)

(b) the effect of aberration can be calculated as for the stars, namely, by means of
formulae (23.2), where © is equal to Ly + 180°.

However, both effects can be calculated simultaneously. To the order of
accuracy that the motion of the Earth during the light-time is rectilinear and
uniform, the planet’s apparent position at time ¢ is the same as its geometric position
at time ¢ — 7. In other words, in this method the Earth’s position at time ¢ — 7
must be combined with the planet’s position at the same time ¢ — 7.

Of course, the value of the light-time 7 is not known in advance because the
planet’s distance A to the Earth is not known. But this distance can be found by
iteration, using for instance A = O (and hence 7 = 0) in the first calculation.
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For very accurate calculations, the planet’s geocentric longitude A and latitude
8 can be converted from the dynamical ecliptic and equinox to the FK5 ecliptic and
equinox by means of formulae (32.3), replacing L by A, and B by 8.

To complete the calculation of the planet’s apparent position, the corrections for
nutation should be applied. This is achieved by calculating the nutation in longitude
(Ay) and in obliquity (Aég), as explained in Chapter 22. Add Ay to the planet’s
geocentric longitude, and Ae to the mean obliquity &y of the ecliptic. The apparent
right ascension and declination of the planet can then be deduced by means of
formulae (13.3) and (13.4).

The elongation y of the planet, that is, its angular distance to the Sun, can be
calculated from

cos ¥ = cos fB cos (A — Ag) (33.5)

where \, 8 are the planet’s apparent longitude and latitude, and A, the Sun’s
apparent longitude. The Sun’s latitude, which is always smaller than 1.2 arcsecond,
may be neglected here.

Example 33.a — Calculate the apparent position of Venus on 1992 December 20 at
0" TD = JDE 2448976.5.

Because the planet’s distance to the Earth is not known in advance, the value of
the light-time is not known. Therefore, we start with the calculation of the true
(geometric) position of the planet at the given time. We find the following values for
the heliocentric coordinates (see Example 32.a):

L = 26211428 B = —2262070 R = 0.724 603
The coordinates of the Earth are calculated in the same way:
L, = 8835704 B, = +0°00014 R, = 0.983 824 (A)
whence, by formulae (33.1), (33.4), and (33.3),

x = +0.621746
y = —0.664 810 A = 0.910 845
z = —0.033134 7 = 0.005 2606 day

A is the true distance of Venus to the Earth on 1992 December 20.0. We now repeat

the calculation of Venus’ heliocentric coordinates for the instant ¢ — 7, that is, for
JDE = 2448976.5 — 0.0052606. We obtain

L = 26°10588 B = —2°262102 R = 0.724 604 (B)
Combining these new values with the values (A) of Ly, By, Ry, we find
x = +0.62179%4
y = —0.664905 (C) A = 0.910947
z = —0.033138 7 = 0.0052612 day
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If we repeat the calculation with this new value of 7, we find the same values (B)
for L, B, and R again, to the given accuracy.

Hence, the final value for the light-time is 7 = 0.0052612 day, and A =
0.910947 AU is the apparenr distance of the planet on 1992 December 20 at 0" TD.
It is the distance at which we “see” the planet at that instant. In other words, it is the

distance travelled by the light which left the planet at time ¢ — 7 to reach the Earth
at time ¢.

Let us now calculate Venus’ geocentric longitude and latitude. If we put the
values (C) of x, y, z in formulae (33.2), we obtain

A = 313208102 B = ~2°08474

which are corrected for light-time, but not yet for aberration.
From Chapter 23, we find ¢ = 0.016711589, = = 102°81644

and formulae (23.2) give, for © = 268°35704,

AN = —14"868 —0200413
A = -0"531 = —0°00015

and the apparent longitude and latitude of Venus, not yet corrected for nutation, are

A = 313208102 ~ 0°00413 313207689
B —2°08474 — 0°00015 = —2°08489

(Alternatively, we could have corrected for the light-time and the aberration
together at once by calculating the coordinates of the Earth for the instant
t — 7, which gives

L, = 88235168 B, = +0°00014 R, = 0.983 825

We now combine these values with Venus’ coordinates (B). Formulae
(33.1) and (33.2) then give

x = +0.621702 A = 313207687
y = —0.664 903 B = —2°08489
z = —0.033138

or nearly the same values as before. )

The corrections for reduction to the FKS system are, from (32.3),

AN = —0"09027 = —0°00003
AB = +0".05535 = +0°00002
so the corrected values are
A = 313207689 — 0°00003 = 313°07686

8

—2°08489 + 0°00002 = —2°08487
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From Chapter 22, we find
Ay = +16"749 Ae = —1"933 & = 23°439669
and the value of A corrected for nutation is

A = 313°07686 + 16”749 = 313°08151
Finally, by (13.3) and (13.4),

I

316°17291 = 218078 194 = 21"04™41250
—18288801 = ~—18°53'16"8

apparent right ascension: «

apparent declination: 8

The exact values, obtained by an accurate calculation using the complete VSOP87
theory, are o = 21°04™41454, & = —18°53'16"84, true distance = 0.910 845 96.

Second Method

Here we use the orbital elements referred to a standard equinox, for instance
2000.0, and the geocentric rectangular equatorial coordinates X, Y, Z of the Sun
referred to the same equinox. These rectangular coordinates can be taken from an
astronomical almanac, or they may be calculated by the method described in
Chapter 26.

In this method, the heliocentric longitude and latitude of the body (minor planet
or periodic comet) are not calculated. Instead, we calculate its heliocentric
rectangular equatorial coordinates x, y, z, after which the right ascension,
declination, and other quantities are derived by means of simple formulae.

The following orbital elements are supposed to be known. They may be taken,
for instance, from the Circulars of the International Astronomical Union, from the
Minor Planet Circulars of the Minor Planet Center, etc.

= semimajor axis, in AU

= eccentricity

= inclination

= argument of perihelion

= longitude of ascending node
= mean motion, in degrees/day

X o€ -~ 0 8

where i, w, and Q are referred to a standard equinox.

If a or n are not given, they can be calculated from

0.985 607 6686
“sTIr T e 039
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where g is the perihelion distance in AU. The numerator of the second fraction is
the Gaussian gravitational constant 0.01720209895 converted from radians to
degrees.

The inclination i can take values from 0° to 180°. If 0° <7 < 90°, then the
body is said to have direct motion. This means that the body moves counter-
clockwise as seen from the north pole of the ecliptic. If i is larger than 90°, the
motion is said to be retrograde (*).

Strictly speaking, all these elements are valid only for one given instant, called
the Epoch. Away from this time they change under influence of planetary
perturbations. See, later in this Chapter, the note about osculating elements. Unless
high accuracy is required, the elements may be considered as invariable during
several weeks or even months, for instance during the whole apparition of a comet.

Besides the above-mentioned orbital elements, either the value M, of the mean
anomaly at the Epoch, or the time T of passage through perihelion, is given. This
allows the calculation of the mean anomaly M at any given instant. The mean
anomaly increases by n degrees per day, and is zero at time T.

The orbital elements of a minor planet or a periodic comet being given, the
geocentric position for a given instant can be calculated as follows. First, we must
calculate the quantities a, b, ¢ and the angles A, B, C, which are constant for a
given orbit.

Let & be the obliquity of the ecliptic. If the orbital elements are referred to the
standard equinox of 2000.0, one should use the value gy500 = 23°26'21".448, from
which

sin ¢ = 0.397777156
cos & = 0.917482062
Then calculate
F = cos Q P = -—sin Q cos i
G = sin Q cos ¢ Q = cosQcosicose —sini sing (33.7)
H = sin Q sin ¢ R = cosQcosisine + sinicose

As a check, we can use the relations
F?+ G*+H? =1, P2+ Q*+R*=1,

but of course this is not needed in a program.

(*) Some authors call an orbit with i < 90° a prograde orbit. While rerrograde is a
current English word, even outside astronomy (it means “going backward”™), the word
prograde is not. It appeared in some astronomical texts around 1960. I don’t know
who invented this neologism, nor why. The classic word, in use since more than two
centuries, is direct.
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Then the quantities a, b, ¢, A, B, C are given by

tanA=% a = VF*+ pP?
tan B =—g b =\/GZ+Q2 (33.8)
tanC=LI§ ¢ = yH* + R?

The quantities a, b, ¢ should be taken positive, while the angles 4, B, C should
be taken in the correct quadrant, according to the following rules: ’
sin A has the same sign as cos {,
sin B and sin C have the same sign as sin {2.

However, once again, one may use the “second” arctangent function if it is
available in the programming language: A = ATN2 (F, P), etc.

Attention: do not confuse the quantity g with the semimajor axis a of the orbit!

For each required position, calculate the body’s mean anomaly M, then the
eccentric anomaly E (see Chapter 30), the true anomaly v by means of formula
(30.1), and the radius vector r by means of (30.2). Then the heliocentric
rectangular equatorial coordinates of the body are given by

x =rasin(d+ow+v)
y=rbsin(B+w+tv) (33.9)
z = resin(C+ow+v)

The convenience of these formulae is seen when the rectangular coordinates are
required for several positions of the body. The auxiliary quantities 4, b, c, 4, B, C
are functions only of Q, i, and ¢, and thus are constant for the whole ephemeris; for
each position only the values of v and r must be calculated. However, remember
that 0, i, and w are constant only if the body is in an unperturbed orbit.

For the same instant, calculate the Sun’s rectangular coordinates X, Y, Z
(Chapter 26), or take them from an astronomical almanac. The geocentric right
ascension a and declination § of the planet or comet are then found from

E=X+x n=Y+y C=Z+z

tan o = 9/f A = £+ P+ P (33.10)
L. Y

sind = ¢/A or tan § =

VE 7
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where A is the distance to the Earth and thus is positive. The correct quadrant of
«a is indicated by the fact that sin o has the same sign as 5; however, once more,
the second arctangent function can be used: « = ATN2 (n, £).

If « is negative, add 360 degrees. Then transform « from degrees into hours
by dividing by 15.

The equatorial coordinates o and & of the body will be referred to the same
standard equinox as the orbital elements and the Sun’s rectangular coordinates X,
Y, Z. However, the values of o and § obtained in the way described above refer to
the geometric (the true) position of the body in space. Just as in the “First Method”
in this Chapter, the effect of light-time should be taken into account. This is
performed as follows.

For the given time ¢, calculate the distance A of the body to the Earth as
described above, and then the light-time 7 by means of (33.3). Then repeat the
calculation of M, E, v, x, y, z for the time ¢ — 7, but leqve the Sun’s coordinates
X, Y, Y unchanged. With the new values of x, y, z, formulae (33.10) will give the
corrected values of « and 6.

When allowance is made for the light-time only, that is, if no correction is made
for aberration nor for nutation, then the values obtained for o and & are the so-called
astrometric right ascension and declination of the body at the given instant. The
astrometric position of a minor planet or a comet is directly comparable with the
mean places of stars as given in star catalogues (corrected for proper motion and
annual parallax, if significant), Of course, o and § are geocentric.

Instead of expressions (33.7) and (33.8), one may calculate the constants

= cos w cos ! — sin w sin Q cos |

cos & (cos w sin © + sin w cos © cos /) — sin & sin w sin i
sin € (cos w sin  + sin w cos @ cos i) + cos & sin @ sin i
= —sin w cos @ — cos w sin @ cos {

cos & (cos w cos § cos i — sin w sin ) — sin & cos w sin i

[SESY ST R
|

= sin & (cos w cos  cos i — sin w sin ) + cos & cos w sin i
and then, instead of (33.9), one should use

x =r(P,cosv+ @ sinv)

y = r(Pycosv+stinv)

i

r(P,cosv + Q, sinv)

The elongation y to the Sun and the phase angle 3 (the angle Sun-body- Earth)
can be calculated from
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X+ Y+ (Z RZ + A? — 1?2

cos y = - I Z T (33.11)
x+ 7y + r’ + A* - R?

cos = —= r"Ay 2 _ — (33.12)

where R = v X?> + Y2 + Z? is the distance Earth-Sun. The angles ¢ and 8 are
both between 0 and +180 degrees. Do not confuse this R with the quantity R of
expressions (33.1), nor with that of (33.7).

The magnitude of the body is then calculated as follows. In the case of a comet,
the “total” magnitude is generally calculated from

m =g+ 5logA+ klogr (33.13)

where g is the absolute magnitude, and k a constant which differs from one comet
to another. In general, k is a number between 5 and 15.

For the minor planets, a new magnitude system was adopted by Commission 20
of the International Astronomical Union (New Delhi, November 1985). The formula
for the prediction of the apparent magnitude of a minor planet is

magnitude = H + Slog rA — 2.51log [(1 = G) $;, + G&,] (33.14)
with
®, = exp[—3.33 (tan %063]
$, = exp [ —1.87 (tan —g)l'zz]

where § is the phase angle, and “exp” is the exponential function, EXP (x) = ¢”.
Formula (33.14) is valid for 0° < 8 < 120°. H and G are magnitude parameters,
which are different for each minor planet. H is the mean absolute visual magnitude,
while G is called the “slope parameter”. Here are the values of H and G for the
brightest minor planets and for some unusual objects [1]:

H G H G
1 Ceres 3.34 0.12 15 Eunomia 528 0.23
2 Pallas 4.13 0.11 18 Melpomene 651 0.25
3 Juno 5.33 0.32 20 Massalia 650 0.25
4 Vesta 3.20 0.32 433 Eros 11.16 0.46
5 Astraea 6.85 0.15 1566 Icarus 16.9 0.15
6 Hebe 5.7 0.24 1620 Geographos 1560  0.15
7 TIris 5.51 0.15 1862 Apollo 16.25 0.09
8 Flora 6.49 0.28 2060 Chiron 6.5 0.15
9 Metis 6.28 0.17 2062 Aten 16.80 0.15
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In formulae (33.13) and (33.14), the distance to the Sun () and the distance to
the Earth (A) are in astronomical units, and all logarithms are to the base 10. In
many programming languages, the only available logarithmic function “LOG?” is the
natural logarithm (to the base e = 2.71828...); it can be converted to the common

logarithm (base 10) by multiplication by 0.434 294 4819, which is 1/ log, 10.

Example 33.b — Calculate the geocentric position of periodic comet Encke for 1990
October 6.0 Dynamical Time, using the following orbital elements

(see Example 24.b):
T = 1990 Oct. 28.54502 TD i = 11294524 ecliptic
a = 2.209 1404 AU Q = 334275006 and equinox
e = 0.8502196 w = 186223352 2000.0

We first calculate the auxiliary constants of the orbit by means of (33.7) and (33.8) :

F = +0.904 455 59 P = +0.417 330 84
= —0.391368 30 Q = +0.72952209
H = —0.169 67893 R = +0.541 878 67
A = 65230615 a = 0.996 094 85
B = 3312787 680 b = 0.82787174
C = 342°613 052 c = 0.56782342

From the value 2.209 1404 for the semimajor axis of the orbit, the second formula
(33.6) yields n = 0.300 171 252 degree/day.

For the given date (1990 October 6.0), the time since perihelion is —22.54502
days. Hence, the mean anomaly is

M = —22.54502 X 09300171252 = —6°767 367
We then find

E = —-342026714 x = +0.250 8066
v = —94°163 310 y = +0.4849175
r = 0.6524867 z = +0.357 3373

The Sun’s geocentric rectangular equatorial coordinates for the same instant,
referred to the same standard equinox (2000.0) and calculated by using the complete
VSOP87 theory, are

X = ~0.9756732, Y = —0.200 3254, Z = —0.086 8566,
from which A = 0.824 3689, and the light-time is 7 = 0.00476 day.

Repeating the calculation of the comet’s position for ¢ — 7, that is, for 1990
October 5.99524, we find
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M = -—6?768796 x = +0.2509310 £ = ~0.7247422
E = —34°031552 y = +0.484 9477 7 = +0.284 6223
v = —942171933 z = +0.3573712 ¢ = +0.2705146
r = 0.6525755 A= 0.8242811

from which we deduce the astrometric right ascension and declination, and the
elongation from the Sun:

Qyp0 = 1589558965 = 10"34™1422
Ga000 = +19°158496 = +19°09'31"
¥ = 40°51

Heliocentric ecliptical coordinates

For some applications, the heliocentric rectangular ecliptical coordinates may
be needed. In that case one should use the following expressions instead of (33.9),
and it is not needed to calculate the auxiliary quantities ¥, G, ..., A, B, etc.

=w+vV

r (cos Q cos u — sin Q sin u cos i)
r(sin Q cos u + cos Q sin u cos i)
rsin i sin u

N xow
I

When these heliocentric rectangular ecliptical coordinates are known, the
heliocentric longitude / and latitude b can be found from

tan ] = y/x (I being taken between 90° and 270° if x < 0)

sinb=i or tan b = £
r X2 +y?

Notes on the osculating elements

Mean orbital elements, such as those given in Chapter 31 for the major planets,
represent the elements of a mean reference, slowly varying orbit.

For the periodic comets and the thousands of minor planets, however, no mean
orbital elements are calculated. Instead, orbital elements are available for the
“instantaneous” orbit at a given instant (the Epoch). These are the so-called
osculating elements, and the instant for which they are valid is the Epoch of
osculation.
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Osculating elements at a particular epoch are defined as the elements of
an unperturbed elliptical orbit, referred to as the osculating orbit, in which
the position and velocity of the planet at the epoch are identical with the
actual position and velocity of the planet in its perturbed orbit at the same
instant. The osculating elements therefore contain the effects of the
perturbations due to other planets, so that, unlike the mean elements, they
are subject to periodic variations. [2]

While the mean elements vary slowly with time (for instance, the eccentricity
of the mean orbit of Mars was 0.09331 in A.D. 1900 and will be 0.09349 in
2100), the osculating elements vary rather rapidly. These changes generally do not
reflect the real changes of the mean orbit.

As an example, let us give the following osculating elements of minor planet
Ceres for two epochs separated by only 200 days. These elements are taken from
the yearly Ephemerides of Minor Planets (Institute of Theoretical Astronomy of the
Russian Academy of Sciences, St. Petersburg, Russia); the elements i, w, and {2 are
referred to the standard equinox of 2000.0.

207.08221 M = 249.60014
0.214 03908 n =0.21423153

Mean anomaly (degrees) :
Mean motion (degrees/day) :

Epoch (TD) : 1997 Dec. 18.0 1998 July 6.0
Semimajor axis (AU) : a = 2.767 8380 a = 2.766 1801
Eccentricity : e = 0.0774119 e = (.0778872
Inclination (degrees) : = 10.58086 i = 10.58293
Argument of perihelion (deg.) : = 73.46016 w = 73.79924
Longitude of ascending node (deg.) : = 80.52954 Q = 80.50163

T Xoe ~

From 1997 December 18 to 1998 July 6, the semimajor axis of the “instant-
aneous” orbit decreased by 0.00166 AU. From this, however, we may not deduce
that during those 200 days the mean distance of Ceres to the Sun decreased by
248 000 kilometers!

On 1997 December 18, the “instantaneous” revolution period of Ceres was
1681.94 days (which is obtained by dividing 360° by n); 200 days later this had
decreased to 1680.42 days.

Neptune provides an even better illustration. While the eccentricity of its mean
orbit is presently 0.0095, that of its osculating orbit reached 2 maximum of 0.0124
in November 1964, a minimum of 0.0039 in October 157(Q, another maximum
(0.0122) in December 1976, and so on. These rather large variations are not
surprising: the osculating orbit of Neptune refers to the instantanecus position and
velocity of the Sun, which itself oscillates around the barycenter of the solar system,
mainly due to the actions of the giant planets Jupiter and Saturn. Orbital elements
of Neptune referred to that barycenter (instead of to the Sun) would show much
smaller variations.
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Accurate ephemerides of the periodic comets and the minor planets are obtained
by numerical integration, and for these calculations the osculating orbital elements
provide starting values. Such a numerical integration takes into account the
perturbations caused by the attraction of the planets, which tend to change the
osculating elements of the orbit over time.

Osculating elements may be used to give the actual position and motion of the
body at the epoch of osculation, and they provide a good approximation to its actual
orbit over short periods around the Epoch. They may not, however, be used as an
unperturbed orbit over a long period!

In order to have an idea of the increasing error of an ephemeris calculated by
using an osculating orbit as an unperturbed one, we used the above-mentioned
osculating elements of Ceres valid for 1998 July 6. The heliocentric longitude of
Ceres, calculated in this way, was then compared with the exact one as obtained
with the software package “Ceres” developed at the Institute of Theoretical
Astronomy, St. Petersburg, Russia. It appears that until 280 days after the Epoch
the error is smaller than 5”. During the first 50 days, the error is smaller than 1”.
The error in the calculated heliocentric longitude reaches a maximum (+4") 172
days after the Epoch, but after a few months the error AN quickly reaches large
negative values:

Number of
days after
1998 July 6: 0O 40 80 120 160 200 240 280 320 360 400

AN (arcsec.): 0 414 +2 +3 +4 +4 +1 -4 -13 =26 -~44

The further evolution of the error A\ in the calculated heliocentric longitude of
Ceres is shown in Figure 1. The oscillating curve represents the variation of the
error as a function of time. So, in this particular case, the error does not increase
continually with time, but reaches the following extreme values: +4" in December
1998, —304" in early November 2000, +862” in early September 2003, —383”
in mid-May 2005, and +1105” in mid-September 2007.

The situation is somewhat comparable with the undulating curve shown in
Figure 2. The true function (the osculating orbit in the case of a minor planet) is
represented by the curve C. The dashed line M is the “mean” curve (the mean
orbit). If we use this mean curve, then for a given value x of the argument we
obtain point A, which differs from the true value B on the true curve. However, the
difference between 4 and B does not exceed a certain limit. At point P, the tangent
T to the true curve is drawn. In the vicinity of P, this tangent gives a much better
approximation to the true curve C than does the mean curve M. But if we use the
tangent T at large distances from P, we obtain the very erroneous paint E. In this
case, the mean curve would give 4, which is a better approximation to the correct
value B. Unfortunately, for minor planets no mean orbital elements are available.
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Fig. 1: The error AN (in arcseconds) in the calculated heliocentric longitude
of Ceres when osculating elements are used and the perturbations by the
planets are ignored. The points are given at intervals of 40 days.
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The Equation of the Center

If the orbital eccentricity is small, then instead of solving the equation of Kepler
(Chapter 30) and then using formula (30.1), the equation of the center C, or the
difference v — M, can be found directly in terms of ¢ and M by means of the
following formula.

(2e—7+ e)sinM + (—e2 ie‘*) sin 2M
Ba_Bsyg 103 4 1097 s :
+(12e 64e)sm3M+ 3¢ sin 4M+960e sin SM

The result is expressed in radians, and thus should be multiplied by 180/% or
57.295779 51 in order to be converted into degrees. The formula is derived from
a series expansion [3] and has been truncated after the term in e>. Therefore it is
suitable only for small values of the eccentricity. If the eccentricity is very small,
the terms in e* and e* may be neglected.

The greatest error is

The formula The formula with terms
¢ up to terms in e e* and €’ neglected

0.03 0".0003 0724

0.05 0.007 1.8

0.10 0.45 30

0.15 5 152

0.20 29 483

0.25 111 1183

0.30 331 2456

There exists a series expansion for the radius vector, too. Its terms up to the
fifth power of the eccentricity are as follows:

r e? 3, s
7—1'{‘7—(8"—8—6 +@8)COSM
e? ¢ 3 s
(7 —3—)cos2M— (—S—e ~—ﬁ§e)c033M
4
—e—cos4M—£§e5cos5M

3 384
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Velocity in an elliptic orbit

In an unperturbed elliptic orbit, the instantaneous velocity of the moving body,
in kilometers per second, is given by the following formula, where r is the distance
of the body to the Sun, and a is the semimajor axis of the orbit, both expressed in
astronomical units:

v =a1219,/ L - L
r 2a

If e is the orbital eccentricity, the velocities at perihelion and at aphelion, again
in km/second, are respectively ’

v, = 29.7847 1+e v, = 207847 [l —e

va 1—e va 1+e

Example 33.c — For the 1986 return of periodic comet Halley, we have [4]
a = 17.940 0782 e = 0.96727426

these osculating values being valid strictly for the Epoch 1986
February 19.0 TD.

For this orbit, the velocities at perihelion and at aphelion are V, = 54.52
km/second and Vg = 0.91 km/second, respectively.

At the distance r = 1 AU from the Sun, the comet’s velocity was V = 41.53
km/second.

Length of the ellipse

While there is an exact formula giving the area of an ellipse (area = wab),
there is no exact expression with a finite number of terms and ordinary functions
for the length L (the perimeter) of an ellipse. In what follows, e is the eccentricity
of the ellipse, a its semimajor axis, and b its semiminor axis given by

b=ayl—e

1. An approximate formula given by Ramanujan in 1914 is

L = x(3@+b) -y (a+3b) 3a+b))

The error is zero for a = b (that is, for a circle), increasing to 0.4155 % for
= 1, that is, for an infinitely flat ellipse.
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2. Another interesting method for finding the length of an ellipse is as follows.
Let A, G, and H be the arithmetic, the geometric, and the harmonic means,
respectively, of the semi-axes ¢ and b of the ellipse. That is,

a+b 2ab
A = =y H =
G ab a+b

Then we have
214 — 2G - 3H

g )

with an error less than 0.001 % if e < 0.88, and less than 0.01 % if e < 0.95. ABut
the error amounts to 1% for ¢ = 0.9997, and to 3% for e = 1.

L=7r(

3. A formula with an infinite series expansion is

1 e? 1X3y, & 1X3X5y, &°
L=2re[1- ) T -G 5 - G 5 -]

The expression between square brackets takes the value 0.99937 for e = 0.05,
the value 0.99750 for e = 0.10, and is equal to 0.63662 = 2/x for e = 1.

4. More rapid convergence is obtained with the following formula, where
m=(a—b)[(a+b),

_ 2ma iz 2 1 2 4 1x3 2
L= [1+(2) " +(2x4)m +(2><4><6) m
I X3X5 3 ¢
(2x4x6x8)m +etc']

Example 33.d — Periodic comet Halley. Using the elements for the return of 1986
(see Example 33.c), we find that the length of the orbit is 77.07
astronomical units, or 11530 millions of kilometers.
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Chapter 34

Parabolic Motion

In this Chapter we explain how to calculate positions of a comet moving around the
Sun in a parabolic orbit. We will assume that the elements of this orbit are
invariable (no planetary perturbations) and that they are referred to a standard
equinox, for instance that of 2000.0.

We assume that the following orbital elements are given:

time of passage in perihelion
perihelion distance, in AU
inclination

argument of the perihelion
longitude of the ascending node

DE N

First, calculate the auxiliary constants 4, B, C, a, b, ¢ as for an elliptic orbit;
see formulae (33.7) and (33.8). Then, for each required position of the comet,
proceed as follows.

Let ¢ — T be the time since perihelion, in days. This quantity is negative for an
instant earlier than the time of perihelion. Calculate

0.036491 162 45
W=——"7—"@-T 34.1
D (34.1)

The constant in the numerator is equal to 3k/v/2, where k is the Gaussian
gravitational constant 0.017202 098 95.

Then the true anomaly v and the radius vector r of the comet are given by
y 2
tan7=s r=gq({l+s%) (34.2)

where s is the root of the equation

S2+3-W=0 (34.3)

241
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For an instant earlier than the time of perihelion passage the quantity s is
negative and v is between —180 and O degrees. After the perihelion, s > O and
v is between 0° and +180°. At the instant of passage through perihelion, we have
s=0,v=20°%and r=gq.

There are several ways to solve equation (34.3), which is called Barker’s
equation.

1. The equation can easily be solved by iteration; this algorithm has the author’s
preference, because the iteration formula is simple, the convergence is rapid, no
trigonometric functions or cubic roots are involved, and the procedure is valid for
positive as well as negative values of + — T, and for ¢ = T (or s = 0) too.
One may start from any value for 5; a good choice is 5 = 0. A better value for
s is ,
2s° + W
S D (34.4)
This calculation is then repeated until the correct value of s is obtained. Note
that in expression (34.4) the cube of s must be calculated. If s is negative, this
operation is not possible on some calculating machines. When this is the case,
calculate s X s X 5 instead of s°.

2. Instead of solving equation (34.3) by iteration, s can be obtained directly as
follows (J. Bauschinger, Tafeln zur Theoretischen Astronomie, page 9; Leipzig,
1934):

_2 avq )
tan B = WS 54.807791 =T
3 B
_ 2
tan 2y /

The constant 54.807791 is equal to 2v2/3k, where & is the Gaussian
gravitational constant.

In this method, no iteration is performed, but two problems can occur:

— at the time of passage through perihelion, ¢ — T is zero, hence W is zero and
2/W becomes infinite. In that case we have directly v = 0° and r = g, but the
possible occurrence of this case must be anticipated in the computer program;

— before the perihelion we have W < 0, whence tan § is negative. But in this case
tan 8/2 is negative too, and computers cannot calculate the cubic root of a negative
quantity. This problem can be avoided by replacing W by its absolute value in the
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first formula (34.5). At the end of the calculation, the sign of § should then be
changed accordingly. For instance, in BASIC the formulae (34.1) and (34.5) can be
programmed as follows, where T stands for ¢ — 7, the number of days elapsed
since perihelion :

IFT=0 THEN .....

W = .03649116245 * T/(Q * SQR(Q))

B = ATN (2/ABS(W))

S = 2/TAN (2 * ATN (TAN (B/2)*(1/3)))
IFT <0 THEN S = —S

3. The following method is easier and does not use trigonometric functions. All
expressions under the root signs are positive.

3
G=EV2— Y=\/G+\/G2+1 s=Y~% (34.6)

When s is obtained, v and r can be found by means of (34.2), after which the
calculation continues as for the elliptic motion, formulae (33.9) and (33.10), with
the same precept to take the effect of light-time into account.

The first formula (34.2) will give v/2 between —90 and +90 degrees, the range
of the arctangent function of the computer languages. That will give v in the correct
quadrant, between —180° and +180°, so no additional check will be required.

In the parabolic motion, e = 1 while a and the period of revolution are infinite;
the mean daily motion is zero and therefore the mean and eccentric anomalies do
not exist — in fact, they are zero.

Example 34.a — Calculate the true anomaly and the distance to the Sun of comet
Stonehouse (C/1998 H1) for 1998 August 5.0 TD, using the values

T = 1998 April 14.4358 TD
q = 1.487469

of a parabolic orbit calculated by B.G. Marsden (Minor Planer
Circular No. 31893, 1998 June 10).
For the given instant (1998 August 5.0), the time from perihelion is ¢ — T =
+112.5642 days. Hence, by formula (34.1),
W = 42.264 206 862.

Starting from the value s = 0, we obtain the following successive approximations
for s by means of the iteration formula (34.4):
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0.000 0000
0.754 7356
0.663 4364
0.659 2441
0.659 2360
0.659 2360

Hence, s = +0.659 2360, and consequently
v = +66278862 r= 2133911

If, instead of the iteration procedure, formulae (34.6) are used, we obtain
successively

1.132 103 431
= 1.382541577

Y —1/Y = 0.6592360, as before.

G
Y

N




Chapter 35

Near-parabolic Motion

An eccentricity of exactly 1 means that the orbit is parabolic; in that case, it is easy
to calculate the position of the body for a given instant (see Chapter 34). If the orbit
has a high eccentricity (say, 0.98 to 1.1), but different from 1, it is more
troublesome to deal with. An eccentricity greater than 1 means the orbit is
hyperbolic.

The German astronomer Werner Landgraf has given an interesting program in
BASIC [1], based on Karl Stumpff’s work Himmelsmechanik, Vol.1 (Berlin, 1959).
Hereafter we give Landgraf’s program, in a slightly modified form.

First, calculate

_k_' 1+e 1—e

Q= 2q q 1+e

where, as before, k is the Gaussian gravitational constant, e is the eccentricity of
the orbit, and q is the perihelion distance in astronomical units.

Then solve the following equation iteratively for s :

53 53 5 s’
$=0r=(1=29% + 7231 - PO—4M% + 0 G5

where ¢ is the number of days before (—) or after (+) the perihelion. Begin by
inserting into the right-hand side of the equation the value of s obtained for an orbit
which would be precisely parabolic, that is, with the value of W of formula (34.1)
put equal to 3Q¢. This evaluation leads to an improved s, which is used in another
iteration, and so on until the value of s ceases to change.

Once the final value of s is found, the true anomaly v and the distance r to the
Sun are found from

Vo_ - 9d+e
tan 5 = s TS T tccosv
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The calculation of geocentric places can then be performed as for the elliptic and
the parabolic motions.

Here is Landgraf’s program in BASIC, slightly modified by us. It is valid for
highly eccentric elliptical orbits (e slightly less than 1), for slightly hyperbolic orbits
(e slightly larger than 1), as well as for an orbit that is exactly parabolic. The
computer is assumed to be working in radians.

10 Pl = 4% ATN(l) : Rl = [80/PI

12 K = 0.01720209895

14 DI =10000 : C = 1/3 : D = IE-9

16 INPUT "PERIHELION DISTANCE = *; Q

18 INPUT "ECCENTRICITY = "; EQ

20 Q1 = K*SQR((1+E0)/Q/2+*Q) : G = (I — E0)/(1 + EO0)
22 INPUT "DAYS FROM PERIHELION = *; T

24 IF T < > 0 THEN 28

26 R=Q:V=0:GOTO72

28 Q2 =QIx*T

30 S = 2/(3*ABS(Q2))

32 S = 2/TAN(2* ATN (TAN (ATN (S)/2)*C))
34 IFT<O0THEN S = ~

36 IF EO = 1 THEN 66

33 L =20

40 SO0=S : Z=1:Y=S8S*S : Gl =~-Y=x*S§
42 Q3 = Q2 +2xG*S*Y/3

4 Z =7Z +1

46 Gl = -Gl*G=x*Y

48 Z1 = (Z—-(Z+ 1DH*xG/2*Z+ 1)

50 F = Z1xGl

52 Q3 =Q3+F

54 IF Z > 50 OR ABS (F) > D1 THEN 78
56 IF ABS(F) > D THEN 44

58 L=L+4+1: IFL >S50 THEN 78

60 SI=S:S=(2*S*S*S/3+Q3)/(S*S+l)
62 IF ABS(S — S1) > D THEN 60

64 IF ABS(S — S0) > D THEN 40

66 V = 2% ATN(S)

68 R = Q= (1 + E0)/(l + EOx*COS(V))

70 IFV <OTHEN V =V + 2P|

72 PRINT "TRUE ANOMALY = "; VxRl
74 PRINT "RADIUS VECTOR (A.U.) = "; R
76 PRINT : GOTO 22

78 PRINT "NO CONVERGENCE"

80 PRINT : GOTO 22
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Some comments about this program:

Line 10 :
Line 12 :
Line 14 :

Line 26 :
Line 36 :
Line 54 :

Line 56 :

Line 58 :

the first formula is a trick to obtain the number .
the Gaussian gravitational constant k.

the number D = 10~° adjusts to suit the computer’s precision.
If necessary, one may use 1078 or 10710,

when ¢ = 0 (the body is exactly in perihelion), then r =g and v =0°,
if the orbit is exactly parabolic, the value of s has been found.

if in formula (35.1) more than 50 terms are needed, or if these terms
become too large, there is no convergence.

as long as a term of formula (35.1) is not small enough, the next term
should be calculated.

if after 50 iterations no result has still been found, the calculation must
be halted.

Lines 60 and 62 : solving equation (35.1) by iteration. This is an iteration inside

of an iteration!

As an exercise, try to calculate the following cases:

Data Results

perihelion .. true distance

distance eccentricity days anomaly to the Sun

q (AU) e t Vv (degrees) r (AU)
0.921 326 1.000 00 138.4783 102.74426 2.364192
0.100 000 0.98700 254.9 164.50029 4.063777
0.123 456 0.99997 -30.47 221.91190 0.965 053
3.363943 1.057 31 1237.1 109.40598 10.668 551
0.587 1018 0.967 2746 20 52.85331 0.729116
0.587 1018 0.9672746 0 0 0.587 1018

After having calculated some cases, you will notice that the calculation time is
longer as || is larger, that is, as the body is farther away from the perihelion. The
calculation time is longer too as e differs more from unity. The table on the next
page mentions some calculation times on the old HP-85 microcomputer, together
with a rounded value of the true anomaly v, and the number L of iterations.
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Calculation
q e t time in v(°) L
seconds
0.1 0.9 10 | 14 126 17
20 | 47 142 30
30 | no convergence — -
0.1 0.987 10 4 123 7
20 5 137 8
30 6 143 .10
60 9 152 12
100 | 14 157 16
200 | 28 163 23
400 | 87 167 38
500 | no convergence - —
0.1 0.999 100 3 156 6
200 4 161 7
500 5 166 8
1000 7 169 10
5000 | 18 174 18
1 0.99999 100 000 2 172.5 4
10000 000 5 178.41 8
14 000 000 6 178.58 9
17000 000 7 178.68 9
18000000 | no convergence — —

For ¢ = 0.1 and ¢ = 0.9, the calculation took 47 seconds for ¢+ = 20 days, and
there was no convergence for ¢+ = 30 days. However, in this case the calculation
could better be made using one of the methods for elliptic motion.

For ¢ = 0.1 and e = 0.999, there is no trouble up to ¢ = 5000 days.

For ¢ = 1 and e = 0.999 99, there is no trouble even for # = 17 million days.
This is 465 centuries after the perihelion time; the object’s distance from the Sun
is then 7220 astronomical units — at least in theory!

REFERENCE
1. Sky and Telescope, Vol. 73, pages 535-536 (May 1987).



Chapter 36

The Calculation of some Planetary Phenomena

There are two basically different methods for calculating planetary phenomena such
as the greatest elongations of Venus, or the time of an opposition of Mars:

(i) either by comparing accurate positions of the planet with those of the Sun;

(ii) or by using formulac where a mean value is corrected by a sum of periodic
terms.

The first method has the advantage of giving very accurate results, because use
is made of very accurate positions of the bodies. It has the inconvenience, however,
of requiring the availability or the calculation of these accurate ephemerides.

With the second method, the calculation can be performed easily and rapidly for
any year. The results, while not so accurate as those of the first method, are still
good enough for many applications such as historical research, or even as a first
approximation for a more accurate calculation. Examples of this method are found
in Chapters 49 (lunar phases), 50 (perigee and apogee of the Moon), 51 (passages
of the Moon through the nodes), and 52 (extreme declinations of the Moon).

In this Chapter, we provide formulae for calculating several configurations
involving the planets Mercury to Neptune: oppositions and conjunctions with the
Sun, greatest elongations, and stations.

Oppositions and conjunctions with the Sun

From the proper line in Table 36.A, take the values of A, B, M,, and M.

Let Y be an appropriate time of the required phenomenon, expressed as years
and decimals. For instance, 1993.0 means the beginning of the year 1993, 2028.5
denotes the middle of the year 2028, etc.

249
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TABLE 36.A
Planet Event A B M, M,
Mercury | Inf. conj. | 2451612.023 | 115.8774771| 63.5867 | 114.208 8742
Mercury | Sup. conj. | 2451554.084 | 115.8774771 6.4822 | 114.2088742
Venus Inf. conj. | 2451996.706 | 583.921361 82.7311 | 215.513058
Venus Sup. conj. | 2451704.746 | 583.921361 | 154.9745 | 215.513058
Mars | Opposition | 2452097.382 | 779.936104 | 181.9573 | 48.705244
Mars | Conjunction | 2451707.414 | 779.936 104 | 157.6047 48.705 244
Jupiter | Opposition | 2451870.628 | 398.884046 | 318.4681 33.140229
Jupiter | Conjunction | 2451 671.186 | 398.884 046 | 121.8980 33.140229
Saturn | Opposition | 2451 870.170 | 378.091904 | 318.0172 12.647 487
Saturn | Conjunction | 2451 681.124 | 378.091904 | 131.6934 12.647 487
Uranus | Opposition | 2451764.317 | 369.656035 | 213.6884 4.333093
Uranus | Conjunction | 2451579.489 | 369.656035 | 31.5219 4.333 093
Neptune | Opposition | 2451753.122 | 367.486703 | 202.6544 2.194 998
Neptune | Conjunction | 2451 569.379 | 367.486703 | 21.5569 2.194 998
Then find the integer k& nearest to
365.2425Y + 1721060 — 4 (36.1)

B

It is important to note that £ must be an integer. Non-integer values of £ would

yield meaningless results. Successive values of & will provide the data for the
successive events (for instance, successive oppositions of Mars), the value k = 0
corresponding to the first one after 2000 January 1. For years preceding A.D. 2000,
k takes negative values.

Then calculate

JDE, = A + kB M = M, + kM,

JDE, is the Julian Ephemeris Day corresponding to the time of the mean
planetary configuration (that is, calculated from circular orbits and uniform
planetary motions), and M is the mean anomaly of the Earth at that instant.
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M is an angle expressed in degrees and decimals. Depending on the type of the
calculating machine or the programming language, it may be necessary or desirable
to reduce that angle to the range 0-360 degrees by adding or subtracting a
convenient multiple of 360, and to convert the result into radians.

Find the time T, expressed in centuries from the beginning of the yéar 2000,
from

;= JDEq — 2451545
- 36525

T is positive after the beginning of A.D. 2000, negative before.

For the planets Jupiter to Neptune, additional angles are required. Expressed
in degrees, these angles are:

82.74 + 40.76T

82.74 + 40.76T

29.86 + 1181.36T

14.13 + 590.68T
220.02 + 1262.87T

207.83 + 8.51T
108.84 + 419.96T

207.83 + 8517
276.74 + 209.98T

for Jupiter :

for Saturn :

for Uranus :

for Neptune :

e Na
]|

The time JDE of the frue configuration is obtained by adding to JDE, a
correction which is given in Table 36.B as a sum of periodic terms which are
functions of the angle M. By reason of the secular variations of the planetary orbits,
the coefficients of these periodic terms are slowly varying with time, whence the
presence of terms in T and T2 in Table 36.B.

For instance, for an inferior conjunction of Mercury, the correction (in days)
is

+ 0.0545 + 0.0002T

+ (—6.2008 + 0.0074 T + 0.0000372) sin M
+ (—3.2750 — 0.0197T + 0.000017?) cos M
+ (0.4737 — 0.0052T — 0.0000172) sin 2M

+ etc....

The corrected instant obtained in this way is expressed as a Julian Ephemeris
Day (JDE), hence in the scale of Dynamical Time. This can be reduced to the
standard Julian Day, JD, based on the Universal Time, by subtracting the quantity
AT expressed in days (see Chapter 10). However, between the years 1500 and
2100, the correction —AT can be neglected for our purposes.

Finally, from the JD the corresponding calendar date can be obtained by means
of standard procedures (sec Chapter 7).
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Example 36.a — Calculate Mercury’s inferior conjunction that is nearest to 1993

October 1.
From Table 36.A, for Mercury, Inferior conjunction, we have
A = 2451612.023 M, = 63.5867
B = 115.8774771 M, = 114208 8742

October 1 is three quarters of a year since January 1, hence 1993 October 1 =
1993.75 = Y, and expression (36.1) yields the value —20.28, whence k = —20.
Remember that & must be an integer! Then

JDE, = 2449294.473
M = -2220°5908 = +299°4092
T = —0.06162

The sum of the terms in the relevant part of Table 36.B (Mercury, Inferior
conjunction) is +3.171, whence

JDE = JDE; + 3.171 = 2449297.644,

which corresponds to 1993 November 6, at 3* TD.
Rounded to the nearest integer hour, this is indeed the correct instant.

Example 36.b — Find the instant of the conjunction of Saturn with the Sun in 2125.
From Table 36.A, for Saturn, Conjunction, we have

A = 2451681.124 M, 131.6934
B = 378.091904 M, 12.647 487

For Y = 2125.0 (that is, the beginning of the year 2125), expression (36.1) gives
the value +120.39. Because we are searching the first Saturn-Sun conjunction after
the beginning of the year 2125, we take £ = +121, not +120. Then

([

JDE, = 2497 430.244
M = 166220393 = 22220393
T = +1.25627

and for Saturn we have to calculate the following additional angles:
a = 133295, b = 73997, ¢ = 36218, d = 6753.

The sum of the terms in the relevant part of Table 36.B (Saturn, Conjunction with
the Sun) is +7.659, whence

JDE = IDE; + 7.659 = 2497 437.903,

which corresponds to 2125 August 26, at 10" TD.

The correct instant, calculated with a more accurate method, is 2125 August 26,
at 11% Dynamical Time.
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Greatest elongations of Mercury and Venus

To calculate the times and the values of the greatest elongations of Mercury or
Venus, we start from the nearest inferior conjunction. So we calculate &, JDE,, M,
and T as explained before. But we do not calculate the instant of the true inferior
conjunction; instead, we use the periodic terms given in Table 36.C to find the
correction (in days) to Mercury’s or Venus’ mean inferior conjunction, to obtain the
time of greatest eastern or western elongation. In the same table, periodic terms are
provided to find the value of this greatest elongation.

Do not forget that, if the planet is east from the Sun, it is visible in the evening
in the west; if the elongation is west, the planet is visible in the morning in the east.

The value of the greatest elongation from the Sun is expressed in degrees and
decimals. It concerns the maximum angular distance from the planet to the center
of the Sun’s disk, nor the greatest difference between the geocentric ecliptical
(celestial) longitudes of the two bodies. There is no “official” definition for the
elongation of a planet to the Sun, and two different definitions could be considered:

(a) the angular distance between the object and the center of the solar disk;

(b) the difference between the geocentric longitudes of the object and the center of
the solar disk.

Both definitions are used in the astronomical literature. Definition (a) has been
used in the Astronomical Ephemeris since its beginning in 1960, and from 1981
onwards in its successor, the Astronomical Almanac. 1t is this definition we prefer.
For example, for the visibility of Venus near its inferior conjunction, the important
factor is not the longitude difference with the Sun, but the angular separation.

The French astronomers, however, use definition (b), for instance in their
Annuaire du Bureau des Longitudes. On page 275 of the volume for 1990 we read:
“Les plus grandes €longations des planetes inférieures: la différence des longitudes
géocentriques de la planete et du Soleil est maximale.”

Consequently, the results will differ somewhat according as one uses definition
(a) or (b). For example, for Mercury’s greatest elongation of 1990 August 11: the
difference between the geocentric ecliptical longitudes of the Sun and Mercury
reached its maximum value (27°22') at 15" UT, as mentioned on page 277 of the
Annuaire du Bureau des Longitudes for 1990, but the maximum angular separation
took place at 21" and was equal to 27°25'.

Example 36.c — Find the instant and the value of the greatest western elongation of
Mercury in November 1993.

We start from the inferior conjunction of November 1993, for which we found in
Example 36.a:

IDE, = 2449 294.473, M = 299°4092, T = -0.06162.
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With these values of M and T, we find from the relevant part of Table 36.C
(Mercury, greatest western elongation):

correction = +19.665 days, elongation = 1927506.
Hence, the time of Mercury’s greatest western elongation was
JDE = JDE; + 19.665 = 2449 314.14
which corresponds to 1993 November 22, at 15" TD,

The value of this maximum elongation was 1927506 = 19°45’.

Stations in longitude

To calculate the time when a planet is stationary, we start either from the
nearest inferior conjunction (in the case of Mercury and Venus), or from the nearest
opposition (in the case of Mars, Jupiter, and Saturn). So we calculate k, JDE,, M,
and T as explained before. We do nor calculate the instant of the true inferior
conjunction or that of the opposition; instead, we use the periodic terms given in
Table 36.D to find the correction (in days) to the mean inferior conjunction or to
the mean opposition, to obtain the time when the planet is stationary.

Note that there are two stations. Station 1 is that when the planet begins to
move westward (retrograde) among the stars, while Station 2 is when the planet
resumes direct motion. In other words, Station 1 precedes the inferior conjunction
or the opposition, while Station 2 follows it.

The stations considered here are those in celestial longitude, not in right
ascension. The time difference between both types of stations can amount to more
than one day. For instance, Mars was stationary in longitude on 1997 April 27 at
19" UT, but its right ascension did not reach a minimum until April 29 at 6".

Example 36.d — Find the instant of Mars’ station in longitude following the
opposition of March 1997.

Starting from the opposition of March 1997, we find
k= =2, IDE, = 2450537.510, M = 84?5468, T = —0.02758.

With these values of M and T, we find from the relevant part of Table 36.D
(Mars, Station 2): correction = +28.745 days.

Hence, the time of Mars’ station in celestial longitude was
JDE = JDE, + 28.745 = 2450 566.255

which corresponds to 1997 April 27, at 18", The correct time was 19®,
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The accuracy of the results

It is evident that the expressions given in Tables 36.B, 36.C, and 36.D are valid
only for a limited period of time, namely for a few millennia before and after A.D.
2000, not for millions of years! Consequently, do not use the method given in this
Chapter before the year —2000, nor after A.D. 4000.

For modern times, say between A.D. 1800 and 2200, the instants obtained for
the phenomena involving Mercury and Venus will be less than 1 hour in error. The
error can reach 2 hours in the case of Saturn, Uranus, and Neptune, 3 hours for
Mars, and 4 hours for Jupiter.

It is expected that the maximum possible error will be somewhat larger near the
years —2000 and +4000. On the other hand, if the calculations are performed for
epochs near A.D. 2000, say between 1900 and 2100, then the terms in 77 may
safely be ignored.

Exercises

Check your computer program with the following cases; all times are in TD.

Mercury inferior conjunction 1631 Nov. 7 7h (a)
Venus inferior conjunction 1882 Dec. 6 17" (b)
Mars opposition 2729 Sep. 9 3k (©)
Jupiter opposition -6 Sep. 15 70 @
Saturn opposition —6 Sep. 14 9B (d)
Uranus opposition 1780 Dec. 17 147 (e)
Neptune opposition 1846 Aug. 20 4P (f

(@) the first observed transit of Mercury over the solar disk (by Gassendi, at
Paris).

(b) the last transit of Venus before that of A.D. 2004.
(c) a perihelic opposition of Mars.

(d) because Jupiter and Saturn were in opposition with the Sun with a time
difference less than one day, there occurred a triple conjunction between
these two planets in that year.

(e) three months before Uranus’ discovery by William Herschel.

(f) one month before Neptune’s discovery.
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TABLE 36.B
Periodic terms in days
MERCURY MERCURY
Inferior conjunction Superior conjunction
+0.0545 + 0.0002T —0.0548 — 0.0002T
sin M | —6.2008 + 0.0074T + 0.00003T2| +7.3894 — 0.01007 — 0.00003 T2
cos M | —3.2750 — 0.0197T + 0.00001 T2 | +3.2200 + 0.01977 — 0.00001 72
sin 2M | +0.4737 — 0.0052T — 0.00001 72| +0.8383 — 0.0064 T — 0.00001 72
cos 2M | +0.8111 + 0.00337 — 0.00002 72 | +0.9666 + 0.00397 — 0.00003 72
sin 3M | +0.0037 + 0.00187 +0.0770 — 0.00267T
cos 3M | —0.1768 + 0.00001 72 | +0.2758 + 0.00027 — 0.00002 72
sin 4M | —~0.0211 — 0.0004T —0.0128 — 0.0008T
cos 4M | +0.0326 — 0.0003T +0.0734 — 0.00047 — 0.00001 72
sin SM | +0.0083 + 0.0001T —0.0122 -~ 0.0002T
cos SM | —0.0040 + 0.0001T +0.0173 - 0.0002T
VENUS VENUS
Inferior conjunction Superior conjunction
—0.0096 + 0.00027 — 0.00001 72| +0.0099 — 0.0002 T — 0.00001 72
sin. M | +2.0009 — 0.00337 — 0.00001 72| +4.1991 — 0.01217 — 0.00003 T2
cos M | +0.5980 — 0.0104T + 0.00001 72| —0.6095 + 0.01027 — 0.00002 72
sin 2M | +0.0967 — 0.00187 — 0.00003 72| +0.2500 — 0.0028 T — 0.00003 T2
cos 2M | 40.0913 + 0.0009T — 0.0000272 | +0.0063 + 0.00257 — 0.00002 7’2
sin 3M | +0.0046 — 0.0002T +0.0232 — 0.00057 — 0.00001 T
cos 3M | +0.0079 + 0.0001T +0.0031 + 0.0004 T
MARS MARS
Opposition Conjunction with Sun
—0.3088 + 0.000027% | +0.3102 — 0.00017 + 0.00001 72
sin M | —-17.6965 + 0.0363 T + 0.0000572| +9.7273 — 0.0156T + 0.00001 72
cos M |+18.3131 + 0.0467T — 0.0000672 | —18.3195 — 0.0467 T + 0.00009 T>
sin 2M | —0.2162 — 0.01987T7 — 0.00001 7% | —1.6488 — 0.0133T + 0.00001 72
cos 2M | —4.5028 — 0.00197 + 0.00007 72 | —2.6117 — 0.0020T + 0.00004 T2
sin 3M | +0.8987 + 0.00587 — 0.0000272 | —0.6827 — 0.0026 T + 0.00001 72
cos 3M | +0.7666 — 0.00507 — 0.00003 72 | +0.0281 + 0.00357 + 0.00001 72
sin 4M | —0.3636 — 0.00017 + 0.00002 72 | —0.0823 + 0.0006T + 0.00001 7>
cos 4M | +0.0402 + 0.0032T +0.1584 + 0.0013T
sin 5M | +0.0737 — 0.0008T +0.0270 + 0.0005T
cos 5M | —0.0980 — 0.0011 7T +0.0433
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(cont.)

sihn M
cos M
sin 2M
cos 2M
sin 3M
cos 3IM
sin a
cos a

sin M
cos M
sin 2M
cos 2M
sin 3M
cos 3M
sin
cos
sin
cos
sin
cos
sin
cos

AN O O 8

JUPITER
Opposition

JUPITER
Conjunction with Sun

-0.1029 — 0.00009 T2
—1.9658 — 0.0056T + 0.00007 T?
+6.1537 + 0.02107 — 0.00006 72
—0.2081 — 0.0013T
—0.1116 — 0.0010T
+0.0074 + 0.0001 7T
—0.0097 — 0.0001T

0 + 0.0144T — 0.00008 T2
+0.3642 — 0.0019T — 0.00029 72

+0.1027 + 0.0002 7 ~ 0.00009 72
~2.2637 + 0.0163T — 0.00003 72
~6.1540 — 0.02107 + 0.00008 T
—~0.2021 - 0.00177 + 0.00001 72
+0.1310 — 0.00087T
+0.0086
+0.0087 + 0.00027

0 + 0.0144T — 0.0000872
+0.3642 — 0.00197 — 0.00029 72

SATURN
Opposition

SATURN
Conjunction with Sun

—0.0209 + 0.0006T + 0.000237?
+4.5795 — 0.0312T — 0.00017 T2
+1.1462 — 0.0351T + 0.00011 72
+0.0985 — 0.0015T
+0.0733 - 0.00317 + 0.00001 72
+0.0025 — 0.0001T
+0.0050 - 0.0002T

0 -~ 0.03377 + 0.00018 T
—0.8510 + 0.0044 T + 0.00068 T°
0 — 0.0064 T + 0.00004 T2
+0.2397 - 0.00127 — 0.00008 72
0 - 0.0010T

+0.1245 + 0.0006 T
0 + 0.0024T — 0.00003 T2
+0.0477 — 0.0005T — 0.00006 72

+0.0172 — 0.0006 7 + 0.000237?
~8.5885 + 0.04117 + 0.000207?
~-1.1470 + 0.03527 — 0.00011 72
+0.3331 — 0.00347 — 0.00001 72
+0.1145 — 0.00457 + 0.0000272
~0.0169 + 0.00027

-0.0109 + 0.0004T

0 —0.03377 + 0.0001872
—0.8510 + 0.0044T + 0.0006872
0 — 0.0064 T + 0.00004 T2
+0.2397 ~ 0.00127 — 0.00008 T2
0 - 0.0010T

+0.1245 + 0.0006T
0 + 0.0024T — 0.00003T>
+0.0477 — 0.00057 ~ 0.0000672
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TABLE 36.B (cont.)
URANUS URANUS
Opposition Conjunction with Sun

+0.0844 — 0.0006T —0.0859 + 0.0003T
sin M | —0.1048 + 0.0246T —3.8179 — 0.0148T + 0.00003 72
cos M | —5.1221 + 0.0104T + 0.00003 T2 | +5.1228 — 0.01057 — 0.00002 72
sin 2M | —0.1428 + 0.0005T -0.0803 + 0.00117T
cos 2M | —0.0148 — 0.0013T —0.1905 — 0.0006T
sin 3M 0 +0.0088 + 0.0001 T
cos 3M | +0.0055 0
cos e | +0.8850 +0.8850
cos f | +0.2153 +0.2153

NEPTUNE NEPTUNE
Opposition Conjunction with Sun

—0.0140 + 0.00001 7% | +0.0168
sin M | —1.3486 + 0.0010T + 0.0000172 | ~2.5606 + 0.0088 7 + 0.00002 72
cos M [+40.8597 + 0.0037T —0.8611 — 0.00377 + 0.00002 72
sin 2M | —0.0082 — 0.00027 + 0.0000172 | +0.0118 — 0.00047 + 0.00001 72
cos 2M | +0.0037 — 0.0003T +0.0307 - 0.0003T
cos e | —0.5964 —-0.5964
cos g | +0.0728 +0.0728
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TABLE 36.C
Periodic terms for greatest elongations

sin M
cos M
sin 2M
cos 2M
sin 3M
cos 3M
sin 4M
cos 4M
sin SM
cos SM

sin M
cos M
sin 2M
cos 2M
sin 3M
cos 3M
sin 4M
cos 4M
sin SM
cos SM

MERCURY, greatest eastern

elongation (evening visibility)

Correction (days) to the time
of mean inferior conjunction

Elongation (degrees)

—21.6101 + 0.0002T

—1.9803 — 0.00607 + 0.00001 72
+1.4151 — 0.0072T — 0.00001 72
+0.5528 — 0.00057 — 0.00001 72
+0.2905 + 0.0034T + 0.0000172
—0.1121 — 0.0001 T + 0.0000172
—0.0098 — 0.0015T

+0.0192

+0.0111 + 0.0004T

—-0.0061

—-0.0032 — 0.0001T

22.4697

—-4.2666 + 0.0054T + 0.0000272
—1.8537 - 0.0137T ’
+0.3598 + 0.00087T — 0.000017*
-0.0680 + 0.0026T

—0.0524 ~ 0.0003T

+0.0052 — 0.0006T

+0.0107 + 0.0001T

—0.0013 + 0.0001T

—0.0021

+0.0003

MERCURY, greatest western

elongation (morning visibility)

Correction (days) to the time
of mean inferior conjunction

Elongation (degrees)

+21.6249 — 0.0002T

+0.1306 + 0.0065T

—2.7661 — 0.00117 + 0.000017?
+0.2438 — 0.0024 T — 0.00001 T
+0.5767 + 0.0023T

+0.1041

—0.0184 + 0.0007T

-0.0051 - 0.0001T

+0.0048 + 0.0001T

+0.0026

+0.0037

22.4143 — 0.0001 T

+4.3651 — 0.00487 — 0.00002 72
+2.3787 + 0.0121 T — 0.00001 72
+0.2674 + 0.0022T

—0.3873 + 0.0008 7 + 0.00001 72
-0.0369 — 0.0001 7T

+0.0017 — 0.0001 T

+0.0059

+0.0061 + 0.00017

+0.0007

-0.0011
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TABLE 36.C (cont.)
VENUS, greatest eastern elongation (evening visibility)
Correcuop (da_ys) to Fhe time Elongation (degrees)
of mean inferior conjunction
~70.7600 + 0.0002 T — 0.00001 7% | 46.3173 + 0.0001 T
sin M | +1.0282 ~ 0.00107 — 0.000017% [ +0.6916 — 0.0024T
cos M [+0.2761 — 0.0060T +0.6676 — 0.0045T
sin 2M [ —0.0438 — 0.00237 + 0.0000277 | +0.0309 — 0.00027T
cos 2M | +0.1660 — 0.00377 — 0.0000472 | +0.0036 — 0.0001T
sin 3M | +0.0036 + 0.0001T
cos 3M | -0.0011 + 0.00001 72
VENUS, greatest western elongation (morning visibility)
Correction (days) to the time .
of mean inferior conjunction Elongation  (degrees)
+70.7462 — 0.00001 7% | 46.3245

sin M | +1.1218 — 0.0025T — 0.00001 77 | —0.5366 — 0.0003T + 0.00001 7
cos M | +0.4538 — 0.0066T +0.3097 + 0.0016T —~ 0.00001 7>
sin 2M | 4+0.1320 + 0.00207 — 0.00003 72 [ —0.0163
cos 2M | —0.0702 + 0.0022T + 0.00004 72 | —0.0075 + 0.0001T
sin 3M | +0.0062 — 0.0001T
cos 3M | +0.0015 — 0.00001 72
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TABLE 36.D
Periodic terms in days

MERCURY : corrections to the

time of mean inferior conjunction

Station 1

Station 2

sin M
cos M
sin 2M
cos 2M
sin 3M
cos 3M
sin 4M
cos 4M
sin SM
cos SM

sin M
cos M
sin 2M
cos 2M
sin 3M
cos 3M

sin M
cos M
sin 2M
cos 2M
sin 3M
cos 3IM
sin 4M
cos 4M
sin SM
cos SM

—11.0761 + 0.0003T

~4.7321 + 0.0023T + 0.000027T?
—1.3230 — 0.0156T

+0.2270 — 0.0046T

+0.7184 + 0.00137 — 0.00002 7>
+0.0638 + 0.0016T

—0.1655 + 0.0007T

—0.0395 — 0.0003T

+0.0247 — 0.0006T

+0.0131

+0.0008 + 0.0002T

+11.1343 — 0.0001 T
—3.9137 + 0.00737 + 0.000027?
—3.3861 — 0.01287 + 0.00001 72
+0.5222 — 0.00407 ~ 0.00002 72
+0.5929 + 0.00397 ~ 0.00002 T2
—0.0593 + 0.0018T
—0.1733 — 0.0007 T + 0.00001 72
—0.0053 — 0.0006 T
+0.0476 — 0.0001 T
+0.0070 + 0.00027T
—0.0115 + 0.0001 T

VENUS : corrections to the ti

me of mean inferior conjunction

Station 1

Station 2

—21.0672 + 0.0002 T — 0.00001 72
+1.9396 — 0.0029T — 0.00001 7
+1.0727 — 0.0102T

+0.0404 — 0.0023T — 0.00001 T2
+0.1305 — 0.0004T — 0.0000372

+21.0623 - 0.0000172
+1.9913 — 0.00407 — 0.00001 T2
—-0.0407 - 0.0077T
+0.1351 — 0.00097 — 0.00004 T2
+0.0303 + 0.00197T

—0.0007 ~ 0.0002T +0.0089 — 0.0002T
+0.0098 +0.0043 + 0.0001T
MARS : corrections to the time of mean opposition

Station 1

Station 2

—37.0790 — 0.0009 T + 0.00002 72
—20.0651 + 0.0228 T + 0.00004 72
+14.5205 + 0.0504 T — 0.00001 T2
+1.1737 - 0.0169T

—4.2550 — 0.0075T + 0.00008 72
+0.4897 + 0.0074T — 0.00001 T2
+1.1151 — 0.0021 T — 0.0000572
—0.3636 — 0.00207 + 0.00001 72
—-0.1769 + 0.00287 + 0.000027T2
+0.1437 — 0.00047T

-0.0383 — 0.0016T

+36.7191 + 0.0016 T + 0.00003 T2
~12.6163 +0.0417 T — 0.0000172
+20.1218 + 0.03797 — 0.0000672
—1.6360 — 0.0190T

-3.9657 + 0.0045T + 0.00007 72
+1.1546 + 0.00297 — 0.0000372
+0.2888 — 0.00737 — 0.00002 72
~0.3128 + 0.00177 + 0.000027?
+0.2513 + 0.00267 — 0.0000272
~0.0021 — 0.0016T

—0.1497 — 0.0006 T




cos
sin

+0.1245 + 0.0006T
0 + 0.0024 T — 0.00003 72

+0.1245 + 0.0006T
0 + 0.00247T — 0.00003 72
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TABLE 36.D (cont.)
JUPITER : corrections to the time of mean opposition
Station 1 Station 2
—60.3670 — 0.0001 T — 0.00009 72 | +60.3023 + 0.0002 7 — 0.00009 7
sin M | -2.3144 — 0.0124T + 0.0000772 | +0.3506 — 0.0034 7T + 0.00004 T2
cos M | +6.7439 + 0.0166T — 0.00006 7% | +5.3635 + 0.0247T — 0.00007 T?
sin 2M | —0.2259 — 0.0010T ~0.1872 — 0.0016T
cos 2M | —0.1497 — 0.0014T —0.0037 — 0.0005T
sin 3M { +0.0105 + 0.0001T +0.0012 + 0.0001T
cos 3M | —0.0098 —0.0096 — 0.0001 T
sin a 0 + 0.0144T — 0.000087%| 0 + 0.0144T — 0.00008 T2
cos a |[+0.3642 — 0.0019T — 0.0002972 | +0.3642 ~ 0.00197 — 0.00029 T2
SATURN : corrections to the time of mean opposition
Station 1 Station 2
—68.8840 + 0.0009 T + 0.00023 72 | +68.8720 ~ 0.0007 T + 0.00023 T?
sin M | +5.5452 — 0.02797 — 0.0002072 | +5.9399 — 0.04007 ~ 0.00015 72
cos M | +3.0727 — 0.04307 + 0.000077% | —0.7998 ~ 0.0266T + 0.0001472
sin 2M | +0.1101 — 0.00067 — 0.00001 72 | +0.1738 — 0.00327T
cos 2M | +0.1654 — 0.0043 T + 0.0000172 | —0.0039 — 0.00247 + 0.00001 72
sin 3M | +0.0010 + 0.0001 T +0.0073 ~ 0.0002T
cos 3M | +0.0095 — 0.0003T +0.0020 — 0.0002T
sin a 0 — 0.0337T + 0.000187%| O —0.03377 + 0.0001872
cos a —0.8510 + 0.0044 T + 0.0006872 | —0.8510 + 0.00447T + 0.00068 72
sin b 0 — 0.0064T + 0.000047%| 0 — 0.0064T + 0.00004 T2
cos b +0.2397 — 0.00127 — 0.0000872 | +0.2397 — 0.00127 — 0.00008 T
sin ¢ 0 — 0.0010T 0 - 0.0010T7
c
d
d

cos

+0.0477 — 0.00057T — 0.0000672

+0.0477 — 0.0005 7T — 0.00006 T2




Chapter 37

Pluto

As for the numerous minor planets (see Chapter 33), no analytical theory for the
motion of Pluto is available. However, we have constructed expressions for an
accurate representation of the planet’s motion (2000.0 coordinates) for the years
1885 to 2099. The coefficients of the periodic terms were determined by the least-
squares method, on the basis of a numerical integration of Pluto’s heliocentric
motion performed by Prof. Aldo Vitagliano, of the University of Naples, Italy [1].
Perturbations by the first eight major planets and the three major asteroids were
included. This numerical integration itself was based on a model and a set of
starting conditions optimized through a least-squares fit on the DE 405 ephemeris
calculated at the Jet Propulsion Laboratory, U.S.A.

For the calculation we used the same method as that used in an earlier
investigation [2], but now referring Pluto’s heliocentric longitude and latitude to the
new standard equinox J2000.0. The results are given in Table 37.A.

Method of calculation

Calculate, by means of formula (22.1), the time 7 in Julian centuries from the
epoch J2000.0, and then the following angles (in degrees):

J = 34.35 + 3034.9057T
§ = 50.08 + 1222.1138T
P = 238.96 + 144.9600T

Then calculate the periodic terms given in Table 37.A. On each horizontal line,
the argument « is a linear combination of the angles J, S, and P, namely

o = i] +jS + kP

where i, j, k are small integers, given in the second column of the table. The
contribution of each argument is

A sin o + Bcos a
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For instance, on the 13th line of the table we read the numbers i = 0, j = 2,
k = —1, so here the argument is o« = 25 — P, and for the latitude the contribution
is —122 sin o + 175 cos a.

In Table 37.A, the numerical values of the coefficients A and B are given in
units of the sixth decimal of a degree in the case of the longitude and the latitude,
and in units of the seventh decimal (astronomical units) for the radius vector.

The heliocentric longitude /, latitude b (both in degrees), and the radius vector
r of Pluto are then given by

l
b

238.958116 + 144.96T + sum of periodic terms in longitude
—3.908 239 + sum of periodic terms in latitude
40.724 1346 + sum of periodic terms in radius vector

The longitude and latitude obtained by this method are heliocentric, not
barycentric, and they are referred to the standard equinox of J2000.0.

Calculated in this way, / will be less than 0707 in error, & less than 0”.02, and
the radius vector less than 0.000006 AU, with respect to Vitagliano’s numerical
integration on which this representation of the motion of Pluto is based. It is
important to note, as has been said, that the method given here is not valid outside
the period 1885 -2099.

To find the geocentric astrometric 2000.0 equatorial coordinates « and & of
Pluto:

— find the geocentric 2000.0 rectangular equatorial coordinates X, Y, Z of the Sun
(see Chapter 26);

— find those of Pluto by

x = rcoslcosbh
y r (sin [ cos b cos € — sin b sin &) (37.1)
z r (sin [ cos b sin £ + sin b cos €)

where € is the mean obliquity of the ecliptic at epoch J2000.0. We have

0.397777 156
0.917 482 062

sin &

Cos &

— find « and 9§, and Pluto’s distance A to the Earth, by means of formulae (33.10).

However, the effect of light-time should be taken into account. See Chapter 33
and formula (33.3). Hence, to obtain the geocentric « and 3, the values of /, b, r
should be calculated for an instant which is earlier than the given instant by the
light-time 7.
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PLUTO

TABLE 37.A
Periodic terms for the heliocentric coordinates of Pluto
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Argument Longitude Latitude Radius vector
Nol'y s p| 4 B A B A B
1 10 0 1]-19799805 19850055 | —5452852 —14974862 | 66865439 68951812
210 0 2 897144 —4954829 | 3527812 1672790 |- 11827535 —332538
310 0 3 611149 1211027 | - 1050748 327647 1593179 ~1438890
410 0 4] -341243 -189585 178690 —292153 —18444 483220
510 0 5 129287 34992 18650 100340 —~65977 85431
6|0 0 6 —38164 30893 | -30697 25823 31174 —6032
710 1 -1 20442 —9987 4878 11248 ~5794 22161
8|0 1 0 —4063 5071 226 —~64 4601 4032
910 1t 1 —-6016  —3336 2030 —~836 ~1729 234
wfo 1 2 —3956 3039 69 —~604 —415 702
mjo 1 3 —667 3572 —247 —567 239 723
20 2-2 1276 501 -57 1 67 ~67
310 2-1 1152 -917 -122 175 1034 ~451
410 2 0 630  -1277 —49 —164 —129 504
51 -1 0 2571 —459 -197 199 430 —231
6 |1 -1 1 899  —1449 =25 217 2 —441
711 0-3 -1016 1043 589 —248 —3359 265
8 (1 0-2 -2343 -1012 —269 711 7856 7832
19 i1 0-1 7042 788 185 193 36 45763
2011 0 0 1199 —338 315 807 8663 8547
2111 0 1 418 —-67 -130 —43 —809 —769
211 0 2 120 —274 5 3 263 —144
2211 0 3 —60 —159 2 17 —126 32
2411 0 4 -82 -29 2 5 =35 —-16
2511 1-3 -36 -29 2 3 -19 -4
26 11 1-2 —40 7 3 1 —15 8
2711 1 -1 —14 22 2 -1 -4 12
2811 1 0 4 13 1 ~1 5 6
2911 11 5 2 0 -1 3 1
30|11 1 3 -1 0 0 0 6 -2
3112 0-6 2 0 0 -2 2 2
3212 0-5 —4 5 2 2 -2 -2
3312 0-4 4 =7 -7 0 14 13
3412 0-3 14 24 10 -8 -63 13
35(2 0-2 —49 —34 -3 20 136 —236
36 12 0-~1 163 —48 6 5 273 1065
37({2 0 0 9 ~24 14 17 251 149
(12 01 -4 1 -2 0 =25 -9
912 0 2 -3 1 0 0 9 -2
4012 0 3 1 3 0 0 -8 7
41 13 0 -2 -3 -1 0 1 2 —-10
42 13 0-1 5 -3 0 0 19 35
4313 0 0 0 0 1 U 10 3
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The angles J, §, and P are the mean longitudes of Jupiter, Saturn, and Pluto,
respectively, as adopted for our calculation of the periodic terms of Table 37.A. It
may seem strange that in our solution the mean longitudes of Uranus and Neptune
are not needed. The reason is that the mean motion of Uranus is almost exactly
twice that of Neptune, or three times that of Pluto. As a consequence, the argument
2N — P, for instance, where N is the mean longitude of Neptune, has almost the
same period as 2P. The small difference could not have been detected by our
investigation based on the rather short interval of 214 years. Therefore, Table 37.A
does not contain the argument 2N — P; the effects of the terms with this argument
are included in the terms with argument 2P. For the same reason, there are no
terms in S —4P, §—3P, S—2P, J—~5P, J—4P, and 25 — 3P: they have almost
the same period as 4P, 5P, 6P, 2§ — P, 2S, and J — § + P, respectively.

Example 37.a — For 1992 October 13.0 TD = JDE 2448 908.5, find
(1) the geometric heliocentric coordinates of Pluto;
(2) its geocentric astrometric coordinates « and &.

(1) We find
T = —0.072 1834360
J = —1842719921
S = -—-382136373
P = 2289496 289
Sum of periodic terms in longitude : + 4246306
in latitude : + 18496056
in radius vector : —110 130236
from which
1 = 238°958 116 — 10°463 711 + 4°246306 = 232°74071
b = —=3°908239 + 18°496056 = +14°587 82

r = 40.724 1346 — 11.013 0236 = 29.711 111 AU

(2) For the given instant, the Sun’s 2000.0 rectangular equatorial coordinates are
(from Example 26.b)

X = —0.937 3959
Y = —-0.313 1679
Z = ~-0.1357792

Using Pluto’s coordinates [, b, r found above, formulae (37.1) give

x = —17.4079141
y = —23.9730804
z = — 22374228
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whence, by formulae (33.10) and (33.3),

A = 30.528 746 AU and 7 = 0.17632 day
This value of A is Pluto’s true distance to the Earth.

We now repeat the calculation of the planet’s heliocentric coordinates for 1992
October 13.0 — 0.17632 = October 12.82368. The results are

I = 232°73949
b = +14°58801
r = 29711094

whence
x = —17.408 3780 A = 30.528739
y = —=23.9727452 7 = 0.17632 day
z = — 2.2371797

We obtain for 7 the same value as before, so no new iteration is needed.
The 2000.0 astrometric coordinates of Pluto for 1992 October 13.0 TD are then
found by means of (33.10):

o = 232093231 = 1531438
6 = —4°45802 = —4°27'29"

Mean orbital elements of Pluto near A.D. 2000:

a = 39.543 AU

e = 0.2490

i = 177140

Q = 1102307 ¢ 2000.0
w = 1132768
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Chapter 38

Planets in Perihelion and in Aphelion

The Julian Day corresponding to the time when a planet is in perihelion or in
aphelion can be found by means of the following expressions:

Mercury JDE = 2451590.257 + 87.969 349 63 k — 0.000 000 0000 2

Venus JDE = 2451738.233 + 224.7008188 k — 0.000000 0327 k2
Earth JDE = 2451547.507 + 365.2596358 k + 0.0000000156 k2
Mars JDE = 2452195.026 + 686.9957857 k — 0.000000 1187 k2

Jupiter JDE = 2455636.936 + 4332.897065k + 0.000 1367 k2
Saturn JDE = 2452830.12 + 10764.21676 k + 0.000827 k2
Uranus IDE = 2470213.5 + 30694.8767k — 0.00541 k>
Neptune | JDE = 2468895.1 + 60190.33 k + 0.03429 42

where & is an integer for perihelion, and an integer increased by exactly 0.5 for
aphelion. Any other value for k would give meaningless results!

A zero or a positive value of k will give a date after the beginning of the year
2000. If k < 0, one obtains a date earlier than A.D. 2000.

For example, k = +14 and k = —222 give passages through perihelion, while
k = +27.5 and k = —119.5 give aphelion passages.

An approximate value for k can be found as follows, where the “year” should
be taken with decimals, if necessary:

Mercury k = 4.15201 (year — 2000.12)
Venus k = 1.62549 (year — 2000.53)
Earth k = 0.99997 (year — 2000.01)
Mars k = 0.53166 (year — 2001.78)
Jupiter k = 0.08430 (year — 2011.20)
Satumn k = 0.03393 (year — 2003.52)
Uranus k = 0.01190 (year — 2051.1)

Neptune k = 0.00607 (year — 2047.5)
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Example 38.a — Find the time of passage of Venus at perihelion nearest to 1978
October 15, that is 1978.79.

An approximate value of & is
1.62549 (1978.79 - 2000.53) = —35.34

and, since k must be an integer (perihelion!), we take k = —35. Putting this value
in the formula for Venus, we find

IDE = 2443 873.704,

which corresponds to 1978 December 31.204, or 1978 December 31 at 5h Dynamical
Time.

Example 38.b — Find the time of passage of Mars through aphelion in the year 2032.

Taking “year” = 2032.0, we find kK = +16.07. Since k must be an integer
increased by 0.5 (aphelion!), the first aphelion of Mars after the beginning of the year
2032 occurs for k = +16.5.

Using the formula for Mars, this value of k gives
JDE = 2463 530.456,
corresponding to 2032 October 24.956, or 2032 October 24 at 23" Dynamical Time.

Important : The formulae for the calculation of JDE given on the preceding
page are based on unperturbed elliptic orbits. For this reason, the instants obtained
for Mars can be a few hours in error.

Due to the mutual planetary perturbations, the instants for Jupiter, calculated by
the method described here, may be up to half a month in error. For Saturn, the
error can be larger than one month.

For instance, putting k = —2.5 in the formula for Jupiter gives 1981 July 19
as the date of an aphelion passage, while the correct date is 1981 July 28. For
Saturn, &k = -2 gives 1944 July 30, while the planet actually reached perihelion on
1944 September 8.

The error can be even larger for Uranus and Neptune. For these planets, the
formulae are given merely for completeness.

Accurate times can be obtained by calculating the value of the planet’s distance
to the Sun for several instants near the expected time, and then finding when this
distance reaches a maximum or a minimum. The table on the next page gives the
dates when Saturn (in the period 1920-2050) and Uranus (1750-2100) are in
perihelion (P) or in aphelion (A). After the date, the distance to the Sun in
astronomical units is mentioned. These data have been calculated by means of
Bretagnon’s complete VSOP87 theory.
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Saturn Uranus
A 1929 Nov. 11 10.0467 A 1756 Nov. 27 20.0893
P 1944 Sep. 8 9.0288 P 1798 Mar. 3 18.2890
A 1959 May 29 10.0664 A 1841 Mar. 16 20.0976
P 1974 Jan. 8 9.0153 P 1882 Mar. 23 18.2807
A 1988 Sep. 11 10.0444 A 1925 Apr. 1 20.0973
P 2003 July 26 9.0309 P 1966 May 21 18.2848
A 2018 Apr. 17 10.0656 A 2009 Feb. 27 20.0989
P 2032 Nov. 28 9.0149 P 2050 Aug. 17 18.2830
A 2047 July 15 10.0462 A 2092 Nov. 23 20.0994

The case of Neptune is peculiar. This planet has a slow motion and a small
orbital eccentricity. On the other hand, the Sun is oscillating around the barycenter
of the solar system, mainly due to the actions of Jupiter and Saturn. Consequently,
the distance of Neptune to the Sun (not to the barycenter of the solar system) can
reach a double maximum or minimum.

For example, we had the following extreme values for Neptune’s radius vector:

minimum 1876 Aug. 28 r = 29.8148 AU
maximum 1881 Dec. 12 29.8213
minimum 1886 July 11 29.8174

Half a revolution later, near the aphelion part of the orbit, we had the following
extrema:

maximum 1959 July 13 r = 30.3317 AU
minimum 1965 Oct. © 30.3227
maximum 1968 Nov. 21 30.3241

The maximum of 1881 was nor an aphelion, because at that time Neptune was
near the perihelion of its orbit. Similarly, the minimum of 1965 did not correspond
to a perihelion. The author has coined the new terms apheloid (= “resembling an
aphelion”) and periheloid for these odd maximum and minimum, respectively [1].
See also Chapter 28 in my Mathematical Astronomy Morsels (Willmann-Bell, ed.;
1997).

Figure 1 shows the variation of the distance of Neptune to the Sun from 1954
to 1972. Note the principal aphelion (1), the periheloid (2), and the secondary
aphelion (3). Half a revolution later, we have the situation pictured in Figure 2; this



272 ASTRONOMICAL ALGORITHMS

AU

30.33 Figure 1

The variation of the
distance of Neptune
to the Sun, 1954 to

1972
30.32
3/
29.82 l
AU L , Figure 2
1 T The variation of the
| distance of Neptune
29.81 27 to the Sun, 2038 to
2054.

2038 |
2040
2042 |
2044
2046
2048 +
2050
2052 |
2054

will be almost a “limiting case” : the principal perihelion (1’) will occur in 2042,
while in 2049-2050 the distance to the Sun will decrease only very slightly from the
apheloid (2') to the secondary perihelion (3'), as follows:

minimum 2042 Sep. 5 r = 29.8064 AU
maximum 2049 Oct. 24 29.816711
minimum 2050 June 25 29.816696
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For the Earth, it is important to note that the formula given to calculate JDE
is actually valid for the barycenter of the Earth-Moon system. Due to the action of
the Moon, the time of least or greatest distance between the centers of Sun and
Earth may differ from that for the barycenter by more than one day [2]. For
instance, k = —10 in the formula for the Earth yields JDE = 2447 894.911, which
corresponds to 1990 January 3.41, while the correct instant is 1990 January 4, at
17" TD.

The values obtained (for the Earth only) can be corrected as follows. Calculate
the following angles, in degrees :

A; = 328.41 + 132.788585k%
A, = 316.13 + 584.903 153k
A; = 346.20 + 450.380738 k
A, = 136.95 + 659.306737k
As = 249.52 + 329.653368k%

Remember that k£ must be an integer for a perihelion, or an integer increased by
0.5 for an aphelion. Then we have the following correction terms, in days:

perihelion aphelion
+1.278 -1.352 X sin A,
-0.055 +0.061 sin A,
—0.091 +0.062 sin A3
—0.056 +0.029 sin A,
—0.045 +0.031 sin A

Calculated in this way, the times for the years 1980-2019 have a mean error of
3 hours. Exceptionally, the error amounts to 6 hours.

For instance, for k = —10, we obtain a correction of +1.261 day, so the value
JDE = 2447894.911 mentioned above is corrected to 2447 896.172, which
corresponds to 1990 January 4, at 16" TD, much closer to the exact value.

Table 38.A gives the times of the passages of the Earth in perihelion and
aphelion for the years 1991 to 2010, to the nearest 0.01 hour, together with the
distance in astronomical units between the centers of the Sun and the Earth. These
data have been calculated accurately, using the complete VSOP87 theory, not the
approximate method given in this Chapter.
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TABLE 38.A

Perihelion and Aphelion of the Earth, 1991 -2010
Instants in Dynamical Time

Year Perihelion Aphelion
h h
1991 Jan. 3 3.00 0.983 281 July 6 15.46 1.016703
1992 3 15.06 324 3 12.14 740
1993 4 3.08 283 4 22.37 666
1994 2 5.92 301 5 19.30 724
1995 4 11.10 302 4 2.29 742
1996 Jan. 4 7.43 0.983223 July 5 19.02 1.016717
1997 1 23.29 267 4 19.34 754
1998 4 21.28 300 3 23.86 696
1999 3 13.02 281 6 22.86 718
2000 3 5.31 321 3 23.84 741
2001 Jan. 4 8.89 0.983 286 July 4 13.65 1.016643
2002 2 14.17 290 6 3.80 688
2003 4 5.04 320 4 5.67 728
2004 4 17.72 265 5 10.90 694
2005 2 0.61 297 5 4.98 742
2006 Jan. 4 15.52 0.983327 July 3 23.18 1.016697
2007 3 19.74 260 6 23.89 706
2008 2 23.87 280 4 7.7 754
2009 4 15.51 273 4 1.69 666
2010 3 0.18 290 6 11.52 702
REFERENCES

1. J.Meeus, “Le centre de gravité du systéme solaire et le mouvement de Neptune”,
Ciel et Terre (Belgium), Vol. 68, pages 288-292 (November-December 1952).

2. J. Meeus, Mathematical Astronomy Morsels, Chapter 27 (Willmann-Bell, ed.;
1997). First published in [’Astronomie (France), Vol. 97, pp. 294-296 (June 1983).



Chapter 39

Passages through the Nodes

Given the orbital elements of a planet or a comet, the times ¢ of passages of that
body through the nodes of its orbit can easily be calculated as follows.

We have

at the ascending node : v=—w or 360°—-ow
at the descending node : v =180° — w

where, as before, v is the true anomaly, and w the argument of the perihelion.
Then, with these values of v, proceed as follows.

Case of an elliptic orbit

Calculate the eccentric anomaly E by

E 1 —e¢ Y
7 " N1+e 27 (39.1)

where e is the orbital eccentricity, and the mean anomaly A by
M =E —esinE (39.2)

In formula (39.2), E should be expressed in radians; the resulting value for M
is then in radians too. If, however, E is expressed in degrees and the computer is
working in degree mode, then in formula (39.2) one should replace e by its value
¢, converted from radians into degrees, that is, ¢; = e X 573295 77951.

Express M in degrees. Then, if T is the time of perihelion passage, and n is the
mean motion in degrees/day, the required time of passage through the node is given
by

t = 7+ 2 days (39.3)

275



276 ASTRONOMICAL ALGORITHMS

The corresponding value of the radius vector is given by
r=a(l —ecoskE) (39.4)

where q is the semimajor axis of the orbit expressed in astronomical units.
If a and n are not given, they can be calculated from (33.6).

Case of a parabolic orbit

Calculate
y
-_— tan —_—
s 2
Then
t = T+ 27.403895 (s° + 35) gvV/q days

where the perihelion distance g is expressed in AU. The corresponding value of the
radius vector is

r=gq(+s?

Note. — The nodes refer to the ecliptic of the same epoch as that of the equinox
used for the orbital elements. For example, if the orbital elements are referred to
the standard equinox of 2000.0, the above-mentioned formulae give the times of
passages through the nodes on the ecliptic of 2000.0, nor on the ecliptic of the date.
The difference is generally small, except when the inclination is very small or when
the motion is very slow.

Example 39.a — For the 1986 return of periodic comet Halley, W. Landgraf [Minor
Planet Circular No. 10634 (1986 April 24)] provided the following
orbital elements:

T = 1986 February 9.45891 TD
w = 111284644

e = 0.967274 26

n = 0.012970 82 degrees/day
a = 17.9400782

the argument of perihelion w being referred to the standard equinox of 1950.0.
For the passage at the ascending node, we have

v = 360° —w = 24815356

tan% = —~0.190 6646
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E = —21°5894332
M = -2195894332 — (0.96727426 x 57929577951) sin (—2125894332)
= —191972043
—1.1972043
t =T+ 001207082 — T — 92.2998 days

Hence, the comet was at its ascending node (on the ecliptic of 1950.0) 92.2998
days before the perihelion passage, that is, on 1985 November 9.16 Dynamical Time.

Formula (39.4) then gives r = 1.8045 AU. So, at its ascending node the famous
comet was a little outside of the orbit of Mars.

For the descending node, we find similarly:

180° — w = 68°15356

+9°9726067

+0°3749928

T + 28.9105 days = 1986 March 10.37 TD
0.8493 AU, between the orbits of Venus and Earth

~ > XMme
]

The fact that the comet’s motion (i = 162°) is retrograde, is irrelevant here. Anyway,
w is measured from the ascending node in the direction of the motion of the body.

Example 39.b — For comet Helin-Roman (1989s = 1989 IX), B. G. Marsden and G.
V. Williams (tenth edition of the Caralogue of Cometary Orbits,
IAU, 1995) give the following elements of a parabolic orbit:

T = 1989 August 20.2910 TD
g = 1324502 AU
@ = 154°9103 (2000.0)

T is the time of passage through the perihelion, not to be confused with the T of
formula (31.1)!

For the ascending node, we have For the descending node, we have
v = —w = —15429103 v = 180° — w = +25°0897
s = —4.4940577 s = +0.2225161
t = T — 4354.66 days t = T + 28.3454 days

= 1977 September 17 = 1989 September 17.636 TD
r = 28.07 AU r = 1.3901 AU
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Example 39.c — Calculate the time of passage of Venus at the ascending node
nearest to the epoch 1979.0.

We use the elements given in Table 31.A. There we find for Venus

a = 0.723329820, whence n = 1.602137
e = 0.00677192 — 0.000047765 T + 0.0000000981 T2
w =7~ = 54°883783 + 0°5011082 7 — 0°0014824 T2

The terms in T3 can safely be dropped here. The elements e and w vary (rather
slowly) with time. Let us calculate their values for the epoch 1979.0, that is, for 7 =
—0.21. We find -

e = 0.00678195 w = 542778485

and then, successively,

—w = —54°778485

—54°461662

—54°145467

T~ 33.7958 days (T is the time of perihelion passage)

v

E

M
t

In Example 38.a, we have found 7 = 1978 December 31.204 for the time of
passage of Venus in the perihelion. Therefore, we have

t = 1978 November 27.408 or 1978 November 27, at 10" TD.

The algorithms given in this Chapter assume that the body moves in an
unperturbed orbit. To obtain full accuracy, the heliocentric latitude of the body
should be calculated for three or five instants near the expected time. At the node
we have, of course, latitude = zero.

Saturn reached the descending node (on the ecliptic of the date) of its orbit on
1990 September 4, and will be at its ascending node on 2005 January 8.

Uranus was at the descending node on 1984 December 21, and will go through
the ascending node on 2029 May 19.

For Neptune we have

1920 June 3 ascending node
2003 Aug. 11 descending node
2084 Dec. 30 ascending node



Chapter 40

Correction for Parallax

Suppose we wish to calculate the topocentric coordinates of a body (Moon, Sun,
planet, or comet) when its geocentric coordinates are known. Geocentric = as seen
from the center of the Earth; topocentric = as seen from the observer’s place on
the Earth’s surface (Greek: ropos = place; compare with the word “topology”).

In other words, we wish to find the corrections A and Aé (the parallaxes in
right ascension and in declination), in order to obtain the topocentric right ascension
!

o' = a + Aa and the topocentric declination 8’ = § + Aé, when the geocentric
values o and § are known.

Let p be the geocentric radius and ¢’ the geocentric latitude of the observer.
The quantities p sin ¢’ and p cos ¢’ can be calculated by the method described in
Chapter 11.

Let 7 be the equatorial horizontal parallax of the body. For the Sun, a planet,
or a comet, it is frequently more convenient to use the distance A (in astronomical
units) to the Earth instead of the parallax. We then have

sin 1 = sin 8”794
T A
or, with sufficient accuracy,
T = 8 .194 40.1)

Then, if H is the geocentric hour angle of the body, the rigorous formulae are:

—p cos ¢’ sin 7 sin H
tan Aq = Lo g ST (40.2)
cos & — p cos ¢’ sin 7 cos H

In the case of the declination we may, instead of computing A$, calculate &’
directly from

tan 8 = (sin 8 — p sin ¢’ lsiq 7) cos Ax 40.3)
cos &6 — pcos ¢ sinTcos H
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Except for the Moon, the following non-rigorous formulae may often be used
instead of (40.2) and (40.3):

— 7 p cos ¢ sin H

Aa = cos o

(40.4)
Ad = — 7 (psin ¢’ cos & — pcos ¢’ cos H sin d) 40.5)

If 7 is expressed in seconds of a degree ("), the Ax and Ad too are expressed
in this unit. To express A« in seconds of time, divide the result by 15.

Note that A is a small angle, always lying between —2° and +2° in the case
of the Moon. It is, of course, much smaller in the case of a planet.

An alternative method is as follows. Calculate

A = cos § sin H

B = cos d cos H — pcos ¢’ sin 7 (40.6)
C = sind — psin g sin7

g = VA *+ B2+ C* >0 (40.7)

Then the topocentric hour angle H' and declination é’ are given by

tanH’=i sin6'=«—q
B q

Example 40.a — Calculate the topocentric right ascension and declination of Mars
on 2003 August 28, at 3"17™00° Universal Time at Palomar
Observatory, for which (Example 11.a)
psin ¢’ = +0.546861, pcos ¢ = +0.836339,
L = longitude = +7"47™27% (West)

Mars’ geocentric apparent equatorial coordinates for the given instant, interpolated
from an accurate ephemeris, are

o = 22P38m07525 = 3399530208
d = —15°46'15"9 = —15%771083
The planet’s distance at that time is 0.37276 AU. Hence, by formula (40.1), its
equatorial horizontal parallax is = = 23"592.

We still need the geocentric hour angle, which is equal to H = 6, — L — a,
where 0,, the apparent sidereal time at Greenwich, can be found as indicated in
Chapter 12. For the given instant, we find 6, = 1"40™45%. Consequently,

H = 1%40™45° — 7h47m27° — 22038™Q7*
—28"44m49° = —43172042 = +288°7958
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Formula (40.2) then gives

+0.000 090 557

@an Ao = TG 96304

whence
Aa +0°0053917 = +1%29
a' = a + Aa = 22M38m08554

Formula (40.3) gives

"= M e o ' ”
tan " = 10962324 47 whence 8" = —15°4630".0

If, instead of (40.2) and (40.3), we chose the non-rigorous formulae (40.4) and
(40.5), we find

Aa = +197409 = +1%29, as above;
Ad = —14"1, whence 8’ =6 — 14"1 = —15°46'30"0, as above.

As an exercise, perform the calculation for the Moon, again for Palomar
Observatory, using fictive values, for instance

o 1h00™00%00 = 15°000000 H = 4"00™00300 = +60°000000

8 +5°000 000 x = 0°59'00"

First, use the formulae (40.2) and (40.3). Then do the calculation over again
with (40.6) and (40.7). You should obtain the same results exactly. Compare the
results with those obtained by means of the non-rigorous expressions (40.4) and
40.5).

We can consider the opposite problem: from the observed topocentric
coordinates ' and &', deduce the geocentric values  and 5. In the case of a planet
or comet, the corrections Ao and Ad are so small that the formulae (40.4) and
(40.5) can be used also for the reduction from topocentric to geocentric coordinates,
changing the signs of Ax and A, of course.

Parallax in horizontal coordinates

The parallax in azimuth is always very small. It would be zero if the Earth were
exactly a sphere. At the horizon, the parallax in azimuth is always less than #/300,
where 7 is the equatorial horizontal parallax of the body.

Due to the parallax, the apparent altitude of a celestial body is smaller than its
“geocentric” altitude 4. Except when high accuracy is needed, the parallax p in
altitude may be calculated from sin p = p sin 7 cos A.

Except in the case of the Moon, the parallax is so small that we may consider
p and 7 to be proportional to their sines, and then we have p = p 7 cos A.
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The quantity p denotes the observer’s distance to the center of the Earth, the
equatorial radius being taken as unity — see Chapter 11. In many cases we may
simply write p = 1.

Parallax in ecliptical coordinates

It is possible to calculate the topocentric coordinates of a celestial body (Moon or
planet), from its geocentric values, directly in ecliptical coordinates. The following
formulae are those given by Joseph Johann von Littrow (Theoretische und
Practische Astronomie, Vol.1, p.91; Wien, 1821), but in a slightly modified form.

These expressions are rigorous.

Let A\ = geocentric ecliptical longitude of the celestial body,

B = its geocentric ecliptical latitude,
§ = its geocentric semidiameter,
N, B’, s’ = the required topocentric values of the same quantities,
¢ = the observer’s latitude,
& = the obliquity of the ecliptic,
8 = the local sidereal time,
« = the equatorial horizontal parallax of the body.

For the given place, calculate the quantities p sin ¢’ and p cos ¢', as explained
on page 82. For short, we shall call these quantities § and C, respectively. Then

N = cos A cos B — Csin 7 cos 0

sin A cos 8 — sin 7 (Ssin & + C cos € sin )

AN o=

tan N

tan B/ = cos A’ (sin 8 — sin 7 (S cos € — C sin & sin 8))
N

sin §¢ = <08 N cos B’ sin s

N

As an exercise, calculate A’, 8', s’ from the following data:

A = 181°46'22"5 ¢ = +50°05'07".8, at sea level
+2°17'26"2 g = 23°28'00".8

0°5927"7 0 = 209°46'07".9

0°16'15"5

™

K3
N

Answer : 1%
6 ’

sl

181°48'05".0
+1°29'07"1
0°16'25"5



Chapter 41

Hlluminated Fraction of the Disk
and Magnitude of a Planet

The illuminated fraction & of the disk of a planet, as seen from the Earth, can be
calculated from

k = 1 +2COSl (41.1)

where i is the phase angle (the angle Sun-planet-Earth), which can be found from

r* + A* — R?
2rA

r being the planet’s distance to the Sun, A its distance to the Earth, and R the

distance Sun-Earth, all in astronomical units. Combining these two formulae, we
find

cosi =

_ (r+A?-R?
- 4rA

If the planet’s position has been obtained by the “first method” of Chapter 33,
then we have, using the notations used there,

k (41.2)

R — Ry cos B cos(L — Ly)
A

cos i

(41.3)

or

. X BcosL + BsinL + in B
cos i = cos B ¢ yczs s Z sin (41.4)

The position angle of the mid-point of the illuminated limb of a planet can be
calculated in the same way as for the Moon — see Chapter 48.
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Example 41.a —- Find the illuminated fraction of the disk of Venus on 1992
December 20, at 0" TD.

In Example 33.a we have found, for that instant,

r = 0.724604 (called R there)
R = 0.983824 (called R, there)
A = 0.910947

whence, by formula (41.2), k = 0.647.

Or, using from the same Example 33.a the values L, and R, from (A), L, B, R
from (B), x, y, z from (C), and A = 0.910947, formulae (41.3) and (41.4) both give
cos i = 0.29312, whence k = 0.647, as above. ’

For Mercury and Venus, k& can take all values between 0 and 1. For Mars, the
illuminated fraction of the disk can never be less than approximately 0.838. In the
case of Jupiter, the phase angle i is always less than 12°, whence & can vary only
between 0.989 and 1. For Saturn, i is always less than 6% degrees, so for this
planet k is always between 0.997 and 1, as seen from the Earth.

In the case of Venus, an approximate value for k can be found as follows.
Calculate T by means of formula (22.1), then

V = 261°51 + 22518443 T

M = 177°53 + 359992050 T

N = 50°42 + 58517°811T

W = V + 1991 sin M + 0°78 sin N

A% = 1.52321 + 1.44666 cos W (A > Q)
r = (0.72333 + AP — 1

2.89332 A
An approximate value of Venus’ elongation  to the Sun is then given by

A? + 0.4768

cosy = A

Example 41.b — Same as in Example 41.a, but now using the approximate method
described above. We find successively

JD = 2448976.5, T = —0.070321697, V = —13222025 = +117°975,
M = —2353%984 = +1662016, N = —40642652 = +255°348,
W= V+02462 — 02755 = 117°682, A = 0.922575, k = 0.640.

The correct value, found in Example 41.a, is 0.647.
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Magnitude of the Planets

As seen from the Earth, the apparent (stellar) magnitude of a planet at a given
instant depends of the planet’s distance to the Earth (A), its distance to the Sun (7),
and the phase angle (i). For Saturn, the magnitude depends also upon the aspect of
the ring.

G. Miiller’s formulae, based on observations which he made from 1877 to 1891,
are used since many years in astronomical almanacs. The numerical expressions for
the visual magnitudes are as follows [1]:

Mercury :  +1.16 + 51log rA + 0.02838 (i —50) + 0.0001023 (i — 50)*-
Venus : —4.00 + Slog rA + 0.01322; + 0.0000004247 i3

Mars : -1.30 + Slog rA + 0.01486i

Jupiter : —8.93 + SlograA

Saturn : —8.68 + Slog rA + 0.044 |AU| — 2.60 sin | B| + 1.25 sin’B
Uranus : —6.85 + Slogra

Neptune :  —=7.05 + 5 logra

in which i is expressed in degrees, r and A are in astronomical units, and the
logarithms are to the base 10. For Saturn, the quantities AU and B, pertaining to
the ring, are defined in Chapter 45; care must be taken to have AU and B positive,
and to express AU in degrees. (As an approximation, the phase angle i might be
used instead of AU.)

Of course, Miiller’s expressions are not perfect. For instance, the effect of the
phase is not taken into account in the case of Jupiter. In the formula for Saturn, the
Sun’s altitude B’ above the plane of the ring is not considered (it is supposed to be
equal to B); and when B and B’ have opposite signs, the dark side of the ring is
turned towards the Earth, but this case is not considered by Miiller.

In any case, the calculated magnitudes should be rounded to the nearest tenth
of a magnitude. Giving them to the nearest hundredth makes no sense, Mars, for
instance, can differ by as much as 0.3 magnitude from the brightness it “ought” to
have. Some regions of Mars have more dark markings than others, so the planet’s
brightness depends on which face is turned towards us; and the varying polar caps
and a major dust storm can add to its magnitude. In the case of Jupiter and Saturn,
there are varying atmospheric phenomena, etc.

Example 41.c — Magnitude of Venus on 1992 December 20.0 TD.

From Example 41.a, we have

r=10.724604, A = 0910947, cosi = 0.29312, whence i = 72.96 degrees.
Miiller’s formula for Venus then gives —3.8 for the magnitude.
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Example 41.d — Magnitude of Saturn on 1992 December 16.0 TD.

From Example 45.a, we have
r=9867882, A = 10.464606, B = 16°442, AU = 4°198.

Miiller’s formula for Saturn then gives +0.9 for the magnitude.

Since 1984, the American Astronomical Almanac uses other formulae for the
calculation of the visual magnitudes of the planets. It has been stated [2] that these
new expressions “are due to D. L. Harris”. In fact, in his article [3] Harris did not
provide new expressions at all. No expression for the magnitudes is_“due” to
Harris.

For Mercury and Venus, Harris (pages 277 and 278 of his article) just mentions
expressions due to the French astronomer A. Danjon. For the outer planets, Harris
discusses values of the absolute magnitude and of the phase coefficient found by
others, but he himself does not propose or give new expressions.

If r and A (in astronomical units) and i (in degrees) have the same meanings as
above, the new expressions used in the Astronomical Almanac since 1984 are:

Mercury :  —0.42 + 5log rA + 0.0380i — 0.000273i% + 0.000002 i*
Venus : —4.40 + SlogrA + 0.0009i + 0.000239i% — 0.00000065i3
Mars : —1.52 + 5logra + 0.016i

Jupiter : -9.40 + Slogra + 0.005i

Saturn : —8.88 + Slog rA + 0.044 |AU| — 2.60sin |B| + 1.25 sin’B
Uranus : —7.19 + Slog rA

Neptune :  —6.87 + SlogrA

Pluto : —1.00 + Slogra

For the magnitudes of the minor planets, see Chapter 33.
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Chapter 42

Ephemeris for Physical Observations of Mars

In this Chapter, the following symbols will be used:

DE=

DS=

P =

)
Il

the planetocentric declination of the Earth. When it is positive, Mars’
northern pole is tilted towards the Earth;

the planetocentric declination of the Sun. When it is positive, Mars’ northern
pole is illuminated;

the geocentric position angle of Mars’ northern rotation pole, also called
position angle of axis. 1t is the angle that the Martian meridian from the
center of the disk to the northern rotation pole forms (on the geocentric
celestial sphere) with the declination circle through the center. It is measured
eastwards from the North Point of the disk. By definition, position angle 0°
means northwards on the sky, 90° east, 180° south, and 270° west;

the angular amount of the greatest defect of illumination; it is expressed in
arcseconds;

the position angle of this greatest defect of illumination;

the (areographic) longitude of the central meridian, as seen from the Earth.
The word areographic means that use is made of a coordinate system on the
surface of Mars. Compare with g