aboutsummaryrefslogtreecommitdiffstats
path: root/package/ead/src/tinysrp/t_conf.c
blob: fbe6f410e2da16ddf86302b568c83c165a289204 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
/*
 * Copyright (c) 1997-1999  The Stanford SRP Authentication Project
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 *
 * IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * In addition, the following conditions apply:
 *
 * 1. Any software that incorporates the SRP authentication technology
 *    must display the following acknowlegment:
 *    "This product uses the 'Secure Remote Password' cryptographic
 *     authentication system developed by Tom Wu (tjw@CS.Stanford.EDU)."
 *
 * 2. Any software that incorporates all or part of the SRP distribution
 *    itself must also display the following acknowledgment:
 *    "This product includes software developed by Tom Wu and Eugene
 *     Jhong for the SRP Distribution (http://srp.stanford.edu/srp/)."
 *
 * 3. Redistributions in source or binary form must retain an intact copy
 *    of this copyright notice and list of conditions.
 */

#include <stdio.h>

#include "t_defines.h"
#include "t_pwd.h"
#include "t_read.h"
#include "bn.h"
#include "bn_lcl.h"
#include "bn_prime.h"

#define TABLE_SIZE      32

static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
	const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);

/*
 * This is the safe prime generation logic.
 * To generate a safe prime p (where p = 2q+1 and q is prime), we start
 * with a random odd q that is one bit shorter than the desired length
 * of p.  We use a simple 30-element sieve to filter the values of q
 * and consider only those that are 11, 23, or 29 (mod 30).  (If q were
 * anything else, either q or p would be divisible by 2, 3, or 5).
 * For the values of q that are left, we apply the following tests in
 * this order:
 *
 *   trial divide q
 *   let p = 2q + 1
 *   trial divide p
 *   apply Fermat test to q (2^q == 2 (mod q))
 *   apply Fermat test to p (2^p == 2 (mod p))
 *   apply real probablistic primality test to q
 *   apply real probablistic primality test to p
 *
 * A number that passes all these tests is considered a safe prime for
 * our purposes.  The tests are ordered this way for efficiency; the
 * slower tests are run rarely if ever at all.
 */

static int
trialdiv(x)
     const BigInteger x;
{
  static int primes[] = {               /* All odd primes < 256 */
      3,   5,   7,  11,  13,  17,  19,  23,  29,
     31,  37,  41,  43,  47,  53,  59,  61,  67,
     71,  73,  79,  83,  89,  97, 101, 103,
    107, 109, 113, 127, 131, 137, 139, 149, 151,
    157, 163, 167, 173, 179, 181, 191, 193, 197,
    199, 211, 223, 227, 229, 233, 239, 241, 251
  };
  static int nprimes = sizeof(primes) / sizeof(int);
  int i;

  for(i = 0; i < nprimes; ++i) {
    if(BigIntegerModInt(x, primes[i]) == 0)
      return primes[i];
  }
  return 1;
}

/* x + sieve30[x%30] == 11, 23, or 29 (mod 30) */

static int sieve30[] =
{  11, 10,  9,  8,  7,  6,  5,  4,  3,  2,
    1, 12, 11, 10,  9,  8,  7,  6,  5,  4,
    3,  2,  1,  6,  5,  4,  3,  2,  1, 12
};

/* Find a Sophie-Germain prime between "lo" and "hi".  NOTE: this is not
   a "safe prime", but the smaller prime.  Take 2q+1 to get the safe prime. */

static void
sophie_germain(q, lo, hi)
     BigInteger q;              /* assumed initialized */
     const BigInteger lo;
     const BigInteger hi;
{
  BigInteger m, p, r;
  char parambuf[MAXPARAMLEN];
  int foundprime = 0;
  int i, mod30;

  m = BigIntegerFromInt(0);
  BigIntegerSub(m, hi, lo);
  i = (BigIntegerBitLen(m) + 7) / 8;
  t_random(parambuf, i);
  r = BigIntegerFromBytes(parambuf, i);
  BigIntegerMod(r, r, m);

  BigIntegerAdd(q, r, lo);
  if(BigIntegerModInt(q, 2) == 0)
    BigIntegerAddInt(q, q, 1);          /* make q odd */

  mod30 = BigIntegerModInt(q, 30);      /* mod30 = q % 30 */

  BigIntegerFree(m);
  m = BigIntegerFromInt(2);                     /* m = 2 */
  p = BigIntegerFromInt(0);

  while(BigIntegerCmp(q, hi) < 0) {
    if(trialdiv(q) < 2) {
      BigIntegerMulInt(p, q, 2);                        /* p = 2 * q */
      BigIntegerAddInt(p, p, 1);                /* p += 1 */
      if(trialdiv(p) < 2) {
	BigIntegerModExp(r, m, q, q);           /* r = 2^q % q */
	if(BigIntegerCmpInt(r, 2) == 0) {       /* if(r == 2) */
	  BigIntegerModExp(r, m, p, p);         /* r = 2^p % p */
	  if(BigIntegerCmpInt(r, 2) == 0) {     /* if(r == 2) */
	    if(BigIntegerCheckPrime(q) && BigIntegerCheckPrime(p)) {
	      ++foundprime;
	      break;
	    }
	  }
	}
      }
    }

    i = sieve30[mod30];
    BigIntegerAddInt(q, q, i);          /* q += i */
    mod30 = (mod30 + i) % 30;
  }

  /* should wrap around on failure */
  if(!foundprime) {
    fprintf(stderr, "Prime generation failed!\n");
    exit(1);
  }

  BigIntegerFree(r);
  BigIntegerFree(m);
  BigIntegerFree(p);
}

_TYPE( struct t_confent * )
t_makeconfent(tc, nsize)
     struct t_conf * tc;
     int nsize;
{
  BigInteger n, g, q, t, u;

  t = BigIntegerFromInt(0);
  u = BigIntegerFromInt(1);             /* u = 1 */
  BigIntegerLShift(t, u, nsize - 2);    /* t = 2^(nsize-2) */
  BigIntegerMulInt(u, t, 2);            /* u = 2^(nsize-1) */

  q = BigIntegerFromInt(0);
  sophie_germain(q, t, u);

  n = BigIntegerFromInt(0);
  BigIntegerMulInt(n, q, 2);
  BigIntegerAddInt(n, n, 1);

  /* Look for a generator mod n */
  g = BigIntegerFromInt(2);
  while(1) {
    BigIntegerModExp(t, g, q, n);               /* t = g^q % n */
    if(BigIntegerCmpInt(t, 1) == 0)             /* if(t == 1) */
      BigIntegerAddInt(g, g, 1);                /* ++g */
    else
      break;
  }
  BigIntegerFree(t);
  BigIntegerFree(u);
  BigIntegerFree(q);

  tc->tcbuf.modulus.data = tc->modbuf;
  tc->tcbuf.modulus.len = BigIntegerToBytes(n, tc->tcbuf.modulus.data);
  BigIntegerFree(n);

  tc->tcbuf.generator.data = tc->genbuf;
  tc->tcbuf.generator.len = BigIntegerToBytes(g, tc->tcbuf.generator.data);
  BigIntegerFree(g);

  tc->tcbuf.index = 1;
  return &tc->tcbuf;
}

_TYPE( struct t_confent * )
t_makeconfent_c(tc, nsize)
     struct t_conf * tc;
     int nsize;
{
  BigInteger g, n, p, q, j, k, t, u;
  int psize, qsize;

  psize = nsize / 2;
  qsize = nsize - psize;

  t = BigIntegerFromInt(1);             /* t = 1 */
  u = BigIntegerFromInt(0);
  BigIntegerLShift(u, t, psize - 3);    /* u = t*2^(psize-3) = 2^(psize-3) */
  BigIntegerMulInt(t, u, 3);                    /* t = 3*u = 1.5*2^(psize-2) */
  BigIntegerAdd(u, u, t);                       /* u += t [u = 2^(psize-1)] */
  j = BigIntegerFromInt(0);
  sophie_germain(j, t, u);

  k = BigIntegerFromInt(0);
  if(qsize != psize) {
    BigIntegerFree(t);
    t = BigIntegerFromInt(1);           /* t = 1 */
    BigIntegerLShift(u, t, qsize - 3);  /* u = t*2^(qsize-3) = 2^(qsize-3) */
    BigIntegerMulInt(t, u, 3);          /* t = 3*u = 1.5*2^(qsize-2) */
    BigIntegerAdd(u, u, t);             /* u += t [u = 2^(qsize-1)] */
  }
  sophie_germain(k, t, u);

  p = BigIntegerFromInt(0);
  BigIntegerMulInt(p, j, 2);            /* p = 2 * j */
  BigIntegerAddInt(p, p, 1);            /* p += 1 */

  q = BigIntegerFromInt(0);
  BigIntegerMulInt(q, k, 2);            /* q = 2 * k */
  BigIntegerAddInt(q, q, 1);            /* q += 1 */

  n = BigIntegerFromInt(0);
  BigIntegerMul(n, p, q);               /* n = p * q */
  BigIntegerMul(u, j, k);               /* u = j * k */

  BigIntegerFree(p);
  BigIntegerFree(q);
  BigIntegerFree(j);
  BigIntegerFree(k);

  g = BigIntegerFromInt(2);             /* g = 2 */

  /* Look for a generator mod n */
  while(1) {
    BigIntegerModExp(t, g, u, n);       /* t = g^u % n */
    if(BigIntegerCmpInt(t, 1) == 0)
      BigIntegerAddInt(g, g, 1);        /* ++g */
    else
      break;
  }

  BigIntegerFree(u);
  BigIntegerFree(t);

  tc->tcbuf.modulus.data = tc->modbuf;
  tc->tcbuf.modulus.len = BigIntegerToBytes(n, tc->tcbuf.modulus.data);
  BigIntegerFree(n);

  tc->tcbuf.generator.data = tc->genbuf;
  tc->tcbuf.generator.len = BigIntegerToBytes(g, tc->tcbuf.generator.data);
  BigIntegerFree(g);

  tc->tcbuf.index = 1;
  return &tc->tcbuf;
}

_TYPE( struct t_confent * )
t_newconfent(tc)
    struct t_conf * tc;
{
  tc->tcbuf.index = 0;
  tc->tcbuf.modulus.data = tc->modbuf;
  tc->tcbuf.modulus.len = 0;
  tc->tcbuf.generator.data = tc->genbuf;
  tc->tcbuf.generator.len = 0;
  return &tc->tcbuf;
}

_TYPE( void )
t_putconfent(ent, fp)
     const struct t_confent * ent;
     FILE * fp;
{
  char strbuf[MAXB64PARAMLEN];

  fprintf(fp, "%d:%s:", ent->index,
	  t_tob64(strbuf, ent->modulus.data, ent->modulus.len));
  fprintf(fp, "%s\n",
	  t_tob64(strbuf, ent->generator.data, ent->generator.len));
}

int
BigIntegerBitLen(b)
     BigInteger b;
{
  return BN_num_bits(b);
}

int
BigIntegerCheckPrime(n)
     BigInteger n;
{
  BN_CTX * ctx = BN_CTX_new();
  int rv = BN_is_prime(n, 25, NULL, ctx, NULL);
  BN_CTX_free(ctx);
  return rv;
}

unsigned int
BigIntegerModInt(d, m)
     BigInteger d;
     unsigned int m;
{
  return BN_mod_word(d, m);
}

void
BigIntegerMod(result, d, m)
     BigInteger result, d, m;
{
  BN_CTX * ctx = BN_CTX_new();
  BN_mod(result, d, m, ctx);
  BN_CTX_free(ctx);
}

void
BigIntegerMul(result, m1, m2)
     BigInteger result, m1, m2;
{
  BN_CTX * ctx = BN_CTX_new();
  BN_mul(result, m1, m2, ctx);
  BN_CTX_free(ctx);
}

void
BigIntegerLShift(result, x, bits)
     BigInteger result, x;
     unsigned int bits;
{
  BN_lshift(result, x, bits);
}

int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
	BN_CTX *ctx_passed, void *cb_arg)
	{
	return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0);
	}

int BN_is_prime_fasttest(const BIGNUM *a, int checks,
		void (*callback)(int,int,void *),
		BN_CTX *ctx_passed, void *cb_arg,
		int do_trial_division)
	{
	int i, j, ret = -1;
	int k;
	BN_CTX *ctx = NULL;
	BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
	BN_MONT_CTX *mont = NULL;
	const BIGNUM *A = NULL;

	if (checks == BN_prime_checks)
		checks = BN_prime_checks_for_size(BN_num_bits(a));

	/* first look for small factors */
	if (!BN_is_odd(a))
		return(0);
	if (do_trial_division)
		{
		for (i = 1; i < NUMPRIMES; i++)
			if (BN_mod_word(a, primes[i]) == 0)
				return 0;
		if (callback != NULL) callback(1, -1, cb_arg);
		}

	if (ctx_passed != NULL)
		ctx = ctx_passed;
	else
		if ((ctx=BN_CTX_new()) == NULL)
			goto err;
	BN_CTX_start(ctx);

	/* A := abs(a) */
	if (a->neg)
		{
		BIGNUM *t;
		if ((t = BN_CTX_get(ctx)) == NULL) goto err;
		BN_copy(t, a);
		t->neg = 0;
		A = t;
		}
	else
		A = a;
	A1 = BN_CTX_get(ctx);
	A1_odd = BN_CTX_get(ctx);
	check = BN_CTX_get(ctx);
	if (check == NULL) goto err;

	/* compute A1 := A - 1 */
	if (!BN_copy(A1, A))
		goto err;
	if (!BN_sub_word(A1, 1))
		goto err;
	if (BN_is_zero(A1))
		{
		ret = 0;
		goto err;
		}

	/* write  A1  as  A1_odd * 2^k */
	k = 1;
	while (!BN_is_bit_set(A1, k))
		k++;
	if (!BN_rshift(A1_odd, A1, k))
		goto err;

	/* Montgomery setup for computations mod A */
	mont = BN_MONT_CTX_new();
	if (mont == NULL)
		goto err;
	if (!BN_MONT_CTX_set(mont, A, ctx))
		goto err;

	for (i = 0; i < checks; i++)
		{
		if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0))
			goto err;
		if (BN_cmp(check, A1) >= 0)
			if (!BN_sub(check, check, A1))
				goto err;
		if (!BN_add_word(check, 1))
			goto err;
		/* now 1 <= check < A */

		j = witness(check, A, A1, A1_odd, k, ctx, mont);
		if (j == -1) goto err;
		if (j)
			{
			ret=0;
			goto err;
			}
		if (callback != NULL) callback(1,i,cb_arg);
		}
	ret=1;
err:
	if (ctx != NULL)
		{
		BN_CTX_end(ctx);
		if (ctx_passed == NULL)
			BN_CTX_free(ctx);
		}
	if (mont != NULL)
		BN_MONT_CTX_free(mont);

	return(ret);
	}

static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
	const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
	{
	if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
		return -1;
	if (BN_is_one(w))
		return 0; /* probably prime */
	if (BN_cmp(w, a1) == 0)
		return 0; /* w == -1 (mod a),  'a' is probably prime */
	while (--k)
		{
		if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
			return -1;
		if (BN_is_one(w))
			return 1; /* 'a' is composite, otherwise a previous 'w' would
				   * have been == -1 (mod 'a') */
		if (BN_cmp(w, a1) == 0)
			return 0; /* w == -1 (mod a), 'a' is probably prime */
		}
	/* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
	 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
	return 1;
	}

int BN_mod_exp_mont(BIGNUM *rr, BIGNUM *a, const BIGNUM *p,
		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
	{
	int i,j,bits,ret=0,wstart,wend,window,wvalue;
	int start=1,ts=0;
	BIGNUM *d,*r;
	BIGNUM *aa;
	BIGNUM val[TABLE_SIZE];
	BN_MONT_CTX *mont=NULL;

	bn_check_top(a);
	bn_check_top(p);
	bn_check_top(m);

	if (!(m->d[0] & 1))
		{
		return(0);
		}
	bits=BN_num_bits(p);
	if (bits == 0)
		{
		BN_one(rr);
		return(1);
		}
	BN_CTX_start(ctx);
	d = BN_CTX_get(ctx);
	r = BN_CTX_get(ctx);
	if (d == NULL || r == NULL) goto err;

	/* If this is not done, things will break in the montgomery
	 * part */

	if (in_mont != NULL)
		mont=in_mont;
	else
		{
		if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
		}

	BN_init(&val[0]);
	ts=1;
	if (BN_ucmp(a,m) >= 0)
		{
		if (!BN_mod(&(val[0]),a,m,ctx))
			goto err;
		aa= &(val[0]);
		}
	else
		aa=a;
	if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */

	window = BN_window_bits_for_exponent_size(bits);
	if (window > 1)
		{
		if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */
		j=1<<(window-1);
		for (i=1; i<j; i++)
			{
			BN_init(&(val[i]));
			if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx))
				goto err;
			}
		ts=i;
		}

	start=1;        /* This is used to avoid multiplication etc
			 * when there is only the value '1' in the
			 * buffer. */
	wvalue=0;       /* The 'value' of the window */
	wstart=bits-1;  /* The top bit of the window */
	wend=0;         /* The bottom bit of the window */

	if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
	for (;;)
		{
		if (BN_is_bit_set(p,wstart) == 0)
			{
			if (!start)
				{
				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
				goto err;
				}
			if (wstart == 0) break;
			wstart--;
			continue;
			}
		/* We now have wstart on a 'set' bit, we now need to work out
		 * how bit a window to do.  To do this we need to scan
		 * forward until the last set bit before the end of the
		 * window */
		j=wstart;
		wvalue=1;
		wend=0;
		for (i=1; i<window; i++)
			{
			if (wstart-i < 0) break;
			if (BN_is_bit_set(p,wstart-i))
				{
				wvalue<<=(i-wend);
				wvalue|=1;
				wend=i;
				}
			}

		/* wend is the size of the current window */
		j=wend+1;
		/* add the 'bytes above' */
		if (!start)
			for (i=0; i<j; i++)
				{
				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
					goto err;
				}

		/* wvalue will be an odd number < 2^window */
		if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx))
			goto err;

		/* move the 'window' down further */
		wstart-=wend+1;
		wvalue=0;
		start=0;
		if (wstart < 0) break;
		}
	if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
	ret=1;
err:
	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
	BN_CTX_end(ctx);
	for (i=0; i<ts; i++)
		BN_clear_free(&(val[i]));
	return(ret);
	}

BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w)
	{
#ifndef BN_LLONG
	BN_ULONG ret=0;
#else
	BN_ULLONG ret=0;
#endif
	int i;

	w&=BN_MASK2;
	for (i=a->top-1; i>=0; i--)
		{
#ifndef BN_LLONG
		ret=((ret<<BN_BITS4)|((a->d[i]>>BN_BITS4)&BN_MASK2l))%w;
		ret=((ret<<BN_BITS4)|(a->d[i]&BN_MASK2l))%w;
#else
		ret=(BN_ULLONG)(((ret<<(BN_ULLONG)BN_BITS2)|a->d[i])%
			(BN_ULLONG)w);
#endif
		}
	return((BN_ULONG)ret);
	}

static int bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom)
	{
	unsigned char *buf=NULL;
	int ret=0,bit,bytes,mask;

	if (bits == 0)
		{
		BN_zero(rnd);
		return 1;
		}

	bytes=(bits+7)/8;
	bit=(bits-1)%8;
	mask=0xff<<bit;

	buf=(unsigned char *)malloc(bytes);
	if (buf == NULL)
		{
		goto err;
		}

	/* make a random number and set the top and bottom bits */
	/* this ignores the pseudorand flag */

	t_random(buf, bytes);

	if (top)
		{
		if (bit == 0)
			{
			buf[0]=1;
			buf[1]|=0x80;
			}
		else
			{
			buf[0]|=(3<<(bit-1));
			buf[0]&= ~(mask<<1);
			}
		}
	else
		{
		buf[0]|=(1<<bit);
		buf[0]&= ~(mask<<1);
		}
	if (bottom) /* set bottom bits to whatever odd is */
		buf[bytes-1]|=1;
	if (!BN_bin2bn(buf,bytes,rnd)) goto err;
	ret=1;
err:
	if (buf != NULL)
		{
		memset(buf,0,bytes);
		free(buf);
		}
	return(ret);
	}

/* BN_pseudo_rand is the same as BN_rand, now. */

int     BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom)
	{
	return bnrand(1, rnd, bits, top, bottom);
	}

#define MONT_WORD /* use the faster word-based algorithm */

int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
			  BN_MONT_CTX *mont, BN_CTX *ctx)
	{
	BIGNUM *tmp,*tmp2;
	int ret=0;

	BN_CTX_start(ctx);
	tmp = BN_CTX_get(ctx);
	tmp2 = BN_CTX_get(ctx);
	if (tmp == NULL || tmp2 == NULL) goto err;

	bn_check_top(tmp);
	bn_check_top(tmp2);

	if (a == b)
		{
		if (!BN_sqr(tmp,a,ctx)) goto err;
		}
	else
		{
		if (!BN_mul(tmp,a,b,ctx)) goto err;
		}
	/* reduce from aRR to aR */
	if (!BN_from_montgomery(r,tmp,mont,ctx)) goto err;
	ret=1;
err:
	BN_CTX_end(ctx);
	return(ret);
	}

int BN_from_montgomery(BIGNUM *ret, BIGNUM *a, BN_MONT_CTX *mont,
	     BN_CTX *ctx)
	{
	int retn=0;

#ifdef MONT_WORD
	BIGNUM *n,*r;
	BN_ULONG *ap,*np,*rp,n0,v,*nrp;
	int al,nl,max,i,x,ri;

	BN_CTX_start(ctx);
	if ((r = BN_CTX_get(ctx)) == NULL) goto err;

	if (!BN_copy(r,a)) goto err;
	n= &(mont->N);

	ap=a->d;
	/* mont->ri is the size of mont->N in bits (rounded up
	   to the word size) */
	al=ri=mont->ri/BN_BITS2;

	nl=n->top;
	if ((al == 0) || (nl == 0)) { r->top=0; return(1); }

	max=(nl+al+1); /* allow for overflow (no?) XXX */
	if (bn_wexpand(r,max) == NULL) goto err;
	if (bn_wexpand(ret,max) == NULL) goto err;

	r->neg=a->neg^n->neg;
	np=n->d;
	rp=r->d;
	nrp= &(r->d[nl]);

	/* clear the top words of T */
#if 1
	for (i=r->top; i<max; i++) /* memset? XXX */
		r->d[i]=0;
#else
	memset(&(r->d[r->top]),0,(max-r->top)*sizeof(BN_ULONG));
#endif

	r->top=max;
	n0=mont->n0;

#ifdef BN_COUNT
	printf("word BN_from_montgomery %d * %d\n",nl,nl);
#endif
	for (i=0; i<nl; i++)
		{
#ifdef __TANDEM
		{
		   long long t1;
		   long long t2;
		   long long t3;
		   t1 = rp[0] * (n0 & 0177777);
		   t2 = 037777600000l;
		   t2 = n0 & t2;
		   t3 = rp[0] & 0177777;
		   t2 = (t3 * t2) & BN_MASK2;
		   t1 = t1 + t2;
		   v=bn_mul_add_words(rp,np,nl,(BN_ULONG) t1);
		}
#else
		v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
#endif
		nrp++;
		rp++;
		if (((nrp[-1]+=v)&BN_MASK2) >= v)
			continue;
		else
			{
			if (((++nrp[0])&BN_MASK2) != 0) continue;
			if (((++nrp[1])&BN_MASK2) != 0) continue;
			for (x=2; (((++nrp[x])&BN_MASK2) == 0); x++) ;
			}
		}
	bn_fix_top(r);

	/* mont->ri will be a multiple of the word size */
#if 0
	BN_rshift(ret,r,mont->ri);
#else
	ret->neg = r->neg;
	x=ri;
	rp=ret->d;
	ap= &(r->d[x]);
	if (r->top < x)
		al=0;
	else
		al=r->top-x;
	ret->top=al;
	al-=4;
	for (i=0; i<al; i+=4)
		{
		BN_ULONG t1,t2,t3,t4;

		t1=ap[i+0];
		t2=ap[i+1];
		t3=ap[i+2];
		t4=ap[i+3];
		rp[i+0]=t1;
		rp[i+1]=t2;
		rp[i+2]=t3;
		rp[i+3]=t4;
		}
	al+=4;
	for (; i<al; i++)
		rp[i]=ap[i];
#endif
#else /* !MONT_WORD */
	BIGNUM *t1,*t2;

	BN_CTX_start(ctx);
	t1 = BN_CTX_get(ctx);
	t2 = BN_CTX_get(ctx);
	if (t1 == NULL || t2 == NULL) goto err;

	if (!BN_copy(t1,a)) goto err;
	BN_mask_bits(t1,mont->ri);

	if (!BN_mul(t2,t1,&mont->Ni,ctx)) goto err;
	BN_mask_bits(t2,mont->ri);

	if (!BN_mul(t1,t2,&mont->N,ctx)) goto err;
	if (!BN_add(t2,a,t1)) goto err;
	BN_rshift(ret,t2,mont->ri);
#endif /* MONT_WORD */

	if (BN_ucmp(ret, &(mont->N)) >= 0)
		{
		BN_usub(ret,ret,&(mont->N));
		}
	retn=1;
 err:
	BN_CTX_end(ctx);
	return(retn);
	}

void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
	{
	ctx->ri=0;
	BN_init(&(ctx->RR));
	BN_init(&(ctx->N));
	BN_init(&(ctx->Ni));
	ctx->flags=0;
	}

BN_MONT_CTX *BN_MONT_CTX_new(void)
	{
	BN_MONT_CTX *ret;

	if ((ret=(BN_MONT_CTX *)malloc(sizeof(BN_MONT_CTX))) == NULL)
		return(NULL);

	BN_MONT_CTX_init(ret);
	ret->flags=BN_FLG_MALLOCED;
	return(ret);
	}

void BN_MONT_CTX_free(BN_MONT_CTX *mont)
	{
	if(mont == NULL)
	    return;

	BN_free(&(mont->RR));
	BN_free(&(mont->N));
	BN_free(&(mont->Ni));
	if (mont->flags & BN_FLG_MALLOCED)
		free(mont);
	}

int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
	{
	BIGNUM Ri,*R;

	BN_init(&Ri);
	R= &(mont->RR);                                 /* grab RR as a temp */
	BN_copy(&(mont->N),mod);                        /* Set N */

#ifdef MONT_WORD
		{
		BIGNUM tmod;
		BN_ULONG buf[2];

		mont->ri=(BN_num_bits(mod)+(BN_BITS2-1))/BN_BITS2*BN_BITS2;
		BN_zero(R);
		BN_set_bit(R,BN_BITS2);                 /* R */

		buf[0]=mod->d[0]; /* tmod = N mod word size */
		buf[1]=0;
		tmod.d=buf;
		tmod.top=1;
		tmod.dmax=2;
		tmod.neg=mod->neg;
							/* Ri = R^-1 mod N*/
		if ((BN_mod_inverse(&Ri,R,&tmod,ctx)) == NULL)
			goto err;
		BN_lshift(&Ri,&Ri,BN_BITS2);            /* R*Ri */
		if (!BN_is_zero(&Ri))
			BN_sub_word(&Ri,1);
		else /* if N mod word size == 1 */
			BN_set_word(&Ri,BN_MASK2);  /* Ri-- (mod word size) */
		BN_div(&Ri,NULL,&Ri,&tmod,ctx); /* Ni = (R*Ri-1)/N,
						 * keep only least significant word: */
		mont->n0=Ri.d[0];
		BN_free(&Ri);
		}
#else /* !MONT_WORD */
		{ /* bignum version */
		mont->ri=BN_num_bits(mod);
		BN_zero(R);
		BN_set_bit(R,mont->ri);                 /* R = 2^ri */
							/* Ri = R^-1 mod N*/
		if ((BN_mod_inverse(&Ri,R,mod,ctx)) == NULL)
			goto err;
		BN_lshift(&Ri,&Ri,mont->ri);            /* R*Ri */
		BN_sub_word(&Ri,1);
							/* Ni = (R*Ri-1) / N */
		BN_div(&(mont->Ni),NULL,&Ri,mod,ctx);
		BN_free(&Ri);
		}
#endif

	/* setup RR for conversions */
	BN_zero(&(mont->RR));
	BN_set_bit(&(mont->RR),mont->ri*2);
	BN_mod(&(mont->RR),&(mont->RR),&(mont->N),ctx);

	return(1);
err:
	return(0);
	}

BIGNUM *BN_value_one(void)
	{
	static BN_ULONG data_one=1L;
	static BIGNUM const_one={&data_one,1,1,0};

	return(&const_one);
	}

/* solves ax == 1 (mod n) */
BIGNUM *BN_mod_inverse(BIGNUM *in, BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
	{
	BIGNUM *A,*B,*X,*Y,*M,*D,*R=NULL;
	BIGNUM *T,*ret=NULL;
	int sign;

	bn_check_top(a);
	bn_check_top(n);

	BN_CTX_start(ctx);
	A = BN_CTX_get(ctx);
	B = BN_CTX_get(ctx);
	X = BN_CTX_get(ctx);
	D = BN_CTX_get(ctx);
	M = BN_CTX_get(ctx);
	Y = BN_CTX_get(ctx);
	if (Y == NULL) goto err;

	if (in == NULL)
		R=BN_new();
	else
		R=in;
	if (R == NULL) goto err;

	BN_zero(X);
	BN_one(Y);
	if (BN_copy(A,a) == NULL) goto err;
	if (BN_copy(B,n) == NULL) goto err;
	sign=1;

	while (!BN_is_zero(B))
		{
		if (!BN_div(D,M,A,B,ctx)) goto err;
		T=A;
		A=B;
		B=M;
		/* T has a struct, M does not */

		if (!BN_mul(T,D,X,ctx)) goto err;
		if (!BN_add(T,T,Y)) goto err;
		M=Y;
		Y=X;
		X=T;
		sign= -sign;
		}
	if (sign < 0)
		{
		if (!BN_sub(Y,n,Y)) goto err;
		}

	if (BN_is_one(A))
		{ if (!BN_mod(R,Y,n,ctx)) goto err; }
	else
		{
		goto err;
		}
	ret=R;
err:
	if ((ret == NULL) && (in == NULL)) BN_free(R);
	BN_CTX_end(ctx);
	return(ret);
	}

int BN_set_bit(BIGNUM *a, int n)
	{
	int i,j,k;

	i=n/BN_BITS2;
	j=n%BN_BITS2;
	if (a->top <= i)
		{
		if (bn_wexpand(a,i+1) == NULL) return(0);
		for(k=a->top; k<i+1; k++)
			a->d[k]=0;
		a->top=i+1;
		}

	a->d[i]|=(((BN_ULONG)1)<<j);
	return(1);
	}