#ifndef _I386_BITOPS_H #define _I386_BITOPS_H /* * Copyright 1992, Linus Torvalds. */ #include /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #ifdef CONFIG_SMP #define LOCK_PREFIX "lock ; " #else #define LOCK_PREFIX "" #endif #define ADDR (*(volatile long *) addr) /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void set_bit(int nr, volatile void * addr) { __asm__ __volatile__( LOCK_PREFIX "btsl %1,%0" :"=m" (ADDR) :"Ir" (nr)); } /** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __set_bit(int nr, volatile void * addr) { __asm__( "btsl %1,%0" :"=m" (ADDR) :"Ir" (nr)); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ static __inline__ void clear_bit(int nr, volatile void * addr) { __asm__ __volatile__( LOCK_PREFIX "btrl %1,%0" :"=m" (ADDR) :"Ir" (nr)); } #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() /** * __change_bit - Toggle a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __change_bit(int nr, volatile void * addr) { __asm__ __volatile__( "btcl %1,%0" :"=m" (ADDR) :"Ir" (nr)); } /** * change_bit - Toggle a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void change_bit(int nr, volatile void * addr) { __asm__ __volatile__( LOCK_PREFIX "btcl %1,%0" :"=m" (ADDR) :"Ir" (nr)); } /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_set_bit(int nr, volatile void * addr) { int oldbit; __asm__ __volatile__( LOCK_PREFIX "btsl %2,%1\n\tsbbl %0,%0" :"=r" (oldbit),"=m" (ADDR) :"Ir" (nr) : "memory"); return oldbit; } /** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_set_bit(int nr, volatile void * addr) { int oldbit; __asm__( "btsl %2,%1\n\tsbbl %0,%0" :"=r" (oldbit),"=m" (ADDR) :"Ir" (nr)); return oldbit; } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_clear_bit(int nr, volatile void * addr) { int oldbit; __asm__ __volatile__( LOCK_PREFIX "btrl %2,%1\n\tsbbl %0,%0" :"=r" (oldbit),"=m" (ADDR) :"Ir" (nr) : "memory"); return oldbit; } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) { int oldbit; __asm__( "btrl %2,%1\n\tsbbl %0,%0" :"=r" (oldbit),"=m" (ADDR) :"Ir" (nr)); return oldbit; } /* WARNING: non atomic and it can be reordered! */ static __inline__ int __test_and_change_bit(int nr, volatile void * addr) { int oldbit; __asm__ __volatile__( "btcl %2,%1\n\tsbbl %0,%0" :"=r" (oldbit),"=m" (ADDR) :"Ir" (nr) : "memory"); return oldbit; } /** * test_and_change_bit - Change a bit and return its new value * @nr: Bit to set * @addr: Address to count from * *
#!/bin/sh

awk -f /usr/lib/common.awk -f - $* <<EOF
BEGIN {
	ipaddr=ip2int(ARGV[1])
	netmask=ip2int(ARGV[2])
	network=and(ipaddr,netmask)
	broadcast=or(network,compl(netmask))
	
	start=or(network,and(ip2int(ARGV[3]),compl(netmask)))
	limit=network+1
	if (start<limit) start=limit
	
	end=start+ARGV[4]
	limit=or(network,compl(netmask))-1
	if (end>limit) end=limit

	print "IP="int2ip(ipaddr)
	print "NETMASK="int2ip(netmask)
	print "BROADCAST="int2ip(broadcast)
	print "NETWORK="int2ip(network)
	print "PREFIX="32-bitcount(compl(netmask))
	
	# range calculations:
	# ipcalc <ip> <netmask> <start> <num>
	
	if (ARGC > 3) {
		print "START="int2ip(start)
		print "END="int2ip(end-1)
	}
}
EOF