From 5f63e4ddcc5847aba27e8bea15853835f3468941 Mon Sep 17 00:00:00 2001 From: John Crispin Date: Sat, 2 Jun 2007 00:46:02 +0000 Subject: add initial support for the crisarchitecture used on foxboards to openwrt git-svn-id: svn://svn.openwrt.org/openwrt/trunk@7439 3c298f89-4303-0410-b956-a3cf2f4a3e73 --- .../etrax-2.6/image/e100boot/src/doc/Makefile | 17 + .../etrax-2.6/image/e100boot/src/doc/e100boot.1 | 401 +++++++++++++++++++++ .../etrax-2.6/image/e100boot/src/doc/e100boot.html | 395 ++++++++++++++++++++ .../etrax-2.6/image/e100boot/src/doc/e100boot.pod | 314 ++++++++++++++++ .../etrax-2.6/image/e100boot/src/doc/pod2htmd.tmp | 2 + .../etrax-2.6/image/e100boot/src/doc/pod2htmi.tmp | 2 + 6 files changed, 1131 insertions(+) create mode 100644 target/linux/etrax-2.6/image/e100boot/src/doc/Makefile create mode 100644 target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.1 create mode 100644 target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.html create mode 100644 target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.pod create mode 100644 target/linux/etrax-2.6/image/e100boot/src/doc/pod2htmd.tmp create mode 100644 target/linux/etrax-2.6/image/e100boot/src/doc/pod2htmi.tmp (limited to 'target/linux/etrax-2.6/image/e100boot/src/doc') diff --git a/target/linux/etrax-2.6/image/e100boot/src/doc/Makefile b/target/linux/etrax-2.6/image/e100boot/src/doc/Makefile new file mode 100644 index 0000000000..df6076b8e2 --- /dev/null +++ b/target/linux/etrax-2.6/image/e100boot/src/doc/Makefile @@ -0,0 +1,17 @@ +OBJS=e100boot.1 e100boot.html + +all: $(OBJS) + +%.1: %.pod + pod2man $< > $@ + +%.html: %.pod + pod2html $< > $@ + @rm -f pod2htmd.x~~ pod2htmi.x~~ + +clean: + rm -f *cache *~ + +# The 'clean' doesn't remove the generated documentation as we want +# them in the distribution. + diff --git a/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.1 b/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.1 new file mode 100644 index 0000000000..116b9e577f --- /dev/null +++ b/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.1 @@ -0,0 +1,401 @@ +.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32 +.\" +.\" Standard preamble: +.\" ======================================================================== +.de Sh \" Subsection heading +.br +.if t .Sp +.ne 5 +.PP +\fB\\$1\fR +.PP +.. +.de Sp \" Vertical space (when we can't use .PP) +.if t .sp .5v +.if n .sp +.. +.de Vb \" Begin verbatim text +.ft CW +.nf +.ne \\$1 +.. +.de Ve \" End verbatim text +.ft R +.fi +.. +.\" Set up some character translations and predefined strings. \*(-- will +.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left +.\" double quote, and \*(R" will give a right double quote. \*(C+ will +.\" give a nicer C++. Capital omega is used to do unbreakable dashes and +.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, +.\" nothing in troff, for use with C<>. +.tr \(*W- +.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' +.ie n \{\ +. ds -- \(*W- +. ds PI pi +. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch +. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch +. ds L" "" +. ds R" "" +. ds C` "" +. ds C' "" +'br\} +.el\{\ +. ds -- \|\(em\| +. ds PI \(*p +. ds L" `` +. ds R" '' +'br\} +.\" +.\" If the F register is turned on, we'll generate index entries on stderr for +.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index +.\" entries marked with X<> in POD. Of course, you'll have to process the +.\" output yourself in some meaningful fashion. +.if \nF \{\ +. de IX +. tm Index:\\$1\t\\n%\t"\\$2" +.. +. nr % 0 +. rr F +.\} +.\" +.\" For nroff, turn off justification. Always turn off hyphenation; it makes +.\" way too many mistakes in technical documents. +.hy 0 +.if n .na +.\" +.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). +.\" Fear. Run. Save yourself. No user-serviceable parts. +. \" fudge factors for nroff and troff +.if n \{\ +. ds #H 0 +. ds #V .8m +. ds #F .3m +. ds #[ \f1 +. ds #] \fP +.\} +.if t \{\ +. ds #H ((1u-(\\\\n(.fu%2u))*.13m) +. ds #V .6m +. ds #F 0 +. ds #[ \& +. ds #] \& +.\} +. \" simple accents for nroff and troff +.if n \{\ +. ds ' \& +. ds ` \& +. ds ^ \& +. ds , \& +. ds ~ ~ +. ds / +.\} +.if t \{\ +. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" +. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' +. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' +. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' +. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' +. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' +.\} +. \" troff and (daisy-wheel) nroff accents +.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' +.ds 8 \h'\*(#H'\(*b\h'-\*(#H' +.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] +.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' +.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' +.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] +.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] +.ds ae a\h'-(\w'a'u*4/10)'e +.ds Ae A\h'-(\w'A'u*4/10)'E +. \" corrections for vroff +.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' +.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' +. \" for low resolution devices (crt and lpr) +.if \n(.H>23 .if \n(.V>19 \ +\{\ +. ds : e +. ds 8 ss +. ds o a +. ds d- d\h'-1'\(ga +. ds D- D\h'-1'\(hy +. ds th \o'bp' +. ds Th \o'LP' +. ds ae ae +. ds Ae AE +.\} +.rm #[ #] #H #V #F C +.\" ======================================================================== +.\" +.IX Title "E100BOOT 1" +.TH E100BOOT 1 "2003-12-16" "perl v5.8.8" "User Contributed Perl Documentation" +.SH "NAME" +e100boot \- Network and serial port bootloader for the ETRAX100 CPU. +.SH "SYNOPSIS" +.IX Header "SYNOPSIS" +\&\fBe100boot\fR [\fB\-\-device\fR \fIdevicename\fR] +[\fB\-\-file\fR \fIfilename\fR|\- \fIaddr\fR [\fIsize\fR]] +[\fB\-\-flash\fR \fIram-source\fR \fIflash-offset\fR \fIsize\fR] [\fB\-\-pause\fR \fIiter\fR] +[\fB\-\-memtest\fR \fIaddr\fR \fIaddr\fR] [\fB\-\-memclear\fR \fIaddr\fR \fIaddr\fR] +[\fB\-\-memdump\fR \fIaddr\fR \fIaddr\fR] [\fB\-\-setreg\fR \fIaddr\fR|\fIregname\fR \fIval\fR] +[\fB\-\-getreg\fR \fIaddr\fR|\fIregname\fR] [\fB\-\-verify\fR \fIaddr\fR \fIval\fR] +[\fB\-\-label\fR \fIlabel\fR] [\fB\-\-loop\fR \fIaddr\fR \fIlabel\fR] [\fB\-\-5400\fR] [\fB\-\-5600\fR] +[\fB\-\-testcard\fR] [\fB\-\-devboard\fR] [\fB\-\-testcardlx\fR] [\fB\-\-network\fR] [\fB\-\-serial\fR] +[\fB\-\-baudrate\fR \fIbaudrate\fR] [\fB\-\-bootfile\fR \fIfile\fR] [\fB\-\-jump\fR \fIaddr\fR] +[\fB\-\-tofiles\fR] [\fB\-\-cmdsonly\fR] [\fB\-\-images\fR] [\fB\-\-noleds\fR] [\fB\-\-help\fR] +.SH "DESCRIPTION" +.IX Header "DESCRIPTION" +This boot loader facilitates loading of files over the network or a +serial port to an \s-1ETRAX100\s0. It can also be used for fairly extensive +hardware debugging as you can read and write to any memory addresses, +including the \s-1ETRAX100\s0 registers. You can also perform memory checks +and dumps and copy data to flash memories. +.PP +The first packet (or the first 784 bytes in the case of serial boot) +sent to Etrax100 is loaded into the cache. The code in this packet is +executed and loads the rest of the boot loader into the cache. The +cache is the only thing we can be sure of exists on all \s-1ETRAX100\s0 +products, so the boot loader is limited to the size of the cache, +8KB. If further boot loading code is needed you have to set up +external memory and load another boot loader into it, but this is +rarely needed. +.PP +Two programs are involved in this boot loading, one is the program on +your workstation that sends the packets to \s-1ETRAX100\s0, this is called +the server boot loader or \s-1SBL\s0. The other program is the one in +\&\s-1ETRAX100\s0 that receives packets from the \s-1SBL\s0 and acts upon the data +therein, this is called the client boot loader or \s-1CBL\s0. +.PP +We don't want to edit and recompile the \s-1CBL\s0 each time we want to load +level two to different parts of memory, like we do on different +products. We also want to change things like the setup of external +memory before we load data into it. To make the boot loading as +flexible as possible and separate the \s-1CBL\s0 from level two we send a +configuration packet to it. After this packet we load other files, if +we want to. +.PP +The configuration packet can contain information to the \s-1CBL\s0 which lets +you: initialize external memory, read and write to all \s-1ETRAX100\s0 +registers, read and write to any part of memory, load as many other +files as you like to any part of memory you like, etc. The +configuration packet is generated on the fly by the \s-1SBL\s0. +.PP +Since the \s-1CBL\s0 is unaware of which product it will be loaded on, it +doesn't do product specific initialization like setting up the +memory. This must be done with the configuration packet. +.Sh "Debugging printout" +.IX Subsection "Debugging printout" +When doing network boot the debugging printout from the \s-1CBL\s0 in \s-1ETRAX\s0 +is transmitted back over the network and printed by e100boot. When +doing serial boot that interface will be used. So in either case you +will not need any other software or hardware to receive the debugging +printout. +.Sh "Creating binaries" +.IX Subsection "Creating binaries" +The files containing code to be loaded on the \s-1ETRAX100\s0 must be +stripped using the standard \s-1GCC\s0 binutils. +.Sh "How it works, things you don't want to know." +.IX Subsection "How it works, things you don't want to know." +ack, timeout bla, bla... \s-1RTFS\s0. +.Sh "Compilation and code" +.IX Subsection "Compilation and code" +Noteworthy is that two separate \s-1ETRAX100\s0 binaries are created, one for +network boot and one for serial boot. They actually contain exactly +the same code, but linked in different order. This is because the code +to load the rest of the bootloader over a specific interface must be +contained in the first data sent to the \s-1ETRAX100\s0 and it is too +difficult to cram the code for both interfaces in the beginning of the +same binary. Hence two files. +.PP +Other stuff you don't want to know is that the cache is mapped from +0x380000f0 to 0x380020f0. Code starts at the first address followed by +data up to the symbol \fIEbss\fR. At the other end is the buffer for boot +commands (addresses defined by \fI\s-1IO_BUF_START\s0\fR and \fI\s-1IO_BUF_END\s0\fR below +which the stack lies and hopefully the stack and \fIEbss\fR will never +meet... +.PP +The serial data is loaded from 0x380000f0 to 0x380003ff before +execution starts. +.SH "OPTIONS" +.IX Header "OPTIONS" +The options are done in the order specified on the command line, so +you probably want to do any memory setup before loading a file to the +memory, and you probably do not want to perform a memory test after +you have loaded a file to that memory. +.PP +All addresses and sizes must be in hex with optional '0x' prefix, or a +\&\s-1ETRAX100\s0 register name. Since the \fB\-\-setreg\fR and \fB\-\-getreg\fR options +only can be performed on dword aligned dwords only the registers that +conform to this can be named. +.PP +Note also that all addresses must be in uncached memory (bit 31 set), +as the bootloader lies in the cache. If you access any uncached +address during boot, the bootloader will be destroyed without warning. +.PP +It is also possible to specify an address as \fI+address\fR, in which +case it is considered to be relative to \fI\s-1IO_BUF_START\s0\fR. This is +especially useful in combination with the \fB\-\-loop\fR option below. +.IP "\fB\-\-baudrate\fR \fIbaudrate\fR" 4 +.IX Item "--baudrate baudrate" +Set baudrate for files loaded after the boot loader. +.IP "\fB\-\-bootfile\fR \fIfilename\fR" 4 +.IX Item "--bootfile filename" +Which boot image to send to \s-1ETRAX\s0 instead of the default ones. +.IP "\fB\-\-cmdsonly\fR" 4 +.IX Item "--cmdsonly" +Write the commands to file e100boot.cmds. +.IP "\fB\-\-devboard\fR" 4 +.IX Item "--devboard" +Sets registers for the developer board. +.IP "\fB\-\-device\fR \fIdevicename\fR" 4 +.IX Item "--device devicename" +Which device to send packets on. For network boot the default is +eth0. For serial boot it is ttyS0. +.IP "\fB\-\-file\fR \fIfilename\fR|\- \fIaddress\fR [\fIsize\fR]" 4 +.IX Item "--file filename|- address [size]" +The file to load and the address to load it to. If file is loaded on +stdin, specify filename '\-' followed by a size. Size need only be +given in this case. You can load as many files as you want, each +specified with a \fB\-\-file\fR. +.IP "\fB\-\-flash\fR \fIram-source flash-offset size\fR" 4 +.IX Item "--flash ram-source flash-offset size" +Copies the specified \s-1RAM\s0 area to the flash. +.IP "\fB\-\-getreg\fR \fIaddress\fR|\fIregname\fR" 4 +.IX Item "--getreg address|regname" +Print value of memory location. Must be uncached address. +.IP "\fB\-\-help\fR" 4 +.IX Item "--help" +Print the help information. +.IP "\fB\-\-images\fR" 4 +.IX Item "--images" +Print information about the internal boot images, then exit. +.IP "\fB\-\-jump\fR \fIaddress\fR" 4 +.IX Item "--jump address" +Jump to specified address. +.IP "\fB\-\-label\fR \fIlabel\fR" 4 +.IX Item "--label label" +Define a label to be used as target by the \fB\-\-loop\fR command. This +command is only used by the \s-1SBL\s0 to calculate the address for the +\&\fB\-\-loop\fR and does not take up any space in the configuration packet. +.IP "\fB\-\-loop\fR \fIcheck-address label\fR" 4 +.IX Item "--loop check-address label" +If the contents of check-address is nonzero it is decremented and the +command parser continues parsing at the label. +.Sp +If no external memory is initialized yet it can be convenient to use +an address in the area occupied by the configuration packet. Run +e100boot with \fB\-\-help\fR to see which addresses the commands are stored +at. The size of the commands are four bytes for each command plus four +bytes per argument to the command. +.IP "\fB\-\-memclear\fR \fIstart-address end-address\fR" 4 +.IX Item "--memclear start-address end-address" +Clears the specified memory area. +.IP "\fB\-\-memdump\fR \fIstart-address end-address\fR" 4 +.IX Item "--memdump start-address end-address" +Prints the contents of the specified memory area. +.IP "\fB\-\-memtest\fR \fIstart-address end-address\fR" 4 +.IX Item "--memtest start-address end-address" +Does a fairly extensive test of the specified memory area. Not only +catches defect memories but also catches things like wrong memory +setups where memory addresses are mirrored onto each other. +.IP "\fB\-\-network\fR" 4 +.IX Item "--network" +Perform a network boot. +.IP "\fB\-\-noleds\fR" 4 +.IX Item "--noleds" +When using the internal images use a version that does not toggle +general port \s-1PA\s0 or \s-1PB\s0 in \s-1ETRAX\s0 during the boot procedure. +.IP "\fB\-\-pause\fR \fIiterations\fR" 4 +.IX Item "--pause iterations" +How many \fIiterations\fR to do of an empty loop. +.IP "\fB\-\-serial\fR" 4 +.IX Item "--serial" +Do a serial boot. +.IP "\fB\-\-setreg\fR \fIaddress\fR|\fIregname\fR \fIvalue\fR" 4 +.IX Item "--setreg address|regname value" +Load dword to dword aligned memory location. +.IP "\fB\-\-testcard\fR" 4 +.IX Item "--testcard" +Configures the memories for the \s-1ETRAX\s0 100 testcard. +.IP "\fB\-\-testcardlx\fR" 4 +.IX Item "--testcardlx" +Configures the memories for the \s-1ETRAX100\s0 \s-1LX\s0 testcard. +.IP "\fB\-\-tofiles\fR" 4 +.IX Item "--tofiles" +Write packets to files e100boot.seq[0..]. Does not transmit the data. +.IP "\fB\-\-verify\fR \fIaddress value\fR" 4 +.IX Item "--verify address value" +Verify that memory contains dword. If not loader will stop. This is to +avoid booting the wrong unit. If you have the units ethernet address +in the flash memory you can check for that. +.IP "\fB\-\-5400\fR" 4 +.IX Item "--5400" +Sets R_WAITSTATES, R_DRAM_TIMING and R_DRAM_CONFIG for the 5400 +printserver. +.IP "\fB\-\-5600\fR" 4 +.IX Item "--5600" +Sets R_WAITSTATES, R_DRAM_TIMING and R_DRAM_CONFIG for the 5600 +printserver. +.SH "EXAMPLES" +.IX Header "EXAMPLES" +If you have a stripped binary (file.ima) linked to 0x08000000 that you want +to boot via the network, do this: +.PP +\&\fBe100boot \-\-file file.ima 88000000 \-\-jump 08000000\fR +.PP +Or something like this. Sets waitstates to zero and loads two files, +the first from stdin: +.PP +\&\fBcat file.ima | e100boot \-\-memtest 88000000 8801ffff \-\-memclear +88000000 8801ffff \-\-setreg b0000000 0 \-\-getreg b0000000 \-\-file \- +88000000 a000 \-\-file file2.ima 88010000 \-\-memdump 88000000 880000ff +\&\-\-jump 08000000\fR +.PP +Or this, enables 16 bit parallel port and flashes the led on \s-1PA0:\s0 +.PP +\&\fBe100boot \-\-testcardlx \-\-setreg R_PORT_PA_SET 0x00000000 \-\-setreg +R_GEN_CONFIG 0x80000004 \-\-setreg R_PAR0_CONFIG 0x00000200 \-\-setreg +R_PORT_G_DATA 0x00000000 \-\-pause 0x02000000 \-\-setreg R_PORT_G_DATA +0xffffffff \-\-pause 0x02000000 \-\-setreg R_PORT_G_DATA 0x00000000 \-\-loop +0x38001e0b 0x38001e60\fR +.PP +Setup the memory, test the \s-1SRAM\s0, print the contents of the first 256 +bytes of \s-1SRAM\s0, clear \s-1SRAM\s0, test the \s-1DRAM\s0, print R_DMA_CH0_CMD, load a +file to \s-1SRAM\s0, load another file to \s-1SRAM\s0, load file to \s-1DRAM\s0, jump to +code in \s-1SRAM\s0. +.PP +\&\fBe100boot \-\-setreg b0000000 1000 \-\-setreg b0000008 00006543 \-\-setreg +b000000c 12966060 \-\-memtest 88000000 80000 \-\-memdump 88000000 880000ff +\&\-\-memclear 88000000 80000 \-\-memtest c0000000 400000 \-\-getreg b00001d0 +\&\-\-file file1.ima 88000000 \-\-file file2.ima 88010000 \-\-file file3.ima +c0000000 \-\-jump 88000000\fR +.PP +Boot Linux on the testcard. +.PP +\&\fBe100boot \-\-setreg b0000000 1000 \-\-setreg b0000008 6557 \-\-setreg +b000000c 1b988080 \-\-file timage c0000500 \-\-jump 40000500\fR +.PP +Booting over serial port and using labels to flash the leds on port +\&\s-1PA\s0. +.PP +\&\fBe100boot \-\-serial \-\-device /dev/ttyS1 \-\-baudrate 9600 \-\-label first +\&\-\-setreg 0x380020e0 00000001 \-\-setreg R_PORT_PA_SET 0x0000ff00 \-\-pause +0x02000000 \-\-setreg R_PORT_PA_SET 0x0000ffff \-\-pause 0x02000000 \-\-loop +0x380020e0 first\fR +.SH "BUGS" +.IX Header "BUGS" +You're kidding, right? Check \s-1AUTHOR\s0 below. The only thing +would be the hubris of the author, but that I consider a feature. If +you find any other 'features' report them to +technology@axis.com. Don't bother the author directly, he is busy +playing PlayStation2. +.SH "COPYING" +.IX Header "COPYING" +Copyright © 1996\-2002 Axis Communications \s-1AB\s0. +.SH "AUTHOR" +.IX Header "AUTHOR" +Written by Ronny Ranerup. +.SH "SEE ALSO" +.IX Header "SEE ALSO" +The fine source, which you can get at http://developer.axis.com. diff --git a/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.html b/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.html new file mode 100644 index 0000000000..15e23966d0 --- /dev/null +++ b/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.html @@ -0,0 +1,395 @@ + + + + +e100boot - Network and serial port bootloader for the ETRAX100 CPU. + + + + + + +

+ + + + + +
+

+

+

NAME

+

e100boot - Network and serial port bootloader for the ETRAX100 CPU.

+

+

+
+

SYNOPSIS

+

e100boot [--device devicename] +[--file filename|- addr [size]] +[--flash ram-source flash-offset size] [--pause iter] +[--memtest addr addr] [--memclear addr addr] +[--memdump addr addr] [--setreg addr|regname val] +[--getreg addr|regname] [--verify addr val] +[--label label] [--loop addr label] [--5400] [--5600] +[--testcard] [--devboard] [--testcardlx] [--network] [--serial] +[--baudrate baudrate] [--bootfile file] [--jump addr] +[--tofiles] [--cmdsonly] [--images] [--noleds] [--help]

+

+

+
+

DESCRIPTION

+

This boot loader facilitates loading of files over the network or a +serial port to an ETRAX100. It can also be used for fairly extensive +hardware debugging as you can read and write to any memory addresses, +including the ETRAX100 registers. You can also perform memory checks +and dumps and copy data to flash memories.

+

The first packet (or the first 784 bytes in the case of serial boot) +sent to Etrax100 is loaded into the cache. The code in this packet is +executed and loads the rest of the boot loader into the cache. The +cache is the only thing we can be sure of exists on all ETRAX100 +products, so the boot loader is limited to the size of the cache, +8KB. If further boot loading code is needed you have to set up +external memory and load another boot loader into it, but this is +rarely needed.

+

Two programs are involved in this boot loading, one is the program on +your workstation that sends the packets to ETRAX100, this is called +the server boot loader or SBL. The other program is the one in +ETRAX100 that receives packets from the SBL and acts upon the data +therein, this is called the client boot loader or CBL.

+

We don't want to edit and recompile the CBL each time we want to load +level two to different parts of memory, like we do on different +products. We also want to change things like the setup of external +memory before we load data into it. To make the boot loading as +flexible as possible and separate the CBL from level two we send a +configuration packet to it. After this packet we load other files, if +we want to.

+

The configuration packet can contain information to the CBL which lets +you: initialize external memory, read and write to all ETRAX100 +registers, read and write to any part of memory, load as many other +files as you like to any part of memory you like, etc. The +configuration packet is generated on the fly by the SBL.

+

Since the CBL is unaware of which product it will be loaded on, it +doesn't do product specific initialization like setting up the +memory. This must be done with the configuration packet.

+

+

+

Debugging printout

+

When doing network boot the debugging printout from the CBL in ETRAX +is transmitted back over the network and printed by e100boot. When +doing serial boot that interface will be used. So in either case you +will not need any other software or hardware to receive the debugging +printout.

+

+

+

Creating binaries

+

The files containing code to be loaded on the ETRAX100 must be +stripped using the standard GCC binutils.

+

+

+

How it works, things you don't want to know.

+

ack, timeout bla, bla... RTFS.

+

+

+

Compilation and code

+

Noteworthy is that two separate ETRAX100 binaries are created, one for +network boot and one for serial boot. They actually contain exactly +the same code, but linked in different order. This is because the code +to load the rest of the bootloader over a specific interface must be +contained in the first data sent to the ETRAX100 and it is too +difficult to cram the code for both interfaces in the beginning of the +same binary. Hence two files.

+

Other stuff you don't want to know is that the cache is mapped from +0x380000f0 to 0x380020f0. Code starts at the first address followed by +data up to the symbol Ebss. At the other end is the buffer for boot +commands (addresses defined by IO_BUF_START and IO_BUF_END below +which the stack lies and hopefully the stack and Ebss will never +meet...

+

The serial data is loaded from 0x380000f0 to 0x380003ff before +execution starts.

+

+

+
+

OPTIONS

+

The options are done in the order specified on the command line, so +you probably want to do any memory setup before loading a file to the +memory, and you probably do not want to perform a memory test after +you have loaded a file to that memory.

+

All addresses and sizes must be in hex with optional '0x' prefix, or a +ETRAX100 register name. Since the --setreg and --getreg options +only can be performed on dword aligned dwords only the registers that +conform to this can be named.

+

Note also that all addresses must be in uncached memory (bit 31 set), +as the bootloader lies in the cache. If you access any uncached +address during boot, the bootloader will be destroyed without warning.

+

It is also possible to specify an address as +address, in which +case it is considered to be relative to IO_BUF_START. This is +especially useful in combination with the --loop option below.

+
+
--baudrate baudrate + +
+

Set baudrate for files loaded after the boot loader.

+
+ +
--bootfile filename + +
+

Which boot image to send to ETRAX instead of the default ones.

+
+ +
--cmdsonly + +
+

Write the commands to file e100boot.cmds.

+
+ +
--devboard + +
+

Sets registers for the developer board.

+
+ +
--device devicename + +
+

Which device to send packets on. For network boot the default is +eth0. For serial boot it is ttyS0.

+
+ +
--file filename|- address [size] + +
+

The file to load and the address to load it to. If file is loaded on +stdin, specify filename '-' followed by a size. Size need only be +given in this case. You can load as many files as you want, each +specified with a --file.

+
+ +
--flash ram-source flash-offset size + +
+

Copies the specified RAM area to the flash.

+
+ +
--getreg address|regname + +
+

Print value of memory location. Must be uncached address.

+
+ +
--help + +
+

Print the help information.

+
+ +
--images + +
+

Print information about the internal boot images, then exit.

+
+ +
--jump address + +
+

Jump to specified address.

+
+ +
--label label + +
+

Define a label to be used as target by the --loop command. This +command is only used by the SBL to calculate the address for the +--loop and does not take up any space in the configuration packet.

+
+ +
--loop check-address label + +
+

If the contents of check-address is nonzero it is decremented and the +command parser continues parsing at the label.

+
+
+

If no external memory is initialized yet it can be convenient to use +an address in the area occupied by the configuration packet. Run +e100boot with --help to see which addresses the commands are stored +at. The size of the commands are four bytes for each command plus four +bytes per argument to the command.

+
+ +
--memclear start-address end-address + +
+

Clears the specified memory area.

+
+ +
--memdump start-address end-address + +
+

Prints the contents of the specified memory area.

+
+ +
--memtest start-address end-address + +
+

Does a fairly extensive test of the specified memory area. Not only +catches defect memories but also catches things like wrong memory +setups where memory addresses are mirrored onto each other.

+
+ +
--network + +
+

Perform a network boot.

+
+ +
--noleds + +
+

When using the internal images use a version that does not toggle +general port PA or PB in ETRAX during the boot procedure.

+
+ +
--pause iterations + +
+

How many iterations to do of an empty loop.

+
+ +
--serial + +
+

Do a serial boot.

+
+ +
--setreg address|regname value + +
+

Load dword to dword aligned memory location.

+
+ +
--testcard + +
+

Configures the memories for the ETRAX 100 testcard.

+
+ +
--testcardlx + +
+

Configures the memories for the ETRAX100 LX testcard.

+
+ +
--tofiles + +
+

Write packets to files e100boot.seq[0..]. Does not transmit the data.

+
+ +
--verify address value + +
+

Verify that memory contains dword. If not loader will stop. This is to +avoid booting the wrong unit. If you have the units ethernet address +in the flash memory you can check for that.

+
+ +
--5400 + +
+

Sets R_WAITSTATES, R_DRAM_TIMING and R_DRAM_CONFIG for the 5400 +printserver.

+
+ +
--5600 + +
+

Sets R_WAITSTATES, R_DRAM_TIMING and R_DRAM_CONFIG for the 5600 +printserver.

+
+ +
+

+

+
+

EXAMPLES

+

If you have a stripped binary (file.ima) linked to 0x08000000 that you want +to boot via the network, do this:

+

e100boot --file file.ima 88000000 --jump 08000000

+

Or something like this. Sets waitstates to zero and loads two files, +the first from stdin:

+

cat file.ima | e100boot --memtest 88000000 8801ffff --memclear +88000000 8801ffff --setreg b0000000 0 --getreg b0000000 --file - +88000000 a000 --file file2.ima 88010000 --memdump 88000000 880000ff +--jump 08000000

+

Or this, enables 16 bit parallel port and flashes the led on PA0:

+

e100boot --testcardlx --setreg R_PORT_PA_SET 0x00000000 --setreg +R_GEN_CONFIG 0x80000004 --setreg R_PAR0_CONFIG 0x00000200 --setreg +R_PORT_G_DATA 0x00000000 --pause 0x02000000 --setreg R_PORT_G_DATA +0xffffffff --pause 0x02000000 --setreg R_PORT_G_DATA 0x00000000 --loop +0x38001e0b 0x38001e60

+

Setup the memory, test the SRAM, print the contents of the first 256 +bytes of SRAM, clear SRAM, test the DRAM, print R_DMA_CH0_CMD, load a +file to SRAM, load another file to SRAM, load file to DRAM, jump to +code in SRAM.

+

e100boot --setreg b0000000 1000 --setreg b0000008 00006543 --setreg +b000000c 12966060 --memtest 88000000 80000 --memdump 88000000 880000ff +--memclear 88000000 80000 --memtest c0000000 400000 --getreg b00001d0 +--file file1.ima 88000000 --file file2.ima 88010000 --file file3.ima +c0000000 --jump 88000000

+

Boot Linux on the testcard.

+

e100boot --setreg b0000000 1000 --setreg b0000008 6557 --setreg +b000000c 1b988080 --file timage c0000500 --jump 40000500

+

Booting over serial port and using labels to flash the leds on port +PA.

+

e100boot --serial --device /dev/ttyS1 --baudrate 9600 --label first +--setreg 0x380020e0 00000001 --setreg R_PORT_PA_SET 0x0000ff00 --pause +0x02000000 --setreg R_PORT_PA_SET 0x0000ffff --pause 0x02000000 --loop +0x380020e0 first

+

+

+
+

BUGS

+

You're kidding, right? Check AUTHOR below. The only thing +would be the hubris of the author, but that I consider a feature. If +you find any other 'features' report them to +technology@axis.com. Don't bother the author directly, he is busy +playing PlayStation2.

+

+

+
+

COPYING

+

Copyright © 1996-2002 Axis Communications AB.

+

+

+
+

AUTHOR

+

Written by Ronny Ranerup.

+

+

+
+

SEE ALSO

+

The fine source, which you can get at http://developer.axis.com.

+ + + + diff --git a/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.pod b/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.pod new file mode 100644 index 0000000000..8ff514c6b7 --- /dev/null +++ b/target/linux/etrax-2.6/image/e100boot/src/doc/e100boot.pod @@ -0,0 +1,314 @@ +=head1 NAME + +e100boot - Network and serial port bootloader for the ETRAX100 CPU. + +=head1 SYNOPSIS + +B [B<--device> I] +[B<--file> I|- I [I]] +[B<--flash> I I I] [B<--pause> I] +[B<--memtest> I I] [B<--memclear> I I] +[B<--memdump> I I] [B<--setreg> I|I I] +[B<--getreg> I|I] [B<--verify> I I] +[B<--label> I