aboutsummaryrefslogtreecommitdiffstats
path: root/package
Commit message (Collapse)AuthorAgeFilesLines
* mac80211: rt2x00: fix typoSungbo Eo2022-09-182-5/+3
| | | | | | Add missing semicolon and refresh patches. Signed-off-by: Sungbo Eo <mans0n@gorani.run>
* ltq-[a|v]dsl-app: provide ltq-dsl-appAndre Heider2022-09-172-0/+2
| | | | | | | This makes it easier for packages to depend on any lantiq/intel/maxlinear compatible dsl daemon. Signed-off-by: Andre Heider <a.heider@gmail.com>
* ltq-vdsl-app: rename to ltq-vdsl-vr9-appAndre Heider2022-09-1714-11/+11
| | | | | | | This matches the scheme used by other target packages and will avoid confusion with any future version. Signed-off-by: Andre Heider <a.heider@gmail.com>
* lantiq: rename ltq-vdsl folder to ltq-vdsl-vr9Andre Heider2022-09-177-1/+1
| | | | | | | Now PKG_NAME matches the folder name, and this will avoid confusion with any future version. Signed-off-by: Andre Heider <a.heider@gmail.com>
* lantiq: rename ltq-vdsl-mei folder to ltq-vdsl-vr9-meiAndre Heider2022-09-179-4/+4
| | | | | | | Now PKG_NAME matches the folder name, and this will avoid confusion with any future version. Signed-off-by: Andre Heider <a.heider@gmail.com>
* mac80211: clean and submit a bunch of rt2x00 patchesDaniel Golle2022-09-1719-680/+791
| | | | | | | | | | Clean and submit patches, mostly related to MT7620 to linux-wireless mailing list: https://patchwork.kernel.org/project/linux-wireless/list/?series=677770 Replace local patches with now submitted versions. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* packages: libusb: add package 'fxload' (from libusb examples)Daniel Golle2022-09-171-2/+24
| | | | | | | | | | | | | | | The 'fxload' tool contained in the examples provided with libusb is actually useful and turns out to be the only way to load firmware into some rather ancient EZ-USB microcontrollers made by Cypress (formerly Anchor Chips). The original 'fxload' tool from hotplug-linux has been abandonned long ago and requires usbfs to be mounted in /proc/bus/usb/ (like it was in Linux 2.4...). Hence the best option is to package the modern 'fxload' from the libusb examples which (unsurprisingly) uses libusb and works on modern systems. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* unetd: add missing init scriptFelix Fietkau2022-09-161-0/+24
| | | | Signed-off-by: Felix Fietkau <nbd@nbd.name>
* unetd: update to the latest versionFelix Fietkau2022-09-161-3/+3
| | | | | | | e065a7627a46 pex: update last query sent timestamp 6c888f897862 unet-cli: add stun server list editing support Signed-off-by: Felix Fietkau <nbd@nbd.name>
* unetd: update to the latest versionFelix Fietkau2022-09-163-5/+23
| | | | | | | | | | | | | | | | | | | | | | | 21360a1b1ce6 cli: fix typo abfebece0af1 wg-linux: ship a copy of linux/wireguard.h 1cbb1a543cb3 pex: reduce unnecessary ping traffic 0c2f39e52d5d pex: remove pex event debug spam dcf1362c2104 pex: add support for sending/receiving global PEX messages via unix socket df5f70b8858c ubus: notify on network updates e58a56697131 add DHT discovery service be175767bc67 pex: keep active pex hosts after the specified timeout 543e4a3d2ed7 pex: move rx header check to callback function 395659b9c415 pex: move raw ip send code to sendto_rawudp() in utils.c dda15ea8b3b2 pex: add utility function to get the sockets based on type / address family e88f2cd4d3f0 utils: add support for passings address family to network_get_endpoint() 639cdcdf6eda pex: add support for figuring out the external data port via STUN servers 9144339ebe1f pex: improve handling of a longer list of PEX hosts 38212218ecdd unet-cli: add DHT support 0d37ca75434d pex: automatically create host entries from incoming endpoint port notifications 035fcc56ef60 host: keep multiple endpoint candidates, one for each type a089e8ae7504 pex: avoid sending a query to a host more than once every 15 seconds Signed-off-by: Felix Fietkau <nbd@nbd.name>
* unetd: select unetd from unet-cli instead of depending on itFelix Fietkau2022-09-161-1/+1
| | | | | | Some people may explicitly want to select unet-cli for admin purposes Signed-off-by: Felix Fietkau <nbd@nbd.name>
* wolfssl: add libwolfssl-cpu-crypto packageEneas U de Queiroz2022-09-163-46/+98
| | | | | | | | | | | | | | libwolfssl-cpu-crypto is a variant of libwolfssl with support for cryptographic CPU instructions on x86_64 and aarch64. On aarch64, wolfSSL does not perform run-time detection, so the library will crash when the AES functions are called. A preinst script attempts to check for support by querying /proc/cpuinfo, if installed in a running system. When building an image, the script will check the DISTRIB_TARGET value in /etc/openwrt_release, and will abort installation if target is bcm27xx. Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
* rpcd: update to latest Git HEADJo-Philipp Wich2022-09-161-3/+3
| | | | | | | e80d0b2 ucode: pass-through `ubus_rpc_session` argument 0d02243 ucode: initialize module search path early Signed-off-by: Jo-Philipp Wich <jo@mein.io>
* ucode: update to latest Git HEADJo-Philipp Wich2022-09-161-3/+3
| | | | | | | | | | | cc4eb79 ubus: support obtaining numeric error code 01c412c ubus: add toplevel constants for ubus status codes 8e240fa ubus: allow object method call handlers to return a numeric status code 5cdddd3 lib: add limit support to split() and replace() 0ba9c3e fs: add optional third permission argument to fs.open() c1f7b3b lib: remove fixed capture group limit in match() and regex replace() Signed-off-by: Jo-Philipp Wich <jo@mein.io>
* mac80211: merge upstream fixesKoen Vandeputte2022-09-163-0/+179
| | | | | | fetched from upstream kernel v5.15.67 Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
* mac80211: merge pending fixes for tx queueing issuesFelix Fietkau2022-09-152-0/+87
| | | | | | Fixes a potential deadlock and a tx queue hang on STA assoc Signed-off-by: Felix Fietkau <nbd@nbd.name>
* mt76: update to the latest versionFelix Fietkau2022-09-151-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 94eb0bc1374d wifi: mt76: testmode: use random payload for tx packets f8ece810002b wifi: mt76: add rx_check callback for usb devices 67fbdb7bed90 wifi: mt76: mt7921e: fix race issue between reset and suspend/resume a9b09dd2715f wifi: mt76: mt7921s: fix race issue between reset and suspend/resume ee3eb0d6d52e wifi: mt76: mt7921u: fix race issue between reset and suspend/resume 9706ccef5447 wifi: mt76: mt7921u: remove unnecessary MT76_STATE_SUSPEND 74a29eb4f714 wifi: mt76: mt7921: move mt7921_rx_check and mt7921_queue_rx_skb in mac.c f49e06c4cfce wifi: mt76: sdio: fix the deadlock caused by sdio->stat_work 322656141fa4 wifi: mt76: sdio: poll sta stat when device transmits data dee0a3cbfb03 wifi: mt76: mt7915: fix an uninitialized variable bug 9dd7be2c5164 wifi: mt76: mt7921: fix use after free in mt7921_acpi_read() 0ad02c9a4512 wifi: mt76: sdio: add rx_check callback for sdio devices fe85e5ccbaca wifi: mt76: sdio: fix transmitting packet hangs 206c7ebd7464 wifi: mt76: mt7615: add mt7615_mutex_acquire/release in mt7615_sta_set_decap_offload bf79f5d73e4f wifi: mt76: mt7915: fix possible unaligned access in mt7915_mac_add_twt_setup c4132ab0bea2 wifi: mt76: connac: fix possible unaligned access in mt76_connac_mcu_add_nested_tlv 52eec74986cf wifi: mt76: mt7663s: add rx_check callback 019ef069e754 wifi: mt76: mt76_usb.mt76u_mcu.burst is always false remove related code 0a392ca03db8 wifi: mt76: mt7921: add mt7921_mutex_acquire at mt7921_[start, stop]_ap fbb3554b6236 wifi: mt76: mt7921: add mt7921_mutex_acquire at mt7921_sta_set_decap_offload b55a4eb2ee21 wifi: mt76: mt7921: fix the firmware version report 2d72c9a74011 wifi: mt76: move move mt76_sta_stats to mt76_wcid 873365b06c5c wifi: mt76: add PPDU based TxS support for WED device 0c64a80a61c2 wifi: mt76: connac: fix in comment d11f971a452e wifi: mt76: mt7921: get rid of the false positive reset 2ac22300c7ac wifi: mt76: mt7915: fix mcs value in ht mode 5e45533e4ba2 wifi: mt76: fix uninitialized pointer in mt7921_mac_fill_rx e06376af21dd wifi: mt76: mt7915: do not check state before configuring implicit beamform 0c0bda4aea05 wifi: mt76: mt7921: reset msta->airtime_ac while clearing up hw value cddc4b43ea93 wifi: mt76: mt7921e: fix rmmod crash in driver reload test ebbd68842ee0 wifi: mt76: mt7921: introduce Country Location Control support 763a1d90133b wifi: mt76: mt7921e: fix random fw download fail Signed-off-by: Felix Fietkau <nbd@nbd.name>
* mediatek: build USB XHCI support as moduleDaniel Golle2022-09-141-0/+1
| | | | | | | | Instead of always including the XHCI driver in the kernel on all MediaTek boards, selectively include the kernel module only on boards which actually make use of USB functionality. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* libcap: use more compatible shebangIlya Katsnelson2022-09-141-0/+8
| | | | | | | Patch a script to use a shebang that works on systems that don't have a /bin/bash, e.g. NixOS or GuixSD. Signed-off-by: Ilya Katsnelson <me@0upti.me>
* kernel: netsupport: Add FQ-PIE as an optional sched kmod and extract PIEKabuli Chana2022-09-131-2/+33
| | | | | | | | add Flow Queuing with Proportional Integral controller Enhanced (FQ-PIE) as an optional kmod in network support and extract sched-pie from kmod-sched to allow dependency on just kmod-sched-pie (PIE). Signed-off-by: Kabuli Chana <newtownBuild@gmail.com>
* realtek: add support for TP-Link SG2210PAlexandru Gagniuc2022-09-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for the TP-Link SG2210P switch. This is an RTL8380 based switch with eight RJ-45 ports with 802.3af PoE, and two SFP ports. This device shares the same board with the SG2008P and SG2008. To model this, declare all the capabilities in the sg2xxx dtsi, and disable unpopulated on the lower end models. Specifications: --------------- - SoC: Realtek RTL8380M - Flash: 32 MiB SPI flash (Vendor varies) - RAM: 256 MiB (Vendor varies) - Ethernet: 8x 10/100/1000 Mbps with PoE (all ports) 2x SFP ports - Buttons: 1x "Reset" button on front panel - Power: 53.5V DC barrel jack - UART: 1x serial header, unpopulated - PoE: 2x TI TPS23861 I2C PoE controller Works: ------ - (8) RJ-45 ethernet ports - (2) SFP ports (with caveats) - Switch functions - System LED Not yet enabled: ---------------- - Power-over-Ethernet (driver works, but doesn't enable "auto" mode) - PoE LEDs Enabling SFP ports: ------------------- The SFP port control lines are hardwired, except for tx-disable. These lines are controller by the RTL8231 in shift register mode. There is no driver support for this yet. However, to enable the lasers on SFP1 and SFP2 respectively: echo 0x0510ff00 > /sys/kernel/debug/rtl838x/led/led_p_en_ctrl echo 0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.26 echo 0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.24 Install via serial console/tftp: -------------------------------- The footprints R27 (0201) and R28 (0402) are not populated. To enable serial console, 50 ohm resistors should be soldered -- any value from 0 ohm to 50 ohm will work. R27 can be replaced by a solder bridge. The u-boot firmware drops to a TP-Link specific "BOOTUTIL" shell at 38400 baud. There is no known way to exit out of this shell, and no way to do anything useful. Ideally, one would trick the bootloader into flashing the sysupgrade image first. However, if the image exceeds 6MiB in size, it will not work. The sysupgrade image can also be flashed. To install OpenWrt: Prepare a tftp server with: 1. server address: 192.168.0.146 2. the image as: "uImage.img" Power on device, and stop boot by pressing any key. Once the shell is active: 1. Ground out the CLK (pin 16) of the ROM (U7) 2. Select option "3. Start" 3. Bootloader notes that "The kernel has been damaged!" 4. Release CLK as sson as bootloader thinks image is corrupted. 5. Bootloader enters automatic recovery -- details printed on console 6. Watch as the bootloader flashes and boots OpenWrt. Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com> [OpenWrt capitalisation in commit message] Signed-off-by: Sander Vanheule <sander@svanheule.net>
* uboot-mediatek: fix extraneous right parensPetr Štetiar2022-09-131-1/+1
| | | | | | | | Fixes following warning: Makefile:310: extraneous text after 'ifeq' directive Signed-off-by: Petr Štetiar <ynezz@true.cz>
* mac80211: rt2x00: experimental improvements for MT7620 wifiDaniel Golle2022-09-121-0/+423
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Serge Vasilugin reports: To improve mt7620 built-in wifi performance some changes: 1. Correct BW20/BW40 switching (see comments with mark (1)) 2. Correct TX_SW_CFG1 MAC reg from v3 of vendor driver see https://gitlab.com/dm38/padavan-ng/-/blob/master/trunk/proprietary/rt_wifi/rtpci/3.0.X.X/mt76x2/chips/rt6352.c#L531 3. Set bbp66 for all chains. 4. US_CYC_CNT init based on Programming guide, default value was 33 (pci), set chipset bus clock with fallback to cpu clock/3. 5. Don't overwrite default values for mt7620. 6. Correct some typos. 7. Add support for external LNA: a) RF and BBP regs never be corrected for this mode b) eLNA is driven the same way as ePA with mt7620's pin PA but vendor driver explicitly pin PA to gpio mode (for forrect calibration?) so I'm not sure that request for pa_pin in dts-file will be enough First 5 changes (really 2) improve performance for boards w/o eLNA/ePA. Changes 7 add support for eLNA Configuration w/o eLAN/ePA and with eLNA show results tx/rx (from router point of view) for each stream: 35-40/30-35 Mbps for HT20 65-70/60-65 Mbps for HT40 Yes. Max results for 2T2R client is 140-145/135-140 with peaks 160/150, It correspond to mediatek driver results. Boards with ePA untested. Reported-by: Serge Vasilugin <vasilugin@yandex.ru> Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* mac80211: add patch descriptions to rt2x00 patchesDaniel Golle2022-09-126-1/+76
| | | | | | | Prepare patches for sending upstream by adding patch descriptions generated from the original OpenWrt commits adding each patch. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* unetd: only depend on bpf-headers if BPF toolchain support is availableFelix Fietkau2022-09-121-1/+1
| | | | | | If BPF is unavailable, unetd can be built without it (by disabling VXLAN support). Signed-off-by: Felix Fietkau <nbd@nbd.name>
* mediatek: add support for ipTIME A6004MX Add basic support for ipTIME A6004MX.Yoonji Park2022-09-121-0/+23
| | | | | | | | | | | | | | | | | | | | | | | | | Hardware: SoC: MediaTek MT7629 Cortex-A7 (ARMv7 1.25GHz, Dual-Core) RAM: DDR3 128MB Flash: Macronix MX35LF1GE4AB (SPI-NAND 128MB) WiFi: MediaTek MT7761N (2.4GHz) / MediaTek MT7762N (5GHz) - no driver Ethernet: SoC (WAN) / MediaTek MT7531 (LAN x4) UART: [GND, RX, TX, 3.3V] (115200) Installation: - Flash recovery image with TFTP recovery Revert to stock firmware: - Flash stock firmware with TFTP recovery TFTP Recovery method: 1. Unplug the router 2. Hold the reset button and plug in 3. Release when the power LED stops flashing and go off 4. Set your computer IP address manually to 192.168.0.x / 255.255.255.0 5. Flash image with TFTP client to 192.168.0.1 Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
* xdp-tools: don't rely on host bpf headersDaniel Golle2022-09-121-1/+5
| | | | | | | | | | xdp-tools build currently breaks on build hosts which do not have libbpf headers installed because the build system wrongly tries to use the host's include path. Properly pass path to libbpf headers to xdp-tools build system to fix build e.g. on the buildbots. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ath79: add support for TP-Link Deco S4Nick French2022-09-111-0/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for TP-Link Deco S4 wifi router The label refers to the device as S4R and the TP-Link firmware site calls it the Deco S4 v2. (There does not appear to be a v1) Hardware (and FCC id) are identical to the Deco M4R v2 but the flash layout is ordered differently and the OEM firmware encrypts some config parameters (including the label mac address) in flash In order to set the encrypted mac address, the wlan's caldata node is removed from the DTS so the mac can be decrypted with the help of the uencrypt tool and patched into the wlan fw via hotplug Specifications: SoC: QCA9563-AL3A RAM: Zentel A3R1GE40JBF Wireless 2.4GHz: QCA9563-AL3A (main SoC) Wireless 5GHz: QCA9886 Ethernet Switch: QCA8337N-AL3C Flash: 16 MB SPI NOR UART serial access (115200N1) on board via solder pads: RX = TP1 pad TX = TP2 pad GND = C201 (pad nearest board edge) The device's bootloader and web gui will only accept images that were signed using TP-Link's RSA key, however a memory safety bug in the bootloader can be leveraged to install openwrt without accessing the serial console. See developer forum S4 support page for link to a "firmware" file that starts a tftp client, or you may generate one on your own like this: ``` python - > deco_s4_faux_fw_tftp.bin <<EOF import sys from struct import pack b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \ + b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \ b += b"\x00"*(0x200-len(b)) \ + pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000, 0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x24050000, 0x3c048006, 0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x24050000, 0x3c048006, 0x34840300, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1, 0x00000000]) b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00" b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00" b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00" b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00" b += b"\xff"*(0x8000-len(b)) sys.stdout.buffer.write(b) EOF ``` Installation: 1. Run tftp server on pc with static ip 192.168.0.2 2. Place openwrt "initramfs-kernel.bin" image in tftp root dir 3. Connect pc to router ethernet port1 4. While holding in reset button on bottom of router, power on router 5. From pc access router webgui at http://192.168.0.1 6. Upload deco_s4_faux_fw_tftp.bin 7. Router will load and execture in-memory openwrt 8. Switch pc back to dhcp or static 192.168.1.x 9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1 Revert to stock: Press and hold reset button while powering device to start the bootloader's recovery mode, where stock firmware can be uploaded via web gui at 192.168.0.1 Please note that one additional non-github commits is also needed: firmware-utils: add tplink-safeloader support for Deco S4 Signed-off-by: Nick French <nickfrench@gmail.com>
* ath79: add support for Senao Watchguard AP100Michael Pratt2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-CAP2100AG WatchGuard AP100 is an indoor wireless access point with 1 Gb ethernet port, dual-band but single-radio wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP300 v2 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2 - AR8035-A EPHY RGMII GbE with PoE+ IN - 25 MHz clock - 16 MB FLASH mx25l12805d - 2x 64 MB RAM - UART console J11, populated - GPIO watchdog GPIO 16, 20 sec toggle - 2 antennas 5 dBi, internal omni-directional plates - 5 LEDs power, eth0 link/data, 2G, 5G - 1 button reset **MAC addresses:** Label has no MAC Only one Vendor MAC address in flash at art 0x0 eth0 ---- *:e5 art 0x0 -2 phy0 ---- *:e5 art 0x0 -2 **Installation:** Method 1: OEM webpage use OEM webpage for firmware upgrade to upload factory.bin Method 2: root shell It may be necessary to use a Watchguard router to flash the image to the AP and / or to downgrade the software on the AP to access SSH For some Watchguard devices, serial console over UART is disabled. NOTE: DHCP is not enabled by default after flashing **TFTP recovery:** reset button has no function at boot time only possible with modified uboot environment, (see commit message for Watchguard AP300) **Return to OEM:** user should make backup of MTD partitions and write the backups back to mtd devices in order to revert to OEM reliably It may be possible to use sysupgrade with an OEM image as well... (not tested) **OEM upgrade info:** The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. **Note on eth0 PLL-data:** The default Ethernet Configuration register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For AR934x series, the PLL registers for eth0 can be see in the DTSI as 0x2c. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 **Note on WatchGuard Magic string:** The OEM upgrade script is a modified version of the generic Senao sysupgrade script which is used on EnGenius devices. On WatchGuard boards produced by Senao, images are verified using a md5sum checksum of the upgrade image concatenated with a magic string. this checksum is then appended to the end of the final image. This variable does not apply to all the senao devices so set to null string as default Tested-by: Steve Wheeler <stephenw10@gmail.com> Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao WatchGuard AP200Michael Pratt2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-CAP4200AG WatchGuard AP200 is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP600 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - AR9382 WLAN PCI card 168c:0030, 5 GHz, 2x2, 26dBm - AR8035-A EPHY RGMII GbE with PoE+ IN - 25 MHz clock - 16 MB FLASH mx25l12805d - 2x 64 MB RAM - UART console J11, populated - GPIO watchdog GPIO 16, 20 sec toggle - 4 antennas 5 dBi, internal omni-directional plates - 5 LEDs power, eth0 link/data, 2G, 5G - 1 button reset **MAC addresses:** Label has no MAC Only one Vendor MAC address in flash at art 0x0 eth0 ---- *:be art 0x0 -2 phy1 ---- *:bf art 0x0 -1 phy0 ---- *:be art 0x0 -2 **Installation:** Method 1: OEM webpage use OEM webpage for firmware upgrade to upload factory.bin Method 2: root shell It may be necessary to use a Watchguard router to flash the image to the AP and / or to downgrade the software on the AP to access SSH For some Watchguard devices, serial console over UART is disabled. NOTE: DHCP is not enabled by default after flashing **TFTP recovery:** reset button has no function at boot time only possible with modified uboot environment, (see commit message for Watchguard AP300) **Return to OEM:** user should make backup of MTD partitions and write the backups back to mtd devices in order to revert to OEM reliably It may be possible to use sysupgrade with an OEM image as well... (not tested) **OEM upgrade info:** The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. **Note on eth0 PLL-data:** The default Ethernet Configuration register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For AR934x series, the PLL registers for eth0 can be see in the DTSI as 0x2c. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 **Note on WatchGuard Magic string:** The OEM upgrade script is a modified version of the generic Senao sysupgrade script which is used on EnGenius devices. On WatchGuard boards produced by Senao, images are verified using a md5sum checksum of the upgrade image concatenated with a magic string. this checksum is then appended to the end of the final image. This variable does not apply to all the senao devices so set to null string as default Tested-by: Steve Wheeler <stephenw10@gmail.com> Tested-by: John Delaney <johnd@ankco.net> Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao WatchGuard AP300Michael Pratt2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: Q6G-AP300 WatchGuard AP300 is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1750 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3 - QCA9880 WLAN PCI card 168c:003c, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 32 MB FLASH S25FL512S - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated - GPIO watchdog GPIO 16, 20 sec toggle - 6 antennas 5 dBi, internal omni-directional plates - 5 LEDs power, eth0 link/data, 2G, 5G - 1 button reset **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:3c art 0x0 phy1 ---- *:3d --- phy0 ---- *:3e --- **Serial console access:** For this board, its not certain whether UART is possible it is likely that software is blocking console access the RX line on the board for UART is shorted to ground by resistor R176 the resistors R175 and R176 are next to the UART RX pin at J10 however console output is garbage even after this fix **Installation:** Method 1: OEM webpage use OEM webpage for firmware upgrade to upload factory.bin Method 2: root shell access downgrade XTM firewall to v2.0.0.1 downgrade AP300 firmware: v1.0.1 remove / unpair AP from controller perform factory reset with reset button connect ethernet to a computer login to OEM webpage with default address / pass: wgwap enable SSHD in OEM webpage settings access root shell with SSH as user 'root' modify uboot environment to automatically try TFTP at boot time (see command below) rename initramfs-kernel.bin to test.bin load test.bin over TFTP (see TFTP recovery) (optionally backup all mtdblocks to have flash backup) perform a sysupgrade with sysupgrade.bin NOTE: DHCP is not enabled by default after flashing **TFTP recovery:** server ip: 192.168.1.101 reset button seems to do nothing at boot time... only possible with modified uboot environment, running this command in the root shell: fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi' and verify that it is correct with fw_printenv then, before boot, the device will attempt TFTP from 192.168.1.101 looking for file 'test.bin' to return uboot environment to normal: fw_setenv bootcmd 'bootm 0x9f0a0000' **Return to OEM:** user should make backup of MTD partitions and write the backups back to mtd devices in order to revert to OEM (see installation method 2) It may be possible to use sysupgrade with an OEM image as well... (not tested) **OEM upgrade info:** The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. **Note on eth0 PLL-data:** The default Ethernet Configuration register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode`. Therefore the PLL registers for GMAC0 do not need the bits for delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 **Note on WatchGuard Magic string:** The OEM upgrade script is a modified version of the generic Senao sysupgrade script which is used on EnGenius devices. On WatchGuard boards produced by Senao, images are verified using a md5sum checksum of the upgrade image concatenated with a magic string. this checksum is then appended to the end of the final image. This variable does not apply to all the senao devices so set to null string as default Tested-by: Alessandro Kornowski <ak@wski.org> Tested-by: John Wagner <john@wagner.us.org> Signed-off-by: Michael Pratt <mcpratt@pm.me>
* kernel: modules: package kmod-crypto-essivDaniel Golle2022-09-111-0/+12
| | | | | | Package kernel module providing ESSIV support for block encryption. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ath79: support Ruckus ZoneFlex 7321Lech Perczak2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise access point. It is very similar to its bigger brother, ZoneFlex 7372. Hardware highligts: - CPU: Atheros AR9342 SoC at 533 MHz - RAM: 64MB DDR2 - Flash: 32MB SPI-NOR - Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio - Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY - PoE: input through Gigabit port - Standalone 12V/1A power input - USB: optional single USB 2.0 host port on the 7321-U variant. Serial console: 115200-8-N-1 on internal H1 header. Pinout: H1 ---------- |1|x3|4|5| ---------- Pin 1 is near the "H1" marking. 1 - RX x - no pin 3 - VCC (3.3V) 4 - GND 5 - TX JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard, but without the key in pin 12 and not every pin routed: ------- H5 |1 |2 | ------- |3 |4 | ------- |5 |6 | ------- |7 |8 | ------- |9 |10| ------- |11|12| ------- |13|14| ------- 3 - TDI 5 - TDO 7 - TMS 9 - TCK 2,4,6,8,10 - GND 14 - Vref 1,11,12,13 - Not connected Installation: There are two methods of installation: - Using serial console [1] - requires some disassembly, 3.3V USB-Serial adapter, TFTP server, and removing a single T10 screw, but with much less manual steps, and is generally recommended, being safer. - Using stock firmware root shell exploit, SSH and TFTP [2]. Does not work on some rare versions of stock firmware. A more involved, and requires installing `mkenvimage` from u-boot-tools package if you choose to rebuild your own environment, but can be used without disassembly or removal from installation point, if you have the credentials. If for some reason, size of your sysupgrade image exceeds 13312kB, proceed with method [1]. For official images this is not likely to happen ever. [1] Using serial console: 0. Connect serial console to H1 header. Ensure the serial converter does not back-power the board, otherwise it will fail to boot. 1. Power-on the board. Then quickly connect serial converter to PC and hit Ctrl+C in the terminal to break boot sequence. If you're lucky, you'll enter U-boot shell. Then skip to point 3. Connection parameters are 115200-8-N-1. 2. Allow the board to boot. Press the reset button, so the board reboots into U-boot again and go back to point 1. 3. Set the "bootcmd" variable to disable the dual-boot feature of the system and ensure that uImage is loaded. This is critical step, and needs to be done only on initial installation. > setenv bootcmd "bootm 0x9f040000" > saveenv 4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed: > setenv serverip 192.168.1.2 > setenv ipaddr 192.168.1.1 > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin > bootm 0x81000000 5. Optional, but highly recommended: back up contents of "firmware" partition: $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin 6. Copy over sysupgrade image, and perform actual installation. OpenWrt shall boot from flash afterwards: $ ssh root@192.168.1.1 # sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin [2] Using stock root shell: 0. Reset the device to factory defaullts. Power-on the device and after it boots, hold the reset button near Ethernet connectors for 5 seconds. 1. Connect the device to the network. It will acquire address over DHCP, so either find its address using list of DHCP leases by looking for label MAC address, or try finding it by scanning for SSH port: $ nmap 10.42.0.0/24 -p22 From now on, we assume your computer has address 10.42.0.1 and the device has address 10.42.0.254. 2. Set up a TFTP server on your computer. We assume that TFTP server root is at /srv/tftp. 3. Obtain root shell. Connect to the device over SSH. The SSHD ond the frmware is pretty ancient and requires enabling HMAC-MD5. $ ssh 10.42.0.254 \ -o UserKnownHostsFile=/dev/null \ -o StrictHostKeyCheking=no \ -o MACs=hmac-md5 Login. User is "super", password is "sp-admin". Now execute a hidden command: Ruckus It is case-sensitive. Copy and paste the following string, including quotes. There will be no output on the console for that. ";/bin/sh;" Hit "enter". The AP will respond with: grrrr OK Now execute another hidden command: !v54! At "What's your chow?" prompt just hit "enter". Congratulations, you should now be dropped to Busybox shell with root permissions. 4. Optional, but highly recommended: backup the flash contents before installation. At your PC ensure the device can write the firmware over TFTP: $ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin $ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin Locate partitions for primary and secondary firmware image. NEVER blindly copy over MTD nodes, because MTD indices change depending on the currently active firmware, and all partitions are writable! # grep rcks_wlan /proc/mtd Copy over both images using TFTP, this will be useful in case you'd like to return to stock FW in future. Make sure to backup both, as OpenWrt uses bot firmwre partitions for storage! # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1 # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1 When the command finishes, copy over the dump to a safe place for storage. $ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/ 5. Ensure the system is running from the BACKUP image, i.e. from rcks_wlan.bkup partition or "image 2". Otherwise the installation WILL fail, and you will need to access mtd0 device to write image which risks overwriting the bootloader, and so is not covered here and not supported. Switching to backup firmware can be achieved by executing a few consecutive reboots of the device, or by updating the stock firmware. The system will boot from the image it was not running from previously. Stock firmware available to update was conveniently dumped in point 4 :-) 6. Prepare U-boot environment image. Install u-boot-tools package. Alternatively, if you build your own images, OpenWrt provides mkenvimage in host staging directory as well. It is recommended to extract environment from the device, and modify it, rather then relying on defaults: $ sudo touch /srv/tftp/u-boot-env.bin $ sudo chmod 666 /srv/tftp/u-boot-env.bin On the device, find the MTD partition on which environment resides. Beware, it may change depending on currently active firmware image! # grep u-boot-env /proc/mtd Now, copy over the partition # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1 Store the stock environment in a safe place: $ cp /srv/tftp/u-boot-env.bin ~/ Extract the values from the dump: $ strings u-boot-env.bin | tee u-boot-env.txt Now clean up the debris at the end of output, you should end up with each variable defined once. After that, set the bootcmd variable like this: bootcmd=bootm 0x9f040000 You should end up with something like this: bootcmd=bootm 0x9f040000 bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init baudrate=115200 ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup) mtdids=nor0=ar7100-nor0 bootdelay=2 ethact=eth0 filesize=78a000 fileaddr=81000000 partition=nor0,0 mtddevnum=0 mtddevname=u-boot ipaddr=10.0.0.1 serverip=10.0.0.5 stdin=serial stdout=serial stderr=serial These are the defaults, you can use most likely just this as input to mkenvimage. Now, create environment image and copy it over to TFTP root: $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt $ sudo cp u-boot-env.bin /srv/tftp This is the same image, gzipped and base64-encoded: H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0 Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T 1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2 z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA== 7. Perform actual installation. Copy over OpenWrt sysupgrade image to TFTP root: $ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp Now load both to the device over TFTP: # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1 # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1 Vverify checksums of both images to ensure the transfer over TFTP was completed: # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin And compare it against source images: $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin Locate MTD partition of the primary image: # grep rcks_wlan.main /proc/mtd Now, write the images in place. Write U-boot environment last, so unit still can boot from backup image, should power failure occur during this. Replace MTD placeholders with real MTD nodes: # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd> # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd> Finally, reboot the device. The device should directly boot into OpenWrt. Look for the characteristic power LED blinking pattern. # reboot -f After unit boots, it should be available at the usual 192.168.1.1/24. Return to factory firmware: 1. Boot into OpenWrt initramfs as for initial installation. To do that without disassembly, you can write an initramfs image to the device using 'sysupgrade -F' first. 2. Unset the "bootcmd" variable: fw_setenv bootcmd "" 3. Write factory images downloaded from manufacturer website into fwconcat0 and fwconcat1 MTD partitions, or restore backup you took before installation: mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1 mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5 4. Reboot the system, it should load into factory firmware again. Quirks and known issues: - Flash layout is changed from the factory, to use both firmware image partitions for storage using mtd-concat, and uImage format is used to actually boot the system, which rules out the dual-boot capability. - The 5GHz radio has its own EEPROM on board, not connected to CPU. - The stock firmware has dual-boot capability, which is not supported in OpenWrt by choice. It is controlled by data in the top 64kB of RAM which is unmapped, to avoid the interference in the boot process and accidental switch to the inactive image, although boot script presence in form of "bootcmd" variable should prevent this entirely. - U-boot disables JTAG when starting. To re-enable it, you need to execute the following command before booting: mw.l 1804006c 40 And also you need to disable the reset button in device tree if you intend to debug Linux, because reset button on GPIO0 shares the TCK pin. - On some versions of stock firmware, it is possible to obtain root shell, however not much is available in terms of debugging facitilies. 1. Login to the rkscli 2. Execute hidden command "Ruckus" 3. Copy and paste ";/bin/sh;" including quotes. This is required only once, the payload will be stored in writable filesystem. 4. Execute hidden command "!v54!". Press Enter leaving empty reply for "What's your chow?" prompt. 5. Busybox shell shall open. Source: https://alephsecurity.com/vulns/aleph-2019014 Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ath79: support Ruckus ZoneFlex 7372Lech Perczak2022-09-111-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise access point. Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part. Hardware highligts: - CPU: Atheros AR9344 SoC at 560 MHz - RAM: 128MB DDR2 - Flash: 32MB SPI-NOR - Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio - Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372) - Antennas: - Separate internal active antennas with beamforming support on both bands with 7 elements per band, each controlled by 74LV164 GPIO expanders, attached to GPIOs of each radio. - Two dual-band external RP-SMA antenna connections on "7372-E" variant. - Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY - Ethernet 2: single Fast Ethernet port through AR9344 built-in switch - PoE: input through Gigabit port - Standalone 12V/1A power input - USB: optional single USB 2.0 host port on "-U" variants. The same image should support: - ZoneFlex 7372E (variant with external antennas, without beamforming capability) - ZoneFlex 7352 (single-band, 2.4GHz-only variant). which are based on same baseboard (codename St. Bernard), with different populated components. Serial console: 115200-8-N-1 on internal H1 header. Pinout: H1 --- |5| --- |4| --- |3| --- |x| --- |1| --- Pin 5 is near the "H1" marking. 1 - RX x - no pin 3 - VCC (3.3V) 4 - GND 5 - TX JTAG: Connector H2, similar to MIPS eJTAG, standard, but without the key in pin 12 and not every pin routed: ------- H2 |1 |2 | ------- |3 |4 | ------- |5 |6 | ------- |7 |8 | ------- |9 |10| ------- |11|12| ------- |13|14| ------- 3 - TDI 5 - TDO 7 - TMS 9 - TCK 2,4,6,8,10 - GND 14 - Vref 1,11,12,13 - Not connected Installation: There are two methods of installation: - Using serial console [1] - requires some disassembly, 3.3V USB-Serial adapter, TFTP server, and removing a single T10 screw, but with much less manual steps, and is generally recommended, being safer. - Using stock firmware root shell exploit, SSH and TFTP [2]. Does not work on some rare versions of stock firmware. A more involved, and requires installing `mkenvimage` from u-boot-tools package if you choose to rebuild your own environment, but can be used without disassembly or removal from installation point, if you have the credentials. If for some reason, size of your sysupgrade image exceeds 13312kB, proceed with method [1]. For official images this is not likely to happen ever. [1] Using serial console: 0. Connect serial console to H1 header. Ensure the serial converter does not back-power the board, otherwise it will fail to boot. 1. Power-on the board. Then quickly connect serial converter to PC and hit Ctrl+C in the terminal to break boot sequence. If you're lucky, you'll enter U-boot shell. Then skip to point 3. Connection parameters are 115200-8-N-1. 2. Allow the board to boot. Press the reset button, so the board reboots into U-boot again and go back to point 1. 3. Set the "bootcmd" variable to disable the dual-boot feature of the system and ensure that uImage is loaded. This is critical step, and needs to be done only on initial installation. > setenv bootcmd "bootm 0x9f040000" > saveenv 4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed: > setenv serverip 192.168.1.2 > setenv ipaddr 192.168.1.1 > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin > bootm 0x81000000 5. Optional, but highly recommended: back up contents of "firmware" partition: $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin 6. Copy over sysupgrade image, and perform actual installation. OpenWrt shall boot from flash afterwards: $ ssh root@192.168.1.1 # sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin [2] Using stock root shell: 0. Reset the device to factory defaullts. Power-on the device and after it boots, hold the reset button near Ethernet connectors for 5 seconds. 1. Connect the device to the network. It will acquire address over DHCP, so either find its address using list of DHCP leases by looking for label MAC address, or try finding it by scanning for SSH port: $ nmap 10.42.0.0/24 -p22 From now on, we assume your computer has address 10.42.0.1 and the device has address 10.42.0.254. 2. Set up a TFTP server on your computer. We assume that TFTP server root is at /srv/tftp. 3. Obtain root shell. Connect to the device over SSH. The SSHD ond the frmware is pretty ancient and requires enabling HMAC-MD5. $ ssh 10.42.0.254 \ -o UserKnownHostsFile=/dev/null \ -o StrictHostKeyCheking=no \ -o MACs=hmac-md5 Login. User is "super", password is "sp-admin". Now execute a hidden command: Ruckus It is case-sensitive. Copy and paste the following string, including quotes. There will be no output on the console for that. ";/bin/sh;" Hit "enter". The AP will respond with: grrrr OK Now execute another hidden command: !v54! At "What's your chow?" prompt just hit "enter". Congratulations, you should now be dropped to Busybox shell with root permissions. 4. Optional, but highly recommended: backup the flash contents before installation. At your PC ensure the device can write the firmware over TFTP: $ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin $ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin Locate partitions for primary and secondary firmware image. NEVER blindly copy over MTD nodes, because MTD indices change depending on the currently active firmware, and all partitions are writable! # grep rcks_wlan /proc/mtd Copy over both images using TFTP, this will be useful in case you'd like to return to stock FW in future. Make sure to backup both, as OpenWrt uses bot firmwre partitions for storage! # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1 # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1 When the command finishes, copy over the dump to a safe place for storage. $ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/ 5. Ensure the system is running from the BACKUP image, i.e. from rcks_wlan.bkup partition or "image 2". Otherwise the installation WILL fail, and you will need to access mtd0 device to write image which risks overwriting the bootloader, and so is not covered here and not supported. Switching to backup firmware can be achieved by executing a few consecutive reboots of the device, or by updating the stock firmware. The system will boot from the image it was not running from previously. Stock firmware available to update was conveniently dumped in point 4 :-) 6. Prepare U-boot environment image. Install u-boot-tools package. Alternatively, if you build your own images, OpenWrt provides mkenvimage in host staging directory as well. It is recommended to extract environment from the device, and modify it, rather then relying on defaults: $ sudo touch /srv/tftp/u-boot-env.bin $ sudo chmod 666 /srv/tftp/u-boot-env.bin On the device, find the MTD partition on which environment resides. Beware, it may change depending on currently active firmware image! # grep u-boot-env /proc/mtd Now, copy over the partition # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1 Store the stock environment in a safe place: $ cp /srv/tftp/u-boot-env.bin ~/ Extract the values from the dump: $ strings u-boot-env.bin | tee u-boot-env.txt Now clean up the debris at the end of output, you should end up with each variable defined once. After that, set the bootcmd variable like this: bootcmd=bootm 0x9f040000 You should end up with something like this: bootcmd=bootm 0x9f040000 bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init baudrate=115200 ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee bootdelay=2 mtdids=nor0=ar7100-nor0 mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup) ethact=eth0 filesize=1000000 fileaddr=81000000 ipaddr=192.168.0.7 serverip=192.168.0.51 partition=nor0,0 mtddevnum=0 mtddevname=u-boot stdin=serial stdout=serial stderr=serial These are the defaults, you can use most likely just this as input to mkenvimage. Now, create environment image and copy it over to TFTP root: $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt $ sudo cp u-boot-env.bin /srv/tftp This is the same image, gzipped and base64-encoded: H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7 Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2 X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA== 7. Perform actual installation. Copy over OpenWrt sysupgrade image to TFTP root: $ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp Now load both to the device over TFTP: # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1 # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1 Verify checksums of both images to ensure the transfer over TFTP was completed: # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin And compare it against source images: $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin Locate MTD partition of the primary image: # grep rcks_wlan.main /proc/mtd Now, write the images in place. Write U-boot environment last, so unit still can boot from backup image, should power failure occur during this. Replace MTD placeholders with real MTD nodes: # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd> # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd> Finally, reboot the device. The device should directly boot into OpenWrt. Look for the characteristic power LED blinking pattern. # reboot -f After unit boots, it should be available at the usual 192.168.1.1/24. Return to factory firmware: 1. Boot into OpenWrt initramfs as for initial installation. To do that without disassembly, you can write an initramfs image to the device using 'sysupgrade -F' first. 2. Unset the "bootcmd" variable: fw_setenv bootcmd "" 3. Write factory images downloaded from manufacturer website into fwconcat0 and fwconcat1 MTD partitions, or restore backup you took before installation: mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1 mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5 4. Reboot the system, it should load into factory firmware again. Quirks and known issues: - This is first device in ath79 target to support link state reporting on FE port attached trough the built-in switch. - Flash layout is changed from the factory, to use both firmware image partitions for storage using mtd-concat, and uImage format is used to actually boot the system, which rules out the dual-boot capability. The 5GHz radio has its own EEPROM on board, not connected to CPU. - The stock firmware has dual-boot capability, which is not supported in OpenWrt by choice. It is controlled by data in the top 64kB of RAM which is unmapped, to avoid the interference in the boot process and accidental switch to the inactive image, although boot script presence in form of "bootcmd" variable should prevent this entirely. - U-boot disables JTAG when starting. To re-enable it, you need to execute the following command before booting: mw.l 1804006c 40 And also you need to disable the reset button in device tree if you intend to debug Linux, because reset button on GPIO0 shares the TCK pin. - On some versions of stock firmware, it is possible to obtain root shell, however not much is available in terms of debugging facitilies. 1. Login to the rkscli 2. Execute hidden command "Ruckus" 3. Copy and paste ";/bin/sh;" including quotes. This is required only once, the payload will be stored in writable filesystem. 4. Execute hidden command "!v54!". Press Enter leaving empty reply for "What's your chow?" prompt. 5. Busybox shell shall open. Source: https://alephsecurity.com/vulns/aleph-2019014 - Stock firmware has beamforming functionality, known as BeamFlex, using active multi-segment antennas on both bands - controlled by RF analog switches, driven by a pair of 74LV164 shift registers. Shift registers used for each radio are connected to GPIO14 (clock) and GPIO15 of the respective chip. They are mapped as generic GPIOs in OpenWrt - in stock firmware, they were most likely handled directly by radio firmware, given the real-time nature of their control. Lack of this support in OpenWrt causes the antennas to behave as ordinary omnidirectional antennas, and does not affect throughput in normal conditions, but GPIOs are available to tinker with nonetheless. Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ramips: add support for Linksys E7350Rosen Penev2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | Linksys E7350 is an 802.11ax (Wi-Fi 6) router, based on MediaTek MT7621A. Specifications: - SoC: MT7621 (880MHz, 2 Cores) - RAM: 256 MB - Flash: 128 MB NAND - Wi-Fi: - MT7915D: 2.4/5 GHz (DBDC) - Ethernet: 5x 1GiE MT7530 - USB: 1x USB 3.0 - UART: J4 (57600 baud) - Pinout: [3V3] (TXD) (RXD) (blank) (GND) Notes: * This device has a dual-boot partition scheme, but this firmware works only on boot partition 1. Installation: Upload the generated factory.bin image via the stock web firmware updater. Signed-off-by: Rosen Penev <rosenp@gmail.com>
* ramips: add support for Belkin RT1800Rosen Penev2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | Belkin RT1800 is an 802.11ax (Wi-Fi 6) router, based on MediaTek MT7621A. Specifications: - SoC: MT7621 (880MHz, 2 Cores) - RAM: 256 MB - Flash: 128 MB NAND - Wi-Fi: - MT7915D: 2.4/5 GHz (DBDC) - Ethernet: 5x 1GiE MT7530 - USB: 1x USB 3.0 - UART: J4 (57600 baud) - Pinout: [3V3] (TXD) (RXD) (blank) (GND) Notes: * This device has a dual-boot partition scheme, but this firmware works only on boot partition 1. Installation: Upload the generated factory.bin image via the stock web firmware updater. Signed-off-by: Rosen Penev <rosenp@gmail.com>
* ramips: add support for Kroks Rt-Cse SIM Injector DSAndrey Butirsky2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Aka Kroks Rt-Cse5 UW DRSIM (KNdRt31R16), ID 1958: https://kroks.ru/search/?text=1958 See Kroks OpenWrt fork for support of other models: https://github.com/kroks-free/openwrt Device specs: - CPU: MediaTek MT7628AN - Flash: 16MB SPI NOR - RAM: 64MB - Bootloader: U-Boot - Ethernet: 5x 10/100 Mbps - 2.4 GHz: b/g/n SoC - USB: 1x - SIM-reader: 2x (driven by a dedicated chip with it's own firmware) - Buttons: reset - LEDs: 1x Power, 1x Wi-Fi, 12x others (SIM status, Internet, etc.) Flashing: - sysupgrade image via stock firmware WEB interface, IP: 192.168.1.254 - U-Boot launches a WEB server if Reset button is held during power up, IP: 192.168.1.1 MAC addresses as verified by OEM firmware: vendor OpenWrt source LAN eth0 factory 0x4 (label) 2g wlan0 label Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
* ramips: add support for Kroks Rt-Pot mXw DS RSIM routerAndrey Butirsky2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Aka "Kroks KNdRt31R19". Ported from v19.07.8 of OpenWrt fork: see https://github.com/kroks-free/openwrt for support of other models. Device specs: - CPU: MediaTek MT7628AN - Flash: 16MB SPI NOR - RAM: 64MB - Bootloader: U-Boot - Ethernet: 1x 10/100 Mbps - 2.4 GHz: b/g/n SoC - mPCIe: 1x (usually equipped with an LTE modem by vendor) - Buttons: reset - LEDs: 1x Modem, 1x Injector, 1x Wi-Fi, 1x Status Flashing: - sysupgrade image via stock firmware WEB interface. - U-Boot launches a WEB server if Reset button is held during power up. Server IP: 192.168.1.1 SIM card switching: The device supports up to 4 SIM cards - 2 locally on board and 2 on remote SIM-injector. By default, 1-st local SIM is active. To switch to e.g. 1-st remote SIM: echo 0 > /sys/class/gpio/modem1power/value echo 0 > /sys/class/gpio/modem1sim1/value echo 1 > /sys/class/gpio/modem1rsim1/value echo 1 > /sys/class/gpio/modem1power/value MAC addresses as verified by OEM firmware: vendor OpenWrt source LAN eth0 factory 0x4 (label) 2g wlan0 label Signed-off-by: Kroks <dev@kroks.ru> [butirsky@gmail.com: port to master; drop dts-v1] Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
* lldpd: update to 1.0.15Nick Hainke2022-09-111-2/+2
| | | | | | | Release Notes: https://github.com/lldpd/lldpd/releases/tag/1.0.15 Signed-off-by: Nick Hainke <vincent@systemli.org>
* libbsd: update to 0.11.6Nick Hainke2022-09-111-3/+3
| | | | | | | | | | | Update to latest version. Needs libmd. Old size: 37615 libbsd0_0.10.0-1_aarch64_cortex-a53.ipk new size (libmd linked static): 38514 libbsd0_0.11.6-1_aarch64_cortex-a53.ipk Signed-off-by: Nick Hainke <vincent@systemli.org>
* libmd: add library providing message digest functionsNick Hainke2022-09-111-0/+47
| | | | | | This library is needed by >= libbsd-0.11.3. Signed-off-by: Nick Hainke <vincent@systemli.org>
* iproute2: add missing libbpf dependencyKien Truong2022-09-111-1/+1
| | | | | | | | | | | | | | | | | | This patch adds libbpf to the dependencies of tc-mod-iptables. The package tc-mod-iptables is missing libbpf as a dependency, which leads to the build failure described in bug #9491 LIBBPF_FORCE=on set, but couldn't find a usable libbpf The build dependency is already automatically added because some other packages from iproute2 depend on libbpf, but bpftools has multiple build variants. With multiple build variants none gets build by default and the build system will not build bpftools before iproute2. Fixes: #9491 Signed-off-by: Kien Truong <duckientruong@gmail.com> Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
* px5g-wolfssl: replace unnecessary strncmp()Jian Huang2022-09-111-21/+21
| | | | | | Replace some of the calls to strncmp() with strcmp(). Signed-off-by: Jian Huang <JyanHw@outlook.com>
* realtek: add support for TP-Link SG2452P v4 aka T1600G-52PS v4Andreas Böhler2022-09-101-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is an RTL8393-based switch with 802.3af on all 48 ports. Specifications: --------------- * SoC: Realtek RTL8393M * Flash: 32 MiB SPI flash * RAM: 256 MiB * Ethernet: 48x 10/100/1000 Mbps with PoE+ * Buttons: 1x "Reset" button, 1x "Speed" button * UART: 1x serial header, unpopulated * PoE: 12x TI TPS23861 I2C PoE controller, 384W PoE budget * SFP: 4 SFP ports Works: ------ - (48) RJ-45 ethernet ports - Switch functions - Buttons - All LEDs on front panel except port LEDs - Fan monitoring and basic control Not yet enabled: ---------------- - PoE - ICs are not in AUTO mode, so the kernel driver is not usable - Port LEDs - SFP cages Install via web interface: ------------------------- Not supported at this time. Install via serial console/tftp: -------------------------------- The U-Boot firmware drops to a TP-Link specific "BOOTUTIL" shell at 38400 baud. There is no known way to exit out of this shell, and no way to do anything useful. Ideally, one would trick the bootloader into flashing the sysupgrade image first. However, if the image exceeds 6MiB in size, it will not work. To install OpenWRT: Prepare a tftp server with: 1. server address: 192.168.0.146 2. the image as: "uImage.img" Power on device, and stop boot by pressing any key. Once the shell is active: 1. Ground out the CLK (pin 16) of the ROM (U6) 2. Select option "3. Start" 3. Bootloader notes that "The kernel has been damaged!" 4. Release CLK as soon as bootloader thinks image is corrupted. 5. Bootloader enters automatic recovery -- details printed on console 6. Watch as the bootloader flashes and boots OpenWRT. Blind install via tftp: ----------------------- This method works when it's not feasible to install a serial header. Prepare a tftp server with: 1. server address: 192.168.0.146 2. the image as: "uImage.img" 3. Watch network traffic (tcpdump or wireshark works) 4. Power on the device. 5. Wait 1-2 seconds then ground out the CLK (pin 16) of the ROM (U6) 6. When 192.168.0.30 makes tftp requests, release pin 16 7. Wait 2-3 minutes for device to auto-flash and boot OpenWRT Signed-off-by: Andreas Böhler <dev@aboehler.at>
* base-files: rename ethernet devs on known boardsMartin Kennedy2022-09-102-0/+51
| | | | | | | | | | | | | | | | Some platforms lack an established way to name netdevs; for example, on x86, PCIe-based ethernet interfaces will be named starting from eth0 in the order they are probed. This is a problem for many devices supported explicitly by OpenWrt which have hard-wired, standalone or on-CPU NICs not supported by DSA (which is usually used to rename the ports based on their ostensible function). To fix this, add a mapping between ethernet device name and sysfs device path to board.json; this allows us to configure ethernet device names we know about for a given board so that they correspond to external labeling. Signed-off-by: Martin Kennedy <hurricos@gmail.com>
* mediatek: filogic: use WPS button instead of RST on BPi-R3Daniel Golle2022-09-101-3/+3
| | | | | | | | | The GPIO used for the RST button is also used for PCIe-CLKREQ signal. Hence it cannot be used as button signal if PCIe is also used. Wire up WPS button to serve as KEY_RESTART in Linux and "reset" button in U-Boot. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* kernel: fix Aquantia AQtion Atlantic module dependenciesDaniel Golle2022-09-101-1/+1
| | | | | | | | | | | | | | | | | | The buildbot revealed that Package kmod-atlantic is missing dependencies for the following libraries: hwmon.ko macsec.ko make[2]: *** [modules/netdevices.mk:1474: /builder/shared-workdir/build/bin/targets/mediatek/mt7629/packages/kmod-atlantic_5.15.67-1_arm_cortex-a7.ipk] Error 1 make[2]: Leaving directory '/builder/shared-workdir/build/package/kernel/linux' time: package/kernel/linux/compile#43.51#17.03#415.37 ERROR: package/kernel/linux failed to build. make[1]: *** [package/Makefile:116: package/kernel/linux/compile] Error 1 make[1]: *** Waiting for unfinished jobs.... Add those missing dependencies to fix the build. Fixes: d02e887d7c ("kernel: add Aquantia AQtion Atlantic 10Gbps Ethernet") Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* base-files: support "metric" in board.jsonRafał Miłecki2022-09-101-1/+2
| | | | | | | It allows prepopulating /etc/config/network interface-s with predefined metric. It may be useful for devices with multiple WAN ports. Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
* kernel: add Aquantia AQtion Atlantic 10Gbps EthernetMehdi Ahmadi2022-09-101-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Driver support for Aquantia AQtion Atlantic 10Gbps Ethernet NIC with the AQC107, AQC108 and others chipsets found on: - TP-Link: TX401 - Asus: XG-C100C, ROG Areion 10G NIC - & more ... Successfully tested using a build with 22.03.0-rc6 (x86_64/EFI image) and the following outputs: ``` [ 3.092053] pci 0000:06:00.0: [1d6a:07b1] type 00 class 0x020000 [ 3.094983] pci 0000:06:00.0: reg 0x10: [mem 0x50800000-0x5080ffff 64bit] [ 3.098880] pci 0000:06:00.0: reg 0x18: [mem 0x50810000-0x50810fff 64bit] [ 3.108868] pci 0000:06:00.0: reg 0x20: [mem 0x50400000-0x507fffff 64bit] [ 3.108883] pci 0000:06:00.0: enabling Extended Tags [ 3.118874] pci 0000:06:00.0: supports D1 D2 [ 3.118874] pci 0000:06:00.0: PME# supported from D0 D1 D2 D3hot D3cold [ 3.128891] pci 0000:06:00.0: 7.876 Gb/s available PCIe bandwidth, limited by 8.0 GT/s PCIe x1 link at 0000:00:1d.0 (capable of 31.504 Gb/s with 8.0 GT/s PCIe x4 link) [ 10.312793] atlantic 0000:06:00.0: enabling device (0000 -> 0002) [ 23.223813] atlantic 0000:06:00.0 eth0: atlantic: link change old 0 new 10000 lsmod && uname -ar ; # atlantic 147456 0 # # // ... # Linux version 5.10.138 (vagrant@make-host) (x86_64-openwrt-linux-musl-gcc (OpenWrt GCC 11.3.0 r20430-18a2b29aa1) 11.3.0, GNU ld (GNU Binutils) 2.37) #0 SMP Mon Aug 29 09:54:00 2022 ``` Signed-off-by: Mehdi Ahmadi <aphorise@gmail.com> Reviewed-by: Robert Marko <robimarko@gmail.com> [ fix wrong commit author as requested by author itself ] Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
* linux-firmware: package MediaTek MT792[12] Bluetooth firmwareDaniel Golle2022-09-091-0/+18
| | | | | | | | | | | btusb fails to start on MT792[12] hardware without the appropriate firmware being loaded first: [ 9.750285] bluetooth hci0: Direct firmware load for mediatek/BT_RAM_CODE_MT7961_1_2_hdr.bin failed with error -2 [ 9.765723] bluetooth hci0: Falling back to sysfs fallback for: mediatek/BT_RAM_CODE_MT7961_1_2_hdr.bin Package firmware for MediaTek MT792[12] Bluetooth from linux-firmware. Signed-off-by: Daniel Golle <daniel@makrotopia.org>