aboutsummaryrefslogtreecommitdiffstats
path: root/.gitignore
Commit message (Expand)AuthorAgeFilesLines
* .gitignore: Ignore Emacs editor generated filesVasilis Tsiligiannis2011-10-311-0/+4
* add vim temp files (*~) to .gitignoreJo-Philipp Wich2011-04-291-0/+1
* gitignore: add *.rej and *.orig to .gitignoreFlorian Fainelli2011-04-031-0/+2
* .gitignore: add *.o and .DS_Store by default - apparently some git versions d...Felix Fietkau2010-12-041-0/+2
* .gitignore: Undo accidental commit.Daniel Dickinson2010-05-101-0/+3
* brcm-2.4: Fixed preinit and failsafe switch configurationDaniel Dickinson2010-05-101-3/+0
* .gitignore: ignore vim swap filesFelix Fietkau2009-12-161-0/+1
* add logs/ to .gitignoreFelix Fietkau2009-04-241-0/+1
* add feeds.conf to .gitignoreFelix Fietkau2008-09-231-0/+1
* add missing gitignore change for build environmentsFelix Fietkau2008-08-061-0/+1
* update svn:ignore and .gitignoreFelix Fietkau2008-06-061-6/+6
* add package/openwrt-packages to .gitignoreFelix Fietkau2008-02-091-0/+1
* add package/feeds to .gitignoreFelix Fietkau2007-10-131-0/+1
* add feeds to .gitignoreFelix Fietkau2007-10-091-0/+1
* update svn and git ignore settingsFelix Fietkau2007-08-071-1/+1
* make top-level .gitignore only apply to top-level files/directories (#1960)Felix Fietkau2007-06-251-8/+8
* Add gitignore filesFelix Fietkau2007-05-291-0/+8
206'>206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/*
 *  Copyright (c) 2003-2007, Virtual Iron Software, Inc.
 *
 *  Portions have been modified by Virtual Iron Software, Inc.
 *  (c) 2007. This file and the modifications can be redistributed and/or
 *  modified under the terms and conditions of the GNU General Public
 *  License, version 2.1 and not any later version of the GPL, as published
 *  by the Free Software Foundation. 
 *
 *  This improves the performance of Standard VGA,
 *  the mode used during Windows boot and by the Linux
 *  splash screen.
 *
 *  It does so by buffering all the stdvga programmed output ops
 *  and memory mapped ops (both reads and writes) that are sent to QEMU.
 *
 *  We maintain locally essential VGA state so we can respond
 *  immediately to input and read ops without waiting for
 *  QEMU.  We snoop output and write ops to keep our state
 *  up-to-date.
 *
 *  PIO input ops are satisfied from cached state without
 *  bothering QEMU.
 *
 *  PIO output and mmio ops are passed through to QEMU, including
 *  mmio read ops.  This is necessary because mmio reads
 *  can have side effects.
 */

#include <xen/config.h>
#include <xen/types.h>
#include <xen/sched.h>
#include <xen/domain_page.h>
#include <asm/hvm/support.h>
#include <xen/numa.h>
#include <xen/paging.h>

#define VGA_MEM_BASE 0xa0000
#define VGA_MEM_SIZE 0x20000

#define PAT(x) (x)
static const uint32_t mask16[16] = {
    PAT(0x00000000),
    PAT(0x000000ff),
    PAT(0x0000ff00),
    PAT(0x0000ffff),
    PAT(0x00ff0000),
    PAT(0x00ff00ff),
    PAT(0x00ffff00),
    PAT(0x00ffffff),
    PAT(0xff000000),
    PAT(0xff0000ff),
    PAT(0xff00ff00),
    PAT(0xff00ffff),
    PAT(0xffff0000),
    PAT(0xffff00ff),
    PAT(0xffffff00),
    PAT(0xffffffff),
};

/* force some bits to zero */
static const uint8_t sr_mask[8] = {
    (uint8_t)~0xfc,
    (uint8_t)~0xc2,
    (uint8_t)~0xf0,
    (uint8_t)~0xc0,
    (uint8_t)~0xf1,
    (uint8_t)~0xff,
    (uint8_t)~0xff,
    (uint8_t)~0x00,
};

static const uint8_t gr_mask[9] = {
    (uint8_t)~0xf0, /* 0x00 */
    (uint8_t)~0xf0, /* 0x01 */
    (uint8_t)~0xf0, /* 0x02 */
    (uint8_t)~0xe0, /* 0x03 */
    (uint8_t)~0xfc, /* 0x04 */
    (uint8_t)~0x84, /* 0x05 */
    (uint8_t)~0xf0, /* 0x06 */
    (uint8_t)~0xf0, /* 0x07 */
    (uint8_t)~0x00, /* 0x08 */
};

static uint8_t *vram_getb(struct hvm_hw_stdvga *s, unsigned int a)
{
    struct page_info *pg = s->vram_page[(a >> 12) & 0x3f];
    uint8_t *p = __map_domain_page(pg);
    return &p[a & 0xfff];
}

static uint32_t *vram_getl(struct hvm_hw_stdvga *s, unsigned int a)
{
    struct page_info *pg = s->vram_page[(a >> 10) & 0x3f];
    uint32_t *p = __map_domain_page(pg);
    return &p[a & 0x3ff];
}

static void vram_put(struct hvm_hw_stdvga *s, void *p)
{
    unmap_domain_page(p);
}

static int stdvga_outb(uint64_t addr, uint8_t val)
{
    struct hvm_hw_stdvga *s = &current->domain->arch.hvm_domain.stdvga;
    int rc = 1, prev_stdvga = s->stdvga;

    switch ( addr )
    {
    case 0x3c4:                 /* sequencer address register */
        s->sr_index = val;
        break;

    case 0x3c5:                 /* sequencer data register */
        rc = (s->sr_index < sizeof(s->sr));
        if ( rc )
            s->sr[s->sr_index] = val & sr_mask[s->sr_index] ;
        break;

    case 0x3ce:                 /* graphics address register */
        s->gr_index = val;
        break;

    case 0x3cf:                 /* graphics data register */
        rc = (s->gr_index < sizeof(s->gr));
        if ( rc )
            s->gr[s->gr_index] = val & gr_mask[s->gr_index];
        break;

    default:
        rc = 0;
        break;
    }

    /* When in standard vga mode, emulate here all writes to the vram buffer
     * so we can immediately satisfy reads without waiting for qemu. */
    s->stdvga = (s->sr[7] == 0x00);

    if ( !prev_stdvga && s->stdvga )
    {
        /*
         * (Re)start caching of video buffer.
         * XXX TODO: In case of a restart the cache could be unsynced.
         */
        s->cache = 1;
        gdprintk(XENLOG_INFO, "entering stdvga and caching modes\n");
    }
    else if ( prev_stdvga && !s->stdvga )
    {
        gdprintk(XENLOG_INFO, "leaving stdvga\n");
    }

    return rc;
}

static void stdvga_out(uint32_t port, uint32_t bytes, uint32_t val)
{
    switch ( bytes )
    {
    case 1:
        stdvga_outb(port, val);
        break;

    case 2:
        stdvga_outb(port + 0, val >> 0);
        stdvga_outb(port + 1, val >> 8);
        break;

    default:
        break;
    }
}

static int stdvga_intercept_pio(
    int dir, uint32_t port, uint32_t bytes, uint32_t *val)
{
    struct hvm_hw_stdvga *s = &current->domain->arch.hvm_domain.stdvga;

    if ( dir == IOREQ_WRITE )
    {
        spin_lock(&s->lock);
        stdvga_out(port, bytes, *val);
        spin_unlock(&s->lock);
    }

    return X86EMUL_UNHANDLEABLE; /* propagate to external ioemu */
}

static unsigned int stdvga_mem_offset(
    struct hvm_hw_stdvga *s, unsigned int mmio_addr)
{
    unsigned int memory_map_mode = (s->gr[6] >> 2) & 3;
    unsigned int offset = mmio_addr & 0x1ffff;

    switch ( memory_map_mode )
    {
    case 0:
        break;
    case 1:
        if ( offset >= 0x10000 )
            goto fail;
        offset += 0; /* assume bank_offset == 0; */
        break;
    case 2:
        offset -= 0x10000;
        if ( offset >= 0x8000 )
            goto fail;
        break;
    default:
    case 3:
        offset -= 0x18000;
        if ( offset >= 0x8000 )
            goto fail;
        break;
    }

    return offset;

 fail:
    return ~0u;
}

#define GET_PLANE(data, p) (((data) >> ((p) * 8)) & 0xff)

static uint8_t stdvga_mem_readb(uint64_t addr)
{
    struct hvm_hw_stdvga *s = &current->domain->arch.hvm_domain.stdvga;
    int plane;
    uint32_t ret, *vram_l;
    uint8_t *vram_b;

    addr = stdvga_mem_offset(s, addr);
    if ( addr == ~0u )
        return 0xff;

    if ( s->sr[4] & 0x08 )
    {
        /* chain 4 mode : simplest access */
        vram_b = vram_getb(s, addr);
        ret = *vram_b;
        vram_put(s, vram_b);
    }
    else if ( s->gr[5] & 0x10 )
    {
        /* odd/even mode (aka text mode mapping) */
        plane = (s->gr[4] & 2) | (addr & 1);
        vram_b = vram_getb(s, ((addr & ~1) << 1) | plane);
        ret = *vram_b;
        vram_put(s, vram_b);
    }
    else
    {
        /* standard VGA latched access */
        vram_l = vram_getl(s, addr);
        s->latch = *vram_l;
        vram_put(s, vram_l);

        if ( !(s->gr[5] & 0x08) )
        {
            /* read mode 0 */
            plane = s->gr[4];
            ret = GET_PLANE(s->latch, plane);
        }
        else
        {
            /* read mode 1 */
            ret = (s->latch ^ mask16[s->gr[2]]) & mask16[s->gr[7]];
            ret |= ret >> 16;
            ret |= ret >> 8;
            ret = (~ret) & 0xff;
        }
    }

    return ret;
}

static uint64_t stdvga_mem_read(uint64_t addr, uint64_t size)
{
    uint64_t data = 0;

    switch ( size )
    {
    case 1:
        data = stdvga_mem_readb(addr);
        break;

    case 2:
        data = stdvga_mem_readb(addr);
        data |= stdvga_mem_readb(addr + 1) << 8;
        break;

    case 4:
        data = stdvga_mem_readb(addr);
        data |= stdvga_mem_readb(addr + 1) << 8;
        data |= stdvga_mem_readb(addr + 2) << 16;
        data |= stdvga_mem_readb(addr + 3) << 24;
        break;

    case 8:
        data =  (uint64_t)(stdvga_mem_readb(addr));
        data |= (uint64_t)(stdvga_mem_readb(addr + 1)) << 8;
        data |= (uint64_t)(stdvga_mem_readb(addr + 2)) << 16;
        data |= (uint64_t)(stdvga_mem_readb(addr + 3)) << 24;
        data |= (uint64_t)(stdvga_mem_readb(addr + 4)) << 32;
        data |= (uint64_t)(stdvga_mem_readb(addr + 5)) << 40;
        data |= (uint64_t)(stdvga_mem_readb(addr + 6)) << 48;
        data |= (uint64_t)(stdvga_mem_readb(addr + 7)) << 56;
        break;

    default:
        gdprintk(XENLOG_WARNING, "invalid io size: %"PRId64"\n", size);
        break;
    }

    return data;
}

static void stdvga_mem_writeb(uint64_t addr, uint32_t val)
{
    struct hvm_hw_stdvga *s = &current->domain->arch.hvm_domain.stdvga;
    int plane, write_mode, b, func_select, mask;
    uint32_t write_mask, bit_mask, set_mask, *vram_l;
    uint8_t *vram_b;

    addr = stdvga_mem_offset(s, addr);
    if ( addr == ~0u )
        return;

    if ( s->sr[4] & 0x08 )
    {
        /* chain 4 mode : simplest access */
        plane = addr & 3;
        mask = (1 << plane);
        if ( s->sr[2] & mask )
        {
            vram_b = vram_getb(s, addr);
            *vram_b = val;
            vram_put(s, vram_b);
        }
    }
    else if ( s->gr[5] & 0x10 )
    {
        /* odd/even mode (aka text mode mapping) */
        plane = (s->gr[4] & 2) | (addr & 1);
        mask = (1 << plane);
        if ( s->sr[2] & mask )
        {
            addr = ((addr & ~1) << 1) | plane;
            vram_b = vram_getb(s, addr);
            *vram_b = val;
            vram_put(s, vram_b);
        }
    }
    else
    {
        write_mode = s->gr[5] & 3;
        switch ( write_mode )
        {
        default:
        case 0:
            /* rotate */
            b = s->gr[3] & 7;
            val = ((val >> b) | (val << (8 - b))) & 0xff;
            val |= val << 8;
            val |= val << 16;

            /* apply set/reset mask */
            set_mask = mask16[s->gr[1]];
            val = (val & ~set_mask) | (mask16[s->gr[0]] & set_mask);
            bit_mask = s->gr[8];
            break;
        case 1:
            val = s->latch;
            goto do_write;
        case 2:
            val = mask16[val & 0x0f];
            bit_mask = s->gr[8];
            break;
        case 3:
            /* rotate */
            b = s->gr[3] & 7;
            val = (val >> b) | (val << (8 - b));

            bit_mask = s->gr[8] & val;
            val = mask16[s->gr[0]];
            break;
        }

        /* apply logical operation */
        func_select = s->gr[3] >> 3;
        switch ( func_select )
        {
        case 0:
        default:
            /* nothing to do */
            break;
        case 1:
            /* and */
            val &= s->latch;
            break;
        case 2:
            /* or */
            val |= s->latch;
            break;
        case 3:
            /* xor */
            val ^= s->latch;
            break;
        }

        /* apply bit mask */
        bit_mask |= bit_mask << 8;
        bit_mask |= bit_mask << 16;
        val = (val & bit_mask) | (s->latch & ~bit_mask);

    do_write:
        /* mask data according to sr[2] */
        mask = s->sr[2];
        write_mask = mask16[mask];
        vram_l = vram_getl(s, addr);
        *vram_l = (*vram_l & ~write_mask) | (val & write_mask);
        vram_put(s, vram_l);
    }
}

static void stdvga_mem_write(uint64_t addr, uint64_t data, uint64_t size)
{
    /* Intercept mmio write */
    switch ( size )
    {
    case 1:
        stdvga_mem_writeb(addr, (data >>  0) & 0xff);
        break;

    case 2:
        stdvga_mem_writeb(addr+0, (data >>  0) & 0xff);
        stdvga_mem_writeb(addr+1, (data >>  8) & 0xff);
        break;

    case 4:
        stdvga_mem_writeb(addr+0, (data >>  0) & 0xff);
        stdvga_mem_writeb(addr+1, (data >>  8) & 0xff);
        stdvga_mem_writeb(addr+2, (data >> 16) & 0xff);
        stdvga_mem_writeb(addr+3, (data >> 24) & 0xff);
        break;

    case 8:
        stdvga_mem_writeb(addr+0, (data >>  0) & 0xff);
        stdvga_mem_writeb(addr+1, (data >>  8) & 0xff);
        stdvga_mem_writeb(addr+2, (data >> 16) & 0xff);
        stdvga_mem_writeb(addr+3, (data >> 24) & 0xff);
        stdvga_mem_writeb(addr+4, (data >> 32) & 0xff);
        stdvga_mem_writeb(addr+5, (data >> 40) & 0xff);
        stdvga_mem_writeb(addr+6, (data >> 48) & 0xff);
        stdvga_mem_writeb(addr+7, (data >> 56) & 0xff);
        break;

    default:
        gdprintk(XENLOG_WARNING, "invalid io size: %"PRId64"\n", size);
        break;
    }
}

static uint32_t read_data;

static int mmio_move(struct hvm_hw_stdvga *s, ioreq_t *p)
{
    int i;
    uint64_t addr = p->addr;
    p2m_type_t p2mt;
    struct domain *d = current->domain;

    if ( p->data_is_ptr )
    {
        uint64_t data = p->data, tmp;
        int step = p->df ? -p->size : p->size;

        if ( p->dir == IOREQ_READ )
        {
            for ( i = 0; i < p->count; i++ ) 
            {
                tmp = stdvga_mem_read(addr, p->size);
                if ( hvm_copy_to_guest_phys(data, &tmp, p->size) !=
                     HVMCOPY_okay )
                {
                    struct page_info *dp = get_page_from_gfn(
                            d, data >> PAGE_SHIFT, &p2mt, P2M_ALLOC);
                    /*
                     * The only case we handle is vga_mem <-> vga_mem.
                     * Anything else disables caching and leaves it to qemu-dm.
                     */
                    if ( (p2mt != p2m_mmio_dm) || (data < VGA_MEM_BASE) ||
                         ((data + p->size) > (VGA_MEM_BASE + VGA_MEM_SIZE)) )
                    {
                        if ( dp )
                            put_page(dp);
                        return 0;
                    }
                    ASSERT(!dp);
                    stdvga_mem_write(data, tmp, p->size);
                }
                data += step;
                addr += step;
            }
        }
        else
        {
            for ( i = 0; i < p->count; i++ )
            {
                if ( hvm_copy_from_guest_phys(&tmp, data, p->size) !=
                     HVMCOPY_okay )
                {
                    struct page_info *dp = get_page_from_gfn(
                        d, data >> PAGE_SHIFT, &p2mt, P2M_ALLOC);
                    if ( (p2mt != p2m_mmio_dm) || (data < VGA_MEM_BASE) ||
                         ((data + p->size) > (VGA_MEM_BASE + VGA_MEM_SIZE)) )
                    {
                        if ( dp )
                            put_page(dp);
                        return 0;
                    }
                    ASSERT(!dp);
                    tmp = stdvga_mem_read(data, p->size);
                }
                stdvga_mem_write(addr, tmp, p->size);
                data += step;
                addr += step;
            }
        }
    }
    else
    {
        ASSERT(p->count == 1);
        if ( p->dir == IOREQ_READ )
            p->data = stdvga_mem_read(addr, p->size);
        else
            stdvga_mem_write(addr, p->data, p->size);
    }

    read_data = p->data;
    return 1;
}

static int stdvga_intercept_mmio(ioreq_t *p)
{
    struct domain *d = current->domain;
    struct hvm_hw_stdvga *s = &d->arch.hvm_domain.stdvga;
    int buf = 0, rc;

    if ( p->size > 8 )
    {
        gdprintk(XENLOG_WARNING, "invalid mmio size %d\n", (int)p->size);
        return X86EMUL_UNHANDLEABLE;
    }

    spin_lock(&s->lock);

    if ( s->stdvga && s->cache )
    {
        switch ( p->type )
        {
        case IOREQ_TYPE_COPY:
            buf = mmio_move(s, p);
            if ( !buf )
                s->cache = 0;
            break;
        default:
            gdprintk(XENLOG_WARNING, "unsupported mmio request type:%d "
                     "addr:0x%04x data:0x%04x size:%d count:%d state:%d "
                     "isptr:%d dir:%d df:%d\n",
                     p->type, (int)p->addr, (int)p->data, (int)p->size,
                     (int)p->count, p->state,
                     p->data_is_ptr, p->dir, p->df);
            s->cache = 0;
        }
    }
    else
    {
        buf = (p->dir == IOREQ_WRITE);
    }

    rc = (buf && hvm_buffered_io_send(p));

    spin_unlock(&s->lock);

    return rc ? X86EMUL_OKAY : X86EMUL_UNHANDLEABLE;
}

void stdvga_init(struct domain *d)
{
    struct hvm_hw_stdvga *s = &d->arch.hvm_domain.stdvga;
    struct page_info *pg;
    void *p;
    int i;

    memset(s, 0, sizeof(*s));
    spin_lock_init(&s->lock);
    
    for ( i = 0; i != ARRAY_SIZE(s->vram_page); i++ )
    {
        pg = alloc_domheap_page(NULL, MEMF_node(domain_to_node(d)));
        if ( pg == NULL )
            break;
        s->vram_page[i] = pg;
        p = __map_domain_page(pg);
        clear_page(p);
        unmap_domain_page(p);
    }

    if ( i == ARRAY_SIZE(s->vram_page) )
    {
        /* Sequencer registers. */
        register_portio_handler(d, 0x3c4, 2, stdvga_intercept_pio);
        /* Graphics registers. */
        register_portio_handler(d, 0x3ce, 2, stdvga_intercept_pio);
        /* MMIO. */
        register_buffered_io_handler(
            d, VGA_MEM_BASE, VGA_MEM_SIZE, stdvga_intercept_mmio);
    }
}

void stdvga_deinit(struct domain *d)
{
    struct hvm_hw_stdvga *s = &d->arch.hvm_domain.stdvga;
    int i;

    for ( i = 0; i != ARRAY_SIZE(s->vram_page); i++ )
    {
        if ( s->vram_page[i] == NULL )
            continue;
        free_domheap_page(s->vram_page[i]);
        s->vram_page[i] = NULL;
    }
}