diff options
Diffstat (limited to 'target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch')
-rw-r--r-- | target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch | 1493 |
1 files changed, 0 insertions, 1493 deletions
diff --git a/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch b/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch deleted file mode 100644 index 0788c6f84c..0000000000 --- a/target/linux/sunxi/patches-3.18/271-crypto-add-ss.patch +++ /dev/null @@ -1,1493 +0,0 @@ ---- a/drivers/crypto/Kconfig -+++ b/drivers/crypto/Kconfig -@@ -437,4 +437,21 @@ config CRYPTO_DEV_QCE - hardware. To compile this driver as a module, choose M here. The - module will be called qcrypto. - -+config CRYPTO_DEV_SUNXI_SS -+ tristate "Support for Allwinner Security System cryptographic accelerator" -+ depends on ARCH_SUNXI -+ select CRYPTO_MD5 -+ select CRYPTO_SHA1 -+ select CRYPTO_AES -+ select CRYPTO_DES -+ select CRYPTO_BLKCIPHER -+ help -+ Some Allwinner SoC have a crypto accelerator named -+ Security System. Select this if you want to use it. -+ The Security System handle AES/DES/3DES ciphers in CBC mode -+ and SHA1 and MD5 hash algorithms. -+ -+ To compile this driver as a module, choose M here: the module -+ will be called sunxi-ss. -+ - endif # CRYPTO_HW ---- a/drivers/crypto/Makefile -+++ b/drivers/crypto/Makefile -@@ -25,3 +25,4 @@ obj-$(CONFIG_CRYPTO_DEV_TALITOS) += tali - obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/ - obj-$(CONFIG_CRYPTO_DEV_QAT) += qat/ - obj-$(CONFIG_CRYPTO_DEV_QCE) += qce/ -+obj-$(CONFIG_CRYPTO_DEV_SUNXI_SS) += sunxi-ss/ ---- /dev/null -+++ b/drivers/crypto/sunxi-ss/Makefile -@@ -0,0 +1,2 @@ -+obj-$(CONFIG_CRYPTO_DEV_SUNXI_SS) += sunxi-ss.o -+sunxi-ss-y += sunxi-ss-core.o sunxi-ss-hash.o sunxi-ss-cipher.o ---- /dev/null -+++ b/drivers/crypto/sunxi-ss/sunxi-ss-cipher.c -@@ -0,0 +1,489 @@ -+/* -+ * sunxi-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC -+ * -+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> -+ * -+ * This file add support for AES cipher with 128,192,256 bits -+ * keysize in CBC mode. -+ * Add support also for DES and 3DES in CBC mode. -+ * -+ * You could find the datasheet in Documentation/arm/sunxi/README -+ * -+ * This program is free software; you can redistribute it and/or modify -+ * it under the terms of the GNU General Public License as published by -+ * the Free Software Foundation; either version 2 of the License, or -+ * (at your option) any later version. -+ */ -+#include "sunxi-ss.h" -+ -+extern struct sunxi_ss_ctx *ss; -+ -+static int sunxi_ss_cipher(struct ablkcipher_request *areq, u32 mode) -+{ -+ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); -+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); -+ const char *cipher_type; -+ -+ if (areq->nbytes == 0) -+ return 0; -+ -+ if (areq->info == NULL) { -+ dev_err(ss->dev, "ERROR: Empty IV\n"); -+ return -EINVAL; -+ } -+ -+ if (areq->src == NULL || areq->dst == NULL) { -+ dev_err(ss->dev, "ERROR: Some SGs are NULL\n"); -+ return -EINVAL; -+ } -+ -+ cipher_type = crypto_tfm_alg_name(crypto_ablkcipher_tfm(tfm)); -+ -+ if (strcmp("cbc(aes)", cipher_type) == 0) { -+ mode |= SS_OP_AES | SS_CBC | SS_ENABLED | op->keymode; -+ return sunxi_ss_aes_poll(areq, mode); -+ } -+ -+ if (strcmp("cbc(des)", cipher_type) == 0) { -+ mode |= SS_OP_DES | SS_CBC | SS_ENABLED | op->keymode; -+ return sunxi_ss_des_poll(areq, mode); -+ } -+ -+ if (strcmp("cbc(des3_ede)", cipher_type) == 0) { -+ mode |= SS_OP_3DES | SS_CBC | SS_ENABLED | op->keymode; -+ return sunxi_ss_des_poll(areq, mode); -+ } -+ -+ dev_err(ss->dev, "ERROR: Cipher %s not handled\n", cipher_type); -+ return -EINVAL; -+} -+ -+int sunxi_ss_cipher_encrypt(struct ablkcipher_request *areq) -+{ -+ return sunxi_ss_cipher(areq, SS_ENCRYPTION); -+} -+ -+int sunxi_ss_cipher_decrypt(struct ablkcipher_request *areq) -+{ -+ return sunxi_ss_cipher(areq, SS_DECRYPTION); -+} -+ -+int sunxi_ss_cipher_init(struct crypto_tfm *tfm) -+{ -+ struct sunxi_tfm_ctx *op = crypto_tfm_ctx(tfm); -+ -+ memset(op, 0, sizeof(struct sunxi_tfm_ctx)); -+ return 0; -+} -+ -+/* -+ * Optimized function for the case where we have only one SG, -+ * so we can use kmap_atomic -+ */ -+static int sunxi_ss_aes_poll_atomic(struct ablkcipher_request *areq) -+{ -+ u32 spaces; -+ struct scatterlist *in_sg = areq->src; -+ struct scatterlist *out_sg = areq->dst; -+ void *src_addr; -+ void *dst_addr; -+ unsigned int ileft = areq->nbytes; -+ unsigned int oleft = areq->nbytes; -+ unsigned int todo; -+ u32 *src32; -+ u32 *dst32; -+ u32 rx_cnt = 32; -+ u32 tx_cnt = 0; -+ int i; -+ -+ src_addr = kmap_atomic(sg_page(in_sg)) + in_sg->offset; -+ if (src_addr == NULL) { -+ dev_err(ss->dev, "kmap_atomic error for src SG\n"); -+ writel(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ return -EINVAL; -+ } -+ -+ dst_addr = kmap_atomic(sg_page(out_sg)) + out_sg->offset; -+ if (dst_addr == NULL) { -+ dev_err(ss->dev, "kmap_atomic error for dst SG\n"); -+ writel(0, ss->base + SS_CTL); -+ kunmap_atomic(src_addr); -+ mutex_unlock(&ss->lock); -+ return -EINVAL; -+ } -+ -+ src32 = (u32 *)src_addr; -+ dst32 = (u32 *)dst_addr; -+ ileft = areq->nbytes / 4; -+ oleft = areq->nbytes / 4; -+ i = 0; -+ do { -+ if (ileft > 0 && rx_cnt > 0) { -+ todo = min(rx_cnt, ileft); -+ ileft -= todo; -+ do { -+ writel_relaxed(*src32++, -+ ss->base + -+ SS_RXFIFO); -+ todo--; -+ } while (todo > 0); -+ } -+ if (tx_cnt > 0) { -+ todo = min(tx_cnt, oleft); -+ oleft -= todo; -+ do { -+ *dst32++ = readl_relaxed(ss->base + -+ SS_TXFIFO); -+ todo--; -+ } while (todo > 0); -+ } -+ spaces = readl_relaxed(ss->base + SS_FCSR); -+ rx_cnt = SS_RXFIFO_SPACES(spaces); -+ tx_cnt = SS_TXFIFO_SPACES(spaces); -+ } while (oleft > 0); -+ writel(0, ss->base + SS_CTL); -+ kunmap_atomic(src_addr); -+ kunmap_atomic(dst_addr); -+ mutex_unlock(&ss->lock); -+ return 0; -+} -+ -+int sunxi_ss_aes_poll(struct ablkcipher_request *areq, u32 mode) -+{ -+ u32 spaces; -+ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); -+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); -+ unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); -+ /* when activating SS, the default FIFO space is 32 */ -+ u32 rx_cnt = 32; -+ u32 tx_cnt = 0; -+ u32 v; -+ int i; -+ struct scatterlist *in_sg = areq->src; -+ struct scatterlist *out_sg = areq->dst; -+ void *src_addr; -+ void *dst_addr; -+ unsigned int ileft = areq->nbytes; -+ unsigned int oleft = areq->nbytes; -+ unsigned int sgileft = areq->src->length; -+ unsigned int sgoleft = areq->dst->length; -+ unsigned int todo; -+ u32 *src32; -+ u32 *dst32; -+ -+ mutex_lock(&ss->lock); -+ -+ for (i = 0; i < op->keylen; i += 4) -+ writel(*(op->key + i/4), ss->base + SS_KEY0 + i); -+ -+ if (areq->info != NULL) { -+ for (i = 0; i < 4 && i < ivsize / 4; i++) { -+ v = *(u32 *)(areq->info + i * 4); -+ writel(v, ss->base + SS_IV0 + i * 4); -+ } -+ } -+ writel(mode, ss->base + SS_CTL); -+ -+ /* If we have only one SG, we can use kmap_atomic */ -+ if (sg_next(in_sg) == NULL && sg_next(out_sg) == NULL) -+ return sunxi_ss_aes_poll_atomic(areq); -+ -+ /* -+ * If we have more than one SG, we cannot use kmap_atomic since -+ * we hold the mapping too long -+ */ -+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; -+ if (src_addr == NULL) { -+ dev_err(ss->dev, "KMAP error for src SG\n"); -+ mutex_unlock(&ss->lock); -+ return -EINVAL; -+ } -+ dst_addr = kmap(sg_page(out_sg)) + out_sg->offset; -+ if (dst_addr == NULL) { -+ kunmap(sg_page(in_sg)); -+ dev_err(ss->dev, "KMAP error for dst SG\n"); -+ mutex_unlock(&ss->lock); -+ return -EINVAL; -+ } -+ src32 = (u32 *)src_addr; -+ dst32 = (u32 *)dst_addr; -+ ileft = areq->nbytes / 4; -+ oleft = areq->nbytes / 4; -+ sgileft = in_sg->length / 4; -+ sgoleft = out_sg->length / 4; -+ do { -+ spaces = readl_relaxed(ss->base + SS_FCSR); -+ rx_cnt = SS_RXFIFO_SPACES(spaces); -+ tx_cnt = SS_TXFIFO_SPACES(spaces); -+ todo = min3(rx_cnt, ileft, sgileft); -+ if (todo > 0) { -+ ileft -= todo; -+ sgileft -= todo; -+ } -+ while (todo > 0) { -+ writel_relaxed(*src32++, ss->base + SS_RXFIFO); -+ todo--; -+ } -+ if (in_sg != NULL && sgileft == 0 && ileft > 0) { -+ kunmap(sg_page(in_sg)); -+ in_sg = sg_next(in_sg); -+ while (in_sg != NULL && in_sg->length == 0) -+ in_sg = sg_next(in_sg); -+ if (in_sg != NULL && ileft > 0) { -+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; -+ if (src_addr == NULL) { -+ dev_err(ss->dev, "ERROR: KMAP for src SG\n"); -+ mutex_unlock(&ss->lock); -+ return -EINVAL; -+ } -+ src32 = src_addr; -+ sgileft = in_sg->length / 4; -+ } -+ } -+ /* do not test oleft since when oleft == 0 we have finished */ -+ todo = min3(tx_cnt, oleft, sgoleft); -+ if (todo > 0) { -+ oleft -= todo; -+ sgoleft -= todo; -+ } -+ while (todo > 0) { -+ *dst32++ = readl_relaxed(ss->base + SS_TXFIFO); -+ todo--; -+ } -+ if (out_sg != NULL && sgoleft == 0 && oleft >= 0) { -+ kunmap(sg_page(out_sg)); -+ out_sg = sg_next(out_sg); -+ while (out_sg != NULL && out_sg->length == 0) -+ out_sg = sg_next(out_sg); -+ if (out_sg != NULL && oleft > 0) { -+ dst_addr = kmap(sg_page(out_sg)) + -+ out_sg->offset; -+ if (dst_addr == NULL) { -+ dev_err(ss->dev, "KMAP error\n"); -+ mutex_unlock(&ss->lock); -+ return -EINVAL; -+ } -+ dst32 = dst_addr; -+ sgoleft = out_sg->length / 4; -+ } -+ } -+ } while (oleft > 0); -+ -+ writel_relaxed(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ return 0; -+} -+ -+/* -+ * Pure CPU way of doing DES/3DES with SS -+ * Since DES and 3DES SGs could be smaller than 4 bytes, I use sg_copy_to_buffer -+ * for "linearize" them. -+ * The problem with that is that I alloc (2 x areq->nbytes) for buf_in/buf_out -+ * TODO: change this system, I need to support other mode than CBC where len -+ * is not a multiple of 4 and the hack of linearize use too much memory -+ * SGsrc -> buf_in -> SS -> buf_out -> SGdst -+ */ -+int sunxi_ss_des_poll(struct ablkcipher_request *areq, u32 mode) -+{ -+ u32 value, spaces; -+ size_t nb_in_sg_tx, nb_in_sg_rx; -+ size_t ir, it; -+ struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); -+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); -+ unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); -+ u32 tx_cnt = 0; -+ u32 rx_cnt = 0; -+ u32 v; -+ int i; -+ int no_chunk = 1; -+ struct scatterlist *in_sg = areq->src; -+ struct scatterlist *out_sg = areq->dst; -+ -+ /* -+ * if we have only SGs with size multiple of 4, -+ * we can use the SS AES function -+ */ -+ while (in_sg != NULL && no_chunk == 1) { -+ if ((in_sg->length % 4) != 0) -+ no_chunk = 0; -+ in_sg = sg_next(in_sg); -+ } -+ while (out_sg != NULL && no_chunk == 1) { -+ if ((out_sg->length % 4) != 0) -+ no_chunk = 0; -+ out_sg = sg_next(out_sg); -+ } -+ -+ if (no_chunk == 1) -+ return sunxi_ss_aes_poll(areq, mode); -+ -+ in_sg = areq->src; -+ out_sg = areq->dst; -+ -+ nb_in_sg_rx = sg_nents(in_sg); -+ nb_in_sg_tx = sg_nents(out_sg); -+ -+ /* -+ * buf_in and buf_out are allocated only one time -+ * then we keep the buffer until driver end -+ * the allocation can only grow more -+ * we do not reduce it for simplification -+ */ -+ mutex_lock(&ss->bufin_lock); -+ if (ss->buf_in == NULL) { -+ ss->buf_in = kmalloc(areq->nbytes, GFP_KERNEL); -+ ss->buf_in_size = areq->nbytes; -+ } else { -+ if (areq->nbytes > ss->buf_in_size) { -+ kfree(ss->buf_in); -+ ss->buf_in = kmalloc(areq->nbytes, GFP_KERNEL); -+ ss->buf_in_size = areq->nbytes; -+ } -+ } -+ if (ss->buf_in == NULL) { -+ ss->buf_in_size = 0; -+ mutex_unlock(&ss->bufin_lock); -+ dev_err(ss->dev, "Unable to allocate pages.\n"); -+ return -ENOMEM; -+ } -+ mutex_lock(&ss->bufout_lock); -+ if (ss->buf_out == NULL) { -+ ss->buf_out = kmalloc(areq->nbytes, GFP_KERNEL); -+ if (ss->buf_out == NULL) { -+ ss->buf_out_size = 0; -+ mutex_unlock(&ss->bufin_lock); -+ mutex_unlock(&ss->bufout_lock); -+ dev_err(ss->dev, "Unable to allocate pages.\n"); -+ return -ENOMEM; -+ } -+ ss->buf_out_size = areq->nbytes; -+ } else { -+ if (areq->nbytes > ss->buf_out_size) { -+ kfree(ss->buf_out); -+ ss->buf_out = kmalloc(areq->nbytes, GFP_KERNEL); -+ if (ss->buf_out == NULL) { -+ ss->buf_out_size = 0; -+ mutex_unlock(&ss->bufin_lock); -+ mutex_unlock(&ss->bufout_lock); -+ dev_err(ss->dev, "Unable to allocate pages.\n"); -+ return -ENOMEM; -+ } -+ ss->buf_out_size = areq->nbytes; -+ } -+ } -+ -+ sg_copy_to_buffer(areq->src, nb_in_sg_rx, ss->buf_in, areq->nbytes); -+ -+ ir = 0; -+ it = 0; -+ mutex_lock(&ss->lock); -+ -+ for (i = 0; i < op->keylen; i += 4) -+ writel(*(op->key + i/4), ss->base + SS_KEY0 + i); -+ if (areq->info != NULL) { -+ for (i = 0; i < 4 && i < ivsize / 4; i++) { -+ v = *(u32 *)(areq->info + i * 4); -+ writel(v, ss->base + SS_IV0 + i * 4); -+ } -+ } -+ writel(mode, ss->base + SS_CTL); -+ -+ do { -+ if (rx_cnt == 0 || tx_cnt == 0) { -+ spaces = readl(ss->base + SS_FCSR); -+ rx_cnt = SS_RXFIFO_SPACES(spaces); -+ tx_cnt = SS_TXFIFO_SPACES(spaces); -+ } -+ if (rx_cnt > 0 && ir < areq->nbytes) { -+ do { -+ value = *(u32 *)(ss->buf_in + ir); -+ writel(value, ss->base + SS_RXFIFO); -+ ir += 4; -+ rx_cnt--; -+ } while (rx_cnt > 0 && ir < areq->nbytes); -+ } -+ if (tx_cnt > 0 && it < areq->nbytes) { -+ do { -+ value = readl(ss->base + SS_TXFIFO); -+ *(u32 *)(ss->buf_out + it) = value; -+ it += 4; -+ tx_cnt--; -+ } while (tx_cnt > 0 && it < areq->nbytes); -+ } -+ if (ir == areq->nbytes) { -+ mutex_unlock(&ss->bufin_lock); -+ ir++; -+ } -+ } while (it < areq->nbytes); -+ -+ writel(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ -+ /* -+ * a simple optimization, since we dont need the hardware for this copy -+ * we release the lock and do the copy. With that we gain 5/10% perf -+ */ -+ sg_copy_from_buffer(areq->dst, nb_in_sg_tx, ss->buf_out, areq->nbytes); -+ -+ mutex_unlock(&ss->bufout_lock); -+ return 0; -+} -+ -+/* check and set the AES key, prepare the mode to be used */ -+int sunxi_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, -+ unsigned int keylen) -+{ -+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); -+ -+ switch (keylen) { -+ case 128 / 8: -+ op->keymode = SS_AES_128BITS; -+ break; -+ case 192 / 8: -+ op->keymode = SS_AES_192BITS; -+ break; -+ case 256 / 8: -+ op->keymode = SS_AES_256BITS; -+ break; -+ default: -+ dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); -+ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); -+ return -EINVAL; -+ } -+ op->keylen = keylen; -+ memcpy(op->key, key, keylen); -+ return 0; -+} -+ -+/* check and set the DES key, prepare the mode to be used */ -+int sunxi_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key, -+ unsigned int keylen) -+{ -+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); -+ -+ if (keylen != DES_KEY_SIZE) { -+ dev_err(ss->dev, "Invalid keylen %u\n", keylen); -+ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); -+ return -EINVAL; -+ } -+ op->keylen = keylen; -+ memcpy(op->key, key, keylen); -+ return 0; -+} -+ -+/* check and set the 3DES key, prepare the mode to be used */ -+int sunxi_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key, -+ unsigned int keylen) -+{ -+ struct sunxi_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); -+ -+ if (keylen != 3 * DES_KEY_SIZE) { -+ dev_err(ss->dev, "Invalid keylen %u\n", keylen); -+ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); -+ return -EINVAL; -+ } -+ op->keylen = keylen; -+ memcpy(op->key, key, keylen); -+ return 0; -+} ---- /dev/null -+++ b/drivers/crypto/sunxi-ss/sunxi-ss-core.c -@@ -0,0 +1,318 @@ -+/* -+ * sunxi-ss-core.c - hardware cryptographic accelerator for Allwinner A20 SoC -+ * -+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> -+ * -+ * Core file which registers crypto algorithms supported by the SS. -+ * -+ * You could find a link for the datasheet in Documentation/arm/sunxi/README -+ * -+ * This program is free software; you can redistribute it and/or modify -+ * it under the terms of the GNU General Public License as published by -+ * the Free Software Foundation; either version 2 of the License, or -+ * (at your option) any later version. -+ */ -+#include <linux/clk.h> -+#include <linux/crypto.h> -+#include <linux/io.h> -+#include <linux/module.h> -+#include <linux/of.h> -+#include <linux/platform_device.h> -+#include <crypto/scatterwalk.h> -+#include <linux/scatterlist.h> -+#include <linux/interrupt.h> -+#include <linux/delay.h> -+ -+#include "sunxi-ss.h" -+ -+struct sunxi_ss_ctx *ss; -+ -+/* -+ * General notes for whole driver: -+ * -+ * After each request the device must be disabled with a write of 0 in SS_CTL -+ * -+ * For performance reason, we use writel_relaxed/read_relaxed for all -+ * operations on RX and TX FIFO and also SS_FCSR. -+ * Excepts for the last write on TX FIFO. -+ * For all other registers, we use writel/readl. -+ * See http://permalink.gmane.org/gmane.linux.ports.arm.kernel/117644 -+ * and http://permalink.gmane.org/gmane.linux.ports.arm.kernel/117640 -+ */ -+ -+static struct ahash_alg sunxi_md5_alg = { -+ .init = sunxi_hash_init, -+ .update = sunxi_hash_update, -+ .final = sunxi_hash_final, -+ .finup = sunxi_hash_finup, -+ .digest = sunxi_hash_digest, -+ .halg = { -+ .digestsize = MD5_DIGEST_SIZE, -+ .base = { -+ .cra_name = "md5", -+ .cra_driver_name = "md5-sunxi-ss", -+ .cra_priority = 300, -+ .cra_alignmask = 3, -+ .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, -+ .cra_blocksize = MD5_HMAC_BLOCK_SIZE, -+ .cra_ctxsize = sizeof(struct sunxi_req_ctx), -+ .cra_module = THIS_MODULE, -+ .cra_type = &crypto_ahash_type, -+ .cra_init = sunxi_hash_crainit -+ } -+ } -+}; -+ -+static struct ahash_alg sunxi_sha1_alg = { -+ .init = sunxi_hash_init, -+ .update = sunxi_hash_update, -+ .final = sunxi_hash_final, -+ .finup = sunxi_hash_finup, -+ .digest = sunxi_hash_digest, -+ .halg = { -+ .digestsize = SHA1_DIGEST_SIZE, -+ .base = { -+ .cra_name = "sha1", -+ .cra_driver_name = "sha1-sunxi-ss", -+ .cra_priority = 300, -+ .cra_alignmask = 3, -+ .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, -+ .cra_blocksize = SHA1_BLOCK_SIZE, -+ .cra_ctxsize = sizeof(struct sunxi_req_ctx), -+ .cra_module = THIS_MODULE, -+ .cra_type = &crypto_ahash_type, -+ .cra_init = sunxi_hash_crainit -+ } -+ } -+}; -+ -+static struct crypto_alg sunxi_cipher_algs[] = { -+{ -+ .cra_name = "cbc(aes)", -+ .cra_driver_name = "cbc-aes-sunxi-ss", -+ .cra_priority = 300, -+ .cra_blocksize = AES_BLOCK_SIZE, -+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER, -+ .cra_ctxsize = sizeof(struct sunxi_tfm_ctx), -+ .cra_module = THIS_MODULE, -+ .cra_alignmask = 3, -+ .cra_type = &crypto_ablkcipher_type, -+ .cra_init = sunxi_ss_cipher_init, -+ .cra_u = { -+ .ablkcipher = { -+ .min_keysize = AES_MIN_KEY_SIZE, -+ .max_keysize = AES_MAX_KEY_SIZE, -+ .ivsize = AES_BLOCK_SIZE, -+ .setkey = sunxi_ss_aes_setkey, -+ .encrypt = sunxi_ss_cipher_encrypt, -+ .decrypt = sunxi_ss_cipher_decrypt, -+ } -+ } -+}, { -+ .cra_name = "cbc(des)", -+ .cra_driver_name = "cbc-des-sunxi-ss", -+ .cra_priority = 300, -+ .cra_blocksize = DES_BLOCK_SIZE, -+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER, -+ .cra_ctxsize = sizeof(struct sunxi_req_ctx), -+ .cra_module = THIS_MODULE, -+ .cra_alignmask = 3, -+ .cra_type = &crypto_ablkcipher_type, -+ .cra_init = sunxi_ss_cipher_init, -+ .cra_u.ablkcipher = { -+ .min_keysize = DES_KEY_SIZE, -+ .max_keysize = DES_KEY_SIZE, -+ .ivsize = DES_BLOCK_SIZE, -+ .setkey = sunxi_ss_des_setkey, -+ .encrypt = sunxi_ss_cipher_encrypt, -+ .decrypt = sunxi_ss_cipher_decrypt, -+ } -+}, { -+ .cra_name = "cbc(des3_ede)", -+ .cra_driver_name = "cbc-des3-sunxi-ss", -+ .cra_priority = 300, -+ .cra_blocksize = DES3_EDE_BLOCK_SIZE, -+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER, -+ .cra_ctxsize = sizeof(struct sunxi_req_ctx), -+ .cra_module = THIS_MODULE, -+ .cra_alignmask = 3, -+ .cra_type = &crypto_ablkcipher_type, -+ .cra_init = sunxi_ss_cipher_init, -+ .cra_u.ablkcipher = { -+ .min_keysize = DES3_EDE_KEY_SIZE, -+ .max_keysize = DES3_EDE_KEY_SIZE, -+ .ivsize = DES3_EDE_BLOCK_SIZE, -+ .setkey = sunxi_ss_des3_setkey, -+ .encrypt = sunxi_ss_cipher_encrypt, -+ .decrypt = sunxi_ss_cipher_decrypt, -+ } -+} -+}; -+ -+static int sunxi_ss_probe(struct platform_device *pdev) -+{ -+ struct resource *res; -+ u32 v; -+ int err; -+ unsigned long cr; -+ const unsigned long cr_ahb = 24 * 1000 * 1000; -+ const unsigned long cr_mod = 150 * 1000 * 1000; -+ -+ if (!pdev->dev.of_node) -+ return -ENODEV; -+ -+ ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL); -+ if (ss == NULL) -+ return -ENOMEM; -+ -+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); -+ ss->base = devm_ioremap_resource(&pdev->dev, res); -+ if (IS_ERR(ss->base)) { -+ dev_err(&pdev->dev, "Cannot request MMIO\n"); -+ return PTR_ERR(ss->base); -+ } -+ -+ ss->ssclk = devm_clk_get(&pdev->dev, "mod"); -+ if (IS_ERR(ss->ssclk)) { -+ err = PTR_ERR(ss->ssclk); -+ dev_err(&pdev->dev, "Cannot get SS clock err=%d\n", err); -+ return err; -+ } -+ dev_dbg(&pdev->dev, "clock ss acquired\n"); -+ -+ ss->busclk = devm_clk_get(&pdev->dev, "ahb"); -+ if (IS_ERR(ss->busclk)) { -+ err = PTR_ERR(ss->busclk); -+ dev_err(&pdev->dev, "Cannot get AHB SS clock err=%d\n", err); -+ return err; -+ } -+ dev_dbg(&pdev->dev, "clock ahb_ss acquired\n"); -+ -+ /* Enable both clocks */ -+ err = clk_prepare_enable(ss->busclk); -+ if (err != 0) { -+ dev_err(&pdev->dev, "Cannot prepare_enable busclk\n"); -+ return err; -+ } -+ err = clk_prepare_enable(ss->ssclk); -+ if (err != 0) { -+ dev_err(&pdev->dev, "Cannot prepare_enable ssclk\n"); -+ clk_disable_unprepare(ss->busclk); -+ return err; -+ } -+ -+ /* -+ * Check that clock have the correct rates gived in the datasheet -+ * Try to set the clock to the maximum allowed -+ */ -+ err = clk_set_rate(ss->ssclk, cr_mod); -+ if (err != 0) { -+ dev_err(&pdev->dev, "Cannot set clock rate to ssclk\n"); -+ clk_disable_unprepare(ss->ssclk); -+ clk_disable_unprepare(ss->busclk); -+ return err; -+ } -+ -+ cr = clk_get_rate(ss->busclk); -+ if (cr >= cr_ahb) -+ dev_dbg(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n", -+ cr, cr / 1000000, cr_ahb); -+ else -+ dev_warn(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n", -+ cr, cr / 1000000, cr_ahb); -+ -+ cr = clk_get_rate(ss->ssclk); -+ if (cr <= cr_mod) -+ if (cr < cr_mod) -+ dev_info(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n", -+ cr, cr / 1000000, cr_mod); -+ else -+ dev_dbg(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n", -+ cr, cr / 1000000, cr_mod); -+ else -+ dev_warn(&pdev->dev, "Clock ss is at %lu (%lu MHz) (must be <= %lu)\n", -+ cr, cr / 1000000, cr_mod); -+ -+ /* -+ * Datasheet named it "Die Bonding ID" -+ * I expect to be a sort of Security System Revision number. -+ * Since the A80 seems to have an other version of SS -+ * this info could be useful -+ */ -+ writel(SS_ENABLED, ss->base + SS_CTL); -+ v = readl(ss->base + SS_CTL); -+ v >>= 16; -+ v &= 0x07; -+ dev_info(&pdev->dev, "Die ID %d\n", v); -+ writel(0, ss->base + SS_CTL); -+ -+ ss->dev = &pdev->dev; -+ -+ mutex_init(&ss->lock); -+ mutex_init(&ss->bufin_lock); -+ mutex_init(&ss->bufout_lock); -+ -+ err = crypto_register_ahash(&sunxi_md5_alg); -+ if (err) -+ goto error_md5; -+ err = crypto_register_ahash(&sunxi_sha1_alg); -+ if (err) -+ goto error_sha1; -+ err = crypto_register_algs(sunxi_cipher_algs, -+ ARRAY_SIZE(sunxi_cipher_algs)); -+ if (err) -+ goto error_ciphers; -+ -+ return 0; -+error_ciphers: -+ crypto_unregister_ahash(&sunxi_sha1_alg); -+error_sha1: -+ crypto_unregister_ahash(&sunxi_md5_alg); -+error_md5: -+ clk_disable_unprepare(ss->ssclk); -+ clk_disable_unprepare(ss->busclk); -+ return err; -+} -+ -+static int __exit sunxi_ss_remove(struct platform_device *pdev) -+{ -+ if (!pdev->dev.of_node) -+ return 0; -+ -+ crypto_unregister_ahash(&sunxi_md5_alg); -+ crypto_unregister_ahash(&sunxi_sha1_alg); -+ crypto_unregister_algs(sunxi_cipher_algs, -+ ARRAY_SIZE(sunxi_cipher_algs)); -+ -+ if (ss->buf_in != NULL) -+ kfree(ss->buf_in); -+ if (ss->buf_out != NULL) -+ kfree(ss->buf_out); -+ -+ writel(0, ss->base + SS_CTL); -+ clk_disable_unprepare(ss->busclk); -+ clk_disable_unprepare(ss->ssclk); -+ return 0; -+} -+ -+static const struct of_device_id a20ss_crypto_of_match_table[] = { -+ { .compatible = "allwinner,sun7i-a20-crypto" }, -+ {} -+}; -+MODULE_DEVICE_TABLE(of, a20ss_crypto_of_match_table); -+ -+static struct platform_driver sunxi_ss_driver = { -+ .probe = sunxi_ss_probe, -+ .remove = __exit_p(sunxi_ss_remove), -+ .driver = { -+ .owner = THIS_MODULE, -+ .name = "sunxi-ss", -+ .of_match_table = a20ss_crypto_of_match_table, -+ }, -+}; -+ -+module_platform_driver(sunxi_ss_driver); -+ -+MODULE_DESCRIPTION("Allwinner Security System cryptographic accelerator"); -+MODULE_LICENSE("GPL"); -+MODULE_AUTHOR("Corentin LABBE <clabbe.montjoie@gmail.com>"); ---- /dev/null -+++ b/drivers/crypto/sunxi-ss/sunxi-ss-hash.c -@@ -0,0 +1,445 @@ -+/* -+ * sunxi-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC -+ * -+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> -+ * -+ * This file add support for MD5 and SHA1. -+ * -+ * You could find the datasheet in Documentation/arm/sunxi/README -+ * -+ * This program is free software; you can redistribute it and/or modify -+ * it under the terms of the GNU General Public License as published by -+ * the Free Software Foundation; either version 2 of the License, or -+ * (at your option) any later version. -+ */ -+#include "sunxi-ss.h" -+ -+/* This is a totaly arbitrary value */ -+#define SS_TIMEOUT 100 -+ -+extern struct sunxi_ss_ctx *ss; -+ -+int sunxi_hash_crainit(struct crypto_tfm *tfm) -+{ -+ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), -+ sizeof(struct sunxi_req_ctx)); -+ return 0; -+} -+ -+/* sunxi_hash_init: initialize request context */ -+int sunxi_hash_init(struct ahash_request *areq) -+{ -+ const char *hash_type; -+ struct sunxi_req_ctx *op = ahash_request_ctx(areq); -+ -+ memset(op, 0, sizeof(struct sunxi_req_ctx)); -+ -+ hash_type = crypto_tfm_alg_name(areq->base.tfm); -+ -+ if (strcmp(hash_type, "sha1") == 0) -+ op->mode = SS_OP_SHA1; -+ if (strcmp(hash_type, "md5") == 0) -+ op->mode = SS_OP_MD5; -+ if (op->mode == 0) -+ return -EINVAL; -+ -+ return 0; -+} -+ -+static u32 rx_cnt; -+ -+inline void ss_writer(const u32 v) -+{ -+ u32 spaces; -+ -+ writel(v, ss->base + SS_RXFIFO); -+ rx_cnt--; -+ while (rx_cnt == 0) { -+ spaces = readl_relaxed(ss->base + SS_FCSR); -+ rx_cnt = SS_RXFIFO_SPACES(spaces); -+ } -+} -+ -+inline void ss_writer_relaxed(const u32 v) -+{ -+ u32 spaces; -+ -+ writel_relaxed(v, ss->base + SS_RXFIFO); -+ rx_cnt--; -+ while (rx_cnt == 0) { -+ spaces = readl_relaxed(ss->base + SS_FCSR); -+ rx_cnt = SS_RXFIFO_SPACES(spaces); -+ } -+} -+ -+/* -+ * sunxi_hash_update: update hash engine -+ * -+ * Could be used for both SHA1 and MD5 -+ * Write data by step of 32bits and put then in the SS. -+ * -+ * Since we cannot leave partial data and hash state in the engine, -+ * we need to get the hash state at the end of this function. -+ * After some work, I have found that we can get the hash state every 64o -+ * -+ * So the first work is to get the number of bytes to write to SS modulo 64 -+ * The extra bytes will go to two different destination: -+ * op->wait for full 32bits word -+ * op->wb (waiting bytes) for partial 32 bits word -+ * So we can have up to (64/4)-1 op->wait words and 0/1/2/3 bytes in wb -+ * -+ * So at the begin of update() -+ * if op->nwait * 4 + areq->nbytes < 64 -+ * => all data writed to wait buffers and end=0 -+ * if not write all nwait to the device and position end to complete to 64o -+ * -+ * example 1: -+ * update1 60o => nwait=15 -+ * update2 60o => need one more word to have 64o -+ * end=4 -+ * so write all data in op->wait and one word of SGs -+ * write remaining data in op->wait -+ * final state op->nwait=14 -+ */ -+int sunxi_hash_update(struct ahash_request *areq) -+{ -+ u32 v, ivmode = 0; -+ unsigned int i = 0; -+ /* -+ * i is the total bytes read from SGs, to be compared to areq->nbytes -+ * i is important because we cannot rely on SG length since the sum of -+ * SG->length could be greater than areq->nbytes -+ */ -+ -+ struct sunxi_req_ctx *op = ahash_request_ctx(areq); -+ struct scatterlist *in_sg; -+ unsigned int in_i = 0; /* advancement in the current SG */ -+ u64 end; -+ /* -+ * end is the position when we need to stop writing to the device, -+ * to be compared to i -+ */ -+ int in_r; -+ void *src_addr; -+ -+ dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x bw=%u ww=%u", -+ __func__, crypto_tfm_alg_name(areq->base.tfm), -+ op->byte_count, areq->nbytes, op->mode, -+ op->nbw, op->nwait); -+ -+ if (areq->nbytes == 0) -+ return 0; -+ -+ end = ((areq->nbytes + op->nwait * 4 + op->nbw) / 64) * 64 -+ - op->nbw - op->nwait * 4; -+ -+ if (end > areq->nbytes || areq->nbytes - end > 63) { -+ dev_err(ss->dev, "ERROR: Bound error %llu %u\n", -+ end, areq->nbytes); -+ return -EINVAL; -+ } -+ -+ if (op->nwait > 0 && end > 0) { -+ /* a precedent update was done */ -+ for (i = 0; i < op->nwait; i++) { -+ ss_writer(op->wait[i]); -+ op->byte_count += 4; -+ } -+ op->nwait = 0; -+ } -+ -+ mutex_lock(&ss->lock); -+ /* -+ * if some data have been processed before, -+ * we need to restore the partial hash state -+ */ -+ if (op->byte_count > 0) { -+ ivmode = SS_IV_ARBITRARY; -+ for (i = 0; i < 5; i++) -+ writel(op->hash[i], ss->base + SS_IV0 + i * 4); -+ } -+ /* Enable the device */ -+ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); -+ -+ rx_cnt = 0; -+ i = 0; -+ -+ in_sg = areq->src; -+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; -+ if (src_addr == NULL) { -+ mutex_unlock(&ss->lock); -+ dev_err(ss->dev, "ERROR: Cannot kmap source buffer\n"); -+ return -EFAULT; -+ } -+ do { -+ /* -+ * step 1, if some bytes remains from last SG, -+ * try to complete them to 4 and send that word -+ */ -+ if (op->nbw > 0) { -+ while (op->nbw < 4 && i < areq->nbytes && -+ in_i < in_sg->length) { -+ op->wb |= (*(u8 *)(src_addr + in_i)) -+ << (8 * op->nbw); -+ dev_dbg(ss->dev, "%s Complete w=%d wb=%x\n", -+ __func__, op->nbw, op->wb); -+ i++; -+ in_i++; -+ op->nbw++; -+ } -+ if (op->nbw == 4) { -+ if (i <= end) { -+ ss_writer(op->wb); -+ op->byte_count += 4; -+ } else { -+ op->wait[op->nwait] = op->wb; -+ op->nwait++; -+ dev_dbg(ss->dev, "%s Keep %u bytes after %llu\n", -+ __func__, op->nwait, end); -+ } -+ op->nbw = 0; -+ op->wb = 0; -+ } -+ } -+ /* step 2, main loop, read data 4bytes at a time */ -+ while (i < areq->nbytes && in_i < in_sg->length) { -+ /* how many bytes we can read, (we need 4) */ -+ in_r = min(in_sg->length - in_i, areq->nbytes - i); -+ if (in_r < 4) { -+ /* Not enough data to write to the device */ -+ op->wb = 0; -+ while (in_r > 0) { -+ op->wb |= (*(u8 *)(src_addr + in_i)) -+ << (8 * op->nbw); -+ dev_dbg(ss->dev, "%s ending bw=%d wb=%x\n", -+ __func__, op->nbw, op->wb); -+ in_r--; -+ i++; -+ in_i++; -+ op->nbw++; -+ } -+ goto nextsg; -+ } -+ v = *(u32 *)(src_addr + in_i); -+ if (i < end) { -+ /* last write must be done without relaxed */ -+ if (i + 4 >= end) -+ ss_writer(v); -+ else -+ ss_writer_relaxed(v); -+ i += 4; -+ op->byte_count += 4; -+ in_i += 4; -+ } else { -+ op->wait[op->nwait] = v; -+ i += 4; -+ in_i += 4; -+ op->nwait++; -+ dev_dbg(ss->dev, "%s Keep word ww=%u after %llu\n", -+ __func__, op->nwait, end); -+ if (op->nwait > 15) { -+ dev_err(ss->dev, "FATAL: Cannot enqueue more, bug?\n"); -+ writel(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ return -EIO; -+ } -+ } -+ } -+nextsg: -+ /* Nothing more to read in this SG */ -+ if (in_i == in_sg->length) { -+ kunmap(sg_page(in_sg)); -+ do { -+ in_sg = sg_next(in_sg); -+ } while (in_sg != NULL && in_sg->length == 0); -+ in_i = 0; -+ if (in_sg != NULL) { -+ src_addr = kmap(sg_page(in_sg)) + in_sg->offset; -+ if (src_addr == NULL) { -+ mutex_unlock(&ss->lock); -+ dev_err(ss->dev, "ERROR: Cannot kmap source buffer\n"); -+ return -EFAULT; -+ } -+ } -+ } -+ } while (in_sg != NULL && i < areq->nbytes); -+ -+ /* ask the device to finish the hashing */ -+ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); -+ i = 0; -+ do { -+ v = readl(ss->base + SS_CTL); -+ i++; -+ } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0); -+ if (i >= SS_TIMEOUT) { -+ dev_err(ss->dev, "ERROR: %s hash end timeout after %d loop, CTL=%x\n", -+ __func__, i, v); -+ writel(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ return -EIO; -+ } -+ -+ /* get the partial hash */ -+ if (op->mode == SS_OP_SHA1) { -+ for (i = 0; i < 5; i++) -+ op->hash[i] = readl(ss->base + SS_MD0 + i * 4); -+ } else { -+ for (i = 0; i < 4; i++) -+ op->hash[i] = readl(ss->base + SS_MD0 + i * 4); -+ } -+ -+ writel(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ return 0; -+} -+ -+/* -+ * sunxi_hash_final: finalize hashing operation -+ * -+ * If we have some remaining bytes, we write them. -+ * Then ask the SS for finalizing the hashing operation -+ */ -+int sunxi_hash_final(struct ahash_request *areq) -+{ -+ u32 v, ivmode = 0; -+ unsigned int i; -+ int zeros; -+ unsigned int index, padlen; -+ __be64 bits; -+ struct sunxi_req_ctx *op = ahash_request_ctx(areq); -+ -+ dev_dbg(ss->dev, "%s byte=%llu len=%u mode=%x bw=%u %x h=%x ww=%u", -+ __func__, op->byte_count, areq->nbytes, op->mode, -+ op->nbw, op->wb, op->hash[0], op->nwait); -+ -+ mutex_lock(&ss->lock); -+ rx_cnt = 0; -+ -+ /* -+ * if we have already writed something, -+ * restore the partial hash state -+ */ -+ if (op->byte_count > 0) { -+ ivmode = SS_IV_ARBITRARY; -+ for (i = 0; i < 5; i++) -+ writel(op->hash[i], ss->base + SS_IV0 + i * 4); -+ } -+ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); -+ -+ /* write the remaining words of the wait buffer */ -+ if (op->nwait > 0) { -+ for (i = 0; i < op->nwait; i++) { -+ v = op->wait[i]; -+ ss_writer(v); -+ op->byte_count += 4; -+ dev_dbg(ss->dev, "%s write %llu i=%u %x\n", -+ __func__, op->byte_count, i, v); -+ } -+ op->nwait = 0; -+ } -+ -+ /* write the remaining bytes of the nbw buffer */ -+ if (op->nbw > 0) { -+ op->wb |= ((1 << 7) << (op->nbw * 8)); -+ ss_writer(op->wb); -+ } else { -+ ss_writer((1 << 7)); -+ } -+ -+ /* -+ * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1) -+ * I take the operations from other md5/sha1 implementations -+ */ -+ -+ /* we have already send 4 more byte of which nbw data */ -+ if (op->mode == SS_OP_MD5) { -+ index = (op->byte_count + 4) & 0x3f; -+ op->byte_count += op->nbw; -+ if (index > 56) -+ zeros = (120 - index) / 4; -+ else -+ zeros = (56 - index) / 4; -+ } else { -+ op->byte_count += op->nbw; -+ index = op->byte_count & 0x3f; -+ padlen = (index < 56) ? (56 - index) : ((64+56) - index); -+ zeros = (padlen - 1) / 4; -+ } -+ for (i = 0; i < zeros; i++) -+ ss_writer(0); -+ -+ /* write the length of data */ -+ if (op->mode == SS_OP_SHA1) { -+ bits = cpu_to_be64(op->byte_count << 3); -+ ss_writer(bits & 0xffffffff); -+ ss_writer((bits >> 32) & 0xffffffff); -+ } else { -+ ss_writer((op->byte_count << 3) & 0xffffffff); -+ ss_writer((op->byte_count >> 29) & 0xffffffff); -+ } -+ -+ /* Tell the SS to stop the hashing */ -+ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); -+ -+ /* -+ * Wait for SS to finish the hash. -+ * The timeout could happend only in case of bad overcloking -+ * or driver bug. -+ */ -+ i = 0; -+ do { -+ v = readl(ss->base + SS_CTL); -+ i++; -+ } while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0); -+ if (i >= SS_TIMEOUT) { -+ dev_err(ss->dev, "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", -+ i, SS_TIMEOUT, v, areq->nbytes); -+ writel(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ return -EIO; -+ } -+ -+ /* Get the hash from the device */ -+ if (op->mode == SS_OP_SHA1) { -+ for (i = 0; i < 5; i++) { -+ v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4)); -+ memcpy(areq->result + i * 4, &v, 4); -+ } -+ } else { -+ for (i = 0; i < 4; i++) { -+ v = readl(ss->base + SS_MD0 + i * 4); -+ memcpy(areq->result + i * 4, &v, 4); -+ } -+ } -+ writel(0, ss->base + SS_CTL); -+ mutex_unlock(&ss->lock); -+ return 0; -+} -+ -+/* sunxi_hash_finup: finalize hashing operation after an update */ -+int sunxi_hash_finup(struct ahash_request *areq) -+{ -+ int err; -+ -+ err = sunxi_hash_update(areq); -+ if (err != 0) -+ return err; -+ -+ return sunxi_hash_final(areq); -+} -+ -+/* combo of init/update/final functions */ -+int sunxi_hash_digest(struct ahash_request *areq) -+{ -+ int err; -+ -+ err = sunxi_hash_init(areq); -+ if (err != 0) -+ return err; -+ -+ err = sunxi_hash_update(areq); -+ if (err != 0) -+ return err; -+ -+ return sunxi_hash_final(areq); -+} ---- /dev/null -+++ b/drivers/crypto/sunxi-ss/sunxi-ss.h -@@ -0,0 +1,193 @@ -+/* -+ * sunxi-ss.c - hardware cryptographic accelerator for Allwinner A20 SoC -+ * -+ * Copyright (C) 2013-2014 Corentin LABBE <clabbe.montjoie@gmail.com> -+ * -+ * Support AES cipher with 128,192,256 bits keysize. -+ * Support MD5 and SHA1 hash algorithms. -+ * Support DES and 3DES -+ * -+ * You could find the datasheet in Documentation/arm/sunxi/README -+ * -+ * Licensed under the GPL-2. -+ */ -+ -+#include <linux/clk.h> -+#include <linux/crypto.h> -+#include <linux/io.h> -+#include <linux/module.h> -+#include <linux/of.h> -+#include <linux/platform_device.h> -+#include <crypto/scatterwalk.h> -+#include <linux/scatterlist.h> -+#include <linux/interrupt.h> -+#include <linux/delay.h> -+#include <crypto/md5.h> -+#include <crypto/sha.h> -+#include <crypto/hash.h> -+#include <crypto/internal/hash.h> -+#include <crypto/aes.h> -+#include <crypto/des.h> -+#include <crypto/internal/rng.h> -+ -+#define SS_CTL 0x00 -+#define SS_KEY0 0x04 -+#define SS_KEY1 0x08 -+#define SS_KEY2 0x0C -+#define SS_KEY3 0x10 -+#define SS_KEY4 0x14 -+#define SS_KEY5 0x18 -+#define SS_KEY6 0x1C -+#define SS_KEY7 0x20 -+ -+#define SS_IV0 0x24 -+#define SS_IV1 0x28 -+#define SS_IV2 0x2C -+#define SS_IV3 0x30 -+ -+#define SS_CNT0 0x34 -+#define SS_CNT1 0x38 -+#define SS_CNT2 0x3C -+#define SS_CNT3 0x40 -+ -+#define SS_FCSR 0x44 -+#define SS_ICSR 0x48 -+ -+#define SS_MD0 0x4C -+#define SS_MD1 0x50 -+#define SS_MD2 0x54 -+#define SS_MD3 0x58 -+#define SS_MD4 0x5C -+ -+#define SS_RXFIFO 0x200 -+#define SS_TXFIFO 0x204 -+ -+/* SS_CTL configuration values */ -+ -+/* PRNG generator mode - bit 15 */ -+#define SS_PRNG_ONESHOT (0 << 15) -+#define SS_PRNG_CONTINUE (1 << 15) -+ -+/* IV mode for hash */ -+#define SS_IV_ARBITRARY (1 << 14) -+ -+/* SS operation mode - bits 12-13 */ -+#define SS_ECB (0 << 12) -+#define SS_CBC (1 << 12) -+#define SS_CNT (2 << 12) -+ -+/* Counter width for CNT mode - bits 10-11 */ -+#define SS_CNT_16BITS (0 << 10) -+#define SS_CNT_32BITS (1 << 10) -+#define SS_CNT_64BITS (2 << 10) -+ -+/* Key size for AES - bits 8-9 */ -+#define SS_AES_128BITS (0 << 8) -+#define SS_AES_192BITS (1 << 8) -+#define SS_AES_256BITS (2 << 8) -+ -+/* Operation direction - bit 7 */ -+#define SS_ENCRYPTION (0 << 7) -+#define SS_DECRYPTION (1 << 7) -+ -+/* SS Method - bits 4-6 */ -+#define SS_OP_AES (0 << 4) -+#define SS_OP_DES (1 << 4) -+#define SS_OP_3DES (2 << 4) -+#define SS_OP_SHA1 (3 << 4) -+#define SS_OP_MD5 (4 << 4) -+#define SS_OP_PRNG (5 << 4) -+ -+/* Data end bit - bit 2 */ -+#define SS_DATA_END (1 << 2) -+ -+/* PRNG start bit - bit 1 */ -+#define SS_PRNG_START (1 << 1) -+ -+/* SS Enable bit - bit 0 */ -+#define SS_DISABLED (0 << 0) -+#define SS_ENABLED (1 << 0) -+ -+/* SS_FCSR configuration values */ -+/* RX FIFO status - bit 30 */ -+#define SS_RXFIFO_FREE (1 << 30) -+ -+/* RX FIFO empty spaces - bits 24-29 */ -+#define SS_RXFIFO_SPACES(val) (((val) >> 24) & 0x3f) -+ -+/* TX FIFO status - bit 22 */ -+#define SS_TXFIFO_AVAILABLE (1 << 22) -+ -+/* TX FIFO available spaces - bits 16-21 */ -+#define SS_TXFIFO_SPACES(val) (((val) >> 16) & 0x3f) -+ -+#define SS_RXFIFO_EMP_INT_PENDING (1 << 10) -+#define SS_TXFIFO_AVA_INT_PENDING (1 << 8) -+#define SS_RXFIFO_EMP_INT_ENABLE (1 << 2) -+#define SS_TXFIFO_AVA_INT_ENABLE (1 << 0) -+ -+/* SS_ICSR configuration values */ -+#define SS_ICS_DRQ_ENABLE (1 << 4) -+ -+struct sunxi_ss_ctx { -+ void __iomem *base; -+ int irq; -+ struct clk *busclk; -+ struct clk *ssclk; -+ struct device *dev; -+ struct resource *res; -+ void *buf_in; /* pointer to data to be uploaded to the device */ -+ size_t buf_in_size; /* size of buf_in */ -+ void *buf_out; -+ size_t buf_out_size; -+ struct mutex lock; /* control the use of the device */ -+ struct mutex bufout_lock; /* control the use of buf_out*/ -+ struct mutex bufin_lock; /* control the sue of buf_in*/ -+}; -+ -+struct sunxi_tfm_ctx { -+ u32 key[AES_MAX_KEY_SIZE / 4];/* divided by sizeof(u32) */ -+ u32 keylen; -+ u32 keymode; -+}; -+ -+struct sunxi_req_ctx { -+ u32 mode; -+ u64 byte_count; /* number of bytes "uploaded" to the device */ -+ u32 wb; /* a partial word waiting to be completed and -+ uploaded to the device */ -+ /* number of bytes to be uploaded in the wb word */ -+ unsigned int nbw; -+ u32 hash[5]; -+ u32 wait[64]; -+ unsigned int nwait; -+}; -+ -+#define SS_SEED_LEN (192/8) -+#define SS_DATA_LEN (160/8) -+ -+struct prng_context { -+ u32 seed[SS_SEED_LEN/4]; -+ unsigned int slen; -+}; -+ -+int sunxi_hash_crainit(struct crypto_tfm *tfm); -+int sunxi_hash_init(struct ahash_request *areq); -+int sunxi_hash_update(struct ahash_request *areq); -+int sunxi_hash_final(struct ahash_request *areq); -+int sunxi_hash_finup(struct ahash_request *areq); -+int sunxi_hash_digest(struct ahash_request *areq); -+int sunxi_hash_export(struct ahash_request *areq, void *out); -+int sunxi_hash_import(struct ahash_request *areq, const void *in); -+ -+int sunxi_ss_aes_poll(struct ablkcipher_request *areq, u32 mode); -+int sunxi_ss_des_poll(struct ablkcipher_request *areq, u32 mode); -+int sunxi_ss_cipher_init(struct crypto_tfm *tfm); -+int sunxi_ss_cipher_encrypt(struct ablkcipher_request *areq); -+int sunxi_ss_cipher_decrypt(struct ablkcipher_request *areq); -+int sunxi_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, -+ unsigned int keylen); -+int sunxi_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key, -+ unsigned int keylen); -+int sunxi_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key, -+ unsigned int keylen); |