diff options
Diffstat (limited to 'target/linux/ipq806x/patches/0150-mtd-nand-Add-Qualcomm-NAND-controller.patch')
-rw-r--r-- | target/linux/ipq806x/patches/0150-mtd-nand-Add-Qualcomm-NAND-controller.patch | 8803 |
1 files changed, 8803 insertions, 0 deletions
diff --git a/target/linux/ipq806x/patches/0150-mtd-nand-Add-Qualcomm-NAND-controller.patch b/target/linux/ipq806x/patches/0150-mtd-nand-Add-Qualcomm-NAND-controller.patch new file mode 100644 index 0000000000..5a9fb51f03 --- /dev/null +++ b/target/linux/ipq806x/patches/0150-mtd-nand-Add-Qualcomm-NAND-controller.patch @@ -0,0 +1,8803 @@ +From d2981ca1343b837fc574c4e46806d041b258720d Mon Sep 17 00:00:00 2001 +From: Andy Gross <agross@codeaurora.org> +Date: Mon, 16 Jun 2014 17:13:22 -0500 +Subject: [PATCH 150/182] mtd: nand: Add Qualcomm NAND controller + +This patch adds the Qualcomm NAND controller and required infrastructure. + +Signed-off-by: Andy Gross <agross@codeaurora.org> +--- + drivers/mtd/nand/Kconfig | 18 + + drivers/mtd/nand/Makefile | 2 + + drivers/mtd/nand/qcom_adm_dma.c | 797 +++++ + drivers/mtd/nand/qcom_adm_dma.h | 268 ++ + drivers/mtd/nand/qcom_nand.c | 7455 +++++++++++++++++++++++++++++++++++++++ + drivers/mtd/nand/qcom_nand.h | 196 + + 6 files changed, 8736 insertions(+) + create mode 100644 drivers/mtd/nand/qcom_adm_dma.c + create mode 100644 drivers/mtd/nand/qcom_adm_dma.h + create mode 100644 drivers/mtd/nand/qcom_nand.c + create mode 100644 drivers/mtd/nand/qcom_nand.h + +diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig +index 90ff447..6e3842f 100644 +--- a/drivers/mtd/nand/Kconfig ++++ b/drivers/mtd/nand/Kconfig +@@ -510,4 +510,22 @@ config MTD_NAND_XWAY + Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached + to the External Bus Unit (EBU). + ++config MTD_QCOM_DMA ++ tristate "QCMO NAND DMA Support" ++ depends on ARCH_QCOM && MTD_QCOM_NAND ++ default n ++ help ++ DMA support for QCOM NAND ++ ++config MTD_QCOM_NAND ++ tristate "QCOM NAND Device Support" ++ depends on MTD && ARCH_QCOM ++ select CRC16 ++ select BITREVERSE ++ select MTD_NAND_IDS ++ select MTD_QCOM_DMA ++ default y ++ help ++ Support for some NAND chips connected to the QCOM NAND controller. ++ + endif # MTD_NAND +diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile +index 542b568..6ef3c02 100644 +--- a/drivers/mtd/nand/Makefile ++++ b/drivers/mtd/nand/Makefile +@@ -49,5 +49,7 @@ obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o + obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ + obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o + obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ ++obj-$(CONFIG_MTD_QCOM_NAND) += qcom_nand.o ++obj-$(CONFIG_MTD_QCOM_DMA) += qcom_adm_dma.o + + nand-objs := nand_base.o nand_bbt.o +diff --git a/drivers/mtd/nand/qcom_adm_dma.c b/drivers/mtd/nand/qcom_adm_dma.c +new file mode 100644 +index 0000000..46d8473 +--- /dev/null ++++ b/drivers/mtd/nand/qcom_adm_dma.c +@@ -0,0 +1,797 @@ ++/* * Copyright (c) 2012 The Linux Foundation. All rights reserved.* */ ++/* linux/arch/arm/mach-msm/dma.c ++ * ++ * Copyright (C) 2007 Google, Inc. ++ * Copyright (c) 2008-2010, 2012 The Linux Foundation. All rights reserved. ++ * ++ * This software is licensed under the terms of the GNU General Public ++ * License version 2, as published by the Free Software Foundation, and ++ * may be copied, distributed, and modified under those terms. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ */ ++ ++#include <linux/clk.h> ++#include <linux/err.h> ++#include <linux/io.h> ++#include <linux/interrupt.h> ++#include <linux/module.h> ++#include <linux/platform_device.h> ++#include <linux/spinlock.h> ++#include <linux/pm_runtime.h> ++#include <linux/reset.h> ++#include <linux/reset-controller.h> ++#include "qcom_adm_dma.h" ++ ++#define MODULE_NAME "msm_dmov" ++ ++#define MSM_DMOV_CHANNEL_COUNT 16 ++#define MSM_DMOV_CRCI_COUNT 16 ++ ++enum { ++ CLK_DIS, ++ CLK_TO_BE_DIS, ++ CLK_EN ++}; ++ ++struct msm_dmov_ci_conf { ++ int start; ++ int end; ++ int burst; ++}; ++ ++struct msm_dmov_crci_conf { ++ int sd; ++ int blk_size; ++}; ++ ++struct msm_dmov_chan_conf { ++ int sd; ++ int block; ++ int priority; ++}; ++ ++struct msm_dmov_conf { ++ void *base; ++ struct msm_dmov_crci_conf *crci_conf; ++ struct msm_dmov_chan_conf *chan_conf; ++ int channel_active; ++ int sd; ++ size_t sd_size; ++ struct list_head staged_commands[MSM_DMOV_CHANNEL_COUNT]; ++ struct list_head ready_commands[MSM_DMOV_CHANNEL_COUNT]; ++ struct list_head active_commands[MSM_DMOV_CHANNEL_COUNT]; ++ struct mutex lock; ++ spinlock_t list_lock; ++ unsigned int irq; ++ struct clk *clk; ++ struct clk *pclk; ++ struct clk *ebiclk; ++ unsigned int clk_ctl; ++ struct delayed_work work; ++ struct workqueue_struct *cmd_wq; ++ ++ struct reset_control *adm_reset; ++ struct reset_control *pbus_reset; ++ struct reset_control *c0_reset; ++ struct reset_control *c1_reset; ++ struct reset_control *c2_reset; ++ ++}; ++ ++static void msm_dmov_clock_work(struct work_struct *); ++ ++#define DMOV_CRCI_DEFAULT_CONF { .sd = 0, .blk_size = 0 } ++#define DMOV_CRCI_CONF(secd, blk) { .sd = secd, .blk_size = blk } ++ ++static struct msm_dmov_crci_conf adm_crci_conf[] = { ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_CONF(0, 1), ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++ DMOV_CRCI_DEFAULT_CONF, ++}; ++ ++#define DMOV_CHANNEL_DEFAULT_CONF { .sd = 0, .block = 0, .priority = 1 } ++ ++static struct msm_dmov_chan_conf adm_chan_conf[] = { ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++ DMOV_CHANNEL_DEFAULT_CONF, ++}; ++ ++#define DMOV_IRQ_TO_ADM(irq) 0 ++ ++static struct msm_dmov_conf dmov_conf[] = { ++ { ++ .crci_conf = adm_crci_conf, ++ .chan_conf = adm_chan_conf, ++ .lock = __MUTEX_INITIALIZER(dmov_conf[0].lock), ++ .list_lock = __SPIN_LOCK_UNLOCKED(dmov_list_lock), ++ .clk_ctl = CLK_EN, ++ .work = __DELAYED_WORK_INITIALIZER(dmov_conf[0].work, ++ msm_dmov_clock_work,0), ++ } ++}; ++ ++#define MSM_DMOV_ID_COUNT (MSM_DMOV_CHANNEL_COUNT * ARRAY_SIZE(dmov_conf)) ++#define DMOV_REG(name, adm) ((name) + (dmov_conf[adm].base) +\ ++ (dmov_conf[adm].sd * dmov_conf[adm].sd_size)) ++#define DMOV_ID_TO_ADM(id) ((id) / MSM_DMOV_CHANNEL_COUNT) ++#define DMOV_ID_TO_CHAN(id) ((id) % MSM_DMOV_CHANNEL_COUNT) ++#define DMOV_CHAN_ADM_TO_ID(ch, adm) ((ch) + (adm) * MSM_DMOV_CHANNEL_COUNT) ++ ++enum { ++ MSM_DMOV_PRINT_ERRORS = 1, ++ MSM_DMOV_PRINT_IO = 2, ++ MSM_DMOV_PRINT_FLOW = 4 ++}; ++ ++unsigned int msm_dmov_print_mask = MSM_DMOV_PRINT_ERRORS; ++ ++#define MSM_DMOV_DPRINTF(mask, format, args...) \ ++ do { \ ++ if ((mask) & msm_dmov_print_mask) \ ++ printk(KERN_ERR format, args); \ ++ } while (0) ++#define PRINT_ERROR(format, args...) \ ++ MSM_DMOV_DPRINTF(MSM_DMOV_PRINT_ERRORS, format, args); ++#define PRINT_IO(format, args...) \ ++ MSM_DMOV_DPRINTF(MSM_DMOV_PRINT_IO, format, args); ++#define PRINT_FLOW(format, args...) \ ++ MSM_DMOV_DPRINTF(MSM_DMOV_PRINT_FLOW, format, args); ++ ++static int msm_dmov_clk_on(int adm) ++{ ++ int ret; ++ ++return 0; ++ ret = clk_prepare_enable(dmov_conf[adm].clk); ++ if (ret) ++ return ret; ++ if (dmov_conf[adm].pclk) { ++ ret = clk_prepare_enable(dmov_conf[adm].pclk); ++ if (ret) { ++ clk_disable_unprepare(dmov_conf[adm].clk); ++ return ret; ++ } ++ } ++ if (dmov_conf[adm].ebiclk) { ++ ret = clk_prepare_enable(dmov_conf[adm].ebiclk); ++ if (ret) { ++ if (dmov_conf[adm].pclk) ++ clk_disable_unprepare(dmov_conf[adm].pclk); ++ clk_disable_unprepare(dmov_conf[adm].clk); ++ } ++ } ++ return ret; ++} ++ ++static void msm_dmov_clk_off(int adm) ++{ ++#if 0 ++ if (dmov_conf[adm].ebiclk) ++ clk_disable_unprepare(dmov_conf[adm].ebiclk); ++ if (dmov_conf[adm].pclk) ++ clk_disable_unprepare(dmov_conf[adm].pclk); ++ clk_disable_unprepare(dmov_conf[adm].clk); ++#endif ++} ++ ++static void msm_dmov_clock_work(struct work_struct *work) ++{ ++ struct msm_dmov_conf *conf = ++ container_of(to_delayed_work(work), struct msm_dmov_conf, work); ++ int adm = DMOV_IRQ_TO_ADM(conf->irq); ++ mutex_lock(&conf->lock); ++ if (conf->clk_ctl == CLK_TO_BE_DIS) { ++ BUG_ON(conf->channel_active); ++ msm_dmov_clk_off(adm); ++ conf->clk_ctl = CLK_DIS; ++ } ++ mutex_unlock(&conf->lock); ++} ++ ++enum { ++ NOFLUSH = 0, ++ GRACEFUL, ++ NONGRACEFUL, ++}; ++ ++/* Caller must hold the list lock */ ++static struct msm_dmov_cmd *start_ready_cmd(unsigned ch, int adm) ++{ ++ struct msm_dmov_cmd *cmd; ++ ++ if (list_empty(&dmov_conf[adm].ready_commands[ch])) { ++ return NULL; ++ } ++ ++ cmd = list_entry(dmov_conf[adm].ready_commands[ch].next, typeof(*cmd), ++ list); ++ list_del(&cmd->list); ++ if (cmd->exec_func) ++ cmd->exec_func(cmd); ++ list_add_tail(&cmd->list, &dmov_conf[adm].active_commands[ch]); ++ if (!dmov_conf[adm].channel_active) { ++ enable_irq(dmov_conf[adm].irq); ++ } ++ dmov_conf[adm].channel_active |= BIT(ch); ++ PRINT_IO("msm dmov enqueue command, %x, ch %d\n", cmd->cmdptr, ch); ++ writel_relaxed(cmd->cmdptr, DMOV_REG(DMOV_CMD_PTR(ch), adm)); ++ ++ return cmd; ++} ++ ++static void msm_dmov_enqueue_cmd_ext_work(struct work_struct *work) ++{ ++ struct msm_dmov_cmd *cmd = ++ container_of(work, struct msm_dmov_cmd, work); ++ unsigned id = cmd->id; ++ unsigned status; ++ unsigned long flags; ++ int adm = DMOV_ID_TO_ADM(id); ++ int ch = DMOV_ID_TO_CHAN(id); ++ ++ mutex_lock(&dmov_conf[adm].lock); ++ if (dmov_conf[adm].clk_ctl == CLK_DIS) { ++ status = msm_dmov_clk_on(adm); ++ if (status != 0) ++ goto error; ++ } ++ dmov_conf[adm].clk_ctl = CLK_EN; ++ ++ spin_lock_irqsave(&dmov_conf[adm].list_lock, flags); ++ ++ cmd = list_entry(dmov_conf[adm].staged_commands[ch].next, typeof(*cmd), ++ list); ++ list_del(&cmd->list); ++ list_add_tail(&cmd->list, &dmov_conf[adm].ready_commands[ch]); ++ status = readl_relaxed(DMOV_REG(DMOV_STATUS(ch), adm)); ++ if (status & DMOV_STATUS_CMD_PTR_RDY) { ++ PRINT_IO("msm_dmov_enqueue_cmd(%d), start command, status %x\n", ++ id, status); ++ cmd = start_ready_cmd(ch, adm); ++ /* ++ * We added something to the ready list, and still hold the ++ * list lock. Thus, no need to check for cmd == NULL ++ */ ++ if (cmd->toflush) { ++ int flush = (cmd->toflush == GRACEFUL) ? 1 << 31 : 0; ++ writel_relaxed(flush, DMOV_REG(DMOV_FLUSH0(ch), adm)); ++ } ++ } else { ++ cmd->toflush = 0; ++ if (list_empty(&dmov_conf[adm].active_commands[ch]) && ++ !list_empty(&dmov_conf[adm].ready_commands[ch])) ++ PRINT_ERROR("msm_dmov_enqueue_cmd_ext(%d), stalled, " ++ "status %x\n", id, status); ++ PRINT_IO("msm_dmov_enqueue_cmd(%d), enqueue command, status " ++ "%x\n", id, status); ++ } ++ if (!dmov_conf[adm].channel_active) { ++ dmov_conf[adm].clk_ctl = CLK_TO_BE_DIS; ++ schedule_delayed_work(&dmov_conf[adm].work, (HZ/10)); ++ } ++ spin_unlock_irqrestore(&dmov_conf[adm].list_lock, flags); ++error: ++ mutex_unlock(&dmov_conf[adm].lock); ++} ++ ++static void __msm_dmov_enqueue_cmd_ext(unsigned id, struct msm_dmov_cmd *cmd) ++{ ++ int adm = DMOV_ID_TO_ADM(id); ++ int ch = DMOV_ID_TO_CHAN(id); ++ unsigned long flags; ++ cmd->id = id; ++ cmd->toflush = 0; ++ ++ spin_lock_irqsave(&dmov_conf[adm].list_lock, flags); ++ list_add_tail(&cmd->list, &dmov_conf[adm].staged_commands[ch]); ++ spin_unlock_irqrestore(&dmov_conf[adm].list_lock, flags); ++ ++ queue_work(dmov_conf[adm].cmd_wq, &cmd->work); ++} ++ ++void msm_dmov_enqueue_cmd_ext(unsigned id, struct msm_dmov_cmd *cmd) ++{ ++ INIT_WORK(&cmd->work, msm_dmov_enqueue_cmd_ext_work); ++ __msm_dmov_enqueue_cmd_ext(id, cmd); ++} ++EXPORT_SYMBOL(msm_dmov_enqueue_cmd_ext); ++ ++void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd) ++{ ++ /* Disable callback function (for backwards compatibility) */ ++ cmd->exec_func = NULL; ++ INIT_WORK(&cmd->work, msm_dmov_enqueue_cmd_ext_work); ++ __msm_dmov_enqueue_cmd_ext(id, cmd); ++} ++EXPORT_SYMBOL(msm_dmov_enqueue_cmd); ++ ++void msm_dmov_flush(unsigned int id, int graceful) ++{ ++ unsigned long irq_flags; ++ int ch = DMOV_ID_TO_CHAN(id); ++ int adm = DMOV_ID_TO_ADM(id); ++ int flush = graceful ? DMOV_FLUSH_TYPE : 0; ++ struct msm_dmov_cmd *cmd; ++ ++ spin_lock_irqsave(&dmov_conf[adm].list_lock, irq_flags); ++ /* XXX not checking if flush cmd sent already */ ++ if (!list_empty(&dmov_conf[adm].active_commands[ch])) { ++ PRINT_IO("msm_dmov_flush(%d), send flush cmd\n", id); ++ writel_relaxed(flush, DMOV_REG(DMOV_FLUSH0(ch), adm)); ++ } ++ list_for_each_entry(cmd, &dmov_conf[adm].staged_commands[ch], list) ++ cmd->toflush = graceful ? GRACEFUL : NONGRACEFUL; ++ /* spin_unlock_irqrestore has the necessary barrier */ ++ spin_unlock_irqrestore(&dmov_conf[adm].list_lock, irq_flags); ++} ++EXPORT_SYMBOL(msm_dmov_flush); ++ ++struct msm_dmov_exec_cmdptr_cmd { ++ struct msm_dmov_cmd dmov_cmd; ++ struct completion complete; ++ unsigned id; ++ unsigned int result; ++ struct msm_dmov_errdata err; ++}; ++ ++static void ++dmov_exec_cmdptr_complete_func(struct msm_dmov_cmd *_cmd, ++ unsigned int result, ++ struct msm_dmov_errdata *err) ++{ ++ struct msm_dmov_exec_cmdptr_cmd *cmd = container_of(_cmd, struct msm_dmov_exec_cmdptr_cmd, dmov_cmd); ++ cmd->result = result; ++ if (result != 0x80000002 && err) ++ memcpy(&cmd->err, err, sizeof(struct msm_dmov_errdata)); ++ ++ complete(&cmd->complete); ++} ++ ++int msm_dmov_exec_cmd(unsigned id, unsigned int cmdptr) ++{ ++ struct msm_dmov_exec_cmdptr_cmd cmd; ++ ++ PRINT_FLOW("dmov_exec_cmdptr(%d, %x)\n", id, cmdptr); ++ ++ cmd.dmov_cmd.cmdptr = cmdptr; ++ cmd.dmov_cmd.complete_func = dmov_exec_cmdptr_complete_func; ++ cmd.dmov_cmd.exec_func = NULL; ++ cmd.id = id; ++ cmd.result = 0; ++ INIT_WORK_ONSTACK(&cmd.dmov_cmd.work, msm_dmov_enqueue_cmd_ext_work); ++ init_completion(&cmd.complete); ++ ++ __msm_dmov_enqueue_cmd_ext(id, &cmd.dmov_cmd); ++ wait_for_completion_timeout(&cmd.complete, msecs_to_jiffies(1000)); ++ ++ if (cmd.result != 0x80000002) { ++ PRINT_ERROR("dmov_exec_cmdptr(%d): ERROR, result: %x\n", id, cmd.result); ++ PRINT_ERROR("dmov_exec_cmdptr(%d): flush: %x %x %x %x\n", ++ id, cmd.err.flush[0], cmd.err.flush[1], cmd.err.flush[2], cmd.err.flush[3]); ++ return -EIO; ++ } ++ PRINT_FLOW("dmov_exec_cmdptr(%d, %x) done\n", id, cmdptr); ++ return 0; ++} ++EXPORT_SYMBOL(msm_dmov_exec_cmd); ++ ++static void fill_errdata(struct msm_dmov_errdata *errdata, int ch, int adm) ++{ ++ errdata->flush[0] = readl_relaxed(DMOV_REG(DMOV_FLUSH0(ch), adm)); ++ errdata->flush[1] = readl_relaxed(DMOV_REG(DMOV_FLUSH1(ch), adm)); ++ errdata->flush[2] = 0; ++ errdata->flush[3] = readl_relaxed(DMOV_REG(DMOV_FLUSH3(ch), adm)); ++ errdata->flush[4] = readl_relaxed(DMOV_REG(DMOV_FLUSH4(ch), adm)); ++ errdata->flush[5] = readl_relaxed(DMOV_REG(DMOV_FLUSH5(ch), adm)); ++} ++ ++static irqreturn_t msm_dmov_isr(int irq, void *dev_id) ++{ ++ unsigned int int_status; ++ unsigned int mask; ++ unsigned int id; ++ unsigned int ch; ++ unsigned long irq_flags; ++ unsigned int ch_status; ++ unsigned int ch_result; ++ unsigned int valid = 0; ++ struct msm_dmov_cmd *cmd; ++ int adm = DMOV_IRQ_TO_ADM(irq); ++ ++ mutex_lock(&dmov_conf[adm].lock); ++ /* read and clear isr */ ++ int_status = readl_relaxed(DMOV_REG(DMOV_ISR, adm)); ++ PRINT_FLOW("msm_datamover_irq_handler: DMOV_ISR %x\n", int_status); ++ ++ spin_lock_irqsave(&dmov_conf[adm].list_lock, irq_flags); ++ while (int_status) { ++ mask = int_status & -int_status; ++ ch = fls(mask) - 1; ++ id = DMOV_CHAN_ADM_TO_ID(ch, adm); ++ PRINT_FLOW("msm_datamover_irq_handler %08x %08x id %d\n", int_status, mask, id); ++ int_status &= ~mask; ++ ch_status = readl_relaxed(DMOV_REG(DMOV_STATUS(ch), adm)); ++ if (!(ch_status & DMOV_STATUS_RSLT_VALID)) { ++ PRINT_FLOW("msm_datamover_irq_handler id %d, " ++ "result not valid %x\n", id, ch_status); ++ continue; ++ } ++ do { ++ valid = 1; ++ ch_result = readl_relaxed(DMOV_REG(DMOV_RSLT(ch), adm)); ++ if (list_empty(&dmov_conf[adm].active_commands[ch])) { ++ PRINT_ERROR("msm_datamover_irq_handler id %d, got result " ++ "with no active command, status %x, result %x\n", ++ id, ch_status, ch_result); ++ cmd = NULL; ++ } else { ++ cmd = list_entry(dmov_conf[adm]. ++ active_commands[ch].next, typeof(*cmd), ++ list); ++ } ++ PRINT_FLOW("msm_datamover_irq_handler id %d, status %x, result %x\n", id, ch_status, ch_result); ++ if (ch_result & DMOV_RSLT_DONE) { ++ PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", ++ id, ch_status); ++ PRINT_IO("msm_datamover_irq_handler id %d, got result " ++ "for %p, result %x\n", id, cmd, ch_result); ++ if (cmd) { ++ list_del(&cmd->list); ++ cmd->complete_func(cmd, ch_result, NULL); ++ } ++ } ++ if (ch_result & DMOV_RSLT_FLUSH) { ++ struct msm_dmov_errdata errdata; ++ ++ fill_errdata(&errdata, ch, adm); ++ PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", id, ch_status); ++ PRINT_FLOW("msm_datamover_irq_handler id %d, flush, result %x, flush0 %x\n", id, ch_result, errdata.flush[0]); ++ if (cmd) { ++ list_del(&cmd->list); ++ cmd->complete_func(cmd, ch_result, &errdata); ++ } ++ } ++ if (ch_result & DMOV_RSLT_ERROR) { ++ struct msm_dmov_errdata errdata; ++ ++ fill_errdata(&errdata, ch, adm); ++ ++ PRINT_ERROR("msm_datamover_irq_handler id %d, status %x\n", id, ch_status); ++ PRINT_ERROR("msm_datamover_irq_handler id %d, error, result %x, flush0 %x\n", id, ch_result, errdata.flush[0]); ++ if (cmd) { ++ list_del(&cmd->list); ++ cmd->complete_func(cmd, ch_result, &errdata); ++ } ++ /* this does not seem to work, once we get an error */ ++ /* the datamover will no longer accept commands */ ++ writel_relaxed(0, DMOV_REG(DMOV_FLUSH0(ch), ++ adm)); ++ } ++ rmb(); ++ ch_status = readl_relaxed(DMOV_REG(DMOV_STATUS(ch), ++ adm)); ++ PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", id, ch_status); ++ if (ch_status & DMOV_STATUS_CMD_PTR_RDY) ++ start_ready_cmd(ch, adm); ++ } while (ch_status & DMOV_STATUS_RSLT_VALID); ++ if (list_empty(&dmov_conf[adm].active_commands[ch]) && ++ list_empty(&dmov_conf[adm].ready_commands[ch])) ++ dmov_conf[adm].channel_active &= ~(1U << ch); ++ PRINT_FLOW("msm_datamover_irq_handler id %d, status %x\n", id, ch_status); ++ } ++ spin_unlock_irqrestore(&dmov_conf[adm].list_lock, irq_flags); ++ ++ if (!dmov_conf[adm].channel_active && valid) { ++ disable_irq_nosync(dmov_conf[adm].irq); ++ dmov_conf[adm].clk_ctl = CLK_TO_BE_DIS; ++ schedule_delayed_work(&dmov_conf[adm].work, (HZ/10)); ++ } ++ ++ mutex_unlock(&dmov_conf[adm].lock); ++ ++ return valid ? IRQ_HANDLED : IRQ_NONE; ++} ++ ++static int msm_dmov_suspend_late(struct device *dev) ++{ ++ struct platform_device *pdev = to_platform_device(dev); ++ int adm = (pdev->id >= 0) ? pdev->id : 0; ++ mutex_lock(&dmov_conf[adm].lock); ++ if (dmov_conf[adm].clk_ctl == CLK_TO_BE_DIS) { ++ BUG_ON(dmov_conf[adm].channel_active); ++ msm_dmov_clk_off(adm); ++ dmov_conf[adm].clk_ctl = CLK_DIS; ++ } ++ mutex_unlock(&dmov_conf[adm].lock); ++ return 0; ++} ++ ++static int msm_dmov_runtime_suspend(struct device *dev) ++{ ++ dev_dbg(dev, "pm_runtime: suspending...\n"); ++ return 0; ++} ++ ++static int msm_dmov_runtime_resume(struct device *dev) ++{ ++ dev_dbg(dev, "pm_runtime: resuming...\n"); ++ return 0; ++} ++ ++static int msm_dmov_runtime_idle(struct device *dev) ++{ ++ dev_dbg(dev, "pm_runtime: idling...\n"); ++ return 0; ++} ++ ++static struct dev_pm_ops msm_dmov_dev_pm_ops = { ++ .runtime_suspend = msm_dmov_runtime_suspend, ++ .runtime_resume = msm_dmov_runtime_resume, ++ .runtime_idle = msm_dmov_runtime_idle, ++ .suspend = msm_dmov_suspend_late, ++}; ++ ++static int msm_dmov_init_clocks(struct platform_device *pdev) ++{ ++ int adm = (pdev->id >= 0) ? pdev->id : 0; ++ int ret; ++ ++ dmov_conf[adm].clk = devm_clk_get(&pdev->dev, "core_clk"); ++ if (IS_ERR(dmov_conf[adm].clk)) { ++ printk(KERN_ERR "%s: Error getting adm_clk\n", __func__); ++ dmov_conf[adm].clk = NULL; ++ return -ENOENT; ++ } ++ ++ dmov_conf[adm].pclk = devm_clk_get(&pdev->dev, "iface_clk"); ++ if (IS_ERR(dmov_conf[adm].pclk)) { ++ dmov_conf[adm].pclk = NULL; ++ /* pclk not present on all SoCs, don't bail on failure */ ++ } ++ ++ dmov_conf[adm].ebiclk = devm_clk_get(&pdev->dev, "mem_clk"); ++ if (IS_ERR(dmov_conf[adm].ebiclk)) { ++ dmov_conf[adm].ebiclk = NULL; ++ /* ebiclk not present on all SoCs, don't bail on failure */ ++ } else { ++ ret = clk_set_rate(dmov_conf[adm].ebiclk, 27000000); ++ if (ret) ++ return -ENOENT; ++ } ++ ++ return 0; ++} ++ ++static void config_datamover(int adm) ++{ ++ int i; ++ ++ /* Reset the ADM */ ++ reset_control_assert(dmov_conf[adm].adm_reset); ++ reset_control_assert(dmov_conf[adm].c0_reset); ++ reset_control_assert(dmov_conf[adm].c1_reset); ++ reset_control_assert(dmov_conf[adm].c2_reset); ++ ++ reset_control_deassert(dmov_conf[adm].c2_reset); ++ reset_control_deassert(dmov_conf[adm].c1_reset); ++ reset_control_deassert(dmov_conf[adm].c0_reset); ++ reset_control_deassert(dmov_conf[adm].adm_reset); ++ ++ for (i = 0; i < MSM_DMOV_CHANNEL_COUNT; i++) { ++ struct msm_dmov_chan_conf *chan_conf = ++ dmov_conf[adm].chan_conf; ++ unsigned conf; ++ /* Only configure scorpion channels */ ++ if (chan_conf[i].sd <= 1) { ++ conf = readl_relaxed(DMOV_REG(DMOV_CONF(i), adm)); ++ conf |= DMOV_CONF_MPU_DISABLE | ++ DMOV_CONF_PERM_MPU_CONF | ++ DMOV_CONF_FLUSH_RSLT_EN | ++ DMOV_CONF_FORCE_RSLT_EN | ++ DMOV_CONF_IRQ_EN | ++ DMOV_CONF_PRIORITY(chan_conf[i].priority); ++ ++ conf &= ~DMOV_CONF_SD(7); ++ conf |= DMOV_CONF_SD(chan_conf[i].sd); ++ writel_relaxed(conf, DMOV_REG(DMOV_CONF(i), adm)); ++ } ++ } ++ ++ for (i = 0; i < MSM_DMOV_CRCI_COUNT; i++) { ++ writel_relaxed(DMOV_CRCI_CTL_RST, ++ DMOV_REG(DMOV_CRCI_CTL(i), adm)); ++ } ++ ++ /* NAND CRCI Enable */ ++ writel_relaxed(0, DMOV_REG(DMOV_CRCI_CTL(DMOV_NAND_CRCI_DATA), adm)); ++ writel_relaxed(0, DMOV_REG(DMOV_CRCI_CTL(DMOV_NAND_CRCI_CMD), adm)); ++ ++ /* GSBI5 CRCI Enable */ ++ writel_relaxed(0, DMOV_REG(DMOV_CRCI_CTL(DMOV_SPI_GSBI5_RX_CRCI), adm)); ++ writel_relaxed(0, DMOV_REG(DMOV_CRCI_CTL(DMOV_SPI_GSBI5_TX_CRCI), adm)); ++ ++ writel_relaxed(DMOV_CI_CONF_RANGE_START(0x40) | /* EBI1 */ ++ DMOV_CI_CONF_RANGE_END(0xb0) | ++ DMOV_CI_CONF_MAX_BURST(0x8), ++ DMOV_REG(DMOV_CI_CONF(0), adm)); ++ ++ writel_relaxed(DMOV_CI_CONF_RANGE_START(0x2a) | /* IMEM */ ++ DMOV_CI_CONF_RANGE_END(0x2c) | ++ DMOV_CI_CONF_MAX_BURST(0x8), ++ DMOV_REG(DMOV_CI_CONF(1), adm)); ++ ++ writel_relaxed(DMOV_CI_CONF_RANGE_START(0x12) | /* CPSS/SPS */ ++ DMOV_CI_CONF_RANGE_END(0x28) | ++ DMOV_CI_CONF_MAX_BURST(0x8), ++ DMOV_REG(DMOV_CI_CONF(2), adm)); ++ ++ writel_relaxed(DMOV_HI_GP_CTL_CORE_CLK_LP_EN | /* will disable LP */ ++ DMOV_HI_GP_CTL_LP_CNT(0xf), ++ DMOV_REG(DMOV_HI_GP_CTL, adm)); ++ ++} ++ ++static int msm_dmov_probe(struct platform_device *pdev) ++{ ++ ++ int adm = (pdev->id >= 0) ? pdev->id : 0; ++ int i; ++ int ret; ++ struct resource *irqres = ++ platform_get_resource(pdev, IORESOURCE_IRQ, 0); ++ struct resource *mres = ++ platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ ++ dmov_conf[adm].sd=0; ++ dmov_conf[adm].sd_size=0x800; ++ ++ dmov_conf[adm].irq = irqres->start; ++ ++ dmov_conf[adm].base = devm_ioremap_resource(&pdev->dev, mres); ++ if (!dmov_conf[adm].base) ++ return -ENOMEM; ++ ++ dmov_conf[adm].cmd_wq = alloc_ordered_workqueue("dmov%d_wq", 0, adm); ++ if (!dmov_conf[adm].cmd_wq) { ++ PRINT_ERROR("Couldn't allocate ADM%d workqueue.\n", adm); ++ return -ENOMEM; ++ } ++ ++ /* get resets */ ++ dmov_conf[adm].adm_reset = devm_reset_control_get(&pdev->dev, "adm"); ++ if (IS_ERR(dmov_conf[adm].adm_reset)) { ++ dev_err(&pdev->dev, "failed to get adm reset\n"); ++ ret = PTR_ERR(dmov_conf[adm].adm_reset); ++ goto out_wq; ++ } ++ ++ dmov_conf[adm].pbus_reset = devm_reset_control_get(&pdev->dev, "pbus"); ++ if (IS_ERR(dmov_conf[adm].pbus_reset)) { ++ dev_err(&pdev->dev, "failed to get pbus reset\n"); ++ ret = PTR_ERR(dmov_conf[adm].pbus_reset); ++ goto out_wq; ++ } ++ ++ dmov_conf[adm].c0_reset = devm_reset_control_get(&pdev->dev, "c0"); ++ if (IS_ERR(dmov_conf[adm].c0_reset)) { ++ dev_err(&pdev->dev, "failed to get c0 reset\n"); ++ ret = PTR_ERR(dmov_conf[adm].c0_reset); ++ goto out_wq; ++ } ++ ++ dmov_conf[adm].c1_reset = devm_reset_control_get(&pdev->dev, "c1"); ++ if (IS_ERR(dmov_conf[adm].c1_reset)) { ++ dev_err(&pdev->dev, "failed to get c1 reset\n"); ++ ret = PTR_ERR(dmov_conf[adm].c1_reset); ++ goto out_wq; ++ } ++ ++ dmov_conf[adm].c2_reset = devm_reset_control_get(&pdev->dev, "c2"); ++ if (IS_ERR(dmov_conf[adm].c2_reset)) { ++ dev_err(&pdev->dev, "failed to get c2 reset\n"); ++ ret = PTR_ERR(dmov_conf[adm].c2_reset); ++ goto out_wq; ++ } ++ ++ ret = devm_request_threaded_irq(&pdev->dev, dmov_conf[adm].irq, NULL, ++ msm_dmov_isr, IRQF_ONESHOT, "msmdatamover", NULL); ++ ++ if (ret) { ++ PRINT_ERROR("Requesting ADM%d irq %d failed\n", adm, ++ dmov_conf[adm].irq); ++ goto out_wq; ++ } ++ ++ disable_irq(dmov_conf[adm].irq); ++ ret = msm_dmov_init_clocks(pdev); ++ if (ret) { ++ PRINT_ERROR("Requesting ADM%d clocks failed\n", adm); ++ goto out_wq; ++ } ++ clk_prepare_enable(dmov_conf[adm].clk); ++ clk_prepare_enable(dmov_conf[adm].pclk); ++ ++// ret = msm_dmov_clk_on(adm); ++// if (ret) { ++// PRINT_ERROR("Enabling ADM%d clocks failed\n", adm); ++// goto out_wq; ++// } ++ ++ config_datamover(adm); ++ for (i = 0; i < MSM_DMOV_CHANNEL_COUNT; i++) { ++ INIT_LIST_HEAD(&dmov_conf[adm].staged_commands[i]); ++ INIT_LIST_HEAD(&dmov_conf[adm].ready_commands[i]); ++ INIT_LIST_HEAD(&dmov_conf[adm].active_commands[i]); ++ ++ writel_relaxed(DMOV_RSLT_CONF_IRQ_EN ++ | DMOV_RSLT_CONF_FORCE_FLUSH_RSLT, ++ DMOV_REG(DMOV_RSLT_CONF(i), adm)); ++ } ++ wmb(); ++// msm_dmov_clk_off(adm); ++ return ret; ++out_wq: ++ destroy_workqueue(dmov_conf[adm].cmd_wq); ++ return ret; ++} ++ ++#ifdef CONFIG_OF ++static const struct of_device_id adm_of_match[] = { ++ { .compatible = "qcom,adm", }, ++ {}, ++}; ++MODULE_DEVICE_TABLE(of, adm_of_match); ++#endif ++ ++static struct platform_driver msm_dmov_driver = { ++ .probe = msm_dmov_probe, ++ .driver = { ++ .name = MODULE_NAME, ++ .owner = THIS_MODULE, ++ .of_match_table = adm_of_match, ++ .pm = &msm_dmov_dev_pm_ops, ++ }, ++}; ++ ++/* static int __init */ ++static int __init msm_init_datamover(void) ++{ ++ int ret; ++ ret = platform_driver_register(&msm_dmov_driver); ++ if (ret) ++ return ret; ++ return 0; ++} ++arch_initcall(msm_init_datamover); +diff --git a/drivers/mtd/nand/qcom_adm_dma.h b/drivers/mtd/nand/qcom_adm_dma.h +new file mode 100644 +index 0000000..1014d57 +--- /dev/null ++++ b/drivers/mtd/nand/qcom_adm_dma.h +@@ -0,0 +1,268 @@ ++/* * Copyright (c) 2012 The Linux Foundation. All rights reserved.* */ ++/* linux/include/asm-arm/arch-msm/dma.h ++ * ++ * Copyright (C) 2007 Google, Inc. ++ * Copyright (c) 2008-2012, The Linux Foundation. All rights reserved. ++ * ++ * This software is licensed under the terms of the GNU General Public ++ * License version 2, as published by the Free Software Foundation, and ++ * may be copied, distributed, and modified under those terms. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ */ ++ ++#ifndef __ASM_ARCH_MSM_DMA_H ++#define __ASM_ARCH_MSM_DMA_H ++#include <linux/list.h> ++ ++struct msm_dmov_errdata { ++ uint32_t flush[6]; ++}; ++ ++struct msm_dmov_cmd { ++ struct list_head list; ++ unsigned int cmdptr; ++ void (*complete_func)(struct msm_dmov_cmd *cmd, ++ unsigned int result, ++ struct msm_dmov_errdata *err); ++ void (*exec_func)(struct msm_dmov_cmd *cmd); ++ struct work_struct work; ++ unsigned id; /* For internal use */ ++ void *user; /* Pointer for caller's reference */ ++ u8 toflush; ++}; ++ ++struct msm_dmov_pdata { ++ int sd; ++ size_t sd_size; ++}; ++ ++void msm_dmov_enqueue_cmd(unsigned id, struct msm_dmov_cmd *cmd); ++void msm_dmov_enqueue_cmd_ext(unsigned id, struct msm_dmov_cmd *cmd); ++void msm_dmov_flush(unsigned int id, int graceful); ++int msm_dmov_exec_cmd(unsigned id, unsigned int cmdptr); ++ ++#define DMOV_CRCIS_PER_CONF 10 ++ ++#define DMOV_ADDR(off, ch) ((off) + ((ch) << 2)) ++ ++#define DMOV_CMD_PTR(ch) DMOV_ADDR(0x000, ch) ++#define DMOV_CMD_LIST (0 << 29) /* does not work */ ++#define DMOV_CMD_PTR_LIST (1 << 29) /* works */ ++#define DMOV_CMD_INPUT_CFG (2 << 29) /* untested */ ++#define DMOV_CMD_OUTPUT_CFG (3 << 29) /* untested */ ++#define DMOV_CMD_ADDR(addr) ((addr) >> 3) ++ ++#define DMOV_RSLT(ch) DMOV_ADDR(0x040, ch) ++#define DMOV_RSLT_VALID (1 << 31) /* 0 == host has empties result fifo */ ++#define DMOV_RSLT_ERROR (1 << 3) ++#define DMOV_RSLT_FLUSH (1 << 2) ++#define DMOV_RSLT_DONE (1 << 1) /* top pointer done */ ++#define DMOV_RSLT_USER (1 << 0) /* command with FR force result */ ++ ++#define DMOV_FLUSH0(ch) DMOV_ADDR(0x080, ch) ++#define DMOV_FLUSH1(ch) DMOV_ADDR(0x0C0, ch) ++#define DMOV_FLUSH2(ch) DMOV_ADDR(0x100, ch) ++#define DMOV_FLUSH3(ch) DMOV_ADDR(0x140, ch) ++#define DMOV_FLUSH4(ch) DMOV_ADDR(0x180, ch) ++#define DMOV_FLUSH5(ch) DMOV_ADDR(0x1C0, ch) ++#define DMOV_FLUSH_TYPE (1 << 31) ++ ++#define DMOV_STATUS(ch) DMOV_ADDR(0x200, ch) ++#define DMOV_STATUS_RSLT_COUNT(n) (((n) >> 29)) ++#define DMOV_STATUS_CMD_COUNT(n) (((n) >> 27) & 3) ++#define DMOV_STATUS_RSLT_VALID (1 << 1) ++#define DMOV_STATUS_CMD_PTR_RDY (1 << 0) ++ ++#define DMOV_CONF(ch) DMOV_ADDR(0x240, ch) ++#define DMOV_CONF_SD(sd) (((sd & 4) << 11) | ((sd & 3) << 4)) ++#define DMOV_CONF_OTHER_CH_BLK_MASK(m) ((m << 0x10) & 0xffff0000) ++#define DMOV_CONF_SHADOW_EN (1 << 12) ++#define DMOV_CONF_MPU_DISABLE (1 << 11) ++#define DMOV_CONF_PERM_MPU_CONF (1 << 9) ++#define DMOV_CONF_FLUSH_RSLT_EN (1 << 8) ++#define DMOV_CONF_IRQ_EN (1 << 6) ++#define DMOV_CONF_FORCE_RSLT_EN (1 << 7) ++#define DMOV_CONF_PRIORITY(n) (n << 0) ++ ++#define DMOV_DBG_ERR(ci) DMOV_ADDR(0x280, ci) ++ ++#define DMOV_RSLT_CONF(ch) DMOV_ADDR(0x300, ch) ++#define DMOV_RSLT_CONF_FORCE_TOP_PTR_RSLT (1 << 2) ++#define DMOV_RSLT_CONF_FORCE_FLUSH_RSLT (1 << 1) ++#define DMOV_RSLT_CONF_IRQ_EN (1 << 0) ++ ++#define DMOV_ISR DMOV_ADDR(0x380, 0) ++ ++#define DMOV_CI_CONF(ci) DMOV_ADDR(0x390, ci) ++#define DMOV_CI_CONF_RANGE_END(n) ((n) << 24) ++#define DMOV_CI_CONF_RANGE_START(n) ((n) << 16) ++#define DMOV_CI_CONF_MAX_BURST(n) ((n) << 0) ++ ++#define DMOV_CI_DBG_ERR(ci) DMOV_ADDR(0x3B0, ci) ++ ++#define DMOV_CRCI_CONF0 DMOV_ADDR(0x3D0, 0) ++#define DMOV_CRCI_CONF0_CRCI9_SD (2 << 0x1b) ++ ++#define DMOV_CRCI_CONF1 DMOV_ADDR(0x3D4, 0) ++#define DMOV_CRCI_CONF0_SD(crci, sd) (sd << (crci*3)) ++#define DMOV_CRCI_CONF1_SD(crci, sd) (sd << ((crci-DMOV_CRCIS_PER_CONF)*3)) ++ ++#define DMOV_HI_GP_CTL DMOV_ADDR(0x3D8, 0) ++#define DMOV_HI_GP_CTL_CORE_CLK_LP_EN (1 << 12) ++#define DMOV_HI_GP_CTL_LP_CNT(x) (((x) & 0xf) << 8) ++#define DMOV_HI_GP_CTL_CI3_CLK_LP_EN (1 << 7) ++#define DMOV_HI_GP_CTL_CI2_CLK_LP_EN (1 << 6) ++#define DMOV_HI_GP_CTL_CI1_CLK_LP_EN (1 << 5) ++#define DMOV_HI_GP_CTL_CI0_CLK_LP_EN (1 << 4) ++ ++#define DMOV_CRCI_CTL(crci) DMOV_ADDR(0x400, crci) ++#define DMOV_CRCI_CTL_BLK_SZ(n) ((n) << 0) ++#define DMOV_CRCI_CTL_RST (1 << 17) ++#define DMOV_CRCI_MUX (1 << 18) ++ ++/* channel assignments */ ++ ++/* ++ * Format of CRCI numbers: crci number + (muxsel << 4) ++ */ ++ ++#define DMOV_GP_CHAN 9 ++ ++#define DMOV_CE_IN_CHAN 0 ++#define DMOV_CE_IN_CRCI 2 ++ ++#define DMOV_CE_OUT_CHAN 1 ++#define DMOV_CE_OUT_CRCI 3 ++ ++#define DMOV_TSIF_CHAN 2 ++#define DMOV_TSIF_CRCI 11 ++ ++#define DMOV_HSUART_GSBI6_TX_CHAN 7 ++#define DMOV_HSUART_GSBI6_TX_CRCI 6 ++ ++#define DMOV_HSUART_GSBI6_RX_CHAN 8 ++#define DMOV_HSUART_GSBI6_RX_CRCI 11 ++ ++#define DMOV_HSUART_GSBI8_TX_CHAN 7 ++#define DMOV_HSUART_GSBI8_TX_CRCI 10 ++ ++#define DMOV_HSUART_GSBI8_RX_CHAN 8 ++#define DMOV_HSUART_GSBI8_RX_CRCI 9 ++ ++#define DMOV_HSUART_GSBI9_TX_CHAN 4 ++#define DMOV_HSUART_GSBI9_TX_CRCI 13 ++ ++#define DMOV_HSUART_GSBI9_RX_CHAN 3 ++#define DMOV_HSUART_GSBI9_RX_CRCI 12 ++ ++#define DMOV_NAND_CHAN 3 ++#define DMOV_NAND_CRCI_CMD 15 ++#define DMOV_NAND_CRCI_DATA 3 ++ ++#define DMOV_SPI_GSBI5_RX_CRCI 9 ++#define DMOV_SPI_GSBI5_TX_CRCI 10 ++#define DMOV_SPI_GSBI5_RX_CHAN 6 ++#define DMOV_SPI_GSBI5_TX_CHAN 5 ++ ++/* channels for APQ8064 */ ++#define DMOV8064_CE_IN_CHAN 0 ++#define DMOV8064_CE_IN_CRCI 14 ++ ++#define DMOV8064_CE_OUT_CHAN 1 ++#define DMOV8064_CE_OUT_CRCI 15 ++ ++#define DMOV8064_TSIF_CHAN 2 ++#define DMOV8064_TSIF_CRCI 1 ++ ++/* channels for APQ8064 SGLTE*/ ++#define DMOV_APQ8064_HSUART_GSBI4_TX_CHAN 11 ++#define DMOV_APQ8064_HSUART_GSBI4_TX_CRCI 8 ++ ++#define DMOV_APQ8064_HSUART_GSBI4_RX_CHAN 10 ++#define DMOV_APQ8064_HSUART_GSBI4_RX_CRCI 7 ++ ++/* channels for MPQ8064 */ ++#define DMOV_MPQ8064_HSUART_GSBI6_TX_CHAN 7 ++#define DMOV_MPQ8064_HSUART_GSBI6_TX_CRCI 6 ++ ++#define DMOV_MPQ8064_HSUART_GSBI6_RX_CHAN 6 ++#define DMOV_MPQ8064_HSUART_GSBI6_RX_CRCI 11 ++ ++#define DMOV_IPQ806X_HSUART_GSBI6_TX_CHAN DMOV_MPQ8064_HSUART_GSBI6_TX_CHAN ++#define DMOV_IPQ806X_HSUART_GSBI6_TX_CRCI DMOV_MPQ8064_HSUART_GSBI6_TX_CRCI ++ ++#define DMOV_IPQ806X_HSUART_GSBI6_RX_CHAN DMOV_MPQ8064_HSUART_GSBI6_RX_CHAN ++#define DMOV_IPQ806X_HSUART_GSBI6_RX_CRCI DMOV_MPQ8064_HSUART_GSBI6_RX_CRCI ++ ++/* no client rate control ifc (eg, ram) */ ++#define DMOV_NONE_CRCI 0 ++ ++ ++/* If the CMD_PTR register has CMD_PTR_LIST selected, the data mover ++ * is going to walk a list of 32bit pointers as described below. Each ++ * pointer points to a *array* of dmov_s, etc structs. The last pointer ++ * in the list is marked with CMD_PTR_LP. The last struct in each array ++ * is marked with CMD_LC (see below). ++ */ ++#define CMD_PTR_ADDR(addr) ((addr) >> 3) ++#define CMD_PTR_LP (1 << 31) /* last pointer */ ++#define CMD_PTR_PT (3 << 29) /* ? */ ++ ++/* Single Item Mode */ ++typedef struct { ++ unsigned cmd; ++ unsigned src; ++ unsigned dst; ++ unsigned len; ++} dmov_s; ++ ++/* Scatter/Gather Mode */ ++typedef struct { ++ unsigned cmd; ++ unsigned src_dscr; ++ unsigned dst_dscr; ++ unsigned _reserved; ++} dmov_sg; ++ ++/* Box mode */ ++typedef struct { ++ uint32_t cmd; ++ uint32_t src_row_addr; ++ uint32_t dst_row_addr; ++ uint32_t src_dst_len; ++ uint32_t num_rows; ++ uint32_t row_offset; ++} dmov_box; ++ ++/* bits for the cmd field of the above structures */ ++ ++#define CMD_LC (1 << 31) /* last command */ ++#define CMD_FR (1 << 22) /* force result -- does not work? */ ++#define CMD_OCU (1 << 21) /* other channel unblock */ ++#define CMD_OCB (1 << 20) /* other channel block */ ++#define CMD_TCB (1 << 19) /* ? */ ++#define CMD_DAH (1 << 18) /* destination address hold -- does not work?*/ ++#define CMD_SAH (1 << 17) /* source address hold -- does not work? */ ++ ++#define CMD_MODE_SINGLE (0 << 0) /* dmov_s structure used */ ++#define CMD_MODE_SG (1 << 0) /* untested */ ++#define CMD_MODE_IND_SG (2 << 0) /* untested */ ++#define CMD_MODE_BOX (3 << 0) /* untested */ ++ ++#define CMD_DST_SWAP_BYTES (1 << 14) /* exchange each byte n with byte n+1 */ ++#define CMD_DST_SWAP_SHORTS (1 << 15) /* exchange each short n with short n+1 */ ++#define CMD_DST_SWAP_WORDS (1 << 16) /* exchange each word n with word n+1 */ ++ ++#define CMD_SRC_SWAP_BYTES (1 << 11) /* exchange each byte n with byte n+1 */ ++#define CMD_SRC_SWAP_SHORTS (1 << 12) /* exchange each short n with short n+1 */ ++#define CMD_SRC_SWAP_WORDS (1 << 13) /* exchange each word n with word n+1 */ ++ ++#define CMD_DST_CRCI(n) (((n) & 15) << 7) ++#define CMD_SRC_CRCI(n) (((n) & 15) << 3) ++ ++#endif +diff --git a/drivers/mtd/nand/qcom_nand.c b/drivers/mtd/nand/qcom_nand.c +new file mode 100644 +index 0000000..9314132 +--- /dev/null ++++ b/drivers/mtd/nand/qcom_nand.c +@@ -0,0 +1,7455 @@ ++/* ++ * Copyright (C) 2007 Google, Inc. ++ * Copyright (c) 2008-2012, The Linux Foundation. All rights reserved. ++ * ++ * This software is licensed under the terms of the GNU General Public ++ * License version 2, as published by the Free Software Foundation, and ++ * may be copied, distributed, and modified under those terms. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ */ ++ ++#include <linux/slab.h> ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/mtd/mtd.h> ++#include <linux/mtd/nand.h> ++#include <linux/mtd/partitions.h> ++#include <linux/platform_device.h> ++#include <linux/sched.h> ++#include <linux/dma-mapping.h> ++#include <linux/io.h> ++#include <linux/crc16.h> ++#include <linux/bitrev.h> ++#include <linux/clk.h> ++ ++#include <asm/dma.h> ++#include <asm/mach/flash.h> ++ ++#include "qcom_adm_dma.h" ++ ++#include "qcom_nand.h" ++unsigned long msm_nand_phys = 0; ++unsigned long msm_nandc01_phys = 0; ++unsigned long msm_nandc10_phys = 0; ++unsigned long msm_nandc11_phys = 0; ++unsigned long ebi2_register_base = 0; ++static uint32_t dual_nand_ctlr_present; ++static uint32_t interleave_enable; ++static uint32_t enable_bch_ecc; ++static uint32_t boot_layout; ++ ++ ++#define MSM_NAND_DMA_BUFFER_SIZE SZ_8K ++#define MSM_NAND_DMA_BUFFER_SLOTS \ ++ (MSM_NAND_DMA_BUFFER_SIZE / (sizeof(((atomic_t *)0)->counter) * 8)) ++ ++#define MSM_NAND_CFG0_RAW_ONFI_IDENTIFIER 0x88000800 ++#define MSM_NAND_CFG0_RAW_ONFI_PARAM_INFO 0x88040000 ++#define MSM_NAND_CFG1_RAW_ONFI_IDENTIFIER 0x0005045d ++#define MSM_NAND_CFG1_RAW_ONFI_PARAM_INFO 0x0005045d ++ ++#define ONFI_IDENTIFIER_LENGTH 0x0004 ++#define ONFI_PARAM_INFO_LENGTH 0x0200 ++#define ONFI_PARAM_PAGE_LENGTH 0x0100 ++ ++#define ONFI_PARAMETER_PAGE_SIGNATURE 0x49464E4F ++ ++#define FLASH_READ_ONFI_IDENTIFIER_COMMAND 0x90 ++#define FLASH_READ_ONFI_IDENTIFIER_ADDRESS 0x20 ++#define FLASH_READ_ONFI_PARAMETERS_COMMAND 0xEC ++#define FLASH_READ_ONFI_PARAMETERS_ADDRESS 0x00 ++ ++#define UD_SIZE_BYTES_MASK (0x3FF << 9) ++#define SPARE_SIZE_BYTES_MASK (0xF << 23) ++#define ECC_NUM_DATA_BYTES_MASK (0x3FF << 16) ++ ++#define VERBOSE 0 ++ ++struct msm_nand_chip { ++ struct device *dev; ++ wait_queue_head_t wait_queue; ++ atomic_t dma_buffer_busy; ++ unsigned dma_channel; ++ uint8_t *dma_buffer; ++ dma_addr_t dma_addr; ++ unsigned CFG0, CFG1, CFG0_RAW, CFG1_RAW; ++ uint32_t ecc_buf_cfg; ++ uint32_t ecc_bch_cfg; ++ uint32_t ecc_parity_bytes; ++ unsigned cw_size; ++ unsigned int uncorrectable_bit_mask; ++ unsigned int num_err_mask; ++}; ++ ++#define CFG1_WIDE_FLASH (1U << 1) ++ ++/* TODO: move datamover code out */ ++ ++#define SRC_CRCI_NAND_CMD CMD_SRC_CRCI(DMOV_NAND_CRCI_CMD) ++#define DST_CRCI_NAND_CMD CMD_DST_CRCI(DMOV_NAND_CRCI_CMD) ++#define SRC_CRCI_NAND_DATA CMD_SRC_CRCI(DMOV_NAND_CRCI_DATA) ++#define DST_CRCI_NAND_DATA CMD_DST_CRCI(DMOV_NAND_CRCI_DATA) ++ ++#define msm_virt_to_dma(chip, vaddr) \ ++ ((chip)->dma_addr + \ ++ ((uint8_t *)(vaddr) - (chip)->dma_buffer)) ++ ++/** ++ * msm_nand_oob_64 - oob info for 2KB page ++ */ ++static struct nand_ecclayout msm_nand_oob_64 = { ++ .eccbytes = 40, ++ .eccpos = { ++ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ++ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ++ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, ++ 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, ++ }, ++ .oobavail = 16, ++ .oobfree = { ++ {30, 16}, ++ } ++}; ++ ++/** ++ * msm_nand_oob_128 - oob info for 4KB page ++ */ ++static struct nand_ecclayout msm_nand_oob_128 = { ++ .eccbytes = 80, ++ .eccpos = { ++ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ++ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ++ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, ++ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, ++ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, ++ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, ++ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, ++ 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, ++ }, ++ .oobavail = 32, ++ .oobfree = { ++ {70, 32}, ++ } ++}; ++ ++/** ++ * msm_nand_oob_224 - oob info for 4KB page 8Bit interface ++ */ ++static struct nand_ecclayout msm_nand_oob_224_x8 = { ++ .eccbytes = 104, ++ .eccpos = { ++ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ++ 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, ++ 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, ++ 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, ++ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, ++ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, ++ 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, ++ 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, ++ }, ++ .oobavail = 32, ++ .oobfree = { ++ {91, 32}, ++ } ++}; ++ ++/** ++ * msm_nand_oob_224 - oob info for 4KB page 16Bit interface ++ */ ++static struct nand_ecclayout msm_nand_oob_224_x16 = { ++ .eccbytes = 112, ++ .eccpos = { ++ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ++ 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, ++ 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ++ 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, ++ 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, ++ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, ++ 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, ++ 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, ++ }, ++ .oobavail = 32, ++ .oobfree = { ++ {98, 32}, ++ } ++}; ++ ++/** ++ * msm_nand_oob_256 - oob info for 8KB page ++ */ ++static struct nand_ecclayout msm_nand_oob_256 = { ++ .eccbytes = 160, ++ .eccpos = { ++ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ++ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ++ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, ++ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, ++ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, ++ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, ++ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, ++ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, ++ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, ++ 90, 91, 92, 93, 94, 96, 97, 98 , 99, 100, ++ 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, ++ 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, ++ 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, ++ 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, ++ 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, ++ 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, ++ }, ++ .oobavail = 64, ++ .oobfree = { ++ {151, 64}, ++ } ++}; ++ ++/** ++ * msm_onenand_oob_64 - oob info for large (2KB) page ++ */ ++static struct nand_ecclayout msm_onenand_oob_64 = { ++ .eccbytes = 20, ++ .eccpos = { ++ 8, 9, 10, 11, 12, ++ 24, 25, 26, 27, 28, ++ 40, 41, 42, 43, 44, ++ 56, 57, 58, 59, 60, ++ }, ++ .oobavail = 20, ++ .oobfree = { ++ {2, 3}, {14, 2}, {18, 3}, {30, 2}, ++ {34, 3}, {46, 2}, {50, 3}, {62, 2} ++ } ++}; ++ ++static void *msm_nand_get_dma_buffer(struct msm_nand_chip *chip, size_t size) ++{ ++ unsigned int bitmask, free_bitmask, old_bitmask; ++ unsigned int need_mask, current_need_mask; ++ int free_index; ++ ++ need_mask = (1UL << DIV_ROUND_UP(size, MSM_NAND_DMA_BUFFER_SLOTS)) - 1; ++ bitmask = atomic_read(&chip->dma_buffer_busy); ++ free_bitmask = ~bitmask; ++ while (free_bitmask) { ++ free_index = __ffs(free_bitmask); ++ current_need_mask = need_mask << free_index; ++ ++ if (size + free_index * MSM_NAND_DMA_BUFFER_SLOTS >= ++ MSM_NAND_DMA_BUFFER_SIZE) ++ return NULL; ++ ++ if ((bitmask & current_need_mask) == 0) { ++ old_bitmask = ++ atomic_cmpxchg(&chip->dma_buffer_busy, ++ bitmask, ++ bitmask | current_need_mask); ++ if (old_bitmask == bitmask) ++ return chip->dma_buffer + ++ free_index * MSM_NAND_DMA_BUFFER_SLOTS; ++ free_bitmask = 0; /* force return */ ++ } ++ /* current free range was too small, clear all free bits */ ++ /* below the top busy bit within current_need_mask */ ++ free_bitmask &= ++ ~(~0U >> (32 - fls(bitmask & current_need_mask))); ++ } ++ ++ return NULL; ++} ++ ++static void msm_nand_release_dma_buffer(struct msm_nand_chip *chip, ++ void *buffer, size_t size) ++{ ++ int index; ++ unsigned int used_mask; ++ ++ used_mask = (1UL << DIV_ROUND_UP(size, MSM_NAND_DMA_BUFFER_SLOTS)) - 1; ++ index = ((uint8_t *)buffer - chip->dma_buffer) / ++ MSM_NAND_DMA_BUFFER_SLOTS; ++ atomic_sub(used_mask << index, &chip->dma_buffer_busy); ++ ++ wake_up(&chip->wait_queue); ++} ++ ++ ++unsigned flash_rd_reg(struct msm_nand_chip *chip, unsigned addr) ++{ ++ struct { ++ dmov_s cmd; ++ unsigned cmdptr; ++ unsigned data; ++ } *dma_buffer; ++ unsigned rv; ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer( ++ chip, sizeof(*dma_buffer)))); ++ ++ dma_buffer->cmd.cmd = CMD_LC | CMD_OCB | CMD_OCU; ++ dma_buffer->cmd.src = addr; ++ dma_buffer->cmd.dst = msm_virt_to_dma(chip, &dma_buffer->data); ++ dma_buffer->cmd.len = 4; ++ ++ dma_buffer->cmdptr = ++ (msm_virt_to_dma(chip, &dma_buffer->cmd) >> 3) | CMD_PTR_LP; ++ dma_buffer->data = 0xeeeeeeee; ++ ++ mb(); ++ msm_dmov_exec_cmd( ++ chip->dma_channel, DMOV_CMD_PTR_LIST | ++ DMOV_CMD_ADDR(msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ rv = dma_buffer->data; ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ return rv; ++} ++ ++void flash_wr_reg(struct msm_nand_chip *chip, unsigned addr, unsigned val) ++{ ++ struct { ++ dmov_s cmd; ++ unsigned cmdptr; ++ unsigned data; ++ } *dma_buffer; ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer( ++ chip, sizeof(*dma_buffer)))); ++ ++ dma_buffer->cmd.cmd = CMD_LC | CMD_OCB | CMD_OCU; ++ dma_buffer->cmd.src = msm_virt_to_dma(chip, &dma_buffer->data); ++ dma_buffer->cmd.dst = addr; ++ dma_buffer->cmd.len = 4; ++ ++ dma_buffer->cmdptr = ++ (msm_virt_to_dma(chip, &dma_buffer->cmd) >> 3) | CMD_PTR_LP; ++ dma_buffer->data = val; ++ ++ mb(); ++ msm_dmov_exec_cmd( ++ chip->dma_channel, DMOV_CMD_PTR_LIST | ++ DMOV_CMD_ADDR(msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++} ++ ++/* ++ * Allocates a bounce buffer, and stores the buffer address in ++ * variable pointed to by bounce_buf. bounce_buf should point to a ++ * stack variable, to avoid SMP issues. ++ */ ++static int msm_nand_alloc_bounce(void *addr, size_t size, ++ enum dma_data_direction dir, ++ uint8_t **bounce_buf) ++{ ++ if (bounce_buf == NULL) { ++ printk(KERN_ERR "not allocating bounce buffer\n"); ++ return -EINVAL; ++ } ++ ++ *bounce_buf = kmalloc(size, GFP_KERNEL | GFP_NOFS | GFP_DMA); ++ if (*bounce_buf == NULL) { ++ printk(KERN_ERR "error alloc bounce buffer %zu\n", size); ++ return -ENOMEM; ++ } ++ ++ if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) ++ memcpy(*bounce_buf, addr, size); ++ ++ return 0; ++} ++ ++/* ++ * Maps the user buffer for DMA. If the buffer is vmalloced and the ++ * buffer crosses a page boundary, then we kmalloc a bounce buffer and ++ * copy the data into it. The bounce buffer is stored in the variable ++ * pointed to by bounce_buf, for freeing up later on. The bounce_buf ++ * should point to a stack variable, to avoid SMP issues. ++ */ ++static dma_addr_t ++msm_nand_dma_map(struct device *dev, void *addr, size_t size, ++ enum dma_data_direction dir, uint8_t **bounce_buf) ++{ ++ int ret; ++ struct page *page; ++ unsigned long offset = (unsigned long)addr & ~PAGE_MASK; ++ ++ if (virt_addr_valid(addr)) { ++ page = virt_to_page(addr); ++ } else { ++ if (size + offset > PAGE_SIZE) { ++ ret = msm_nand_alloc_bounce(addr, size, dir, bounce_buf); ++ if (ret < 0) ++ return DMA_ERROR_CODE; ++ ++ offset = (unsigned long)*bounce_buf & ~PAGE_MASK; ++ page = virt_to_page(*bounce_buf); ++ } else { ++ page = vmalloc_to_page(addr); ++ } ++ } ++ ++ return dma_map_page(dev, page, offset, size, dir); ++} ++ ++static void msm_nand_dma_unmap(struct device *dev, dma_addr_t addr, size_t size, ++ enum dma_data_direction dir, ++ void *orig_buf, void *bounce_buf) ++{ ++ dma_unmap_page(dev, addr, size, dir); ++ ++ if (bounce_buf != NULL) { ++ if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) ++ memcpy(orig_buf, bounce_buf, size); ++ ++ kfree(bounce_buf); ++ } ++} ++ ++uint32_t flash_read_id(struct msm_nand_chip *chip) ++{ ++ struct { ++ dmov_s cmd[9]; ++ unsigned cmdptr; ++ unsigned data[7]; ++ } *dma_buffer; ++ uint32_t rv; ++ dmov_s *cmd; ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ dma_buffer->data[0] = 0 | 4; ++ dma_buffer->data[1] = MSM_NAND_CMD_FETCH_ID; ++ dma_buffer->data[2] = 1; ++ dma_buffer->data[3] = 0xeeeeeeee; ++ dma_buffer->data[4] = 0xeeeeeeee; ++ dma_buffer->data[5] = flash_rd_reg(chip, MSM_NAND_SFLASHC_BURST_CFG); ++ dma_buffer->data[6] = 0x00000000; ++ BUILD_BUG_ON(6 != ARRAY_SIZE(dma_buffer->data) - 1); ++ ++ cmd = dma_buffer->cmd; ++ ++ cmd->cmd = 0 | CMD_OCB; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data[6]); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data[6]); ++ cmd->dst = MSM_NAND_ADDR0; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data[6]); ++ cmd->dst = MSM_NAND_ADDR1; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data[0]); ++ cmd->dst = MSM_NAND_FLASH_CHIP_SELECT; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data[1]); ++ cmd->dst = MSM_NAND_FLASH_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data[2]); ++ cmd->dst = MSM_NAND_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_FLASH_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data[3]); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_READ_ID; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data[4]); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = CMD_OCU | CMD_LC; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data[5]); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ BUILD_BUG_ON(8 != ARRAY_SIZE(dma_buffer->cmd) - 1); ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) >> 3 ++ ) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, DMOV_CMD_PTR_LIST | ++ DMOV_CMD_ADDR(msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ pr_info("status: %x\n", dma_buffer->data[3]); ++ pr_info("nandid: %x maker %02x device %02x\n", ++ dma_buffer->data[4], dma_buffer->data[4] & 0xff, ++ (dma_buffer->data[4] >> 8) & 0xff); ++ rv = dma_buffer->data[4]; ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ return rv; ++} ++ ++struct flash_identification { ++ uint32_t flash_id; ++ uint32_t density; ++ uint32_t widebus; ++ uint32_t pagesize; ++ uint32_t blksize; ++ uint32_t oobsize; ++ uint32_t ecc_correctability; ++} supported_flash; ++ ++uint16_t flash_onfi_crc_check(uint8_t *buffer, uint16_t count) ++{ ++ int i; ++ uint16_t result; ++ ++ for (i = 0; i < count; i++) ++ buffer[i] = bitrev8(buffer[i]); ++ ++ result = bitrev16(crc16(bitrev16(0x4f4e), buffer, count)); ++ ++ for (i = 0; i < count; i++) ++ buffer[i] = bitrev8(buffer[i]); ++ ++ return result; ++} ++ ++static void flash_reset(struct msm_nand_chip *chip) ++{ ++ struct { ++ dmov_s cmd[6]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t exec; ++ uint32_t flash_status; ++ uint32_t sflash_bcfg_orig; ++ uint32_t sflash_bcfg_mod; ++ uint32_t chip_select; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ dma_addr_t dma_cmd; ++ dma_addr_t dma_cmdptr; ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ dma_buffer->data.sflash_bcfg_orig ++ = flash_rd_reg(chip, MSM_NAND_SFLASHC_BURST_CFG); ++ dma_buffer->data.sflash_bcfg_mod = 0x00000000; ++ dma_buffer->data.chip_select = 4; ++ dma_buffer->data.cmd = MSM_NAND_CMD_RESET; ++ dma_buffer->data.exec = 1; ++ dma_buffer->data.flash_status = 0xeeeeeeee; ++ ++ cmd = dma_buffer->cmd; ++ ++ /* Put the Nand ctlr in Async mode and disable SFlash ctlr */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sflash_bcfg_mod); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.chip_select); ++ cmd->dst = MSM_NAND_FLASH_CHIP_SELECT; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready, & write Reset command */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = MSM_NAND_FLASH_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = MSM_NAND_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_FLASH_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.flash_status); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Restore the SFLASH_BURST_CONFIG register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sflash_bcfg_orig); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ BUILD_BUG_ON(6 != ARRAY_SIZE(dma_buffer->cmd)); ++ ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_cmd = msm_virt_to_dma(chip, dma_buffer->cmd); ++ dma_buffer->cmdptr = (dma_cmd >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ dma_cmdptr = msm_virt_to_dma(chip, &dma_buffer->cmdptr); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(dma_cmdptr)); ++ mb(); ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++} ++ ++uint32_t flash_onfi_probe(struct msm_nand_chip *chip) ++{ ++ ++ ++ struct onfi_param_page { ++ uint32_t parameter_page_signature; ++ uint16_t revision_number; ++ uint16_t features_supported; ++ uint16_t optional_commands_supported; ++ uint8_t reserved0[22]; ++ uint8_t device_manufacturer[12]; ++ uint8_t device_model[20]; ++ uint8_t jedec_manufacturer_id; ++ uint16_t date_code; ++ uint8_t reserved1[13]; ++ uint32_t number_of_data_bytes_per_page; ++ uint16_t number_of_spare_bytes_per_page; ++ uint32_t number_of_data_bytes_per_partial_page; ++ uint16_t number_of_spare_bytes_per_partial_page; ++ uint32_t number_of_pages_per_block; ++ uint32_t number_of_blocks_per_logical_unit; ++ uint8_t number_of_logical_units; ++ uint8_t number_of_address_cycles; ++ uint8_t number_of_bits_per_cell; ++ uint16_t maximum_bad_blocks_per_logical_unit; ++ uint16_t block_endurance; ++ uint8_t guaranteed_valid_begin_blocks; ++ uint16_t guaranteed_valid_begin_blocks_endurance; ++ uint8_t number_of_programs_per_page; ++ uint8_t partial_program_attributes; ++ uint8_t number_of_bits_ecc_correctability; ++ uint8_t number_of_interleaved_address_bits; ++ uint8_t interleaved_operation_attributes; ++ uint8_t reserved2[13]; ++ uint8_t io_pin_capacitance; ++ uint16_t timing_mode_support; ++ uint16_t program_cache_timing_mode_support; ++ uint16_t maximum_page_programming_time; ++ uint16_t maximum_block_erase_time; ++ uint16_t maximum_page_read_time; ++ uint16_t maximum_change_column_setup_time; ++ uint8_t reserved3[23]; ++ uint16_t vendor_specific_revision_number; ++ uint8_t vendor_specific[88]; ++ uint16_t integrity_crc; ++ ++ } __attribute__((__packed__)); ++ ++ struct onfi_param_page *onfi_param_page_ptr; ++ uint8_t *onfi_identifier_buf = NULL; ++ uint8_t *onfi_param_info_buf = NULL; ++ ++ struct { ++ dmov_s cmd[12]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t exec; ++ uint32_t flash_status; ++ uint32_t devcmd1_orig; ++ uint32_t devcmdvld_orig; ++ uint32_t devcmd1_mod; ++ uint32_t devcmdvld_mod; ++ uint32_t sflash_bcfg_orig; ++ uint32_t sflash_bcfg_mod; ++ uint32_t chip_select; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ unsigned page_address = 0; ++ int err = 0; ++ dma_addr_t dma_addr_param_info = 0; ++ dma_addr_t dma_addr_identifier = 0; ++ unsigned cmd_set_count = 2; ++ unsigned crc_chk_count = 0; ++ ++ /*if (msm_nand_data.nr_parts) { ++ page_address = ((msm_nand_data.parts[0]).offset << 6); ++ } else { ++ pr_err("flash_onfi_probe: " ++ "No partition info available\n"); ++ err = -EIO; ++ return err; ++ }*/ ++ ++ wait_event(chip->wait_queue, (onfi_identifier_buf = ++ msm_nand_get_dma_buffer(chip, ONFI_IDENTIFIER_LENGTH))); ++ dma_addr_identifier = msm_virt_to_dma(chip, onfi_identifier_buf); ++ ++ wait_event(chip->wait_queue, (onfi_param_info_buf = ++ msm_nand_get_dma_buffer(chip, ONFI_PARAM_INFO_LENGTH))); ++ dma_addr_param_info = msm_virt_to_dma(chip, onfi_param_info_buf); ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ dma_buffer->data.sflash_bcfg_orig = flash_rd_reg ++ (chip, MSM_NAND_SFLASHC_BURST_CFG); ++ dma_buffer->data.devcmd1_orig = flash_rd_reg(chip, MSM_NAND_DEV_CMD1); ++ dma_buffer->data.devcmdvld_orig = flash_rd_reg(chip, ++ MSM_NAND_DEV_CMD_VLD); ++ dma_buffer->data.chip_select = 4; ++ ++ while (cmd_set_count-- > 0) { ++ cmd = dma_buffer->cmd; ++ ++ dma_buffer->data.devcmd1_mod = (dma_buffer->data.devcmd1_orig & ++ 0xFFFFFF00) | (cmd_set_count ++ ? FLASH_READ_ONFI_IDENTIFIER_COMMAND ++ : FLASH_READ_ONFI_PARAMETERS_COMMAND); ++ dma_buffer->data.cmd = MSM_NAND_CMD_PAGE_READ; ++ dma_buffer->data.addr0 = (page_address << 16) | (cmd_set_count ++ ? FLASH_READ_ONFI_IDENTIFIER_ADDRESS ++ : FLASH_READ_ONFI_PARAMETERS_ADDRESS); ++ dma_buffer->data.addr1 = (page_address >> 16) & 0xFF; ++ dma_buffer->data.cfg0 = (cmd_set_count ++ ? MSM_NAND_CFG0_RAW_ONFI_IDENTIFIER ++ : MSM_NAND_CFG0_RAW_ONFI_PARAM_INFO); ++ dma_buffer->data.cfg1 = (cmd_set_count ++ ? MSM_NAND_CFG1_RAW_ONFI_IDENTIFIER ++ : MSM_NAND_CFG1_RAW_ONFI_PARAM_INFO); ++ dma_buffer->data.sflash_bcfg_mod = 0x00000000; ++ dma_buffer->data.devcmdvld_mod = (dma_buffer-> ++ data.devcmdvld_orig & 0xFFFFFFFE); ++ dma_buffer->data.exec = 1; ++ dma_buffer->data.flash_status = 0xeeeeeeee; ++ ++ /* Put the Nand ctlr in Async mode and disable SFlash ctlr */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sflash_bcfg_mod); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.chip_select); ++ cmd->dst = MSM_NAND_FLASH_CHIP_SELECT; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready, & write CMD,ADDR0,ADDR1,CHIPSEL regs */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = MSM_NAND_FLASH_CMD; ++ cmd->len = 12; ++ cmd++; ++ ++ /* Configure the CFG0 and CFG1 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = MSM_NAND_DEV0_CFG0; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Configure the DEV_CMD_VLD register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.devcmdvld_mod); ++ cmd->dst = MSM_NAND_DEV_CMD_VLD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Configure the DEV_CMD1 register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.devcmd1_mod); ++ cmd->dst = MSM_NAND_DEV_CMD1; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.exec); ++ cmd->dst = MSM_NAND_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the two status registers */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_FLASH_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.flash_status); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read data block - valid only if status says success */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_FLASH_BUFFER; ++ cmd->dst = (cmd_set_count ? dma_addr_identifier : ++ dma_addr_param_info); ++ cmd->len = (cmd_set_count ? ONFI_IDENTIFIER_LENGTH : ++ ONFI_PARAM_INFO_LENGTH); ++ cmd++; ++ ++ /* Restore the DEV_CMD1 register */ ++ cmd->cmd = 0 ; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.devcmd1_orig); ++ cmd->dst = MSM_NAND_DEV_CMD1; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Restore the DEV_CMD_VLD register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.devcmdvld_orig); ++ cmd->dst = MSM_NAND_DEV_CMD_VLD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Restore the SFLASH_BURST_CONFIG register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sflash_bcfg_orig); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ BUILD_BUG_ON(12 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) ++ >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* Check for errors, protection violations etc */ ++ if (dma_buffer->data.flash_status & 0x110) { ++ pr_info("MPU/OP error (0x%x) during " ++ "ONFI probe\n", ++ dma_buffer->data.flash_status); ++ err = -EIO; ++ break; ++ } ++ ++ if (cmd_set_count) { ++ onfi_param_page_ptr = (struct onfi_param_page *) ++ (&(onfi_identifier_buf[0])); ++ if (onfi_param_page_ptr->parameter_page_signature != ++ ONFI_PARAMETER_PAGE_SIGNATURE) { ++ pr_info("ONFI probe : Found a non" ++ "ONFI Compliant device \n"); ++ err = -EIO; ++ break; ++ } ++ } else { ++ for (crc_chk_count = 0; crc_chk_count < ++ ONFI_PARAM_INFO_LENGTH ++ / ONFI_PARAM_PAGE_LENGTH; ++ crc_chk_count++) { ++ onfi_param_page_ptr = ++ (struct onfi_param_page *) ++ (&(onfi_param_info_buf ++ [ONFI_PARAM_PAGE_LENGTH * ++ crc_chk_count])); ++ if (flash_onfi_crc_check( ++ (uint8_t *)onfi_param_page_ptr, ++ ONFI_PARAM_PAGE_LENGTH - 2) == ++ onfi_param_page_ptr->integrity_crc) { ++ break; ++ } ++ } ++ if (crc_chk_count >= ONFI_PARAM_INFO_LENGTH ++ / ONFI_PARAM_PAGE_LENGTH) { ++ pr_info("ONFI probe : CRC Check " ++ "failed on ONFI Parameter " ++ "data \n"); ++ err = -EIO; ++ break; ++ } else { ++ supported_flash.flash_id = ++ flash_read_id(chip); ++ supported_flash.widebus = ++ onfi_param_page_ptr-> ++ features_supported & 0x01; ++ supported_flash.pagesize = ++ onfi_param_page_ptr-> ++ number_of_data_bytes_per_page; ++ supported_flash.blksize = ++ onfi_param_page_ptr-> ++ number_of_pages_per_block * ++ supported_flash.pagesize; ++ supported_flash.oobsize = ++ onfi_param_page_ptr-> ++ number_of_spare_bytes_per_page; ++ supported_flash.density = ++ onfi_param_page_ptr-> ++ number_of_blocks_per_logical_unit ++ * supported_flash.blksize; ++ supported_flash.ecc_correctability = ++ onfi_param_page_ptr-> ++ number_of_bits_ecc_correctability; ++ ++ pr_info("ONFI probe : Found an ONFI " ++ "compliant device %s\n", ++ onfi_param_page_ptr->device_model); ++ ++ /* Temporary hack for MT29F4G08ABC device. ++ * Since the device is not properly adhering ++ * to ONFi specification it is reporting ++ * as 16 bit device though it is 8 bit device!!! ++ */ ++ if (!strncmp(onfi_param_page_ptr->device_model, ++ "MT29F4G08ABC", 12)) ++ supported_flash.widebus = 0; ++ } ++ } ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ msm_nand_release_dma_buffer(chip, onfi_param_info_buf, ++ ONFI_PARAM_INFO_LENGTH); ++ msm_nand_release_dma_buffer(chip, onfi_identifier_buf, ++ ONFI_IDENTIFIER_LENGTH); ++ ++ return err; ++} ++ ++static int msm_nand_read_oob(struct mtd_info *mtd, loff_t from, ++ struct mtd_oob_ops *ops) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[8 * 5 + 2]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t chipsel; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t eccbchcfg; ++ uint32_t exec; ++ uint32_t ecccfg; ++ struct { ++ uint32_t flash_status; ++ uint32_t buffer_status; ++ } result[8]; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ unsigned n; ++ unsigned page = 0; ++ uint32_t oob_len; ++ uint32_t sectordatasize; ++ uint32_t sectoroobsize; ++ int err, pageerr, rawerr; ++ dma_addr_t data_dma_addr = 0; ++ dma_addr_t oob_dma_addr = 0; ++ dma_addr_t data_dma_addr_curr = 0; ++ dma_addr_t oob_dma_addr_curr = 0; ++ uint8_t *dat_bounce_buf = NULL; ++ uint8_t *oob_bounce_buf = NULL; ++ uint32_t oob_col = 0; ++ unsigned page_count; ++ unsigned pages_read = 0; ++ unsigned start_sector = 0; ++ uint32_t ecc_errors; ++ uint32_t total_ecc_errors = 0; ++ unsigned cwperpage; ++#if VERBOSE ++ pr_info("=================================================" ++ "================\n"); ++ pr_info("%s:\nfrom 0x%llx mode %d\ndatbuf 0x%p datlen 0x%x" ++ "\noobbuf 0x%p ooblen 0x%x\n", ++ __func__, from, ops->mode, ops->datbuf, ops->len, ++ ops->oobbuf, ops->ooblen); ++#endif ++ ++ if (mtd->writesize == 2048) ++ page = from >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = from >> 12; ++ ++ oob_len = ops->ooblen; ++ cwperpage = (mtd->writesize >> 9); ++ ++ if (from & (mtd->writesize - 1)) { ++ pr_err("%s: unsupported from, 0x%llx\n", ++ __func__, from); ++ return -EINVAL; ++ } ++ if (ops->mode != MTD_OPS_RAW) { ++ if (ops->datbuf != NULL && (ops->len % mtd->writesize) != 0) { ++ /* when ops->datbuf is NULL, ops->len can be ooblen */ ++ pr_err("%s: unsupported ops->len, %d\n", ++ __func__, ops->len); ++ return -EINVAL; ++ } ++ } else { ++ if (ops->datbuf != NULL && ++ (ops->len % (mtd->writesize + mtd->oobsize)) != 0) { ++ pr_err("%s: unsupported ops->len," ++ " %d for MTD_OPS_RAW\n", __func__, ops->len); ++ return -EINVAL; ++ } ++ } ++ ++ if (ops->mode != MTD_OPS_RAW && ops->ooblen != 0 && ops->ooboffs != 0) { ++ pr_err("%s: unsupported ops->ooboffs, %d\n", ++ __func__, ops->ooboffs); ++ return -EINVAL; ++ } ++ ++ if (ops->oobbuf && !ops->datbuf && ops->mode == MTD_OPS_AUTO_OOB) ++ start_sector = cwperpage - 1; ++ ++ if (ops->oobbuf && !ops->datbuf) { ++ page_count = ops->ooblen / ((ops->mode == MTD_OPS_AUTO_OOB) ? ++ mtd->oobavail : mtd->oobsize); ++ if ((page_count == 0) && (ops->ooblen)) ++ page_count = 1; ++ } else if (ops->mode != MTD_OPS_RAW) ++ page_count = ops->len / mtd->writesize; ++ else ++ page_count = ops->len / (mtd->writesize + mtd->oobsize); ++ ++ if (ops->datbuf) { ++ data_dma_addr_curr = data_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->datbuf, ops->len, ++ DMA_FROM_DEVICE, &dat_bounce_buf); ++ if (dma_mapping_error(chip->dev, data_dma_addr)) { ++ pr_err("msm_nand_read_oob: failed to get dma addr " ++ "for %p\n", ops->datbuf); ++ return -EIO; ++ } ++ } ++ if (ops->oobbuf) { ++ memset(ops->oobbuf, 0xff, ops->ooblen); ++ oob_dma_addr_curr = oob_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->oobbuf, ++ ops->ooblen, DMA_BIDIRECTIONAL, ++ &oob_bounce_buf); ++ if (dma_mapping_error(chip->dev, oob_dma_addr)) { ++ pr_err("msm_nand_read_oob: failed to get dma addr " ++ "for %p\n", ops->oobbuf); ++ err = -EIO; ++ goto err_dma_map_oobbuf_failed; ++ } ++ } ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer( ++ chip, sizeof(*dma_buffer)))); ++ ++ oob_col = start_sector * chip->cw_size; ++ if (chip->CFG1 & CFG1_WIDE_FLASH) ++ oob_col >>= 1; ++ ++ err = 0; ++ while (page_count-- > 0) { ++ cmd = dma_buffer->cmd; ++ ++ /* CMD / ADDR0 / ADDR1 / CHIPSEL program values */ ++ if (ops->mode != MTD_OPS_RAW) { ++ dma_buffer->data.cmd = MSM_NAND_CMD_PAGE_READ_ECC; ++ dma_buffer->data.cfg0 = ++ (chip->CFG0 & ~(7U << 6)) ++ | (((cwperpage-1) - start_sector) << 6); ++ dma_buffer->data.cfg1 = chip->CFG1; ++ if (enable_bch_ecc) ++ dma_buffer->data.eccbchcfg = chip->ecc_bch_cfg; ++ } else { ++ dma_buffer->data.cmd = MSM_NAND_CMD_PAGE_READ; ++ dma_buffer->data.cfg0 = (chip->CFG0_RAW ++ & ~(7U << 6)) | ((cwperpage-1) << 6); ++ dma_buffer->data.cfg1 = chip->CFG1_RAW | ++ (chip->CFG1 & CFG1_WIDE_FLASH); ++ } ++ ++ dma_buffer->data.addr0 = (page << 16) | oob_col; ++ dma_buffer->data.addr1 = (page >> 16) & 0xff; ++ /* chipsel_0 + enable DM interface */ ++ dma_buffer->data.chipsel = 0 | 4; ++ ++ ++ /* GO bit for the EXEC register */ ++ dma_buffer->data.exec = 1; ++ ++ ++ BUILD_BUG_ON(8 != ARRAY_SIZE(dma_buffer->data.result)); ++ ++ for (n = start_sector; n < cwperpage; n++) { ++ /* flash + buffer status return words */ ++ dma_buffer->data.result[n].flash_status = 0xeeeeeeee; ++ dma_buffer->data.result[n].buffer_status = 0xeeeeeeee; ++ ++ /* block on cmd ready, then ++ * write CMD / ADDR0 / ADDR1 / CHIPSEL ++ * regs in a burst ++ */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = MSM_NAND_FLASH_CMD; ++ if (n == start_sector) ++ cmd->len = 16; ++ else ++ cmd->len = 4; ++ cmd++; ++ ++ if (n == start_sector) { ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = MSM_NAND_DEV0_CFG0; ++ if (enable_bch_ecc) ++ cmd->len = 12; ++ else ++ cmd->len = 8; ++ cmd++; ++ ++ dma_buffer->data.ecccfg = chip->ecc_buf_cfg; ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.ecccfg); ++ cmd->dst = MSM_NAND_EBI2_ECC_BUF_CFG; ++ cmd->len = 4; ++ cmd++; ++ } ++ ++ /* kick the execute register */ ++ cmd->cmd = 0; ++ cmd->src = ++ msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = MSM_NAND_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* block on data ready, then ++ * read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_FLASH_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.result[n]); ++ /* MSM_NAND_FLASH_STATUS + MSM_NAND_BUFFER_STATUS */ ++ cmd->len = 8; ++ cmd++; ++ ++ /* read data block ++ * (only valid if status says success) ++ */ ++ if (ops->datbuf) { ++ if (ops->mode != MTD_OPS_RAW) { ++ if (!boot_layout) ++ sectordatasize = (n < (cwperpage - 1)) ++ ? 516 : (512 - ((cwperpage - 1) << 2)); ++ else ++ sectordatasize = 512; ++ } else { ++ sectordatasize = chip->cw_size; ++ } ++ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_FLASH_BUFFER; ++ cmd->dst = data_dma_addr_curr; ++ data_dma_addr_curr += sectordatasize; ++ cmd->len = sectordatasize; ++ cmd++; ++ } ++ ++ if (ops->oobbuf && (n == (cwperpage - 1) ++ || ops->mode != MTD_OPS_AUTO_OOB)) { ++ cmd->cmd = 0; ++ if (n == (cwperpage - 1)) { ++ cmd->src = MSM_NAND_FLASH_BUFFER + ++ (512 - ((cwperpage - 1) << 2)); ++ sectoroobsize = (cwperpage << 2); ++ if (ops->mode != MTD_OPS_AUTO_OOB) ++ sectoroobsize += ++ chip->ecc_parity_bytes; ++ } else { ++ cmd->src = MSM_NAND_FLASH_BUFFER + 516; ++ sectoroobsize = chip->ecc_parity_bytes; ++ } ++ ++ cmd->dst = oob_dma_addr_curr; ++ if (sectoroobsize < oob_len) ++ cmd->len = sectoroobsize; ++ else ++ cmd->len = oob_len; ++ oob_dma_addr_curr += cmd->len; ++ oob_len -= cmd->len; ++ if (cmd->len > 0) ++ cmd++; ++ } ++ } ++ ++ BUILD_BUG_ON(8 * 5 + 2 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = ++ (msm_virt_to_dma(chip, dma_buffer->cmd) >> 3) ++ | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* if any of the writes failed (0x10), or there ++ * was a protection violation (0x100), we lose ++ */ ++ pageerr = rawerr = 0; ++ for (n = start_sector; n < cwperpage; n++) { ++ if (dma_buffer->data.result[n].flash_status & 0x110) { ++ rawerr = -EIO; ++ break; ++ } ++ } ++ if (rawerr) { ++ if (ops->datbuf && ops->mode != MTD_OPS_RAW) { ++ uint8_t *datbuf = ops->datbuf + ++ pages_read * mtd->writesize; ++ ++ dma_sync_single_for_cpu(chip->dev, ++ data_dma_addr_curr-mtd->writesize, ++ mtd->writesize, DMA_BIDIRECTIONAL); ++ ++ for (n = 0; n < mtd->writesize; n++) { ++ /* empty blocks read 0x54 at ++ * these offsets ++ */ ++ if ((n % 516 == 3 || n % 516 == 175) ++ && datbuf[n] == 0x54) ++ datbuf[n] = 0xff; ++ if (datbuf[n] != 0xff) { ++ pageerr = rawerr; ++ break; ++ } ++ } ++ ++ dma_sync_single_for_device(chip->dev, ++ data_dma_addr_curr-mtd->writesize, ++ mtd->writesize, DMA_BIDIRECTIONAL); ++ ++ } ++ if (ops->oobbuf) { ++ dma_sync_single_for_cpu(chip->dev, ++ oob_dma_addr_curr - (ops->ooblen - oob_len), ++ ops->ooblen - oob_len, DMA_BIDIRECTIONAL); ++ ++ for (n = 0; n < ops->ooblen; n++) { ++ if (ops->oobbuf[n] != 0xff) { ++ pageerr = rawerr; ++ break; ++ } ++ } ++ ++ dma_sync_single_for_device(chip->dev, ++ oob_dma_addr_curr - (ops->ooblen - oob_len), ++ ops->ooblen - oob_len, DMA_BIDIRECTIONAL); ++ } ++ } ++ if (pageerr) { ++ for (n = start_sector; n < cwperpage; n++) { ++ if (dma_buffer->data.result[n].buffer_status & ++ chip->uncorrectable_bit_mask) { ++ /* not thread safe */ ++ mtd->ecc_stats.failed++; ++ pageerr = -EBADMSG; ++ break; ++ } ++ } ++ } ++ if (!rawerr) { /* check for corretable errors */ ++ for (n = start_sector; n < cwperpage; n++) { ++ ecc_errors = ++ (dma_buffer->data.result[n].buffer_status ++ & chip->num_err_mask); ++ if (ecc_errors) { ++ total_ecc_errors += ecc_errors; ++ /* not thread safe */ ++ mtd->ecc_stats.corrected += ecc_errors; ++ if (ecc_errors > 1) ++ pageerr = -EUCLEAN; ++ } ++ } ++ } ++ if (pageerr && (pageerr != -EUCLEAN || err == 0)) ++ err = pageerr; ++ ++#if VERBOSE ++ if (rawerr && !pageerr) { ++ pr_err("msm_nand_read_oob %llx %x %x empty page\n", ++ (loff_t)page * mtd->writesize, ops->len, ++ ops->ooblen); ++ } else { ++ for (n = start_sector; n < cwperpage; n++) ++ pr_info("flash_status[%d] = %x,\ ++ buffr_status[%d] = %x\n", ++ n, dma_buffer->data.result[n].flash_status, ++ n, dma_buffer->data.result[n].buffer_status); ++ } ++#endif ++ if (err && err != -EUCLEAN && err != -EBADMSG) ++ break; ++ pages_read++; ++ page++; ++ } ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ if (ops->oobbuf) { ++ msm_nand_dma_unmap(chip->dev, oob_dma_addr, ++ ops->ooblen, DMA_FROM_DEVICE, ++ ops->oobbuf, oob_bounce_buf); ++ } ++err_dma_map_oobbuf_failed: ++ if (ops->datbuf) { ++ msm_nand_dma_unmap(chip->dev, data_dma_addr, ++ ops->len, DMA_BIDIRECTIONAL, ++ ops->datbuf, dat_bounce_buf); ++ } ++ ++ if (ops->mode != MTD_OPS_RAW) ++ ops->retlen = mtd->writesize * pages_read; ++ else ++ ops->retlen = (mtd->writesize + mtd->oobsize) * ++ pages_read; ++ ops->oobretlen = ops->ooblen - oob_len; ++ if (err) ++ pr_err("msm_nand_read_oob %llx %x %x failed %d, corrected %d\n", ++ from, ops->datbuf ? ops->len : 0, ops->ooblen, err, ++ total_ecc_errors); ++#if VERBOSE ++ pr_info("\n%s: ret %d, retlen %d oobretlen %d\n", ++ __func__, err, ops->retlen, ops->oobretlen); ++ ++ pr_info("===================================================" ++ "==============\n"); ++#endif ++ return err; ++} ++ ++static int msm_nand_read_oob_dualnandc(struct mtd_info *mtd, loff_t from, ++ struct mtd_oob_ops *ops) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[16 * 6 + 20]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t nandc01_addr0; ++ uint32_t nandc10_addr0; ++ uint32_t nandc11_addr1; ++ uint32_t chipsel_cs0; ++ uint32_t chipsel_cs1; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t eccbchcfg; ++ uint32_t exec; ++ uint32_t ecccfg; ++ uint32_t ebi2_chip_select_cfg0; ++ uint32_t adm_mux_data_ack_req_nc01; ++ uint32_t adm_mux_cmd_ack_req_nc01; ++ uint32_t adm_mux_data_ack_req_nc10; ++ uint32_t adm_mux_cmd_ack_req_nc10; ++ uint32_t adm_default_mux; ++ uint32_t default_ebi2_chip_select_cfg0; ++ uint32_t nc10_flash_dev_cmd_vld; ++ uint32_t nc10_flash_dev_cmd1; ++ uint32_t nc10_flash_dev_cmd_vld_default; ++ uint32_t nc10_flash_dev_cmd1_default; ++ struct { ++ uint32_t flash_status; ++ uint32_t buffer_status; ++ } result[16]; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ unsigned n; ++ unsigned page = 0; ++ uint32_t oob_len; ++ uint32_t sectordatasize; ++ uint32_t sectoroobsize; ++ int err, pageerr, rawerr; ++ dma_addr_t data_dma_addr = 0; ++ dma_addr_t oob_dma_addr = 0; ++ dma_addr_t data_dma_addr_curr = 0; ++ dma_addr_t oob_dma_addr_curr = 0; ++ uint32_t oob_col = 0; ++ unsigned page_count; ++ unsigned pages_read = 0; ++ unsigned start_sector = 0; ++ uint32_t ecc_errors; ++ uint32_t total_ecc_errors = 0; ++ unsigned cwperpage; ++ unsigned cw_offset = chip->cw_size; ++#if VERBOSE ++ pr_info("=================================================" ++ "============\n"); ++ pr_info("%s:\nfrom 0x%llx mode %d\ndatbuf 0x%p datlen 0x%x" ++ "\noobbuf 0x%p ooblen 0x%x\n\n", ++ __func__, from, ops->mode, ops->datbuf, ++ ops->len, ops->oobbuf, ops->ooblen); ++#endif ++ ++ if (mtd->writesize == 2048) ++ page = from >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = from >> 12; ++ ++ if (interleave_enable) ++ page = (from >> 1) >> 12; ++ ++ oob_len = ops->ooblen; ++ cwperpage = (mtd->writesize >> 9); ++ ++ if (from & (mtd->writesize - 1)) { ++ pr_err("%s: unsupported from, 0x%llx\n", ++ __func__, from); ++ return -EINVAL; ++ } ++ if (ops->mode != MTD_OPS_RAW) { ++ if (ops->datbuf != NULL && (ops->len % mtd->writesize) != 0) { ++ pr_err("%s: unsupported ops->len, %d\n", ++ __func__, ops->len); ++ return -EINVAL; ++ } ++ } else { ++ if (ops->datbuf != NULL && ++ (ops->len % (mtd->writesize + mtd->oobsize)) != 0) { ++ pr_err("%s: unsupported ops->len," ++ " %d for MTD_OPS_RAW\n", __func__, ops->len); ++ return -EINVAL; ++ } ++ } ++ ++ if (ops->mode != MTD_OPS_RAW && ops->ooblen != 0 && ops->ooboffs != 0) { ++ pr_err("%s: unsupported ops->ooboffs, %d\n", ++ __func__, ops->ooboffs); ++ return -EINVAL; ++ } ++ ++ if (ops->oobbuf && !ops->datbuf && ops->mode == MTD_OPS_AUTO_OOB) ++ start_sector = cwperpage - 1; ++ ++ if (ops->oobbuf && !ops->datbuf) { ++ page_count = ops->ooblen / ((ops->mode == MTD_OPS_AUTO_OOB) ? ++ mtd->oobavail : mtd->oobsize); ++ if ((page_count == 0) && (ops->ooblen)) ++ page_count = 1; ++ } else if (ops->mode != MTD_OPS_RAW) ++ page_count = ops->len / mtd->writesize; ++ else ++ page_count = ops->len / (mtd->writesize + mtd->oobsize); ++ ++ if (ops->datbuf) { ++ data_dma_addr_curr = data_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->datbuf, ops->len, ++ DMA_FROM_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, data_dma_addr)) { ++ pr_err("msm_nand_read_oob_dualnandc: " ++ "failed to get dma addr for %p\n", ++ ops->datbuf); ++ return -EIO; ++ } ++ } ++ if (ops->oobbuf) { ++ memset(ops->oobbuf, 0xff, ops->ooblen); ++ oob_dma_addr_curr = oob_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->oobbuf, ++ ops->ooblen, DMA_BIDIRECTIONAL, NULL); ++ if (dma_mapping_error(chip->dev, oob_dma_addr)) { ++ pr_err("msm_nand_read_oob_dualnandc: " ++ "failed to get dma addr for %p\n", ++ ops->oobbuf); ++ err = -EIO; ++ goto err_dma_map_oobbuf_failed; ++ } ++ } ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer( ++ chip, sizeof(*dma_buffer)))); ++ ++ oob_col = start_sector * chip->cw_size; ++ if (chip->CFG1 & CFG1_WIDE_FLASH) { ++ oob_col >>= 1; ++ cw_offset >>= 1; ++ } ++ ++ err = 0; ++ while (page_count-- > 0) { ++ cmd = dma_buffer->cmd; ++ ++ if (ops->mode != MTD_OPS_RAW) { ++ dma_buffer->data.cmd = MSM_NAND_CMD_PAGE_READ_ECC; ++ if (start_sector == (cwperpage - 1)) { ++ dma_buffer->data.cfg0 = (chip->CFG0 & ++ ~(7U << 6)); ++ } else { ++ dma_buffer->data.cfg0 = (chip->CFG0 & ++ ~(7U << 6)) ++ | (((cwperpage >> 1)-1) << 6); ++ } ++ dma_buffer->data.cfg1 = chip->CFG1; ++ if (enable_bch_ecc) ++ dma_buffer->data.eccbchcfg = chip->ecc_bch_cfg; ++ } else { ++ dma_buffer->data.cmd = MSM_NAND_CMD_PAGE_READ; ++ dma_buffer->data.cfg0 = ((chip->CFG0_RAW & ++ ~(7U << 6)) | ((((cwperpage >> 1)-1) << 6))); ++ dma_buffer->data.cfg1 = chip->CFG1_RAW | ++ (chip->CFG1 & CFG1_WIDE_FLASH); ++ } ++ ++ if (!interleave_enable) { ++ if (start_sector == (cwperpage - 1)) { ++ dma_buffer->data.nandc10_addr0 = ++ (page << 16) | oob_col; ++ dma_buffer->data.nc10_flash_dev_cmd_vld = 0xD; ++ dma_buffer->data.nc10_flash_dev_cmd1 = ++ 0xF00F3000; ++ } else { ++ dma_buffer->data.nandc01_addr0 = page << 16; ++ /* NC10 ADDR0 points to the next code word */ ++ dma_buffer->data.nandc10_addr0 = (page << 16) | ++ cw_offset; ++ dma_buffer->data.nc10_flash_dev_cmd_vld = 0x1D; ++ dma_buffer->data.nc10_flash_dev_cmd1 = ++ 0xF00FE005; ++ } ++ } else { ++ dma_buffer->data.nandc01_addr0 = ++ dma_buffer->data.nandc10_addr0 = ++ (page << 16) | oob_col; ++ } ++ /* ADDR1 */ ++ dma_buffer->data.nandc11_addr1 = (page >> 16) & 0xff; ++ ++ dma_buffer->data.adm_mux_data_ack_req_nc01 = 0x00000A3C; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc01 = 0x0000053C; ++ dma_buffer->data.adm_mux_data_ack_req_nc10 = 0x00000F28; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc10 = 0x00000F14; ++ dma_buffer->data.adm_default_mux = 0x00000FC0; ++ dma_buffer->data.nc10_flash_dev_cmd_vld_default = 0x1D; ++ dma_buffer->data.nc10_flash_dev_cmd1_default = 0xF00F3000; ++ ++ dma_buffer->data.ebi2_chip_select_cfg0 = 0x00000805; ++ dma_buffer->data.default_ebi2_chip_select_cfg0 = 0x00000801; ++ ++ /* chipsel_0 + enable DM interface */ ++ dma_buffer->data.chipsel_cs0 = (1<<4) | 4; ++ /* chipsel_1 + enable DM interface */ ++ dma_buffer->data.chipsel_cs1 = (1<<4) | 5; ++ ++ /* GO bit for the EXEC register */ ++ dma_buffer->data.exec = 1; ++ ++ BUILD_BUG_ON(16 != ARRAY_SIZE(dma_buffer->data.result)); ++ ++ for (n = start_sector; n < cwperpage; n++) { ++ /* flash + buffer status return words */ ++ dma_buffer->data.result[n].flash_status = 0xeeeeeeee; ++ dma_buffer->data.result[n].buffer_status = 0xeeeeeeee; ++ ++ if (n == start_sector) { ++ if (!interleave_enable) { ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.nc10_flash_dev_cmd_vld); ++ cmd->dst = NC10(MSM_NAND_DEV_CMD_VLD); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nc10_flash_dev_cmd1); ++ cmd->dst = NC10(MSM_NAND_DEV_CMD1); ++ cmd->len = 4; ++ cmd++; ++ ++ /* NC01, NC10 --> ADDR1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc11_addr1); ++ cmd->dst = NC11(MSM_NAND_ADDR1); ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = NC11(MSM_NAND_DEV0_CFG0); ++ if (enable_bch_ecc) ++ cmd->len = 12; ++ else ++ cmd->len = 8; ++ cmd++; ++ } else { ++ /* enable CS0 & CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ ++ /* NC01, NC10 --> ADDR1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc11_addr1); ++ cmd->dst = NC11(MSM_NAND_ADDR1); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Enable CS0 for NC01 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.chipsel_cs0); ++ cmd->dst = ++ NC01(MSM_NAND_FLASH_CHIP_SELECT); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Enable CS1 for NC10 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.chipsel_cs1); ++ cmd->dst = ++ NC10(MSM_NAND_FLASH_CHIP_SELECT); ++ cmd->len = 4; ++ cmd++; ++ ++ /* config DEV0_CFG0 & CFG1 for CS0 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = NC01(MSM_NAND_DEV0_CFG0); ++ cmd->len = 8; ++ cmd++; ++ ++ /* config DEV1_CFG0 & CFG1 for CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = NC10(MSM_NAND_DEV1_CFG0); ++ cmd->len = 8; ++ cmd++; ++ } ++ ++ dma_buffer->data.ecccfg = chip->ecc_buf_cfg; ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.ecccfg); ++ cmd->dst = NC11(MSM_NAND_EBI2_ECC_BUF_CFG); ++ cmd->len = 4; ++ cmd++; ++ ++ /* if 'only' the last code word */ ++ if (n == cwperpage - 1) { ++ /* MASK CMD ACK/REQ --> NC01 (0x53C)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_cmd_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* CMD */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cmd); ++ cmd->dst = NC10(MSM_NAND_FLASH_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* NC10 --> ADDR0 ( 0x0 ) */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc10_addr0); ++ cmd->dst = NC10(MSM_NAND_ADDR0); ++ cmd->len = 4; ++ cmd++; ++ ++ /* kick the execute reg for NC10 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.exec); ++ cmd->dst = NC10(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* MASK DATA ACK/REQ --> NC01 (0xA3C)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_data_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* block on data ready from NC10, then ++ * read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC10(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.result[n]); ++ /* MSM_NAND_FLASH_STATUS + ++ * MSM_NAND_BUFFER_STATUS ++ */ ++ cmd->len = 8; ++ cmd++; ++ } else { ++ /* NC01 --> ADDR0 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc01_addr0); ++ cmd->dst = NC01(MSM_NAND_ADDR0); ++ cmd->len = 4; ++ cmd++; ++ ++ /* NC10 --> ADDR1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc10_addr0); ++ cmd->dst = NC10(MSM_NAND_ADDR0); ++ cmd->len = 4; ++ cmd++; ++ ++ /* MASK CMD ACK/REQ --> NC10 (0xF14)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_cmd_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* CMD */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cmd); ++ cmd->dst = NC01(MSM_NAND_FLASH_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* kick the execute register for NC01*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.exec); ++ cmd->dst = NC01(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ } ++ } ++ ++ /* read data block ++ * (only valid if status says success) ++ */ ++ if (ops->datbuf || (ops->oobbuf && ++ ops->mode != MTD_OPS_AUTO_OOB)) { ++ if (ops->mode != MTD_OPS_RAW) ++ sectordatasize = (n < (cwperpage - 1)) ++ ? 516 : (512 - ((cwperpage - 1) << 2)); ++ else ++ sectordatasize = chip->cw_size; ++ ++ if (n % 2 == 0) { ++ /* MASK DATA ACK/REQ --> NC10 (0xF28)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_data_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* block on data ready from NC01, then ++ * read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC01(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.result[n]); ++ /* MSM_NAND_FLASH_STATUS + ++ * MSM_NAND_BUFFER_STATUS ++ */ ++ cmd->len = 8; ++ cmd++; ++ ++ /* MASK CMD ACK/REQ --> NC01 (0x53C)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_cmd_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* CMD */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cmd); ++ cmd->dst = NC10(MSM_NAND_FLASH_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* kick the execute register for NC10 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.exec); ++ cmd->dst = NC10(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read only when there is data ++ * buffer ++ */ ++ if (ops->datbuf) { ++ cmd->cmd = 0; ++ cmd->src = ++ NC01(MSM_NAND_FLASH_BUFFER); ++ cmd->dst = data_dma_addr_curr; ++ data_dma_addr_curr += ++ sectordatasize; ++ cmd->len = sectordatasize; ++ cmd++; ++ } ++ } else { ++ /* MASK DATA ACK/REQ --> ++ * NC01 (0xA3C) ++ */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_data_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* block on data ready from NC10 ++ * then read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = ++ NC10(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.result[n]); ++ /* MSM_NAND_FLASH_STATUS + ++ * MSM_NAND_BUFFER_STATUS ++ */ ++ cmd->len = 8; ++ cmd++; ++ if (n != cwperpage - 1) { ++ /* MASK CMD ACK/REQ --> ++ * NC10 (0xF14) ++ */ ++ cmd->cmd = 0; ++ cmd->src = ++ msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_cmd_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* CMD */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cmd); ++ cmd->dst = ++ NC01(MSM_NAND_FLASH_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* EXEC */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.exec); ++ cmd->dst = ++ NC01(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ } ++ ++ /* Read only when there is data ++ * buffer ++ */ ++ if (ops->datbuf) { ++ cmd->cmd = 0; ++ cmd->src = ++ NC10(MSM_NAND_FLASH_BUFFER); ++ cmd->dst = data_dma_addr_curr; ++ data_dma_addr_curr += ++ sectordatasize; ++ cmd->len = sectordatasize; ++ cmd++; ++ } ++ } ++ } ++ ++ if (ops->oobbuf && (n == (cwperpage - 1) ++ || ops->mode != MTD_OPS_AUTO_OOB)) { ++ cmd->cmd = 0; ++ if (n == (cwperpage - 1)) { ++ /* Use NC10 for reading the ++ * last codeword!!! ++ */ ++ cmd->src = NC10(MSM_NAND_FLASH_BUFFER) + ++ (512 - ((cwperpage - 1) << 2)); ++ sectoroobsize = (cwperpage << 2); ++ if (ops->mode != MTD_OPS_AUTO_OOB) ++ sectoroobsize += ++ chip->ecc_parity_bytes; ++ } else { ++ if (n % 2 == 0) ++ cmd->src = ++ NC01(MSM_NAND_FLASH_BUFFER) ++ + 516; ++ else ++ cmd->src = ++ NC10(MSM_NAND_FLASH_BUFFER) ++ + 516; ++ sectoroobsize = chip->ecc_parity_bytes; ++ } ++ cmd->dst = oob_dma_addr_curr; ++ if (sectoroobsize < oob_len) ++ cmd->len = sectoroobsize; ++ else ++ cmd->len = oob_len; ++ oob_dma_addr_curr += cmd->len; ++ oob_len -= cmd->len; ++ if (cmd->len > 0) ++ cmd++; ++ } ++ } ++ /* ADM --> Default mux state (0xFC0) */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_default_mux); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ if (!interleave_enable) { ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nc10_flash_dev_cmd_vld_default); ++ cmd->dst = NC10(MSM_NAND_DEV_CMD_VLD); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nc10_flash_dev_cmd1_default); ++ cmd->dst = NC10(MSM_NAND_DEV_CMD1); ++ cmd->len = 4; ++ cmd++; ++ } else { ++ /* disable CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.default_ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ } ++ ++ BUILD_BUG_ON(16 * 6 + 20 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = ++ (msm_virt_to_dma(chip, dma_buffer->cmd) >> 3) ++ | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* if any of the writes failed (0x10), or there ++ * was a protection violation (0x100), we lose ++ */ ++ pageerr = rawerr = 0; ++ for (n = start_sector; n < cwperpage; n++) { ++ if (dma_buffer->data.result[n].flash_status & 0x110) { ++ rawerr = -EIO; ++ break; ++ } ++ } ++ if (rawerr) { ++ if (ops->datbuf && ops->mode != MTD_OPS_RAW) { ++ uint8_t *datbuf = ops->datbuf + ++ pages_read * mtd->writesize; ++ ++ dma_sync_single_for_cpu(chip->dev, ++ data_dma_addr_curr-mtd->writesize, ++ mtd->writesize, DMA_BIDIRECTIONAL); ++ ++ for (n = 0; n < mtd->writesize; n++) { ++ /* empty blocks read 0x54 at ++ * these offsets ++ */ ++ if ((n % 516 == 3 || n % 516 == 175) ++ && datbuf[n] == 0x54) ++ datbuf[n] = 0xff; ++ if (datbuf[n] != 0xff) { ++ pageerr = rawerr; ++ break; ++ } ++ } ++ ++ dma_sync_single_for_device(chip->dev, ++ data_dma_addr_curr-mtd->writesize, ++ mtd->writesize, DMA_BIDIRECTIONAL); ++ ++ } ++ if (ops->oobbuf) { ++ dma_sync_single_for_cpu(chip->dev, ++ oob_dma_addr_curr - (ops->ooblen - oob_len), ++ ops->ooblen - oob_len, DMA_BIDIRECTIONAL); ++ ++ for (n = 0; n < ops->ooblen; n++) { ++ if (ops->oobbuf[n] != 0xff) { ++ pageerr = rawerr; ++ break; ++ } ++ } ++ ++ dma_sync_single_for_device(chip->dev, ++ oob_dma_addr_curr - (ops->ooblen - oob_len), ++ ops->ooblen - oob_len, DMA_BIDIRECTIONAL); ++ } ++ } ++ if (pageerr) { ++ for (n = start_sector; n < cwperpage; n++) { ++ if (dma_buffer->data.result[n].buffer_status ++ & chip->uncorrectable_bit_mask) { ++ /* not thread safe */ ++ mtd->ecc_stats.failed++; ++ pageerr = -EBADMSG; ++ break; ++ } ++ } ++ } ++ if (!rawerr) { /* check for corretable errors */ ++ for (n = start_sector; n < cwperpage; n++) { ++ ecc_errors = dma_buffer->data. ++ result[n].buffer_status ++ & chip->num_err_mask; ++ if (ecc_errors) { ++ total_ecc_errors += ecc_errors; ++ /* not thread safe */ ++ mtd->ecc_stats.corrected += ecc_errors; ++ if (ecc_errors > 1) ++ pageerr = -EUCLEAN; ++ } ++ } ++ } ++ if (pageerr && (pageerr != -EUCLEAN || err == 0)) ++ err = pageerr; ++ ++#if VERBOSE ++ if (rawerr && !pageerr) { ++ pr_err("msm_nand_read_oob_dualnandc " ++ "%llx %x %x empty page\n", ++ (loff_t)page * mtd->writesize, ops->len, ++ ops->ooblen); ++ } else { ++ for (n = start_sector; n < cwperpage; n++) { ++ if (n%2) { ++ pr_info("NC10: flash_status[%d] = %x, " ++ "buffr_status[%d] = %x\n", ++ n, dma_buffer-> ++ data.result[n].flash_status, ++ n, dma_buffer-> ++ data.result[n].buffer_status); ++ } else { ++ pr_info("NC01: flash_status[%d] = %x, " ++ "buffr_status[%d] = %x\n", ++ n, dma_buffer-> ++ data.result[n].flash_status, ++ n, dma_buffer-> ++ data.result[n].buffer_status); ++ } ++ } ++ } ++#endif ++ if (err && err != -EUCLEAN && err != -EBADMSG) ++ break; ++ pages_read++; ++ page++; ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ if (ops->oobbuf) { ++ dma_unmap_page(chip->dev, oob_dma_addr, ++ ops->ooblen, DMA_FROM_DEVICE); ++ } ++err_dma_map_oobbuf_failed: ++ if (ops->datbuf) { ++ dma_unmap_page(chip->dev, data_dma_addr, ++ ops->len, DMA_BIDIRECTIONAL); ++ } ++ ++ if (ops->mode != MTD_OPS_RAW) ++ ops->retlen = mtd->writesize * pages_read; ++ else ++ ops->retlen = (mtd->writesize + mtd->oobsize) * ++ pages_read; ++ ops->oobretlen = ops->ooblen - oob_len; ++ if (err) ++ pr_err("msm_nand_read_oob_dualnandc " ++ "%llx %x %x failed %d, corrected %d\n", ++ from, ops->datbuf ? ops->len : 0, ops->ooblen, err, ++ total_ecc_errors); ++#if VERBOSE ++ pr_info("\n%s: ret %d, retlen %d oobretlen %d\n", ++ __func__, err, ops->retlen, ops->oobretlen); ++ ++ pr_info("===================================================" ++ "==========\n"); ++#endif ++ return err; ++} ++ ++static int ++msm_nand_read(struct mtd_info *mtd, loff_t from, size_t len, ++ size_t *retlen, u_char *buf) ++{ ++ int ret; ++ struct mtd_ecc_stats stats; ++ struct mtd_oob_ops ops; ++ int (*read_oob)(struct mtd_info *, loff_t, struct mtd_oob_ops *); ++ ++ if (!dual_nand_ctlr_present) ++ read_oob = msm_nand_read_oob; ++ else ++ read_oob = msm_nand_read_oob_dualnandc; ++ ++ ops.mode = MTD_OPS_PLACE_OOB; ++ ops.retlen = 0; ++ ops.ooblen = 0; ++ ops.oobbuf = NULL; ++ ret = 0; ++ *retlen = 0; ++ stats = mtd->ecc_stats; ++ ++ if ((from & (mtd->writesize - 1)) == 0 && len == mtd->writesize) { ++ /* reading a page on page boundary */ ++ ops.len = len; ++ ops.datbuf = buf; ++ ret = read_oob(mtd, from, &ops); ++ *retlen = ops.retlen; ++ } else if (len > 0) { ++ /* reading any size on any offset. partial page is supported */ ++ u8 *bounce_buf; ++ loff_t aligned_from; ++ loff_t offset; ++ size_t actual_len; ++ ++ bounce_buf = kmalloc(mtd->writesize, GFP_KERNEL); ++ if (!bounce_buf) { ++ pr_err("%s: could not allocate memory\n", __func__); ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ ops.len = mtd->writesize; ++ offset = from & (mtd->writesize - 1); ++ aligned_from = from - offset; ++ ++ for (;;) { ++ int no_copy; ++ ++ actual_len = mtd->writesize - offset; ++ if (actual_len > len) ++ actual_len = len; ++ ++ no_copy = (offset == 0 && actual_len == mtd->writesize); ++ ops.datbuf = (no_copy) ? buf : bounce_buf; ++ ++ /* ++ * MTD API requires that all the pages are to ++ * be read even if uncorrectable or ++ * correctable ECC errors occur. ++ */ ++ ret = read_oob(mtd, aligned_from, &ops); ++ if (ret == -EBADMSG || ret == -EUCLEAN) ++ ret = 0; ++ ++ if (ret < 0) ++ break; ++ ++ if (!no_copy) ++ memcpy(buf, bounce_buf + offset, actual_len); ++ ++ len -= actual_len; ++ *retlen += actual_len; ++ if (len == 0) ++ break; ++ ++ buf += actual_len; ++ offset = 0; ++ aligned_from += mtd->writesize; ++ } ++ ++ kfree(bounce_buf); ++ } ++ ++out: ++ if (ret) ++ return ret; ++ ++ if (mtd->ecc_stats.failed - stats.failed) ++ return -EBADMSG; ++ ++ if (mtd->ecc_stats.corrected - stats.corrected) ++ return -EUCLEAN; ++ ++ return 0; ++} ++ ++static int ++msm_nand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ struct { ++ dmov_s cmd[8 * 7 + 2]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t chipsel; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t eccbchcfg; ++ uint32_t exec; ++ uint32_t ecccfg; ++ uint32_t clrfstatus; ++ uint32_t clrrstatus; ++ uint32_t flash_status[8]; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ unsigned n; ++ unsigned page = 0; ++ uint32_t oob_len; ++ uint32_t sectordatawritesize; ++ int err = 0; ++ dma_addr_t data_dma_addr = 0; ++ dma_addr_t oob_dma_addr = 0; ++ dma_addr_t data_dma_addr_curr = 0; ++ dma_addr_t oob_dma_addr_curr = 0; ++ uint8_t *dat_bounce_buf = NULL; ++ uint8_t *oob_bounce_buf = NULL; ++ unsigned page_count; ++ unsigned pages_written = 0; ++ unsigned cwperpage; ++#if VERBOSE ++ pr_info("=================================================" ++ "================\n"); ++ pr_info("%s:\nto 0x%llx mode %d\ndatbuf 0x%p datlen 0x%x" ++ "\noobbuf 0x%p ooblen 0x%x\n", ++ __func__, to, ops->mode, ops->datbuf, ops->len, ++ ops->oobbuf, ops->ooblen); ++#endif ++ ++ if (mtd->writesize == 2048) ++ page = to >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = to >> 12; ++ ++ oob_len = ops->ooblen; ++ cwperpage = (mtd->writesize >> 9); ++ ++ if (to & (mtd->writesize - 1)) { ++ pr_err("%s: unsupported to, 0x%llx\n", __func__, to); ++ return -EINVAL; ++ } ++ ++ if (ops->mode != MTD_OPS_RAW) { ++ if (ops->ooblen != 0 && ops->mode != MTD_OPS_AUTO_OOB) { ++ pr_err("%s: unsupported ops->mode,%d\n", ++ __func__, ops->mode); ++ return -EINVAL; ++ } ++ if ((ops->len % mtd->writesize) != 0) { ++ pr_err("%s: unsupported ops->len, %d\n", ++ __func__, ops->len); ++ return -EINVAL; ++ } ++ } else { ++ if ((ops->len % (mtd->writesize + mtd->oobsize)) != 0) { ++ pr_err("%s: unsupported ops->len, " ++ "%d for MTD_OPS_RAW mode\n", ++ __func__, ops->len); ++ return -EINVAL; ++ } ++ } ++ ++ if (ops->datbuf == NULL) { ++ pr_err("%s: unsupported ops->datbuf == NULL\n", __func__); ++ return -EINVAL; ++ } ++ if (ops->mode != MTD_OPS_RAW && ops->ooblen != 0 && ops->ooboffs != 0) { ++ pr_err("%s: unsupported ops->ooboffs, %d\n", ++ __func__, ops->ooboffs); ++ return -EINVAL; ++ } ++ ++ if (ops->datbuf) { ++ data_dma_addr_curr = data_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->datbuf, ++ ops->len, DMA_TO_DEVICE, ++ &dat_bounce_buf); ++ if (dma_mapping_error(chip->dev, data_dma_addr)) { ++ pr_err("msm_nand_write_oob: failed to get dma addr " ++ "for %p\n", ops->datbuf); ++ return -EIO; ++ } ++ } ++ if (ops->oobbuf) { ++ oob_dma_addr_curr = oob_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->oobbuf, ++ ops->ooblen, DMA_TO_DEVICE, ++ &oob_bounce_buf); ++ if (dma_mapping_error(chip->dev, oob_dma_addr)) { ++ pr_err("msm_nand_write_oob: failed to get dma addr " ++ "for %p\n", ops->oobbuf); ++ err = -EIO; ++ goto err_dma_map_oobbuf_failed; ++ } ++ } ++ if (ops->mode != MTD_OPS_RAW) ++ page_count = ops->len / mtd->writesize; ++ else ++ page_count = ops->len / (mtd->writesize + mtd->oobsize); ++ ++ wait_event(chip->wait_queue, (dma_buffer = ++ msm_nand_get_dma_buffer(chip, sizeof(*dma_buffer)))); ++ ++ while (page_count-- > 0) { ++ cmd = dma_buffer->cmd; ++ ++ if (ops->mode != MTD_OPS_RAW) { ++ dma_buffer->data.cfg0 = chip->CFG0; ++ dma_buffer->data.cfg1 = chip->CFG1; ++ if (enable_bch_ecc) ++ dma_buffer->data.eccbchcfg = chip->ecc_bch_cfg; ++ } else { ++ dma_buffer->data.cfg0 = (chip->CFG0_RAW & ++ ~(7U << 6)) | ((cwperpage-1) << 6); ++ dma_buffer->data.cfg1 = chip->CFG1_RAW | ++ (chip->CFG1 & CFG1_WIDE_FLASH); ++ } ++ ++ /* CMD / ADDR0 / ADDR1 / CHIPSEL program values */ ++ dma_buffer->data.cmd = MSM_NAND_CMD_PRG_PAGE; ++ dma_buffer->data.addr0 = page << 16; ++ dma_buffer->data.addr1 = (page >> 16) & 0xff; ++ /* chipsel_0 + enable DM interface */ ++ dma_buffer->data.chipsel = 0 | 4; ++ ++ ++ /* GO bit for the EXEC register */ ++ dma_buffer->data.exec = 1; ++ dma_buffer->data.clrfstatus = 0x00000020; ++ dma_buffer->data.clrrstatus = 0x000000C0; ++ ++ BUILD_BUG_ON(8 != ARRAY_SIZE(dma_buffer->data.flash_status)); ++ ++ for (n = 0; n < cwperpage ; n++) { ++ /* status return words */ ++ dma_buffer->data.flash_status[n] = 0xeeeeeeee; ++ /* block on cmd ready, then ++ * write CMD / ADDR0 / ADDR1 / CHIPSEL regs in a burst ++ */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = ++ msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = MSM_NAND_FLASH_CMD; ++ if (n == 0) ++ cmd->len = 16; ++ else ++ cmd->len = 4; ++ cmd++; ++ ++ if (n == 0) { ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = MSM_NAND_DEV0_CFG0; ++ if (enable_bch_ecc) ++ cmd->len = 12; ++ else ++ cmd->len = 8; ++ cmd++; ++ ++ dma_buffer->data.ecccfg = chip->ecc_buf_cfg; ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.ecccfg); ++ cmd->dst = MSM_NAND_EBI2_ECC_BUF_CFG; ++ cmd->len = 4; ++ cmd++; ++ } ++ ++ /* write data block */ ++ if (ops->mode != MTD_OPS_RAW) { ++ if (!boot_layout) ++ sectordatawritesize = (n < (cwperpage - 1)) ? ++ 516 : (512 - ((cwperpage - 1) << 2)); ++ else ++ sectordatawritesize = 512; ++ } else { ++ sectordatawritesize = chip->cw_size; ++ } ++ ++ cmd->cmd = 0; ++ cmd->src = data_dma_addr_curr; ++ data_dma_addr_curr += sectordatawritesize; ++ cmd->dst = MSM_NAND_FLASH_BUFFER; ++ cmd->len = sectordatawritesize; ++ cmd++; ++ ++ if (ops->oobbuf) { ++ if (n == (cwperpage - 1)) { ++ cmd->cmd = 0; ++ cmd->src = oob_dma_addr_curr; ++ cmd->dst = MSM_NAND_FLASH_BUFFER + ++ (512 - ((cwperpage - 1) << 2)); ++ if ((cwperpage << 2) < oob_len) ++ cmd->len = (cwperpage << 2); ++ else ++ cmd->len = oob_len; ++ oob_dma_addr_curr += cmd->len; ++ oob_len -= cmd->len; ++ if (cmd->len > 0) ++ cmd++; ++ } ++ if (ops->mode != MTD_OPS_AUTO_OOB) { ++ /* skip ecc bytes in oobbuf */ ++ if (oob_len < chip->ecc_parity_bytes) { ++ oob_dma_addr_curr += ++ chip->ecc_parity_bytes; ++ oob_len -= ++ chip->ecc_parity_bytes; ++ } else { ++ oob_dma_addr_curr += oob_len; ++ oob_len = 0; ++ } ++ } ++ } ++ ++ /* kick the execute register */ ++ cmd->cmd = 0; ++ cmd->src = ++ msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = MSM_NAND_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* block on data ready, then ++ * read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_FLASH_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.flash_status[n]); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.clrfstatus); ++ cmd->dst = MSM_NAND_FLASH_STATUS; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.clrrstatus); ++ cmd->dst = MSM_NAND_READ_STATUS; ++ cmd->len = 4; ++ cmd++; ++ ++ } ++ ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ BUILD_BUG_ON(8 * 7 + 2 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmdptr = ++ (msm_virt_to_dma(chip, dma_buffer->cmd) >> 3) | ++ CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR( ++ msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* if any of the writes failed (0x10), or there was a ++ * protection violation (0x100), or the program success ++ * bit (0x80) is unset, we lose ++ */ ++ err = 0; ++ for (n = 0; n < cwperpage; n++) { ++ if (dma_buffer->data.flash_status[n] & 0x110) { ++ err = -EIO; ++ break; ++ } ++ if (!(dma_buffer->data.flash_status[n] & 0x80)) { ++ err = -EIO; ++ break; ++ } ++ } ++ ++#if VERBOSE ++ for (n = 0; n < cwperpage; n++) ++ pr_info("write pg %d: flash_status[%d] = %x\n", page, ++ n, dma_buffer->data.flash_status[n]); ++ ++#endif ++ if (err) ++ break; ++ pages_written++; ++ page++; ++ } ++ if (ops->mode != MTD_OPS_RAW) ++ ops->retlen = mtd->writesize * pages_written; ++ else ++ ops->retlen = (mtd->writesize + mtd->oobsize) * pages_written; ++ ++ ops->oobretlen = ops->ooblen - oob_len; ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ if (ops->oobbuf) { ++ msm_nand_dma_unmap(chip->dev, oob_dma_addr, ++ ops->ooblen, DMA_TO_DEVICE, ++ ops->oobbuf, oob_bounce_buf); ++ } ++err_dma_map_oobbuf_failed: ++ if (ops->datbuf) { ++ msm_nand_dma_unmap(chip->dev, data_dma_addr, ops->len, ++ DMA_TO_DEVICE, ops->datbuf, ++ dat_bounce_buf); ++ } ++ if (err) ++ pr_err("msm_nand_write_oob %llx %x %x failed %d\n", ++ to, ops->len, ops->ooblen, err); ++ ++#if VERBOSE ++ pr_info("\n%s: ret %d, retlen %d oobretlen %d\n", ++ __func__, err, ops->retlen, ops->oobretlen); ++ ++ pr_info("===================================================" ++ "==============\n"); ++#endif ++ return err; ++} ++ ++static int ++msm_nand_write_oob_dualnandc(struct mtd_info *mtd, loff_t to, ++ struct mtd_oob_ops *ops) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ struct { ++ dmov_s cmd[16 * 6 + 18]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t nandc01_addr0; ++ uint32_t nandc10_addr0; ++ uint32_t nandc11_addr1; ++ uint32_t chipsel_cs0; ++ uint32_t chipsel_cs1; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t eccbchcfg; ++ uint32_t exec; ++ uint32_t ecccfg; ++ uint32_t cfg0_nc01; ++ uint32_t ebi2_chip_select_cfg0; ++ uint32_t adm_mux_data_ack_req_nc01; ++ uint32_t adm_mux_cmd_ack_req_nc01; ++ uint32_t adm_mux_data_ack_req_nc10; ++ uint32_t adm_mux_cmd_ack_req_nc10; ++ uint32_t adm_default_mux; ++ uint32_t default_ebi2_chip_select_cfg0; ++ uint32_t nc01_flash_dev_cmd_vld; ++ uint32_t nc10_flash_dev_cmd0; ++ uint32_t nc01_flash_dev_cmd_vld_default; ++ uint32_t nc10_flash_dev_cmd0_default; ++ uint32_t flash_status[16]; ++ uint32_t clrfstatus; ++ uint32_t clrrstatus; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ unsigned n; ++ unsigned page = 0; ++ uint32_t oob_len; ++ uint32_t sectordatawritesize; ++ int err = 0; ++ dma_addr_t data_dma_addr = 0; ++ dma_addr_t oob_dma_addr = 0; ++ dma_addr_t data_dma_addr_curr = 0; ++ dma_addr_t oob_dma_addr_curr = 0; ++ unsigned page_count; ++ unsigned pages_written = 0; ++ unsigned cwperpage; ++ unsigned cw_offset = chip->cw_size; ++#if VERBOSE ++ pr_info("=================================================" ++ "============\n"); ++ pr_info("%s:\nto 0x%llx mode %d\ndatbuf 0x%p datlen 0x%x" ++ "\noobbuf 0x%p ooblen 0x%x\n\n", ++ __func__, to, ops->mode, ops->datbuf, ops->len, ++ ops->oobbuf, ops->ooblen); ++#endif ++ ++ if (mtd->writesize == 2048) ++ page = to >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = to >> 12; ++ ++ if (interleave_enable) ++ page = (to >> 1) >> 12; ++ ++ oob_len = ops->ooblen; ++ cwperpage = (mtd->writesize >> 9); ++ ++ if (to & (mtd->writesize - 1)) { ++ pr_err("%s: unsupported to, 0x%llx\n", __func__, to); ++ return -EINVAL; ++ } ++ ++ if (ops->mode != MTD_OPS_RAW) { ++ if (ops->ooblen != 0 && ops->mode != MTD_OPS_AUTO_OOB) { ++ pr_err("%s: unsupported ops->mode,%d\n", ++ __func__, ops->mode); ++ return -EINVAL; ++ } ++ if ((ops->len % mtd->writesize) != 0) { ++ pr_err("%s: unsupported ops->len, %d\n", ++ __func__, ops->len); ++ return -EINVAL; ++ } ++ } else { ++ if ((ops->len % (mtd->writesize + mtd->oobsize)) != 0) { ++ pr_err("%s: unsupported ops->len, " ++ "%d for MTD_OPS_RAW mode\n", ++ __func__, ops->len); ++ return -EINVAL; ++ } ++ } ++ ++ if (ops->datbuf == NULL) { ++ pr_err("%s: unsupported ops->datbuf == NULL\n", __func__); ++ return -EINVAL; ++ } ++ ++ if (ops->mode != MTD_OPS_RAW && ops->ooblen != 0 && ops->ooboffs != 0) { ++ pr_err("%s: unsupported ops->ooboffs, %d\n", ++ __func__, ops->ooboffs); ++ return -EINVAL; ++ } ++ ++ if (ops->datbuf) { ++ data_dma_addr_curr = data_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->datbuf, ++ ops->len, DMA_TO_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, data_dma_addr)) { ++ pr_err("msm_nand_write_oob_dualnandc:" ++ "failed to get dma addr " ++ "for %p\n", ops->datbuf); ++ return -EIO; ++ } ++ } ++ if (ops->oobbuf) { ++ oob_dma_addr_curr = oob_dma_addr = ++ msm_nand_dma_map(chip->dev, ops->oobbuf, ++ ops->ooblen, DMA_TO_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, oob_dma_addr)) { ++ pr_err("msm_nand_write_oob_dualnandc:" ++ "failed to get dma addr " ++ "for %p\n", ops->oobbuf); ++ err = -EIO; ++ goto err_dma_map_oobbuf_failed; ++ } ++ } ++ if (ops->mode != MTD_OPS_RAW) ++ page_count = ops->len / mtd->writesize; ++ else ++ page_count = ops->len / (mtd->writesize + mtd->oobsize); ++ ++ wait_event(chip->wait_queue, (dma_buffer = ++ msm_nand_get_dma_buffer(chip, sizeof(*dma_buffer)))); ++ ++ if (chip->CFG1 & CFG1_WIDE_FLASH) ++ cw_offset >>= 1; ++ ++ dma_buffer->data.ebi2_chip_select_cfg0 = 0x00000805; ++ dma_buffer->data.adm_mux_data_ack_req_nc01 = 0x00000A3C; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc01 = 0x0000053C; ++ dma_buffer->data.adm_mux_data_ack_req_nc10 = 0x00000F28; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc10 = 0x00000F14; ++ dma_buffer->data.adm_default_mux = 0x00000FC0; ++ dma_buffer->data.default_ebi2_chip_select_cfg0 = 0x00000801; ++ dma_buffer->data.nc01_flash_dev_cmd_vld = 0x9; ++ dma_buffer->data.nc10_flash_dev_cmd0 = 0x1085D060; ++ dma_buffer->data.nc01_flash_dev_cmd_vld_default = 0x1D; ++ dma_buffer->data.nc10_flash_dev_cmd0_default = 0x1080D060; ++ dma_buffer->data.clrfstatus = 0x00000020; ++ dma_buffer->data.clrrstatus = 0x000000C0; ++ ++ while (page_count-- > 0) { ++ cmd = dma_buffer->cmd; ++ ++ if (ops->mode != MTD_OPS_RAW) { ++ dma_buffer->data.cfg0 = ((chip->CFG0 & ~(7U << 6)) ++ & ~(1 << 4)) | ((((cwperpage >> 1)-1)) << 6); ++ dma_buffer->data.cfg1 = chip->CFG1; ++ if (enable_bch_ecc) ++ dma_buffer->data.eccbchcfg = chip->ecc_bch_cfg; ++ } else { ++ dma_buffer->data.cfg0 = ((chip->CFG0_RAW & ++ ~(7U << 6)) & ~(1 << 4)) | (((cwperpage >> 1)-1) << 6); ++ dma_buffer->data.cfg1 = chip->CFG1_RAW | ++ (chip->CFG1 & CFG1_WIDE_FLASH); ++ } ++ ++ /* Disables the automatic issuing of the read ++ * status command for first NAND controller. ++ */ ++ if (!interleave_enable) ++ dma_buffer->data.cfg0_nc01 = dma_buffer->data.cfg0 ++ | (1 << 4); ++ else ++ dma_buffer->data.cfg0 |= (1 << 4); ++ ++ dma_buffer->data.cmd = MSM_NAND_CMD_PRG_PAGE; ++ dma_buffer->data.chipsel_cs0 = (1<<4) | 4; ++ dma_buffer->data.chipsel_cs1 = (1<<4) | 5; ++ ++ /* GO bit for the EXEC register */ ++ dma_buffer->data.exec = 1; ++ ++ if (!interleave_enable) { ++ dma_buffer->data.nandc01_addr0 = (page << 16) | 0x0; ++ /* NC10 ADDR0 points to the next code word */ ++ dma_buffer->data.nandc10_addr0 = ++ (page << 16) | cw_offset; ++ } else { ++ dma_buffer->data.nandc01_addr0 = ++ dma_buffer->data.nandc10_addr0 = (page << 16) | 0x0; ++ } ++ /* ADDR1 */ ++ dma_buffer->data.nandc11_addr1 = (page >> 16) & 0xff; ++ ++ BUILD_BUG_ON(16 != ARRAY_SIZE(dma_buffer->data.flash_status)); ++ ++ for (n = 0; n < cwperpage; n++) { ++ /* status return words */ ++ dma_buffer->data.flash_status[n] = 0xeeeeeeee; ++ ++ if (n == 0) { ++ if (!interleave_enable) { ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.nc01_flash_dev_cmd_vld); ++ cmd->dst = NC01(MSM_NAND_DEV_CMD_VLD); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nc10_flash_dev_cmd0); ++ cmd->dst = NC10(MSM_NAND_DEV_CMD0); ++ cmd->len = 4; ++ cmd++; ++ ++ /* common settings for both NC01 & NC10 ++ * NC01, NC10 --> ADDR1 / CHIPSEL ++ */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc11_addr1); ++ cmd->dst = NC11(MSM_NAND_ADDR1); ++ cmd->len = 8; ++ cmd++; ++ ++ /* Disables the automatic issue of the ++ * read status command after the write ++ * operation. ++ */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0_nc01); ++ cmd->dst = NC01(MSM_NAND_DEV0_CFG0); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = NC10(MSM_NAND_DEV0_CFG0); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg1); ++ cmd->dst = NC11(MSM_NAND_DEV0_CFG1); ++ if (enable_bch_ecc) ++ cmd->len = 8; ++ else ++ cmd->len = 4; ++ cmd++; ++ } else { ++ /* enable CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ ++ /* NC11 --> ADDR1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc11_addr1); ++ cmd->dst = NC11(MSM_NAND_ADDR1); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Enable CS0 for NC01 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.chipsel_cs0); ++ cmd->dst = ++ NC01(MSM_NAND_FLASH_CHIP_SELECT); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Enable CS1 for NC10 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.chipsel_cs1); ++ cmd->dst = ++ NC10(MSM_NAND_FLASH_CHIP_SELECT); ++ cmd->len = 4; ++ cmd++; ++ ++ /* config DEV0_CFG0 & CFG1 for CS0 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = NC01(MSM_NAND_DEV0_CFG0); ++ cmd->len = 8; ++ cmd++; ++ ++ /* config DEV1_CFG0 & CFG1 for CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cfg0); ++ cmd->dst = NC10(MSM_NAND_DEV1_CFG0); ++ cmd->len = 8; ++ cmd++; ++ } ++ ++ dma_buffer->data.ecccfg = chip->ecc_buf_cfg; ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.ecccfg); ++ cmd->dst = NC11(MSM_NAND_EBI2_ECC_BUF_CFG); ++ cmd->len = 4; ++ cmd++; ++ ++ /* NC01 --> ADDR0 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc01_addr0); ++ cmd->dst = NC01(MSM_NAND_ADDR0); ++ cmd->len = 4; ++ cmd++; ++ ++ /* NC10 --> ADDR0 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nandc10_addr0); ++ cmd->dst = NC10(MSM_NAND_ADDR0); ++ cmd->len = 4; ++ cmd++; ++ } ++ ++ if (n % 2 == 0) { ++ /* MASK CMD ACK/REQ --> NC10 (0xF14)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_cmd_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* CMD */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cmd); ++ cmd->dst = NC01(MSM_NAND_FLASH_CMD); ++ cmd->len = 4; ++ cmd++; ++ } else { ++ /* MASK CMD ACK/REQ --> NC01 (0x53C)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_cmd_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* CMD */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.cmd); ++ cmd->dst = NC10(MSM_NAND_FLASH_CMD); ++ cmd->len = 4; ++ cmd++; ++ } ++ ++ if (ops->mode != MTD_OPS_RAW) ++ sectordatawritesize = (n < (cwperpage - 1)) ? ++ 516 : (512 - ((cwperpage - 1) << 2)); ++ else ++ sectordatawritesize = chip->cw_size; ++ ++ cmd->cmd = 0; ++ cmd->src = data_dma_addr_curr; ++ data_dma_addr_curr += sectordatawritesize; ++ ++ if (n % 2 == 0) ++ cmd->dst = NC01(MSM_NAND_FLASH_BUFFER); ++ else ++ cmd->dst = NC10(MSM_NAND_FLASH_BUFFER); ++ cmd->len = sectordatawritesize; ++ cmd++; ++ ++ if (ops->oobbuf) { ++ if (n == (cwperpage - 1)) { ++ cmd->cmd = 0; ++ cmd->src = oob_dma_addr_curr; ++ cmd->dst = NC10(MSM_NAND_FLASH_BUFFER) + ++ (512 - ((cwperpage - 1) << 2)); ++ if ((cwperpage << 2) < oob_len) ++ cmd->len = (cwperpage << 2); ++ else ++ cmd->len = oob_len; ++ oob_dma_addr_curr += cmd->len; ++ oob_len -= cmd->len; ++ if (cmd->len > 0) ++ cmd++; ++ } ++ if (ops->mode != MTD_OPS_AUTO_OOB) { ++ /* skip ecc bytes in oobbuf */ ++ if (oob_len < chip->ecc_parity_bytes) { ++ oob_dma_addr_curr += ++ chip->ecc_parity_bytes; ++ oob_len -= ++ chip->ecc_parity_bytes; ++ } else { ++ oob_dma_addr_curr += oob_len; ++ oob_len = 0; ++ } ++ } ++ } ++ ++ if (n % 2 == 0) { ++ if (n != 0) { ++ /* MASK DATA ACK/REQ --> NC01 (0xA3C)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer-> ++ data.adm_mux_data_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* block on data ready from NC10, then ++ * read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC10(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.flash_status[n-1]); ++ cmd->len = 4; ++ cmd++; ++ } ++ /* kick the NC01 execute register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.exec); ++ cmd->dst = NC01(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ } else { ++ /* MASK DATA ACK/REQ --> NC10 (0xF28)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_data_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* block on data ready from NC01, then ++ * read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC01(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.flash_status[n-1]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* kick the execute register */ ++ cmd->cmd = 0; ++ cmd->src = ++ msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = NC10(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ } ++ } ++ ++ /* MASK DATA ACK/REQ --> NC01 (0xA3C)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_data_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* we should process outstanding request */ ++ /* block on data ready, then ++ * read the status register ++ */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC10(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.flash_status[n-1]); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.clrfstatus); ++ cmd->dst = NC11(MSM_NAND_FLASH_STATUS); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.clrrstatus); ++ cmd->dst = NC11(MSM_NAND_READ_STATUS); ++ cmd->len = 4; ++ cmd++; ++ ++ /* MASK DATA ACK/REQ --> NC01 (0xFC0)*/ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_default_mux); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ if (!interleave_enable) { ++ /* setting to defalut values back */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nc01_flash_dev_cmd_vld_default); ++ cmd->dst = NC01(MSM_NAND_DEV_CMD_VLD); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.nc10_flash_dev_cmd0_default); ++ cmd->dst = NC10(MSM_NAND_DEV_CMD0); ++ cmd->len = 4; ++ cmd++; ++ } else { ++ /* disable CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.default_ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ } ++ ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ BUILD_BUG_ON(16 * 6 + 18 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmdptr = ++ ((msm_virt_to_dma(chip, dma_buffer->cmd) >> 3) | CMD_PTR_LP); ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR( ++ msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* if any of the writes failed (0x10), or there was a ++ * protection violation (0x100), or the program success ++ * bit (0x80) is unset, we lose ++ */ ++ err = 0; ++ for (n = 0; n < cwperpage; n++) { ++ if (dma_buffer->data.flash_status[n] & 0x110) { ++ err = -EIO; ++ break; ++ } ++ if (!(dma_buffer->data.flash_status[n] & 0x80)) { ++ err = -EIO; ++ break; ++ } ++ } ++ /* check for flash status busy for the last codeword */ ++ if (!interleave_enable) ++ if (!(dma_buffer->data.flash_status[cwperpage - 1] ++ & 0x20)) { ++ err = -EIO; ++ break; ++ } ++#if VERBOSE ++ for (n = 0; n < cwperpage; n++) { ++ if (n%2) { ++ pr_info("NC10: write pg %d: flash_status[%d] = %x\n", ++ page, n, dma_buffer->data.flash_status[n]); ++ } else { ++ pr_info("NC01: write pg %d: flash_status[%d] = %x\n", ++ page, n, dma_buffer->data.flash_status[n]); ++ } ++ } ++#endif ++ if (err) ++ break; ++ pages_written++; ++ page++; ++ } ++ if (ops->mode != MTD_OPS_RAW) ++ ops->retlen = mtd->writesize * pages_written; ++ else ++ ops->retlen = (mtd->writesize + mtd->oobsize) * pages_written; ++ ++ ops->oobretlen = ops->ooblen - oob_len; ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ if (ops->oobbuf) ++ dma_unmap_page(chip->dev, oob_dma_addr, ++ ops->ooblen, DMA_TO_DEVICE); ++err_dma_map_oobbuf_failed: ++ if (ops->datbuf) ++ dma_unmap_page(chip->dev, data_dma_addr, ops->len, ++ DMA_TO_DEVICE); ++ if (err) ++ pr_err("msm_nand_write_oob_dualnandc %llx %x %x failed %d\n", ++ to, ops->len, ops->ooblen, err); ++ ++#if VERBOSE ++ pr_info("\n%s: ret %d, retlen %d oobretlen %d\n", ++ __func__, err, ops->retlen, ops->oobretlen); ++ ++ pr_info("===================================================" ++ "==========\n"); ++#endif ++ return err; ++} ++ ++static int msm_nand_write(struct mtd_info *mtd, loff_t to, size_t len, ++ size_t *retlen, const u_char *buf) ++{ ++ int ret; ++ struct mtd_oob_ops ops; ++ int (*write_oob)(struct mtd_info *, loff_t, struct mtd_oob_ops *); ++ ++ if (!dual_nand_ctlr_present) ++ write_oob = msm_nand_write_oob; ++ else ++ write_oob = msm_nand_write_oob_dualnandc; ++ ++ ops.mode = MTD_OPS_PLACE_OOB; ++ ops.retlen = 0; ++ ops.ooblen = 0; ++ ops.oobbuf = NULL; ++ ret = 0; ++ *retlen = 0; ++ ++ if (!virt_addr_valid(buf) && ++ ((to | len) & (mtd->writesize - 1)) == 0 && ++ ((unsigned long) buf & ~PAGE_MASK) + len > PAGE_SIZE) { ++ /* ++ * Handle writing of large size write buffer in vmalloc ++ * address space that does not fit in an MMU page. ++ * The destination address must be on page boundary, ++ * and the size must be multiple of NAND page size. ++ * Writing partial page is not supported. ++ */ ++ ops.len = mtd->writesize; ++ ++ for (;;) { ++ ops.datbuf = (uint8_t *) buf; ++ ++ ret = write_oob(mtd, to, &ops); ++ if (ret < 0) ++ break; ++ ++ len -= mtd->writesize; ++ *retlen += mtd->writesize; ++ if (len == 0) ++ break; ++ ++ buf += mtd->writesize; ++ to += mtd->writesize; ++ } ++ } else { ++ ops.len = len; ++ ops.datbuf = (uint8_t *) buf; ++ ret = write_oob(mtd, to, &ops); ++ *retlen = ops.retlen; ++ } ++ ++ return ret; ++} ++ ++static int ++msm_nand_erase(struct mtd_info *mtd, struct erase_info *instr) ++{ ++ int err; ++ struct msm_nand_chip *chip = mtd->priv; ++ struct { ++ dmov_s cmd[6]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t chipsel; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t exec; ++ uint32_t flash_status; ++ uint32_t clrfstatus; ++ uint32_t clrrstatus; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ unsigned page = 0; ++ ++ if (mtd->writesize == 2048) ++ page = instr->addr >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = instr->addr >> 12; ++ ++ if (instr->addr & (mtd->erasesize - 1)) { ++ pr_err("%s: unsupported erase address, 0x%llx\n", ++ __func__, instr->addr); ++ return -EINVAL; ++ } ++ if (instr->len != mtd->erasesize) { ++ pr_err("%s: unsupported erase len, %lld\n", ++ __func__, instr->len); ++ return -EINVAL; ++ } ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer( ++ chip, sizeof(*dma_buffer)))); ++ ++ cmd = dma_buffer->cmd; ++ ++ dma_buffer->data.cmd = MSM_NAND_CMD_BLOCK_ERASE; ++ dma_buffer->data.addr0 = page; ++ dma_buffer->data.addr1 = 0; ++ dma_buffer->data.chipsel = 0 | 4; ++ dma_buffer->data.exec = 1; ++ dma_buffer->data.flash_status = 0xeeeeeeee; ++ dma_buffer->data.cfg0 = chip->CFG0 & (~(7 << 6)); /* CW_PER_PAGE = 0 */ ++ dma_buffer->data.cfg1 = chip->CFG1; ++ dma_buffer->data.clrfstatus = 0x00000020; ++ dma_buffer->data.clrrstatus = 0x000000C0; ++ ++ cmd->cmd = DST_CRCI_NAND_CMD | CMD_OCB; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = MSM_NAND_FLASH_CMD; ++ cmd->len = 16; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cfg0); ++ cmd->dst = MSM_NAND_DEV0_CFG0; ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = MSM_NAND_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_FLASH_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.flash_status); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.clrfstatus); ++ cmd->dst = MSM_NAND_FLASH_STATUS; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = CMD_OCU | CMD_LC; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.clrrstatus); ++ cmd->dst = MSM_NAND_READ_STATUS; ++ cmd->len = 4; ++ cmd++; ++ ++ BUILD_BUG_ON(5 != ARRAY_SIZE(dma_buffer->cmd) - 1); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmdptr = ++ (msm_virt_to_dma(chip, dma_buffer->cmd) >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd( ++ chip->dma_channel, DMOV_CMD_PTR_LIST | ++ DMOV_CMD_ADDR(msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* we fail if there was an operation error, a mpu error, or the ++ * erase success bit was not set. ++ */ ++ ++ if (dma_buffer->data.flash_status & 0x110 || ++ !(dma_buffer->data.flash_status & 0x80)) ++ err = -EIO; ++ else ++ err = 0; ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ if (err) { ++ pr_err("%s: erase failed, 0x%llx\n", __func__, instr->addr); ++ instr->fail_addr = instr->addr; ++ instr->state = MTD_ERASE_FAILED; ++ } else { ++ instr->state = MTD_ERASE_DONE; ++ instr->fail_addr = 0xffffffff; ++ mtd_erase_callback(instr); ++ } ++ return err; ++} ++ ++static int ++msm_nand_erase_dualnandc(struct mtd_info *mtd, struct erase_info *instr) ++{ ++ int err; ++ struct msm_nand_chip *chip = mtd->priv; ++ struct { ++ dmov_s cmd[18]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t chipsel_cs0; ++ uint32_t chipsel_cs1; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t exec; ++ uint32_t ecccfg; ++ uint32_t ebi2_chip_select_cfg0; ++ uint32_t adm_mux_data_ack_req_nc01; ++ uint32_t adm_mux_cmd_ack_req_nc01; ++ uint32_t adm_mux_data_ack_req_nc10; ++ uint32_t adm_mux_cmd_ack_req_nc10; ++ uint32_t adm_default_mux; ++ uint32_t default_ebi2_chip_select_cfg0; ++ uint32_t nc01_flash_dev_cmd0; ++ uint32_t nc01_flash_dev_cmd0_default; ++ uint32_t flash_status[2]; ++ uint32_t clrfstatus; ++ uint32_t clrrstatus; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ unsigned page = 0; ++ ++ if (mtd->writesize == 2048) ++ page = instr->addr >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = instr->addr >> 12; ++ ++ if (mtd->writesize == 8192) ++ page = (instr->addr >> 1) >> 12; ++ ++ if (instr->addr & (mtd->erasesize - 1)) { ++ pr_err("%s: unsupported erase address, 0x%llx\n", ++ __func__, instr->addr); ++ return -EINVAL; ++ } ++ if (instr->len != mtd->erasesize) { ++ pr_err("%s: unsupported erase len, %lld\n", ++ __func__, instr->len); ++ return -EINVAL; ++ } ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer( ++ chip, sizeof(*dma_buffer)))); ++ ++ cmd = dma_buffer->cmd; ++ ++ dma_buffer->data.cmd = MSM_NAND_CMD_BLOCK_ERASE; ++ dma_buffer->data.addr0 = page; ++ dma_buffer->data.addr1 = 0; ++ dma_buffer->data.chipsel_cs0 = (1<<4) | 4; ++ dma_buffer->data.chipsel_cs1 = (1<<4) | 5; ++ dma_buffer->data.exec = 1; ++ dma_buffer->data.flash_status[0] = 0xeeeeeeee; ++ dma_buffer->data.flash_status[1] = 0xeeeeeeee; ++ dma_buffer->data.cfg0 = chip->CFG0 & (~(7 << 6)); /* CW_PER_PAGE = 0 */ ++ dma_buffer->data.cfg1 = chip->CFG1; ++ dma_buffer->data.clrfstatus = 0x00000020; ++ dma_buffer->data.clrrstatus = 0x000000C0; ++ ++ dma_buffer->data.ebi2_chip_select_cfg0 = 0x00000805; ++ dma_buffer->data.adm_mux_data_ack_req_nc01 = 0x00000A3C; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc01 = 0x0000053C; ++ dma_buffer->data.adm_mux_data_ack_req_nc10 = 0x00000F28; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc10 = 0x00000F14; ++ dma_buffer->data.adm_default_mux = 0x00000FC0; ++ dma_buffer->data.default_ebi2_chip_select_cfg0 = 0x00000801; ++ ++ /* enable CS1 */ ++ cmd->cmd = 0 | CMD_OCB; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ ++ /* erase CS0 block now !!! */ ++ /* 0xF14 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_cmd_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = NC01(MSM_NAND_FLASH_CMD); ++ cmd->len = 16; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cfg0); ++ cmd->dst = NC01(MSM_NAND_DEV0_CFG0); ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = NC01(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* 0xF28 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_data_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC01(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.flash_status[0]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* erase CS1 block now !!! */ ++ /* 0x53C */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_cmd_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = NC10(MSM_NAND_FLASH_CMD); ++ cmd->len = 12; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.chipsel_cs1); ++ cmd->dst = NC10(MSM_NAND_FLASH_CHIP_SELECT); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cfg0); ++ cmd->dst = NC10(MSM_NAND_DEV1_CFG0); ++ cmd->len = 8; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = NC10(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* 0xA3C */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_data_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC10(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.flash_status[1]); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.clrfstatus); ++ cmd->dst = NC11(MSM_NAND_FLASH_STATUS); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.clrrstatus); ++ cmd->dst = NC11(MSM_NAND_READ_STATUS); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_default_mux); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* disable CS1 */ ++ cmd->cmd = CMD_OCU | CMD_LC; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.default_ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ ++ BUILD_BUG_ON(17 != ARRAY_SIZE(dma_buffer->cmd) - 1); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ ++ dma_buffer->cmdptr = ++ (msm_virt_to_dma(chip, dma_buffer->cmd) >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd( ++ chip->dma_channel, DMOV_CMD_PTR_LIST | ++ DMOV_CMD_ADDR(msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* we fail if there was an operation error, a mpu error, or the ++ * erase success bit was not set. ++ */ ++ ++ if (dma_buffer->data.flash_status[0] & 0x110 || ++ !(dma_buffer->data.flash_status[0] & 0x80) || ++ dma_buffer->data.flash_status[1] & 0x110 || ++ !(dma_buffer->data.flash_status[1] & 0x80)) ++ err = -EIO; ++ else ++ err = 0; ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ if (err) { ++ pr_err("%s: erase failed, 0x%llx\n", __func__, instr->addr); ++ instr->fail_addr = instr->addr; ++ instr->state = MTD_ERASE_FAILED; ++ } else { ++ instr->state = MTD_ERASE_DONE; ++ instr->fail_addr = 0xffffffff; ++ mtd_erase_callback(instr); ++ } ++ return err; ++} ++ ++static int ++msm_nand_block_isbad(struct mtd_info *mtd, loff_t ofs) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ int ret; ++ struct { ++ dmov_s cmd[5]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t chipsel; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t eccbchcfg; ++ uint32_t exec; ++ uint32_t ecccfg; ++ struct { ++ uint32_t flash_status; ++ uint32_t buffer_status; ++ } result; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ uint8_t *buf; ++ unsigned page = 0; ++ unsigned cwperpage; ++ ++ if (mtd->writesize == 2048) ++ page = ofs >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = ofs >> 12; ++ ++ cwperpage = (mtd->writesize >> 9); ++ ++ /* Check for invalid offset */ ++ if (ofs > mtd->size) ++ return -EINVAL; ++ if (ofs & (mtd->erasesize - 1)) { ++ pr_err("%s: unsupported block address, 0x%x\n", ++ __func__, (uint32_t)ofs); ++ return -EINVAL; ++ } ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer(chip , ++ sizeof(*dma_buffer) + 4))); ++ buf = (uint8_t *)dma_buffer + sizeof(*dma_buffer); ++ ++ /* Read 4 bytes starting from the bad block marker location ++ * in the last code word of the page ++ */ ++ ++ cmd = dma_buffer->cmd; ++ ++ dma_buffer->data.cmd = MSM_NAND_CMD_PAGE_READ; ++ dma_buffer->data.cfg0 = chip->CFG0_RAW & ~(7U << 6); ++ dma_buffer->data.cfg1 = chip->CFG1_RAW | ++ (chip->CFG1 & CFG1_WIDE_FLASH); ++ if (enable_bch_ecc) ++ dma_buffer->data.eccbchcfg = chip->ecc_bch_cfg; ++ ++ if (chip->CFG1 & CFG1_WIDE_FLASH) ++ dma_buffer->data.addr0 = (page << 16) | ++ ((chip->cw_size * (cwperpage-1)) >> 1); ++ else ++ dma_buffer->data.addr0 = (page << 16) | ++ (chip->cw_size * (cwperpage-1)); ++ ++ dma_buffer->data.addr1 = (page >> 16) & 0xff; ++ dma_buffer->data.chipsel = 0 | 4; ++ ++ dma_buffer->data.exec = 1; ++ ++ dma_buffer->data.result.flash_status = 0xeeeeeeee; ++ dma_buffer->data.result.buffer_status = 0xeeeeeeee; ++ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = MSM_NAND_FLASH_CMD; ++ cmd->len = 16; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cfg0); ++ cmd->dst = MSM_NAND_DEV0_CFG0; ++ if (enable_bch_ecc) ++ cmd->len = 12; ++ else ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = MSM_NAND_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_FLASH_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.result); ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_FLASH_BUFFER + ++ (mtd->writesize - (chip->cw_size * (cwperpage-1))); ++ cmd->dst = msm_virt_to_dma(chip, buf); ++ cmd->len = 4; ++ cmd++; ++ ++ BUILD_BUG_ON(5 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, ++ dma_buffer->cmd) >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, DMOV_CMD_PTR_LIST | ++ DMOV_CMD_ADDR(msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ ret = 0; ++ if (dma_buffer->data.result.flash_status & 0x110) ++ ret = -EIO; ++ ++ if (!ret) { ++ /* Check for bad block marker byte */ ++ if (chip->CFG1 & CFG1_WIDE_FLASH) { ++ if (buf[0] != 0xFF || buf[1] != 0xFF) ++ ret = 1; ++ } else { ++ if (buf[0] != 0xFF) ++ ret = 1; ++ } ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer) + 4); ++ return ret; ++} ++ ++static int ++msm_nand_block_isbad_dualnandc(struct mtd_info *mtd, loff_t ofs) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ int ret; ++ struct { ++ dmov_s cmd[18]; ++ unsigned cmdptr; ++ struct { ++ uint32_t cmd; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t chipsel_cs0; ++ uint32_t chipsel_cs1; ++ uint32_t cfg0; ++ uint32_t cfg1; ++ uint32_t exec; ++ uint32_t ecccfg; ++ uint32_t ebi2_chip_select_cfg0; ++ uint32_t adm_mux_data_ack_req_nc01; ++ uint32_t adm_mux_cmd_ack_req_nc01; ++ uint32_t adm_mux_data_ack_req_nc10; ++ uint32_t adm_mux_cmd_ack_req_nc10; ++ uint32_t adm_default_mux; ++ uint32_t default_ebi2_chip_select_cfg0; ++ struct { ++ uint32_t flash_status; ++ uint32_t buffer_status; ++ } result[2]; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ uint8_t *buf01; ++ uint8_t *buf10; ++ unsigned page = 0; ++ unsigned cwperpage; ++ ++ if (mtd->writesize == 2048) ++ page = ofs >> 11; ++ ++ if (mtd->writesize == 4096) ++ page = ofs >> 12; ++ ++ if (mtd->writesize == 8192) ++ page = (ofs >> 1) >> 12; ++ ++ cwperpage = ((mtd->writesize >> 1) >> 9); ++ ++ /* Check for invalid offset */ ++ if (ofs > mtd->size) ++ return -EINVAL; ++ if (ofs & (mtd->erasesize - 1)) { ++ pr_err("%s: unsupported block address, 0x%x\n", ++ __func__, (uint32_t)ofs); ++ return -EINVAL; ++ } ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer(chip , ++ sizeof(*dma_buffer) + 8))); ++ buf01 = (uint8_t *)dma_buffer + sizeof(*dma_buffer); ++ buf10 = buf01 + 4; ++ ++ /* Read 4 bytes starting from the bad block marker location ++ * in the last code word of the page ++ */ ++ cmd = dma_buffer->cmd; ++ ++ dma_buffer->data.cmd = MSM_NAND_CMD_PAGE_READ; ++ dma_buffer->data.cfg0 = chip->CFG0_RAW & ~(7U << 6); ++ dma_buffer->data.cfg1 = chip->CFG1_RAW | ++ (chip->CFG1 & CFG1_WIDE_FLASH); ++ ++ if (chip->CFG1 & CFG1_WIDE_FLASH) ++ dma_buffer->data.addr0 = (page << 16) | ++ ((528*(cwperpage-1)) >> 1); ++ else ++ dma_buffer->data.addr0 = (page << 16) | ++ (528*(cwperpage-1)); ++ ++ dma_buffer->data.addr1 = (page >> 16) & 0xff; ++ dma_buffer->data.chipsel_cs0 = (1<<4) | 4; ++ dma_buffer->data.chipsel_cs1 = (1<<4) | 5; ++ ++ dma_buffer->data.exec = 1; ++ ++ dma_buffer->data.result[0].flash_status = 0xeeeeeeee; ++ dma_buffer->data.result[0].buffer_status = 0xeeeeeeee; ++ dma_buffer->data.result[1].flash_status = 0xeeeeeeee; ++ dma_buffer->data.result[1].buffer_status = 0xeeeeeeee; ++ ++ dma_buffer->data.ebi2_chip_select_cfg0 = 0x00000805; ++ dma_buffer->data.adm_mux_data_ack_req_nc01 = 0x00000A3C; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc01 = 0x0000053C; ++ dma_buffer->data.adm_mux_data_ack_req_nc10 = 0x00000F28; ++ dma_buffer->data.adm_mux_cmd_ack_req_nc10 = 0x00000F14; ++ dma_buffer->data.adm_default_mux = 0x00000FC0; ++ dma_buffer->data.default_ebi2_chip_select_cfg0 = 0x00000801; ++ ++ /* Reading last code word from NC01 */ ++ /* enable CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ ++ /* 0xF14 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_cmd_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = NC01(MSM_NAND_FLASH_CMD); ++ cmd->len = 16; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cfg0); ++ cmd->dst = NC01(MSM_NAND_DEV0_CFG0); ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = NC01(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* 0xF28 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_data_ack_req_nc10); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC01(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.result[0]); ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = NC01(MSM_NAND_FLASH_BUFFER) + ((mtd->writesize >> 1) - ++ (528*(cwperpage-1))); ++ cmd->dst = msm_virt_to_dma(chip, buf01); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Reading last code word from NC10 */ ++ /* 0x53C */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_cmd_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = NC10(MSM_NAND_FLASH_CMD); ++ cmd->len = 12; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.chipsel_cs1); ++ cmd->dst = NC10(MSM_NAND_FLASH_CHIP_SELECT); ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cfg0); ++ cmd->dst = NC10(MSM_NAND_DEV1_CFG0); ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = NC10(MSM_NAND_EXEC_CMD); ++ cmd->len = 4; ++ cmd++; ++ ++ /* A3C */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_mux_data_ack_req_nc01); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = NC10(MSM_NAND_FLASH_STATUS); ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.result[1]); ++ cmd->len = 8; ++ cmd++; ++ ++ cmd->cmd = 0; ++ cmd->src = NC10(MSM_NAND_FLASH_BUFFER) + ((mtd->writesize >> 1) - ++ (528*(cwperpage-1))); ++ cmd->dst = msm_virt_to_dma(chip, buf10); ++ cmd->len = 4; ++ cmd++; ++ ++ /* FC0 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.adm_default_mux); ++ cmd->dst = EBI2_NAND_ADM_MUX; ++ cmd->len = 4; ++ cmd++; ++ ++ /* disble CS1 */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.ebi2_chip_select_cfg0); ++ cmd->dst = EBI2_CHIP_SELECT_CFG0; ++ cmd->len = 4; ++ cmd++; ++ ++ BUILD_BUG_ON(18 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, ++ dma_buffer->cmd) >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, DMOV_CMD_PTR_LIST | ++ DMOV_CMD_ADDR(msm_virt_to_dma(chip, &dma_buffer->cmdptr))); ++ mb(); ++ ++ ret = 0; ++ if ((dma_buffer->data.result[0].flash_status & 0x110) || ++ (dma_buffer->data.result[1].flash_status & 0x110)) ++ ret = -EIO; ++ ++ if (!ret) { ++ /* Check for bad block marker byte for NC01 & NC10 */ ++ if (chip->CFG1 & CFG1_WIDE_FLASH) { ++ if ((buf01[0] != 0xFF || buf01[1] != 0xFF) || ++ (buf10[0] != 0xFF || buf10[1] != 0xFF)) ++ ret = 1; ++ } else { ++ if (buf01[0] != 0xFF || buf10[0] != 0xFF) ++ ret = 1; ++ } ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer) + 8); ++ return ret; ++} ++ ++static int ++msm_nand_block_markbad(struct mtd_info *mtd, loff_t ofs) ++{ ++ struct mtd_oob_ops ops; ++ int ret; ++ uint8_t *buf; ++ ++ /* Check for invalid offset */ ++ if (ofs > mtd->size) ++ return -EINVAL; ++ if (ofs & (mtd->erasesize - 1)) { ++ pr_err("%s: unsupported block address, 0x%x\n", ++ __func__, (uint32_t)ofs); ++ return -EINVAL; ++ } ++ ++ /* ++ Write all 0s to the first page ++ This will set the BB marker to 0 ++ */ ++ buf = page_address(ZERO_PAGE()); ++ ++ ops.mode = MTD_OPS_RAW; ++ ops.len = mtd->writesize + mtd->oobsize; ++ ops.retlen = 0; ++ ops.ooblen = 0; ++ ops.datbuf = buf; ++ ops.oobbuf = NULL; ++ if (!interleave_enable) ++ ret = msm_nand_write_oob(mtd, ofs, &ops); ++ else ++ ret = msm_nand_write_oob_dualnandc(mtd, ofs, &ops); ++ ++ return ret; ++} ++ ++/** ++ * msm_nand_suspend - [MTD Interface] Suspend the msm_nand flash ++ * @param mtd MTD device structure ++ */ ++static int msm_nand_suspend(struct mtd_info *mtd) ++{ ++ return 0; ++} ++ ++/** ++ * msm_nand_resume - [MTD Interface] Resume the msm_nand flash ++ * @param mtd MTD device structure ++ */ ++static void msm_nand_resume(struct mtd_info *mtd) ++{ ++} ++ ++struct onenand_information { ++ uint16_t manufacturer_id; ++ uint16_t device_id; ++ uint16_t version_id; ++ uint16_t data_buf_size; ++ uint16_t boot_buf_size; ++ uint16_t num_of_buffers; ++ uint16_t technology; ++}; ++ ++static struct onenand_information onenand_info; ++static uint32_t nand_sfcmd_mode; ++ ++uint32_t flash_onenand_probe(struct msm_nand_chip *chip) ++{ ++ struct { ++ dmov_s cmd[7]; ++ unsigned cmdptr; ++ struct { ++ uint32_t bcfg; ++ uint32_t cmd; ++ uint32_t exec; ++ uint32_t status; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t addr2; ++ uint32_t addr3; ++ uint32_t addr4; ++ uint32_t addr5; ++ uint32_t addr6; ++ uint32_t data0; ++ uint32_t data1; ++ uint32_t data2; ++ uint32_t data3; ++ uint32_t data4; ++ uint32_t data5; ++ uint32_t data6; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ int err = 0; ++ uint32_t initialsflashcmd = 0; ++ ++ initialsflashcmd = flash_rd_reg(chip, MSM_NAND_SFLASHC_CMD); ++ ++ if ((initialsflashcmd & 0x10) == 0x10) ++ nand_sfcmd_mode = MSM_NAND_SFCMD_ASYNC; ++ else ++ nand_sfcmd_mode = MSM_NAND_SFCMD_BURST; ++ ++ printk(KERN_INFO "SFLASHC Async Mode bit: %x \n", nand_sfcmd_mode); ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ cmd = dma_buffer->cmd; ++ ++ dma_buffer->data.bcfg = SFLASH_BCFG | ++ (nand_sfcmd_mode ? 0 : (1 << 24)); ++ dma_buffer->data.cmd = SFLASH_PREPCMD(7, 0, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGRD); ++ dma_buffer->data.exec = 1; ++ dma_buffer->data.status = CLEAN_DATA_32; ++ dma_buffer->data.addr0 = (ONENAND_DEVICE_ID << 16) | ++ (ONENAND_MANUFACTURER_ID); ++ dma_buffer->data.addr1 = (ONENAND_DATA_BUFFER_SIZE << 16) | ++ (ONENAND_VERSION_ID); ++ dma_buffer->data.addr2 = (ONENAND_AMOUNT_OF_BUFFERS << 16) | ++ (ONENAND_BOOT_BUFFER_SIZE); ++ dma_buffer->data.addr3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_TECHNOLOGY << 0); ++ dma_buffer->data.data0 = CLEAN_DATA_32; ++ dma_buffer->data.data1 = CLEAN_DATA_32; ++ dma_buffer->data.data2 = CLEAN_DATA_32; ++ dma_buffer->data.data3 = CLEAN_DATA_32; ++ ++ /* Enable and configure the SFlash controller */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.bcfg); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.cmd); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Configure the ADDR0 and ADDR1 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr0); ++ cmd->dst = MSM_NAND_ADDR0; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Configure the ADDR2 and ADDR3 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr2); ++ cmd->dst = MSM_NAND_ADDR2; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.exec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the two status registers */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.status); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read data registers - valid only if status says success */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_GENP_REG0; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data0); ++ cmd->len = 16; ++ cmd++; ++ ++ BUILD_BUG_ON(7 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) ++ >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, DMOV_CMD_PTR_LIST ++ | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ /* Check for errors, protection violations etc */ ++ if (dma_buffer->data.status & 0x110) { ++ pr_info("%s: MPU/OP error" ++ "(0x%x) during Onenand probe\n", ++ __func__, dma_buffer->data.status); ++ err = -EIO; ++ } else { ++ ++ onenand_info.manufacturer_id = ++ (dma_buffer->data.data0 >> 0) & 0x0000FFFF; ++ onenand_info.device_id = ++ (dma_buffer->data.data0 >> 16) & 0x0000FFFF; ++ onenand_info.version_id = ++ (dma_buffer->data.data1 >> 0) & 0x0000FFFF; ++ onenand_info.data_buf_size = ++ (dma_buffer->data.data1 >> 16) & 0x0000FFFF; ++ onenand_info.boot_buf_size = ++ (dma_buffer->data.data2 >> 0) & 0x0000FFFF; ++ onenand_info.num_of_buffers = ++ (dma_buffer->data.data2 >> 16) & 0x0000FFFF; ++ onenand_info.technology = ++ (dma_buffer->data.data3 >> 0) & 0x0000FFFF; ++ ++ ++ pr_info("=======================================" ++ "==========================\n"); ++ ++ pr_info("%s: manufacturer_id = 0x%x\n" ++ , __func__, onenand_info.manufacturer_id); ++ pr_info("%s: device_id = 0x%x\n" ++ , __func__, onenand_info.device_id); ++ pr_info("%s: version_id = 0x%x\n" ++ , __func__, onenand_info.version_id); ++ pr_info("%s: data_buf_size = 0x%x\n" ++ , __func__, onenand_info.data_buf_size); ++ pr_info("%s: boot_buf_size = 0x%x\n" ++ , __func__, onenand_info.boot_buf_size); ++ pr_info("%s: num_of_buffers = 0x%x\n" ++ , __func__, onenand_info.num_of_buffers); ++ pr_info("%s: technology = 0x%x\n" ++ , __func__, onenand_info.technology); ++ ++ pr_info("=======================================" ++ "==========================\n"); ++ ++ if ((onenand_info.manufacturer_id != 0x00EC) ++ || ((onenand_info.device_id & 0x0040) != 0x0040) ++ || (onenand_info.data_buf_size != 0x0800) ++ || (onenand_info.boot_buf_size != 0x0200) ++ || (onenand_info.num_of_buffers != 0x0201) ++ || (onenand_info.technology != 0)) { ++ ++ pr_info("%s: Detected an unsupported device\n" ++ , __func__); ++ err = -EIO; ++ } ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ return err; ++} ++ ++int msm_onenand_read_oob(struct mtd_info *mtd, ++ loff_t from, struct mtd_oob_ops *ops) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[53]; ++ unsigned cmdptr; ++ struct { ++ uint32_t sfbcfg; ++ uint32_t sfcmd[9]; ++ uint32_t sfexec; ++ uint32_t sfstat[9]; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t addr2; ++ uint32_t addr3; ++ uint32_t addr4; ++ uint32_t addr5; ++ uint32_t addr6; ++ uint32_t data0; ++ uint32_t data1; ++ uint32_t data2; ++ uint32_t data3; ++ uint32_t data4; ++ uint32_t data5; ++ uint32_t data6; ++ uint32_t macro[5]; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ int err = 0; ++ int i; ++ dma_addr_t data_dma_addr = 0; ++ dma_addr_t oob_dma_addr = 0; ++ dma_addr_t data_dma_addr_curr = 0; ++ dma_addr_t oob_dma_addr_curr = 0; ++ ++ loff_t from_curr = 0; ++ unsigned page_count; ++ unsigned pages_read = 0; ++ ++ uint16_t onenand_startaddr1; ++ uint16_t onenand_startaddr8; ++ uint16_t onenand_startaddr2; ++ uint16_t onenand_startbuffer; ++ uint16_t onenand_sysconfig1; ++ uint16_t controller_status; ++ uint16_t interrupt_status; ++ uint16_t ecc_status; ++#if VERBOSE ++ pr_info("=================================================" ++ "================\n"); ++ pr_info("%s: from 0x%llx mode %d \ndatbuf 0x%p datlen 0x%x" ++ "\noobbuf 0x%p ooblen 0x%x\n", ++ __func__, from, ops->mode, ops->datbuf, ops->len, ++ ops->oobbuf, ops->ooblen); ++#endif ++ if (!mtd) { ++ pr_err("%s: invalid mtd pointer, 0x%x\n", __func__, ++ (uint32_t)mtd); ++ return -EINVAL; ++ } ++ if (from & (mtd->writesize - 1)) { ++ pr_err("%s: unsupported from, 0x%llx\n", __func__, ++ from); ++ return -EINVAL; ++ } ++ ++ if ((ops->mode != MTD_OPS_PLACE_OOB) && (ops->mode != MTD_OPS_AUTO_OOB) && ++ (ops->mode != MTD_OPS_RAW)) { ++ pr_err("%s: unsupported ops->mode, %d\n", __func__, ++ ops->mode); ++ return -EINVAL; ++ } ++ ++ if (((ops->datbuf == NULL) || (ops->len == 0)) && ++ ((ops->oobbuf == NULL) || (ops->ooblen == 0))) { ++ pr_err("%s: incorrect ops fields - nothing to do\n", ++ __func__); ++ return -EINVAL; ++ } ++ ++ if ((ops->datbuf != NULL) && (ops->len == 0)) { ++ pr_err("%s: data buffer passed but length 0\n", ++ __func__); ++ return -EINVAL; ++ } ++ ++ if ((ops->oobbuf != NULL) && (ops->ooblen == 0)) { ++ pr_err("%s: oob buffer passed but length 0\n", ++ __func__); ++ return -EINVAL; ++ } ++ ++ if (ops->mode != MTD_OPS_RAW) { ++ if (ops->datbuf != NULL && (ops->len % mtd->writesize) != 0) { ++ /* when ops->datbuf is NULL, ops->len can be ooblen */ ++ pr_err("%s: unsupported ops->len, %d\n", __func__, ++ ops->len); ++ return -EINVAL; ++ } ++ } else { ++ if (ops->datbuf != NULL && ++ (ops->len % (mtd->writesize + mtd->oobsize)) != 0) { ++ pr_err("%s: unsupported ops->len," ++ " %d for MTD_OPS_RAW\n", __func__, ops->len); ++ return -EINVAL; ++ } ++ } ++ ++ if ((ops->mode == MTD_OPS_RAW) && (ops->oobbuf)) { ++ pr_err("%s: unsupported operation, oobbuf pointer " ++ "passed in for RAW mode, %x\n", __func__, ++ (uint32_t)ops->oobbuf); ++ return -EINVAL; ++ } ++ ++ if (ops->oobbuf && !ops->datbuf) { ++ page_count = ops->ooblen / ((ops->mode == MTD_OPS_AUTO_OOB) ? ++ mtd->oobavail : mtd->oobsize); ++ if ((page_count == 0) && (ops->ooblen)) ++ page_count = 1; ++ } else if (ops->mode != MTD_OPS_RAW) ++ page_count = ops->len / mtd->writesize; ++ else ++ page_count = ops->len / (mtd->writesize + mtd->oobsize); ++ ++ if ((ops->mode == MTD_OPS_PLACE_OOB) && (ops->oobbuf != NULL)) { ++ if (page_count * mtd->oobsize > ops->ooblen) { ++ pr_err("%s: unsupported ops->ooblen for " ++ "PLACE, %d\n", __func__, ops->ooblen); ++ return -EINVAL; ++ } ++ } ++ ++ if ((ops->mode == MTD_OPS_PLACE_OOB) && (ops->ooblen != 0) && ++ (ops->ooboffs != 0)) { ++ pr_err("%s: unsupported ops->ooboffs, %d\n", __func__, ++ ops->ooboffs); ++ return -EINVAL; ++ } ++ ++ if (ops->datbuf) { ++ memset(ops->datbuf, 0x55, ops->len); ++ data_dma_addr_curr = data_dma_addr = msm_nand_dma_map(chip->dev, ++ ops->datbuf, ops->len, DMA_FROM_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, data_dma_addr)) { ++ pr_err("%s: failed to get dma addr for %p\n", ++ __func__, ops->datbuf); ++ return -EIO; ++ } ++ } ++ if (ops->oobbuf) { ++ memset(ops->oobbuf, 0x55, ops->ooblen); ++ oob_dma_addr_curr = oob_dma_addr = msm_nand_dma_map(chip->dev, ++ ops->oobbuf, ops->ooblen, DMA_FROM_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, oob_dma_addr)) { ++ pr_err("%s: failed to get dma addr for %p\n", ++ __func__, ops->oobbuf); ++ err = -EIO; ++ goto err_dma_map_oobbuf_failed; ++ } ++ } ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ from_curr = from; ++ ++ while (page_count-- > 0) { ++ ++ cmd = dma_buffer->cmd; ++ ++ if ((onenand_info.device_id & ONENAND_DEVICE_IS_DDP) ++ && (from_curr >= (mtd->size>>1))) { /* DDP Device */ ++ onenand_startaddr1 = DEVICE_FLASHCORE_1 | ++ (((uint32_t)(from_curr-(mtd->size>>1)) ++ / mtd->erasesize)); ++ onenand_startaddr2 = DEVICE_BUFFERRAM_1; ++ } else { ++ onenand_startaddr1 = DEVICE_FLASHCORE_0 | ++ ((uint32_t)from_curr / mtd->erasesize) ; ++ onenand_startaddr2 = DEVICE_BUFFERRAM_0; ++ } ++ ++ onenand_startaddr8 = (((uint32_t)from_curr & ++ (mtd->erasesize - 1)) / mtd->writesize) << 2; ++ onenand_startbuffer = DATARAM0_0 << 8; ++ onenand_sysconfig1 = (ops->mode == MTD_OPS_RAW) ? ++ ONENAND_SYSCFG1_ECCDIS(nand_sfcmd_mode) : ++ ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode); ++ ++ dma_buffer->data.sfbcfg = SFLASH_BCFG | ++ (nand_sfcmd_mode ? 0 : (1 << 24)); ++ dma_buffer->data.sfcmd[0] = SFLASH_PREPCMD(7, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfcmd[1] = SFLASH_PREPCMD(0, 0, 32, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_INTHI); ++ dma_buffer->data.sfcmd[2] = SFLASH_PREPCMD(3, 7, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGRD); ++ dma_buffer->data.sfcmd[3] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATRD); ++ dma_buffer->data.sfcmd[4] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATRD); ++ dma_buffer->data.sfcmd[5] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATRD); ++ dma_buffer->data.sfcmd[6] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATRD); ++ dma_buffer->data.sfcmd[7] = SFLASH_PREPCMD(32, 0, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATRD); ++ dma_buffer->data.sfcmd[8] = SFLASH_PREPCMD(4, 10, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfexec = 1; ++ dma_buffer->data.sfstat[0] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[1] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[2] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[3] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[4] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[5] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[6] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[7] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[8] = CLEAN_DATA_32; ++ dma_buffer->data.addr0 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr1 = (ONENAND_START_ADDRESS_8 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.addr2 = (ONENAND_START_BUFFER << 16) | ++ (ONENAND_START_ADDRESS_2); ++ dma_buffer->data.addr3 = (ONENAND_ECC_STATUS << 16) | ++ (ONENAND_COMMAND); ++ dma_buffer->data.addr4 = (ONENAND_CONTROLLER_STATUS << 16) | ++ (ONENAND_INTERRUPT_STATUS); ++ dma_buffer->data.addr5 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr6 = (ONENAND_START_ADDRESS_3 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.data0 = (ONENAND_CLRINTR << 16) | ++ (onenand_sysconfig1); ++ dma_buffer->data.data1 = (onenand_startaddr8 << 16) | ++ (onenand_startaddr1); ++ dma_buffer->data.data2 = (onenand_startbuffer << 16) | ++ (onenand_startaddr2); ++ dma_buffer->data.data3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_CMDLOADSPARE); ++ dma_buffer->data.data4 = (CLEAN_DATA_16 << 16) | ++ (CLEAN_DATA_16); ++ dma_buffer->data.data5 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data6 = (ONENAND_STARTADDR3_RES << 16) | ++ (ONENAND_STARTADDR1_RES); ++ dma_buffer->data.macro[0] = 0x0200; ++ dma_buffer->data.macro[1] = 0x0300; ++ dma_buffer->data.macro[2] = 0x0400; ++ dma_buffer->data.macro[3] = 0x0500; ++ dma_buffer->data.macro[4] = 0x8010; ++ ++ /*************************************************************/ ++ /* Write necessary address registers in the onenand device */ ++ /*************************************************************/ ++ ++ /* Enable and configure the SFlash controller */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfbcfg); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[0]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the ADDR0 and ADDR1 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr0); ++ cmd->dst = MSM_NAND_ADDR0; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr2); ++ cmd->dst = MSM_NAND_ADDR2; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the ADDR6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr6); ++ cmd->dst = MSM_NAND_ADDR6; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the GENP0, GENP1, GENP2, GENP3 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data0); ++ cmd->dst = MSM_NAND_GENP_REG0; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the FLASH_DEV_CMD4,5,6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->dst = MSM_NAND_DEV_CMD4; ++ cmd->len = 12; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[0]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Wait for the interrupt from the Onenand device controller */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[1]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[1]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Read necessary status registers from the onenand device */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[2]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[2]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the GENP3 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_GENP_REG3; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data3); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the DEVCMD4 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_DEV_CMD4; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Read the data ram area from the onenand buffer ram */ ++ /*************************************************************/ ++ ++ if (ops->datbuf) { ++ ++ dma_buffer->data.data3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_CMDLOAD); ++ ++ for (i = 0; i < 4; i++) { ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfcmd[3+i]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the MACRO1 register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.macro[i]); ++ cmd->dst = MSM_NAND_MACRO1_REG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data rdy, & read status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfstat[3+i]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Transfer nand ctlr buf contents to usr buf */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_FLASH_BUFFER; ++ cmd->dst = data_dma_addr_curr; ++ cmd->len = 512; ++ data_dma_addr_curr += 512; ++ cmd++; ++ } ++ } ++ ++ if ((ops->oobbuf) || (ops->mode == MTD_OPS_RAW)) { ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfcmd[7]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the MACRO1 register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.macro[4]); ++ cmd->dst = MSM_NAND_MACRO1_REG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfstat[7]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Transfer nand ctlr buffer contents into usr buf */ ++ if (ops->mode == MTD_OPS_AUTO_OOB) { ++ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) { ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_FLASH_BUFFER + ++ mtd->ecclayout->oobfree[i].offset; ++ cmd->dst = oob_dma_addr_curr; ++ cmd->len = ++ mtd->ecclayout->oobfree[i].length; ++ oob_dma_addr_curr += ++ mtd->ecclayout->oobfree[i].length; ++ cmd++; ++ } ++ } ++ if (ops->mode == MTD_OPS_PLACE_OOB) { ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_FLASH_BUFFER; ++ cmd->dst = oob_dma_addr_curr; ++ cmd->len = mtd->oobsize; ++ oob_dma_addr_curr += mtd->oobsize; ++ cmd++; ++ } ++ if (ops->mode == MTD_OPS_RAW) { ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_FLASH_BUFFER; ++ cmd->dst = data_dma_addr_curr; ++ cmd->len = mtd->oobsize; ++ data_dma_addr_curr += mtd->oobsize; ++ cmd++; ++ } ++ } ++ ++ /*************************************************************/ ++ /* Restore the necessary registers to proper values */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[8]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[8]); ++ cmd->len = 4; ++ cmd++; ++ ++ ++ BUILD_BUG_ON(53 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) ++ >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ ecc_status = (dma_buffer->data.data3 >> 16) & ++ 0x0000FFFF; ++ interrupt_status = (dma_buffer->data.data4 >> 0) & ++ 0x0000FFFF; ++ controller_status = (dma_buffer->data.data4 >> 16) & ++ 0x0000FFFF; ++ ++#if VERBOSE ++ pr_info("\n%s: sflash status %x %x %x %x %x %x %x" ++ "%x %x\n", __func__, ++ dma_buffer->data.sfstat[0], ++ dma_buffer->data.sfstat[1], ++ dma_buffer->data.sfstat[2], ++ dma_buffer->data.sfstat[3], ++ dma_buffer->data.sfstat[4], ++ dma_buffer->data.sfstat[5], ++ dma_buffer->data.sfstat[6], ++ dma_buffer->data.sfstat[7], ++ dma_buffer->data.sfstat[8]); ++ ++ pr_info("%s: controller_status = %x\n", __func__, ++ controller_status); ++ pr_info("%s: interrupt_status = %x\n", __func__, ++ interrupt_status); ++ pr_info("%s: ecc_status = %x\n", __func__, ++ ecc_status); ++#endif ++ /* Check for errors, protection violations etc */ ++ if ((controller_status != 0) ++ || (dma_buffer->data.sfstat[0] & 0x110) ++ || (dma_buffer->data.sfstat[1] & 0x110) ++ || (dma_buffer->data.sfstat[2] & 0x110) ++ || (dma_buffer->data.sfstat[8] & 0x110) ++ || ((dma_buffer->data.sfstat[3] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[4] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[5] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[6] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[7] & 0x110) && ++ ((ops->oobbuf) ++ || (ops->mode == MTD_OPS_RAW)))) { ++ pr_info("%s: ECC/MPU/OP error\n", __func__); ++ err = -EIO; ++ } ++ ++ if (err) ++ break; ++ pages_read++; ++ from_curr += mtd->writesize; ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ if (ops->oobbuf) { ++ dma_unmap_page(chip->dev, oob_dma_addr, ops->ooblen, ++ DMA_FROM_DEVICE); ++ } ++err_dma_map_oobbuf_failed: ++ if (ops->datbuf) { ++ dma_unmap_page(chip->dev, data_dma_addr, ops->len, ++ DMA_FROM_DEVICE); ++ } ++ ++ if (err) { ++ pr_err("%s: %llx %x %x failed\n", __func__, from_curr, ++ ops->datbuf ? ops->len : 0, ops->ooblen); ++ } else { ++ ops->retlen = ops->oobretlen = 0; ++ if (ops->datbuf != NULL) { ++ if (ops->mode != MTD_OPS_RAW) ++ ops->retlen = mtd->writesize * pages_read; ++ else ++ ops->retlen = (mtd->writesize + mtd->oobsize) ++ * pages_read; ++ } ++ if (ops->oobbuf != NULL) { ++ if (ops->mode == MTD_OPS_AUTO_OOB) ++ ops->oobretlen = mtd->oobavail * pages_read; ++ else ++ ops->oobretlen = mtd->oobsize * pages_read; ++ } ++ } ++ ++#if VERBOSE ++ pr_info("\n%s: ret %d, retlen %d oobretlen %d\n", ++ __func__, err, ops->retlen, ops->oobretlen); ++ ++ pr_info("===================================================" ++ "==============\n"); ++#endif ++ return err; ++} ++ ++int msm_onenand_read(struct mtd_info *mtd, loff_t from, size_t len, ++ size_t *retlen, u_char *buf) ++{ ++ int ret; ++ struct mtd_oob_ops ops; ++ ++ ops.mode = MTD_OPS_PLACE_OOB; ++ ops.datbuf = buf; ++ ops.len = len; ++ ops.retlen = 0; ++ ops.oobbuf = NULL; ++ ops.ooblen = 0; ++ ops.oobretlen = 0; ++ ret = msm_onenand_read_oob(mtd, from, &ops); ++ *retlen = ops.retlen; ++ ++ return ret; ++} ++ ++static int msm_onenand_write_oob(struct mtd_info *mtd, loff_t to, ++ struct mtd_oob_ops *ops) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[53]; ++ unsigned cmdptr; ++ struct { ++ uint32_t sfbcfg; ++ uint32_t sfcmd[10]; ++ uint32_t sfexec; ++ uint32_t sfstat[10]; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t addr2; ++ uint32_t addr3; ++ uint32_t addr4; ++ uint32_t addr5; ++ uint32_t addr6; ++ uint32_t data0; ++ uint32_t data1; ++ uint32_t data2; ++ uint32_t data3; ++ uint32_t data4; ++ uint32_t data5; ++ uint32_t data6; ++ uint32_t macro[5]; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ int err = 0; ++ int i, j, k; ++ dma_addr_t data_dma_addr = 0; ++ dma_addr_t oob_dma_addr = 0; ++ dma_addr_t init_dma_addr = 0; ++ dma_addr_t data_dma_addr_curr = 0; ++ dma_addr_t oob_dma_addr_curr = 0; ++ uint8_t *init_spare_bytes; ++ ++ loff_t to_curr = 0; ++ unsigned page_count; ++ unsigned pages_written = 0; ++ ++ uint16_t onenand_startaddr1; ++ uint16_t onenand_startaddr8; ++ uint16_t onenand_startaddr2; ++ uint16_t onenand_startbuffer; ++ uint16_t onenand_sysconfig1; ++ ++ uint16_t controller_status; ++ uint16_t interrupt_status; ++ uint16_t ecc_status; ++ ++#if VERBOSE ++ pr_info("=================================================" ++ "================\n"); ++ pr_info("%s: to 0x%llx mode %d \ndatbuf 0x%p datlen 0x%x" ++ "\noobbuf 0x%p ooblen 0x%x\n", ++ __func__, to, ops->mode, ops->datbuf, ops->len, ++ ops->oobbuf, ops->ooblen); ++#endif ++ if (!mtd) { ++ pr_err("%s: invalid mtd pointer, 0x%x\n", __func__, ++ (uint32_t)mtd); ++ return -EINVAL; ++ } ++ if (to & (mtd->writesize - 1)) { ++ pr_err("%s: unsupported to, 0x%llx\n", __func__, to); ++ return -EINVAL; ++ } ++ ++ if ((ops->mode != MTD_OPS_PLACE_OOB) && (ops->mode != MTD_OPS_AUTO_OOB) && ++ (ops->mode != MTD_OPS_RAW)) { ++ pr_err("%s: unsupported ops->mode, %d\n", __func__, ++ ops->mode); ++ return -EINVAL; ++ } ++ ++ if (((ops->datbuf == NULL) || (ops->len == 0)) && ++ ((ops->oobbuf == NULL) || (ops->ooblen == 0))) { ++ pr_err("%s: incorrect ops fields - nothing to do\n", ++ __func__); ++ return -EINVAL; ++ } ++ ++ if ((ops->datbuf != NULL) && (ops->len == 0)) { ++ pr_err("%s: data buffer passed but length 0\n", ++ __func__); ++ return -EINVAL; ++ } ++ ++ if ((ops->oobbuf != NULL) && (ops->ooblen == 0)) { ++ pr_err("%s: oob buffer passed but length 0\n", ++ __func__); ++ return -EINVAL; ++ } ++ ++ if (ops->mode != MTD_OPS_RAW) { ++ if (ops->datbuf != NULL && (ops->len % mtd->writesize) != 0) { ++ /* when ops->datbuf is NULL, ops->len can be ooblen */ ++ pr_err("%s: unsupported ops->len, %d\n", __func__, ++ ops->len); ++ return -EINVAL; ++ } ++ } else { ++ if (ops->datbuf != NULL && ++ (ops->len % (mtd->writesize + mtd->oobsize)) != 0) { ++ pr_err("%s: unsupported ops->len," ++ " %d for MTD_OPS_RAW\n", __func__, ops->len); ++ return -EINVAL; ++ } ++ } ++ ++ if ((ops->mode == MTD_OPS_RAW) && (ops->oobbuf)) { ++ pr_err("%s: unsupported operation, oobbuf pointer " ++ "passed in for RAW mode, %x\n", __func__, ++ (uint32_t)ops->oobbuf); ++ return -EINVAL; ++ } ++ ++ if (ops->oobbuf && !ops->datbuf) { ++ page_count = ops->ooblen / ((ops->mode == MTD_OPS_AUTO_OOB) ? ++ mtd->oobavail : mtd->oobsize); ++ if ((page_count == 0) && (ops->ooblen)) ++ page_count = 1; ++ } else if (ops->mode != MTD_OPS_RAW) ++ page_count = ops->len / mtd->writesize; ++ else ++ page_count = ops->len / (mtd->writesize + mtd->oobsize); ++ ++ if ((ops->mode == MTD_OPS_AUTO_OOB) && (ops->oobbuf != NULL)) { ++ if (page_count > 1) { ++ pr_err("%s: unsupported ops->ooblen for" ++ "AUTO, %d\n", __func__, ops->ooblen); ++ return -EINVAL; ++ } ++ } ++ ++ if ((ops->mode == MTD_OPS_PLACE_OOB) && (ops->oobbuf != NULL)) { ++ if (page_count * mtd->oobsize > ops->ooblen) { ++ pr_err("%s: unsupported ops->ooblen for" ++ "PLACE, %d\n", __func__, ops->ooblen); ++ return -EINVAL; ++ } ++ } ++ ++ if ((ops->mode == MTD_OPS_PLACE_OOB) && (ops->ooblen != 0) && ++ (ops->ooboffs != 0)) { ++ pr_err("%s: unsupported ops->ooboffs, %d\n", ++ __func__, ops->ooboffs); ++ return -EINVAL; ++ } ++ ++ init_spare_bytes = kmalloc(64, GFP_KERNEL); ++ if (!init_spare_bytes) { ++ pr_err("%s: failed to alloc init_spare_bytes buffer\n", ++ __func__); ++ return -ENOMEM; ++ } ++ for (i = 0; i < 64; i++) ++ init_spare_bytes[i] = 0xFF; ++ ++ if ((ops->oobbuf) && (ops->mode == MTD_OPS_AUTO_OOB)) { ++ for (i = 0, k = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) ++ for (j = 0; j < mtd->ecclayout->oobfree[i].length; ++ j++) { ++ init_spare_bytes[j + ++ mtd->ecclayout->oobfree[i].offset] ++ = (ops->oobbuf)[k]; ++ k++; ++ } ++ } ++ ++ if (ops->datbuf) { ++ data_dma_addr_curr = data_dma_addr = msm_nand_dma_map(chip->dev, ++ ops->datbuf, ops->len, DMA_TO_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, data_dma_addr)) { ++ pr_err("%s: failed to get dma addr for %p\n", ++ __func__, ops->datbuf); ++ return -EIO; ++ } ++ } ++ if (ops->oobbuf) { ++ oob_dma_addr_curr = oob_dma_addr = msm_nand_dma_map(chip->dev, ++ ops->oobbuf, ops->ooblen, DMA_TO_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, oob_dma_addr)) { ++ pr_err("%s: failed to get dma addr for %p\n", ++ __func__, ops->oobbuf); ++ err = -EIO; ++ goto err_dma_map_oobbuf_failed; ++ } ++ } ++ ++ init_dma_addr = msm_nand_dma_map(chip->dev, init_spare_bytes, 64, ++ DMA_TO_DEVICE, NULL); ++ if (dma_mapping_error(chip->dev, init_dma_addr)) { ++ pr_err("%s: failed to get dma addr for %p\n", ++ __func__, init_spare_bytes); ++ err = -EIO; ++ goto err_dma_map_initbuf_failed; ++ } ++ ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ to_curr = to; ++ ++ while (page_count-- > 0) { ++ cmd = dma_buffer->cmd; ++ ++ if ((onenand_info.device_id & ONENAND_DEVICE_IS_DDP) ++ && (to_curr >= (mtd->size>>1))) { /* DDP Device */ ++ onenand_startaddr1 = DEVICE_FLASHCORE_1 | ++ (((uint32_t)(to_curr-(mtd->size>>1)) ++ / mtd->erasesize)); ++ onenand_startaddr2 = DEVICE_BUFFERRAM_1; ++ } else { ++ onenand_startaddr1 = DEVICE_FLASHCORE_0 | ++ ((uint32_t)to_curr / mtd->erasesize) ; ++ onenand_startaddr2 = DEVICE_BUFFERRAM_0; ++ } ++ ++ onenand_startaddr8 = (((uint32_t)to_curr & ++ (mtd->erasesize - 1)) / mtd->writesize) << 2; ++ onenand_startbuffer = DATARAM0_0 << 8; ++ onenand_sysconfig1 = (ops->mode == MTD_OPS_RAW) ? ++ ONENAND_SYSCFG1_ECCDIS(nand_sfcmd_mode) : ++ ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode); ++ ++ dma_buffer->data.sfbcfg = SFLASH_BCFG | ++ (nand_sfcmd_mode ? 0 : (1 << 24)); ++ dma_buffer->data.sfcmd[0] = SFLASH_PREPCMD(6, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfcmd[1] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATWR); ++ dma_buffer->data.sfcmd[2] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATWR); ++ dma_buffer->data.sfcmd[3] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATWR); ++ dma_buffer->data.sfcmd[4] = SFLASH_PREPCMD(256, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATWR); ++ dma_buffer->data.sfcmd[5] = SFLASH_PREPCMD(32, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_DATWR); ++ dma_buffer->data.sfcmd[6] = SFLASH_PREPCMD(1, 6, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfcmd[7] = SFLASH_PREPCMD(0, 0, 32, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_INTHI); ++ dma_buffer->data.sfcmd[8] = SFLASH_PREPCMD(3, 7, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGRD); ++ dma_buffer->data.sfcmd[9] = SFLASH_PREPCMD(4, 10, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfexec = 1; ++ dma_buffer->data.sfstat[0] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[1] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[2] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[3] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[4] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[5] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[6] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[7] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[8] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[9] = CLEAN_DATA_32; ++ dma_buffer->data.addr0 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr1 = (ONENAND_START_ADDRESS_8 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.addr2 = (ONENAND_START_BUFFER << 16) | ++ (ONENAND_START_ADDRESS_2); ++ dma_buffer->data.addr3 = (ONENAND_ECC_STATUS << 16) | ++ (ONENAND_COMMAND); ++ dma_buffer->data.addr4 = (ONENAND_CONTROLLER_STATUS << 16) | ++ (ONENAND_INTERRUPT_STATUS); ++ dma_buffer->data.addr5 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr6 = (ONENAND_START_ADDRESS_3 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.data0 = (ONENAND_CLRINTR << 16) | ++ (onenand_sysconfig1); ++ dma_buffer->data.data1 = (onenand_startaddr8 << 16) | ++ (onenand_startaddr1); ++ dma_buffer->data.data2 = (onenand_startbuffer << 16) | ++ (onenand_startaddr2); ++ dma_buffer->data.data3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_CMDPROGSPARE); ++ dma_buffer->data.data4 = (CLEAN_DATA_16 << 16) | ++ (CLEAN_DATA_16); ++ dma_buffer->data.data5 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data6 = (ONENAND_STARTADDR3_RES << 16) | ++ (ONENAND_STARTADDR1_RES); ++ dma_buffer->data.macro[0] = 0x0200; ++ dma_buffer->data.macro[1] = 0x0300; ++ dma_buffer->data.macro[2] = 0x0400; ++ dma_buffer->data.macro[3] = 0x0500; ++ dma_buffer->data.macro[4] = 0x8010; ++ ++ ++ /*************************************************************/ ++ /* Write necessary address registers in the onenand device */ ++ /*************************************************************/ ++ ++ /* Enable and configure the SFlash controller */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfbcfg); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[0]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the ADDR0 and ADDR1 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr0); ++ cmd->dst = MSM_NAND_ADDR0; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr2); ++ cmd->dst = MSM_NAND_ADDR2; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the ADDR6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr6); ++ cmd->dst = MSM_NAND_ADDR6; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the GENP0, GENP1, GENP2, GENP3 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data0); ++ cmd->dst = MSM_NAND_GENP_REG0; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the FLASH_DEV_CMD4,5,6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->dst = MSM_NAND_DEV_CMD4; ++ cmd->len = 12; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[0]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Write the data ram area in the onenand buffer ram */ ++ /*************************************************************/ ++ ++ if (ops->datbuf) { ++ dma_buffer->data.data3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_CMDPROG); ++ ++ for (i = 0; i < 4; i++) { ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfcmd[1+i]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Trnsfr usr buf contents to nand ctlr buf */ ++ cmd->cmd = 0; ++ cmd->src = data_dma_addr_curr; ++ cmd->dst = MSM_NAND_FLASH_BUFFER; ++ cmd->len = 512; ++ data_dma_addr_curr += 512; ++ cmd++; ++ ++ /* Write the MACRO1 register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.macro[i]); ++ cmd->dst = MSM_NAND_MACRO1_REG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data rdy, & read status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, ++ &dma_buffer->data.sfstat[1+i]); ++ cmd->len = 4; ++ cmd++; ++ ++ } ++ } ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[5]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ if ((ops->oobbuf) || (ops->mode == MTD_OPS_RAW)) { ++ ++ /* Transfer user buf contents into nand ctlr buffer */ ++ if (ops->mode == MTD_OPS_AUTO_OOB) { ++ cmd->cmd = 0; ++ cmd->src = init_dma_addr; ++ cmd->dst = MSM_NAND_FLASH_BUFFER; ++ cmd->len = mtd->oobsize; ++ cmd++; ++ } ++ if (ops->mode == MTD_OPS_PLACE_OOB) { ++ cmd->cmd = 0; ++ cmd->src = oob_dma_addr_curr; ++ cmd->dst = MSM_NAND_FLASH_BUFFER; ++ cmd->len = mtd->oobsize; ++ oob_dma_addr_curr += mtd->oobsize; ++ cmd++; ++ } ++ if (ops->mode == MTD_OPS_RAW) { ++ cmd->cmd = 0; ++ cmd->src = data_dma_addr_curr; ++ cmd->dst = MSM_NAND_FLASH_BUFFER; ++ cmd->len = mtd->oobsize; ++ data_dma_addr_curr += mtd->oobsize; ++ cmd++; ++ } ++ } else { ++ cmd->cmd = 0; ++ cmd->src = init_dma_addr; ++ cmd->dst = MSM_NAND_FLASH_BUFFER; ++ cmd->len = mtd->oobsize; ++ cmd++; ++ } ++ ++ /* Write the MACRO1 register */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.macro[4]); ++ cmd->dst = MSM_NAND_MACRO1_REG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[5]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*********************************************************/ ++ /* Issuing write command */ ++ /*********************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[6]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[6]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Wait for the interrupt from the Onenand device controller */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[7]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[7]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Read necessary status registers from the onenand device */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[8]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[8]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the GENP3 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_GENP_REG3; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data3); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the DEVCMD4 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_DEV_CMD4; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Restore the necessary registers to proper values */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[9]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[9]); ++ cmd->len = 4; ++ cmd++; ++ ++ ++ BUILD_BUG_ON(53 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) ++ >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ ecc_status = (dma_buffer->data.data3 >> 16) & 0x0000FFFF; ++ interrupt_status = (dma_buffer->data.data4 >> 0)&0x0000FFFF; ++ controller_status = (dma_buffer->data.data4 >> 16)&0x0000FFFF; ++ ++#if VERBOSE ++ pr_info("\n%s: sflash status %x %x %x %x %x %x %x" ++ " %x %x %x\n", __func__, ++ dma_buffer->data.sfstat[0], ++ dma_buffer->data.sfstat[1], ++ dma_buffer->data.sfstat[2], ++ dma_buffer->data.sfstat[3], ++ dma_buffer->data.sfstat[4], ++ dma_buffer->data.sfstat[5], ++ dma_buffer->data.sfstat[6], ++ dma_buffer->data.sfstat[7], ++ dma_buffer->data.sfstat[8], ++ dma_buffer->data.sfstat[9]); ++ ++ pr_info("%s: controller_status = %x\n", __func__, ++ controller_status); ++ pr_info("%s: interrupt_status = %x\n", __func__, ++ interrupt_status); ++ pr_info("%s: ecc_status = %x\n", __func__, ++ ecc_status); ++#endif ++ /* Check for errors, protection violations etc */ ++ if ((controller_status != 0) ++ || (dma_buffer->data.sfstat[0] & 0x110) ++ || (dma_buffer->data.sfstat[6] & 0x110) ++ || (dma_buffer->data.sfstat[7] & 0x110) ++ || (dma_buffer->data.sfstat[8] & 0x110) ++ || (dma_buffer->data.sfstat[9] & 0x110) ++ || ((dma_buffer->data.sfstat[1] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[2] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[3] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[4] & 0x110) && ++ (ops->datbuf)) ++ || ((dma_buffer->data.sfstat[5] & 0x110) && ++ ((ops->oobbuf) ++ || (ops->mode == MTD_OPS_RAW)))) { ++ pr_info("%s: ECC/MPU/OP error\n", __func__); ++ err = -EIO; ++ } ++ ++ if (err) ++ break; ++ pages_written++; ++ to_curr += mtd->writesize; ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ dma_unmap_page(chip->dev, init_dma_addr, 64, DMA_TO_DEVICE); ++ ++err_dma_map_initbuf_failed: ++ if (ops->oobbuf) { ++ dma_unmap_page(chip->dev, oob_dma_addr, ops->ooblen, ++ DMA_TO_DEVICE); ++ } ++err_dma_map_oobbuf_failed: ++ if (ops->datbuf) { ++ dma_unmap_page(chip->dev, data_dma_addr, ops->len, ++ DMA_TO_DEVICE); ++ } ++ ++ if (err) { ++ pr_err("%s: %llx %x %x failed\n", __func__, to_curr, ++ ops->datbuf ? ops->len : 0, ops->ooblen); ++ } else { ++ ops->retlen = ops->oobretlen = 0; ++ if (ops->datbuf != NULL) { ++ if (ops->mode != MTD_OPS_RAW) ++ ops->retlen = mtd->writesize * pages_written; ++ else ++ ops->retlen = (mtd->writesize + mtd->oobsize) ++ * pages_written; ++ } ++ if (ops->oobbuf != NULL) { ++ if (ops->mode == MTD_OPS_AUTO_OOB) ++ ops->oobretlen = mtd->oobavail * pages_written; ++ else ++ ops->oobretlen = mtd->oobsize * pages_written; ++ } ++ } ++ ++#if VERBOSE ++ pr_info("\n%s: ret %d, retlen %d oobretlen %d\n", ++ __func__, err, ops->retlen, ops->oobretlen); ++ ++ pr_info("=================================================" ++ "================\n"); ++#endif ++ kfree(init_spare_bytes); ++ return err; ++} ++ ++static int msm_onenand_write(struct mtd_info *mtd, loff_t to, size_t len, ++ size_t *retlen, const u_char *buf) ++{ ++ int ret; ++ struct mtd_oob_ops ops; ++ ++ ops.mode = MTD_OPS_PLACE_OOB; ++ ops.datbuf = (uint8_t *)buf; ++ ops.len = len; ++ ops.retlen = 0; ++ ops.oobbuf = NULL; ++ ops.ooblen = 0; ++ ops.oobretlen = 0; ++ ret = msm_onenand_write_oob(mtd, to, &ops); ++ *retlen = ops.retlen; ++ ++ return ret; ++} ++ ++static int msm_onenand_erase(struct mtd_info *mtd, struct erase_info *instr) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[20]; ++ unsigned cmdptr; ++ struct { ++ uint32_t sfbcfg; ++ uint32_t sfcmd[4]; ++ uint32_t sfexec; ++ uint32_t sfstat[4]; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t addr2; ++ uint32_t addr3; ++ uint32_t addr4; ++ uint32_t addr5; ++ uint32_t addr6; ++ uint32_t data0; ++ uint32_t data1; ++ uint32_t data2; ++ uint32_t data3; ++ uint32_t data4; ++ uint32_t data5; ++ uint32_t data6; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ int err = 0; ++ ++ uint16_t onenand_startaddr1; ++ uint16_t onenand_startaddr8; ++ uint16_t onenand_startaddr2; ++ uint16_t onenand_startbuffer; ++ ++ uint16_t controller_status; ++ uint16_t interrupt_status; ++ uint16_t ecc_status; ++ ++ uint64_t temp; ++ ++#if VERBOSE ++ pr_info("=================================================" ++ "================\n"); ++ pr_info("%s: addr 0x%llx len 0x%llx\n", ++ __func__, instr->addr, instr->len); ++#endif ++ if (instr->addr & (mtd->erasesize - 1)) { ++ pr_err("%s: Unsupported erase address, 0x%llx\n", ++ __func__, instr->addr); ++ return -EINVAL; ++ } ++ if (instr->len != mtd->erasesize) { ++ pr_err("%s: Unsupported erase len, %lld\n", ++ __func__, instr->len); ++ return -EINVAL; ++ } ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ cmd = dma_buffer->cmd; ++ ++ temp = instr->addr; ++ ++ if ((onenand_info.device_id & ONENAND_DEVICE_IS_DDP) ++ && (temp >= (mtd->size>>1))) { /* DDP Device */ ++ onenand_startaddr1 = DEVICE_FLASHCORE_1 | ++ (((uint32_t)(temp-(mtd->size>>1)) ++ / mtd->erasesize)); ++ onenand_startaddr2 = DEVICE_BUFFERRAM_1; ++ } else { ++ onenand_startaddr1 = DEVICE_FLASHCORE_0 | ++ ((uint32_t)temp / mtd->erasesize) ; ++ onenand_startaddr2 = DEVICE_BUFFERRAM_0; ++ } ++ ++ onenand_startaddr8 = 0x0000; ++ onenand_startbuffer = DATARAM0_0 << 8; ++ ++ dma_buffer->data.sfbcfg = SFLASH_BCFG | ++ (nand_sfcmd_mode ? 0 : (1 << 24)); ++ dma_buffer->data.sfcmd[0] = SFLASH_PREPCMD(7, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfcmd[1] = SFLASH_PREPCMD(0, 0, 32, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_INTHI); ++ dma_buffer->data.sfcmd[2] = SFLASH_PREPCMD(3, 7, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGRD); ++ dma_buffer->data.sfcmd[3] = SFLASH_PREPCMD(4, 10, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfexec = 1; ++ dma_buffer->data.sfstat[0] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[1] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[2] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[3] = CLEAN_DATA_32; ++ dma_buffer->data.addr0 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr1 = (ONENAND_START_ADDRESS_8 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.addr2 = (ONENAND_START_BUFFER << 16) | ++ (ONENAND_START_ADDRESS_2); ++ dma_buffer->data.addr3 = (ONENAND_ECC_STATUS << 16) | ++ (ONENAND_COMMAND); ++ dma_buffer->data.addr4 = (ONENAND_CONTROLLER_STATUS << 16) | ++ (ONENAND_INTERRUPT_STATUS); ++ dma_buffer->data.addr5 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr6 = (ONENAND_START_ADDRESS_3 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.data0 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data1 = (onenand_startaddr8 << 16) | ++ (onenand_startaddr1); ++ dma_buffer->data.data2 = (onenand_startbuffer << 16) | ++ (onenand_startaddr2); ++ dma_buffer->data.data3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_CMDERAS); ++ dma_buffer->data.data4 = (CLEAN_DATA_16 << 16) | ++ (CLEAN_DATA_16); ++ dma_buffer->data.data5 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data6 = (ONENAND_STARTADDR3_RES << 16) | ++ (ONENAND_STARTADDR1_RES); ++ ++ /***************************************************************/ ++ /* Write the necessary address registers in the onenand device */ ++ /***************************************************************/ ++ ++ /* Enable and configure the SFlash controller */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfbcfg); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[0]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the ADDR0 and ADDR1 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr0); ++ cmd->dst = MSM_NAND_ADDR0; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr2); ++ cmd->dst = MSM_NAND_ADDR2; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the ADDR6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr6); ++ cmd->dst = MSM_NAND_ADDR6; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the GENP0, GENP1, GENP2, GENP3, GENP4 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data0); ++ cmd->dst = MSM_NAND_GENP_REG0; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the FLASH_DEV_CMD4,5,6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->dst = MSM_NAND_DEV_CMD4; ++ cmd->len = 12; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[0]); ++ cmd->len = 4; ++ cmd++; ++ ++ /***************************************************************/ ++ /* Wait for the interrupt from the Onenand device controller */ ++ /***************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[1]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[1]); ++ cmd->len = 4; ++ cmd++; ++ ++ /***************************************************************/ ++ /* Read the necessary status registers from the onenand device */ ++ /***************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[2]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[2]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the GENP3 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_GENP_REG3; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data3); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the DEVCMD4 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_DEV_CMD4; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->len = 4; ++ cmd++; ++ ++ /***************************************************************/ ++ /* Restore the necessary registers to proper values */ ++ /***************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[3]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[3]); ++ cmd->len = 4; ++ cmd++; ++ ++ ++ BUILD_BUG_ON(20 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) ++ >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, DMOV_CMD_PTR_LIST ++ | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ ecc_status = (dma_buffer->data.data3 >> 16) & 0x0000FFFF; ++ interrupt_status = (dma_buffer->data.data4 >> 0) & 0x0000FFFF; ++ controller_status = (dma_buffer->data.data4 >> 16) & 0x0000FFFF; ++ ++#if VERBOSE ++ pr_info("\n%s: sflash status %x %x %x %x\n", __func__, ++ dma_buffer->data.sfstat[0], ++ dma_buffer->data.sfstat[1], ++ dma_buffer->data.sfstat[2], ++ dma_buffer->data.sfstat[3]); ++ ++ pr_info("%s: controller_status = %x\n", __func__, ++ controller_status); ++ pr_info("%s: interrupt_status = %x\n", __func__, ++ interrupt_status); ++ pr_info("%s: ecc_status = %x\n", __func__, ++ ecc_status); ++#endif ++ /* Check for errors, protection violations etc */ ++ if ((controller_status != 0) ++ || (dma_buffer->data.sfstat[0] & 0x110) ++ || (dma_buffer->data.sfstat[1] & 0x110) ++ || (dma_buffer->data.sfstat[2] & 0x110) ++ || (dma_buffer->data.sfstat[3] & 0x110)) { ++ pr_err("%s: ECC/MPU/OP error\n", __func__); ++ err = -EIO; ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++ if (err) { ++ pr_err("%s: Erase failed, 0x%llx\n", __func__, ++ instr->addr); ++ instr->fail_addr = instr->addr; ++ instr->state = MTD_ERASE_FAILED; ++ } else { ++ instr->state = MTD_ERASE_DONE; ++ instr->fail_addr = 0xffffffff; ++ mtd_erase_callback(instr); ++ } ++ ++#if VERBOSE ++ pr_info("\n%s: ret %d\n", __func__, err); ++ pr_info("====================================================" ++ "=============\n"); ++#endif ++ return err; ++} ++ ++static int msm_onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) ++{ ++ struct mtd_oob_ops ops; ++ int rval, i; ++ int ret = 0; ++ uint8_t *buffer; ++ uint8_t *oobptr; ++ ++ if ((ofs > mtd->size) || (ofs & (mtd->erasesize - 1))) { ++ pr_err("%s: unsupported block address, 0x%x\n", ++ __func__, (uint32_t)ofs); ++ return -EINVAL; ++ } ++ ++ buffer = kmalloc(2112, GFP_KERNEL|GFP_DMA); ++ if (buffer == 0) { ++ pr_err("%s: Could not kmalloc for buffer\n", ++ __func__); ++ return -ENOMEM; ++ } ++ ++ memset(buffer, 0x00, 2112); ++ oobptr = &(buffer[2048]); ++ ++ ops.mode = MTD_OPS_RAW; ++ ops.len = 2112; ++ ops.retlen = 0; ++ ops.ooblen = 0; ++ ops.oobretlen = 0; ++ ops.ooboffs = 0; ++ ops.datbuf = buffer; ++ ops.oobbuf = NULL; ++ ++ for (i = 0; i < 2; i++) { ++ ofs = ofs + i*mtd->writesize; ++ rval = msm_onenand_read_oob(mtd, ofs, &ops); ++ if (rval) { ++ pr_err("%s: Error in reading bad blk info\n", ++ __func__); ++ ret = rval; ++ break; ++ } ++ if ((oobptr[0] != 0xFF) || (oobptr[1] != 0xFF) || ++ (oobptr[16] != 0xFF) || (oobptr[17] != 0xFF) || ++ (oobptr[32] != 0xFF) || (oobptr[33] != 0xFF) || ++ (oobptr[48] != 0xFF) || (oobptr[49] != 0xFF) ++ ) { ++ ret = 1; ++ break; ++ } ++ } ++ ++ kfree(buffer); ++ ++#if VERBOSE ++ if (ret == 1) ++ pr_info("%s : Block containing 0x%x is bad\n", ++ __func__, (unsigned int)ofs); ++#endif ++ return ret; ++} ++ ++static int msm_onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) ++{ ++ struct mtd_oob_ops ops; ++ int rval, i; ++ int ret = 0; ++ uint8_t *buffer; ++ ++ if ((ofs > mtd->size) || (ofs & (mtd->erasesize - 1))) { ++ pr_err("%s: unsupported block address, 0x%x\n", ++ __func__, (uint32_t)ofs); ++ return -EINVAL; ++ } ++ ++ buffer = page_address(ZERO_PAGE()); ++ ++ ops.mode = MTD_OPS_RAW; ++ ops.len = 2112; ++ ops.retlen = 0; ++ ops.ooblen = 0; ++ ops.oobretlen = 0; ++ ops.ooboffs = 0; ++ ops.datbuf = buffer; ++ ops.oobbuf = NULL; ++ ++ for (i = 0; i < 2; i++) { ++ ofs = ofs + i*mtd->writesize; ++ rval = msm_onenand_write_oob(mtd, ofs, &ops); ++ if (rval) { ++ pr_err("%s: Error in writing bad blk info\n", ++ __func__); ++ ret = rval; ++ break; ++ } ++ } ++ ++ return ret; ++} ++ ++static int msm_onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[20]; ++ unsigned cmdptr; ++ struct { ++ uint32_t sfbcfg; ++ uint32_t sfcmd[4]; ++ uint32_t sfexec; ++ uint32_t sfstat[4]; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t addr2; ++ uint32_t addr3; ++ uint32_t addr4; ++ uint32_t addr5; ++ uint32_t addr6; ++ uint32_t data0; ++ uint32_t data1; ++ uint32_t data2; ++ uint32_t data3; ++ uint32_t data4; ++ uint32_t data5; ++ uint32_t data6; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ int err = 0; ++ ++ uint16_t onenand_startaddr1; ++ uint16_t onenand_startaddr8; ++ uint16_t onenand_startaddr2; ++ uint16_t onenand_startblock; ++ ++ uint16_t controller_status; ++ uint16_t interrupt_status; ++ uint16_t write_prot_status; ++ ++ uint64_t start_ofs; ++ ++#if VERBOSE ++ pr_info("====================================================" ++ "=============\n"); ++ pr_info("%s: ofs 0x%llx len %lld\n", __func__, ofs, len); ++#endif ++ /* 'ofs' & 'len' should align to block size */ ++ if (ofs&(mtd->erasesize - 1)) { ++ pr_err("%s: Unsupported ofs address, 0x%llx\n", ++ __func__, ofs); ++ return -EINVAL; ++ } ++ ++ if (len&(mtd->erasesize - 1)) { ++ pr_err("%s: Unsupported len, %lld\n", ++ __func__, len); ++ return -EINVAL; ++ } ++ ++ if (ofs+len > mtd->size) { ++ pr_err("%s: Maximum chip size exceeded\n", __func__); ++ return -EINVAL; ++ } ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ for (start_ofs = ofs; ofs < start_ofs+len; ofs = ofs+mtd->erasesize) { ++#if VERBOSE ++ pr_info("%s: ofs 0x%llx len %lld\n", __func__, ofs, len); ++#endif ++ ++ cmd = dma_buffer->cmd; ++ if ((onenand_info.device_id & ONENAND_DEVICE_IS_DDP) ++ && (ofs >= (mtd->size>>1))) { /* DDP Device */ ++ onenand_startaddr1 = DEVICE_FLASHCORE_1 | ++ (((uint32_t)(ofs - (mtd->size>>1)) ++ / mtd->erasesize)); ++ onenand_startaddr2 = DEVICE_BUFFERRAM_1; ++ onenand_startblock = ((uint32_t)(ofs - (mtd->size>>1)) ++ / mtd->erasesize); ++ } else { ++ onenand_startaddr1 = DEVICE_FLASHCORE_0 | ++ ((uint32_t)ofs / mtd->erasesize) ; ++ onenand_startaddr2 = DEVICE_BUFFERRAM_0; ++ onenand_startblock = ((uint32_t)ofs ++ / mtd->erasesize); ++ } ++ ++ onenand_startaddr8 = 0x0000; ++ dma_buffer->data.sfbcfg = SFLASH_BCFG | ++ (nand_sfcmd_mode ? 0 : (1 << 24)); ++ dma_buffer->data.sfcmd[0] = SFLASH_PREPCMD(7, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfcmd[1] = SFLASH_PREPCMD(0, 0, 32, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_INTHI); ++ dma_buffer->data.sfcmd[2] = SFLASH_PREPCMD(3, 7, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGRD); ++ dma_buffer->data.sfcmd[3] = SFLASH_PREPCMD(4, 10, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfexec = 1; ++ dma_buffer->data.sfstat[0] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[1] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[2] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[3] = CLEAN_DATA_32; ++ dma_buffer->data.addr0 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr1 = (ONENAND_START_ADDRESS_8 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.addr2 = (ONENAND_START_BLOCK_ADDRESS << 16) | ++ (ONENAND_START_ADDRESS_2); ++ dma_buffer->data.addr3 = (ONENAND_WRITE_PROT_STATUS << 16) | ++ (ONENAND_COMMAND); ++ dma_buffer->data.addr4 = (ONENAND_CONTROLLER_STATUS << 16) | ++ (ONENAND_INTERRUPT_STATUS); ++ dma_buffer->data.addr5 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr6 = (ONENAND_START_ADDRESS_3 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.data0 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data1 = (onenand_startaddr8 << 16) | ++ (onenand_startaddr1); ++ dma_buffer->data.data2 = (onenand_startblock << 16) | ++ (onenand_startaddr2); ++ dma_buffer->data.data3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_CMD_UNLOCK); ++ dma_buffer->data.data4 = (CLEAN_DATA_16 << 16) | ++ (CLEAN_DATA_16); ++ dma_buffer->data.data5 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data6 = (ONENAND_STARTADDR3_RES << 16) | ++ (ONENAND_STARTADDR1_RES); ++ ++ /*************************************************************/ ++ /* Write the necessary address reg in the onenand device */ ++ /*************************************************************/ ++ ++ /* Enable and configure the SFlash controller */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfbcfg); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[0]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the ADDR0 and ADDR1 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr0); ++ cmd->dst = MSM_NAND_ADDR0; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr2); ++ cmd->dst = MSM_NAND_ADDR2; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the ADDR6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr6); ++ cmd->dst = MSM_NAND_ADDR6; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the GENP0, GENP1, GENP2, GENP3, GENP4 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data0); ++ cmd->dst = MSM_NAND_GENP_REG0; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the FLASH_DEV_CMD4,5,6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->dst = MSM_NAND_DEV_CMD4; ++ cmd->len = 12; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[0]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Wait for the interrupt from the Onenand device controller */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[1]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[1]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*********************************************************/ ++ /* Read the necessary status reg from the onenand device */ ++ /*********************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[2]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[2]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the GENP3 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_GENP_REG3; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data3); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the DEVCMD4 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_DEV_CMD4; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->len = 4; ++ cmd++; ++ ++ /************************************************************/ ++ /* Restore the necessary registers to proper values */ ++ /************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[3]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[3]); ++ cmd->len = 4; ++ cmd++; ++ ++ ++ BUILD_BUG_ON(20 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) ++ >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ write_prot_status = (dma_buffer->data.data3 >> 16) & 0x0000FFFF; ++ interrupt_status = (dma_buffer->data.data4 >> 0) & 0x0000FFFF; ++ controller_status = (dma_buffer->data.data4 >> 16) & 0x0000FFFF; ++ ++#if VERBOSE ++ pr_info("\n%s: sflash status %x %x %x %x\n", __func__, ++ dma_buffer->data.sfstat[0], ++ dma_buffer->data.sfstat[1], ++ dma_buffer->data.sfstat[2], ++ dma_buffer->data.sfstat[3]); ++ ++ pr_info("%s: controller_status = %x\n", __func__, ++ controller_status); ++ pr_info("%s: interrupt_status = %x\n", __func__, ++ interrupt_status); ++ pr_info("%s: write_prot_status = %x\n", __func__, ++ write_prot_status); ++#endif ++ /* Check for errors, protection violations etc */ ++ if ((controller_status != 0) ++ || (dma_buffer->data.sfstat[0] & 0x110) ++ || (dma_buffer->data.sfstat[1] & 0x110) ++ || (dma_buffer->data.sfstat[2] & 0x110) ++ || (dma_buffer->data.sfstat[3] & 0x110)) { ++ pr_err("%s: ECC/MPU/OP error\n", __func__); ++ err = -EIO; ++ } ++ ++ if (!(write_prot_status & ONENAND_WP_US)) { ++ pr_err("%s: Unexpected status ofs = 0x%llx," ++ "wp_status = %x\n", ++ __func__, ofs, write_prot_status); ++ err = -EIO; ++ } ++ ++ if (err) ++ break; ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++#if VERBOSE ++ pr_info("\n%s: ret %d\n", __func__, err); ++ pr_info("====================================================" ++ "=============\n"); ++#endif ++ return err; ++} ++ ++static int msm_onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[20]; ++ unsigned cmdptr; ++ struct { ++ uint32_t sfbcfg; ++ uint32_t sfcmd[4]; ++ uint32_t sfexec; ++ uint32_t sfstat[4]; ++ uint32_t addr0; ++ uint32_t addr1; ++ uint32_t addr2; ++ uint32_t addr3; ++ uint32_t addr4; ++ uint32_t addr5; ++ uint32_t addr6; ++ uint32_t data0; ++ uint32_t data1; ++ uint32_t data2; ++ uint32_t data3; ++ uint32_t data4; ++ uint32_t data5; ++ uint32_t data6; ++ } data; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ int err = 0; ++ ++ uint16_t onenand_startaddr1; ++ uint16_t onenand_startaddr8; ++ uint16_t onenand_startaddr2; ++ uint16_t onenand_startblock; ++ ++ uint16_t controller_status; ++ uint16_t interrupt_status; ++ uint16_t write_prot_status; ++ ++ uint64_t start_ofs; ++ ++#if VERBOSE ++ pr_info("====================================================" ++ "=============\n"); ++ pr_info("%s: ofs 0x%llx len %lld\n", __func__, ofs, len); ++#endif ++ /* 'ofs' & 'len' should align to block size */ ++ if (ofs&(mtd->erasesize - 1)) { ++ pr_err("%s: Unsupported ofs address, 0x%llx\n", ++ __func__, ofs); ++ return -EINVAL; ++ } ++ ++ if (len&(mtd->erasesize - 1)) { ++ pr_err("%s: Unsupported len, %lld\n", ++ __func__, len); ++ return -EINVAL; ++ } ++ ++ if (ofs+len > mtd->size) { ++ pr_err("%s: Maximum chip size exceeded\n", __func__); ++ return -EINVAL; ++ } ++ ++ wait_event(chip->wait_queue, (dma_buffer = msm_nand_get_dma_buffer ++ (chip, sizeof(*dma_buffer)))); ++ ++ for (start_ofs = ofs; ofs < start_ofs+len; ofs = ofs+mtd->erasesize) { ++#if VERBOSE ++ pr_info("%s: ofs 0x%llx len %lld\n", __func__, ofs, len); ++#endif ++ ++ cmd = dma_buffer->cmd; ++ if ((onenand_info.device_id & ONENAND_DEVICE_IS_DDP) ++ && (ofs >= (mtd->size>>1))) { /* DDP Device */ ++ onenand_startaddr1 = DEVICE_FLASHCORE_1 | ++ (((uint32_t)(ofs - (mtd->size>>1)) ++ / mtd->erasesize)); ++ onenand_startaddr2 = DEVICE_BUFFERRAM_1; ++ onenand_startblock = ((uint32_t)(ofs - (mtd->size>>1)) ++ / mtd->erasesize); ++ } else { ++ onenand_startaddr1 = DEVICE_FLASHCORE_0 | ++ ((uint32_t)ofs / mtd->erasesize) ; ++ onenand_startaddr2 = DEVICE_BUFFERRAM_0; ++ onenand_startblock = ((uint32_t)ofs ++ / mtd->erasesize); ++ } ++ ++ onenand_startaddr8 = 0x0000; ++ dma_buffer->data.sfbcfg = SFLASH_BCFG | ++ (nand_sfcmd_mode ? 0 : (1 << 24)); ++ dma_buffer->data.sfcmd[0] = SFLASH_PREPCMD(7, 0, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfcmd[1] = SFLASH_PREPCMD(0, 0, 32, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_INTHI); ++ dma_buffer->data.sfcmd[2] = SFLASH_PREPCMD(3, 7, 0, ++ MSM_NAND_SFCMD_DATXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGRD); ++ dma_buffer->data.sfcmd[3] = SFLASH_PREPCMD(4, 10, 0, ++ MSM_NAND_SFCMD_CMDXS, ++ nand_sfcmd_mode, ++ MSM_NAND_SFCMD_REGWR); ++ dma_buffer->data.sfexec = 1; ++ dma_buffer->data.sfstat[0] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[1] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[2] = CLEAN_DATA_32; ++ dma_buffer->data.sfstat[3] = CLEAN_DATA_32; ++ dma_buffer->data.addr0 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr1 = (ONENAND_START_ADDRESS_8 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.addr2 = (ONENAND_START_BLOCK_ADDRESS << 16) | ++ (ONENAND_START_ADDRESS_2); ++ dma_buffer->data.addr3 = (ONENAND_WRITE_PROT_STATUS << 16) | ++ (ONENAND_COMMAND); ++ dma_buffer->data.addr4 = (ONENAND_CONTROLLER_STATUS << 16) | ++ (ONENAND_INTERRUPT_STATUS); ++ dma_buffer->data.addr5 = (ONENAND_INTERRUPT_STATUS << 16) | ++ (ONENAND_SYSTEM_CONFIG_1); ++ dma_buffer->data.addr6 = (ONENAND_START_ADDRESS_3 << 16) | ++ (ONENAND_START_ADDRESS_1); ++ dma_buffer->data.data0 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data1 = (onenand_startaddr8 << 16) | ++ (onenand_startaddr1); ++ dma_buffer->data.data2 = (onenand_startblock << 16) | ++ (onenand_startaddr2); ++ dma_buffer->data.data3 = (CLEAN_DATA_16 << 16) | ++ (ONENAND_CMD_LOCK); ++ dma_buffer->data.data4 = (CLEAN_DATA_16 << 16) | ++ (CLEAN_DATA_16); ++ dma_buffer->data.data5 = (ONENAND_CLRINTR << 16) | ++ (ONENAND_SYSCFG1_ECCENA(nand_sfcmd_mode)); ++ dma_buffer->data.data6 = (ONENAND_STARTADDR3_RES << 16) | ++ (ONENAND_STARTADDR1_RES); ++ ++ /*************************************************************/ ++ /* Write the necessary address reg in the onenand device */ ++ /*************************************************************/ ++ ++ /* Enable and configure the SFlash controller */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfbcfg); ++ cmd->dst = MSM_NAND_SFLASHC_BURST_CFG; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[0]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the ADDR0 and ADDR1 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr0); ++ cmd->dst = MSM_NAND_ADDR0; ++ cmd->len = 8; ++ cmd++; ++ ++ /* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr2); ++ cmd->dst = MSM_NAND_ADDR2; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the ADDR6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.addr6); ++ cmd->dst = MSM_NAND_ADDR6; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Write the GENP0, GENP1, GENP2, GENP3, GENP4 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data0); ++ cmd->dst = MSM_NAND_GENP_REG0; ++ cmd->len = 16; ++ cmd++; ++ ++ /* Write the FLASH_DEV_CMD4,5,6 registers */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->dst = MSM_NAND_DEV_CMD4; ++ cmd->len = 12; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[0]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*************************************************************/ ++ /* Wait for the interrupt from the Onenand device controller */ ++ /*************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[1]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[1]); ++ cmd->len = 4; ++ cmd++; ++ ++ /*********************************************************/ ++ /* Read the necessary status reg from the onenand device */ ++ /*********************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[2]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[2]); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the GENP3 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_GENP_REG3; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data3); ++ cmd->len = 4; ++ cmd++; ++ ++ /* Read the DEVCMD4 register */ ++ cmd->cmd = 0; ++ cmd->src = MSM_NAND_DEV_CMD4; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.data4); ++ cmd->len = 4; ++ cmd++; ++ ++ /************************************************************/ ++ /* Restore the necessary registers to proper values */ ++ /************************************************************/ ++ ++ /* Block on cmd ready and write CMD register */ ++ cmd->cmd = DST_CRCI_NAND_CMD; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfcmd[3]); ++ cmd->dst = MSM_NAND_SFLASHC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Kick the execute command */ ++ cmd->cmd = 0; ++ cmd->src = msm_virt_to_dma(chip, &dma_buffer->data.sfexec); ++ cmd->dst = MSM_NAND_SFLASHC_EXEC_CMD; ++ cmd->len = 4; ++ cmd++; ++ ++ /* Block on data ready, and read the status register */ ++ cmd->cmd = SRC_CRCI_NAND_DATA; ++ cmd->src = MSM_NAND_SFLASHC_STATUS; ++ cmd->dst = msm_virt_to_dma(chip, &dma_buffer->data.sfstat[3]); ++ cmd->len = 4; ++ cmd++; ++ ++ ++ BUILD_BUG_ON(20 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) ++ >> 3) | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, ++ DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ ++ write_prot_status = (dma_buffer->data.data3 >> 16) & 0x0000FFFF; ++ interrupt_status = (dma_buffer->data.data4 >> 0) & 0x0000FFFF; ++ controller_status = (dma_buffer->data.data4 >> 16) & 0x0000FFFF; ++ ++#if VERBOSE ++ pr_info("\n%s: sflash status %x %x %x %x\n", __func__, ++ dma_buffer->data.sfstat[0], ++ dma_buffer->data.sfstat[1], ++ dma_buffer->data.sfstat[2], ++ dma_buffer->data.sfstat[3]); ++ ++ pr_info("%s: controller_status = %x\n", __func__, ++ controller_status); ++ pr_info("%s: interrupt_status = %x\n", __func__, ++ interrupt_status); ++ pr_info("%s: write_prot_status = %x\n", __func__, ++ write_prot_status); ++#endif ++ /* Check for errors, protection violations etc */ ++ if ((controller_status != 0) ++ || (dma_buffer->data.sfstat[0] & 0x110) ++ || (dma_buffer->data.sfstat[1] & 0x110) ++ || (dma_buffer->data.sfstat[2] & 0x110) ++ || (dma_buffer->data.sfstat[3] & 0x110)) { ++ pr_err("%s: ECC/MPU/OP error\n", __func__); ++ err = -EIO; ++ } ++ ++ if (!(write_prot_status & ONENAND_WP_LS)) { ++ pr_err("%s: Unexpected status ofs = 0x%llx," ++ "wp_status = %x\n", ++ __func__, ofs, write_prot_status); ++ err = -EIO; ++ } ++ ++ if (err) ++ break; ++ } ++ ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ ++#if VERBOSE ++ pr_info("\n%s: ret %d\n", __func__, err); ++ pr_info("====================================================" ++ "=============\n"); ++#endif ++ return err; ++} ++ ++static int msm_onenand_suspend(struct mtd_info *mtd) ++{ ++ return 0; ++} ++ ++static void msm_onenand_resume(struct mtd_info *mtd) ++{ ++} ++ ++int msm_onenand_scan(struct mtd_info *mtd, int maxchips) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ /* Probe and check whether onenand device is present */ ++ if (flash_onenand_probe(chip)) ++ return -ENODEV; ++ ++ mtd->size = 0x1000000 << ((onenand_info.device_id & 0xF0) >> 4); ++ mtd->writesize = onenand_info.data_buf_size; ++ mtd->oobsize = mtd->writesize >> 5; ++ mtd->erasesize = mtd->writesize << 6; ++ mtd->oobavail = msm_onenand_oob_64.oobavail; ++ mtd->ecclayout = &msm_onenand_oob_64; ++ ++ mtd->type = MTD_NANDFLASH; ++ mtd->flags = MTD_CAP_NANDFLASH; ++ mtd->_erase = msm_onenand_erase; ++ mtd->_point = NULL; ++ mtd->_unpoint = NULL; ++ mtd->_read = msm_onenand_read; ++ mtd->_write = msm_onenand_write; ++ mtd->_read_oob = msm_onenand_read_oob; ++ mtd->_write_oob = msm_onenand_write_oob; ++ mtd->_lock = msm_onenand_lock; ++ mtd->_unlock = msm_onenand_unlock; ++ mtd->_suspend = msm_onenand_suspend; ++ mtd->_resume = msm_onenand_resume; ++ mtd->_block_isbad = msm_onenand_block_isbad; ++ mtd->_block_markbad = msm_onenand_block_markbad; ++ mtd->owner = THIS_MODULE; ++ ++ pr_info("Found a supported onenand device\n"); ++ ++ return 0; ++} ++ ++static const unsigned int bch_sup_cntrl[] = { ++ 0x307, /* MSM7x2xA */ ++ 0x4030, /* MDM 9x15 */ ++}; ++ ++static inline bool msm_nand_has_bch_ecc_engine(unsigned int hw_id) ++{ ++ int i; ++ ++ for (i = 0; i < ARRAY_SIZE(bch_sup_cntrl); i++) { ++ if (hw_id == bch_sup_cntrl[i]) ++ return true; ++ } ++ ++ return false; ++} ++ ++/** ++ * msm_nand_scan - [msm_nand Interface] Scan for the msm_nand device ++ * @param mtd MTD device structure ++ * @param maxchips Number of chips to scan for ++ * ++ * This fills out all the not initialized function pointers ++ * with the defaults. ++ * The flash ID is read and the mtd/chip structures are ++ * filled with the appropriate values. ++ */ ++int msm_nand_scan(struct mtd_info *mtd, int maxchips) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ uint32_t flash_id = 0, i, mtd_writesize; ++ uint8_t dev_found = 0; ++ uint8_t wide_bus; ++ uint32_t manid; ++ uint32_t devid; ++ uint32_t devcfg; ++ struct nand_flash_dev *flashdev = NULL; ++ struct nand_manufacturers *flashman = NULL; ++ unsigned int hw_id; ++ ++ /* ++ * Some Spansion parts, like the S34MS04G2, requires that the ++ * NAND Flash be reset before issuing an ONFI probe. ++ */ ++ flash_reset(chip); ++ ++ /* Probe the Flash device for ONFI compliance */ ++ if (!flash_onfi_probe(chip)) { ++ dev_found = 1; ++ } else { ++ /* Read the Flash ID from the Nand Flash Device */ ++ flash_id = flash_read_id(chip); ++ manid = flash_id & 0xFF; ++ devid = (flash_id >> 8) & 0xFF; ++ devcfg = (flash_id >> 24) & 0xFF; ++ ++ for (i = 0; !flashman && nand_manuf_ids[i].id; ++i) ++ if (nand_manuf_ids[i].id == manid) ++ flashman = &nand_manuf_ids[i]; ++ for (i = 0; !flashdev && nand_flash_ids[i].id; ++i) ++ if (nand_flash_ids[i].id == devid) ++ flashdev = &nand_flash_ids[i]; ++ if (!flashdev || !flashman) { ++ pr_err("ERROR: unknown nand device manuf=%x devid=%x\n", ++ manid, devid); ++ return -ENOENT; ++ } else ++ dev_found = 1; ++ ++ if (!flashdev->pagesize) { ++ supported_flash.flash_id = flash_id; ++ supported_flash.density = flashdev->chipsize << 20; ++ supported_flash.widebus = devcfg & (1 << 6) ? 1 : 0; ++ supported_flash.pagesize = 1024 << (devcfg & 0x3); ++ supported_flash.blksize = (64 * 1024) << ++ ((devcfg >> 4) & 0x3); ++ supported_flash.oobsize = (8 << ((devcfg >> 2) & 0x3)) * ++ (supported_flash.pagesize >> 9); ++ ++ if ((supported_flash.oobsize > 64) && ++ (supported_flash.pagesize == 2048)) { ++ pr_info("msm_nand: Found a 2K page device with" ++ " %d oobsize - changing oobsize to 64 " ++ "bytes.\n", supported_flash.oobsize); ++ supported_flash.oobsize = 64; ++ } ++ } else { ++ supported_flash.flash_id = flash_id; ++ supported_flash.density = flashdev->chipsize << 20; ++ supported_flash.widebus = flashdev->options & ++ NAND_BUSWIDTH_16 ? 1 : 0; ++ supported_flash.pagesize = flashdev->pagesize; ++ supported_flash.blksize = flashdev->erasesize; ++ supported_flash.oobsize = flashdev->pagesize >> 5; ++ } ++ } ++ ++ if (dev_found) { ++ (!interleave_enable) ? (i = 1) : (i = 2); ++ wide_bus = supported_flash.widebus; ++ mtd->size = supported_flash.density * i; ++ mtd->writesize = supported_flash.pagesize * i; ++ mtd->oobsize = supported_flash.oobsize * i; ++ mtd->erasesize = supported_flash.blksize * i; ++ mtd->writebufsize = mtd->writesize; ++ ++ if (!interleave_enable) ++ mtd_writesize = mtd->writesize; ++ else ++ mtd_writesize = mtd->writesize >> 1; ++ ++ /* Check whether controller and NAND device support 8bit ECC*/ ++ hw_id = flash_rd_reg(chip, MSM_NAND_HW_INFO); ++ if (msm_nand_has_bch_ecc_engine(hw_id) ++ && (supported_flash.ecc_correctability >= 8)) { ++ pr_info("Found supported NAND device for %dbit ECC\n", ++ supported_flash.ecc_correctability); ++ enable_bch_ecc = 1; ++ } else { ++ pr_info("Found a supported NAND device\n"); ++ } ++ pr_info("NAND Controller ID : 0x%x\n", hw_id); ++ pr_info("NAND Device ID : 0x%x\n", supported_flash.flash_id); ++ pr_info("Buswidth : %d Bits\n", (wide_bus) ? 16 : 8); ++ pr_info("Density : %lld MByte\n", (mtd->size>>20)); ++ pr_info("Pagesize : %d Bytes\n", mtd->writesize); ++ pr_info("Erasesize: %d Bytes\n", mtd->erasesize); ++ pr_info("Oobsize : %d Bytes\n", mtd->oobsize); ++ } else { ++ pr_err("Unsupported Nand,Id: 0x%x \n", flash_id); ++ return -ENODEV; ++ } ++ ++ /* Size of each codeword is 532Bytes incase of 8bit BCH ECC*/ ++ chip->cw_size = enable_bch_ecc ? 532 : 528; ++ chip->CFG0 = (((mtd_writesize >> 9)-1) << 6) /* 4/8 cw/pg for 2/4k */ ++ | (516 << 9) /* 516 user data bytes */ ++ | (10 << 19) /* 10 parity bytes */ ++ | (5 << 27) /* 5 address cycles */ ++ | (0 << 30) /* Do not read status before data */ ++ | (1 << 31) /* Send read cmd */ ++ /* 0 spare bytes for 16 bit nand or 1/2 spare bytes for 8 bit */ ++ | (wide_bus ? 0 << 23 : (enable_bch_ecc ? 2 << 23 : 1 << 23)); ++ ++ chip->CFG1 = (0 << 0) /* Enable ecc */ ++ | (7 << 2) /* 8 recovery cycles */ ++ | (0 << 5) /* Allow CS deassertion */ ++ /* Bad block marker location */ ++ | ((mtd_writesize - (chip->cw_size * ( ++ (mtd_writesize >> 9) - 1)) + 1) << 6) ++ | (0 << 16) /* Bad block in user data area */ ++ | (2 << 17) /* 6 cycle tWB/tRB */ ++ | ((wide_bus) ? CFG1_WIDE_FLASH : 0); /* Wide flash bit */ ++ ++ chip->ecc_buf_cfg = 0x203; ++ chip->CFG0_RAW = 0xA80420C0; ++ chip->CFG1_RAW = 0x5045D; ++ ++ if (enable_bch_ecc) { ++ chip->CFG1 |= (1 << 27); /* Enable BCH engine */ ++ chip->ecc_bch_cfg = (0 << 0) /* Enable ECC*/ ++ | (0 << 1) /* Enable/Disable SW reset of ECC engine */ ++ | (1 << 4) /* 8bit ecc*/ ++ | ((wide_bus) ? (14 << 8) : (13 << 8))/*parity bytes*/ ++ | (516 << 16) /* 516 user data bytes */ ++ | (1 << 30); /* Turn on ECC engine clocks always */ ++ chip->CFG0_RAW = 0xA80428C0; /* CW size is increased to 532B */ ++ } ++ ++ /* ++ * For 4bit RS ECC (default ECC), parity bytes = 10 (for x8 and x16 I/O) ++ * For 8bit BCH ECC, parity bytes = 13 (x8) or 14 (x16 I/O). ++ */ ++ chip->ecc_parity_bytes = enable_bch_ecc ? (wide_bus ? 14 : 13) : 10; ++ ++ pr_info("CFG0 Init : 0x%08x\n", chip->CFG0); ++ pr_info("CFG1 Init : 0x%08x\n", chip->CFG1); ++ pr_info("ECCBUFCFG : 0x%08x\n", chip->ecc_buf_cfg); ++ ++ if (mtd->oobsize == 64) { ++ mtd->oobavail = msm_nand_oob_64.oobavail; ++ mtd->ecclayout = &msm_nand_oob_64; ++ } else if (mtd->oobsize == 128) { ++ mtd->oobavail = msm_nand_oob_128.oobavail; ++ mtd->ecclayout = &msm_nand_oob_128; ++ } else if (mtd->oobsize == 224) { ++ mtd->oobavail = wide_bus ? msm_nand_oob_224_x16.oobavail : ++ msm_nand_oob_224_x8.oobavail; ++ mtd->ecclayout = wide_bus ? &msm_nand_oob_224_x16 : ++ &msm_nand_oob_224_x8; ++ } else if (mtd->oobsize == 256) { ++ mtd->oobavail = msm_nand_oob_256.oobavail; ++ mtd->ecclayout = &msm_nand_oob_256; ++ } else { ++ pr_err("Unsupported Nand, oobsize: 0x%x \n", ++ mtd->oobsize); ++ return -ENODEV; ++ } ++ ++ /* Fill in remaining MTD driver data */ ++ mtd->type = MTD_NANDFLASH; ++ mtd->flags = MTD_CAP_NANDFLASH; ++ /* mtd->ecctype = MTD_ECC_SW; */ ++ mtd->_erase = msm_nand_erase; ++ mtd->_block_isbad = msm_nand_block_isbad; ++ mtd->_block_markbad = msm_nand_block_markbad; ++ mtd->_point = NULL; ++ mtd->_unpoint = NULL; ++ mtd->_read = msm_nand_read; ++ mtd->_write = msm_nand_write; ++ mtd->_read_oob = msm_nand_read_oob; ++ mtd->_write_oob = msm_nand_write_oob; ++ if (dual_nand_ctlr_present) { ++ mtd->_read_oob = msm_nand_read_oob_dualnandc; ++ mtd->_write_oob = msm_nand_write_oob_dualnandc; ++ if (interleave_enable) { ++ mtd->_erase = msm_nand_erase_dualnandc; ++ mtd->_block_isbad = msm_nand_block_isbad_dualnandc; ++ } ++ } ++ ++ /* mtd->sync = msm_nand_sync; */ ++ mtd->_lock = NULL; ++ /* mtd->_unlock = msm_nand_unlock; */ ++ mtd->_suspend = msm_nand_suspend; ++ mtd->_resume = msm_nand_resume; ++ mtd->owner = THIS_MODULE; ++ ++ /* Unlock whole block */ ++ /* msm_nand_unlock_all(mtd); */ ++ ++ /* return this->scan_bbt(mtd); */ ++ return 0; ++} ++EXPORT_SYMBOL_GPL(msm_nand_scan); ++ ++/** ++ * msm_nand_release - [msm_nand Interface] Free resources held by the msm_nand device ++ * @param mtd MTD device structure ++ */ ++void msm_nand_release(struct mtd_info *mtd) ++{ ++ /* struct msm_nand_chip *this = mtd->priv; */ ++ ++ /* Deregister the device */ ++ mtd_device_unregister(mtd); ++} ++EXPORT_SYMBOL_GPL(msm_nand_release); ++ ++struct msm_nand_info { ++ struct mtd_info mtd; ++ struct mtd_partition *parts; ++ struct msm_nand_chip msm_nand; ++}; ++ ++/* duplicating the NC01 XFR contents to NC10 */ ++static int msm_nand_nc10_xfr_settings(struct mtd_info *mtd) ++{ ++ struct msm_nand_chip *chip = mtd->priv; ++ ++ struct { ++ dmov_s cmd[2]; ++ unsigned cmdptr; ++ } *dma_buffer; ++ dmov_s *cmd; ++ ++ wait_event(chip->wait_queue, ++ (dma_buffer = msm_nand_get_dma_buffer( ++ chip, sizeof(*dma_buffer)))); ++ ++ cmd = dma_buffer->cmd; ++ ++ /* Copying XFR register contents from NC01 --> NC10 */ ++ cmd->cmd = 0; ++ cmd->src = NC01(MSM_NAND_XFR_STEP1); ++ cmd->dst = NC10(MSM_NAND_XFR_STEP1); ++ cmd->len = 28; ++ cmd++; ++ ++ BUILD_BUG_ON(2 != ARRAY_SIZE(dma_buffer->cmd)); ++ BUG_ON(cmd - dma_buffer->cmd > ARRAY_SIZE(dma_buffer->cmd)); ++ dma_buffer->cmd[0].cmd |= CMD_OCB; ++ cmd[-1].cmd |= CMD_OCU | CMD_LC; ++ dma_buffer->cmdptr = (msm_virt_to_dma(chip, dma_buffer->cmd) >> 3) ++ | CMD_PTR_LP; ++ ++ mb(); ++ msm_dmov_exec_cmd(chip->dma_channel, DMOV_CMD_PTR_LIST ++ | DMOV_CMD_ADDR(msm_virt_to_dma(chip, ++ &dma_buffer->cmdptr))); ++ mb(); ++ msm_nand_release_dma_buffer(chip, dma_buffer, sizeof(*dma_buffer)); ++ return 0; ++} ++ ++static ssize_t boot_layout_show(struct device *dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ return sprintf(buf, "%d\n", boot_layout); ++} ++ ++static ssize_t boot_layout_store(struct device *dev, ++ struct device_attribute *attr, ++ const char *buf, size_t n) ++{ ++ struct msm_nand_info *info = dev_get_drvdata(dev); ++ struct msm_nand_chip *chip = info->mtd.priv; ++ unsigned int ud_size; ++ unsigned int spare_size; ++ unsigned int ecc_num_data_bytes; ++ ++ sscanf(buf, "%d", &boot_layout); ++ ++ ud_size = boot_layout? 512: 516; ++ spare_size = boot_layout? (chip->cw_size - ++ (chip->ecc_parity_bytes+ 1+ ud_size)): ++ (enable_bch_ecc ? 2 : 1); ++ ecc_num_data_bytes = boot_layout? 512: 516; ++ ++ chip->CFG0 = (chip->CFG0 & ~SPARE_SIZE_BYTES_MASK); ++ chip->CFG0 |= (spare_size << 23); ++ ++ chip->CFG0 = (chip->CFG0 & ~UD_SIZE_BYTES_MASK); ++ chip->CFG0 |= (ud_size << 9); ++ ++ chip->ecc_buf_cfg = (chip->ecc_buf_cfg & ~ECC_NUM_DATA_BYTES_MASK) ++ | (ecc_num_data_bytes << 16); ++ ++ return n; ++} ++ ++static const DEVICE_ATTR(boot_layout, 0644, boot_layout_show, boot_layout_store); ++ ++static int msm_nand_probe(struct platform_device *pdev) ++ ++{ ++ struct msm_nand_info *info; ++ struct resource *res; ++ int err; ++ struct mtd_part_parser_data ppdata = {}; ++ ++ ++ res = platform_get_resource(pdev, ++ IORESOURCE_MEM, 0); ++ if (!res || !res->start) { ++ pr_err("%s: msm_nand_phys resource invalid/absent\n", ++ __func__); ++ return -ENODEV; ++ } ++ msm_nand_phys = res->start; ++ ++ info = devm_kzalloc(&pdev->dev, sizeof(struct msm_nand_info), GFP_KERNEL); ++ if (!info) { ++ pr_err("%s: No memory for msm_nand_info\n", __func__); ++ return -ENOMEM; ++ } ++ ++ info->msm_nand.dev = &pdev->dev; ++ ++ init_waitqueue_head(&info->msm_nand.wait_queue); ++ ++ info->msm_nand.dma_channel = 3; ++ pr_info("%s: dmac 0x%x\n", __func__, info->msm_nand.dma_channel); ++ ++ /* this currently fails if dev is passed in */ ++ info->msm_nand.dma_buffer = ++ dma_alloc_coherent(/*dev*/ NULL, MSM_NAND_DMA_BUFFER_SIZE, ++ &info->msm_nand.dma_addr, GFP_KERNEL); ++ if (info->msm_nand.dma_buffer == NULL) { ++ pr_err("%s: No memory for msm_nand.dma_buffer\n", __func__); ++ err = -ENOMEM; ++ goto out_free_info; ++ } ++ ++ pr_info("%s: allocated dma buffer at %p, dma_addr %x\n", ++ __func__, info->msm_nand.dma_buffer, info->msm_nand.dma_addr); ++ ++ /* Let default be VERSION_1 for backward compatibility */ ++ info->msm_nand.uncorrectable_bit_mask = BIT(8); ++ info->msm_nand.num_err_mask = 0x1F; ++ ++ info->mtd.name = dev_name(&pdev->dev); ++ info->mtd.priv = &info->msm_nand; ++ info->mtd.owner = THIS_MODULE; ++ ++ /* config ebi2_cfg register only for ping pong mode!!! */ ++ if (!interleave_enable && dual_nand_ctlr_present) ++ flash_wr_reg(&info->msm_nand, EBI2_CFG_REG, 0x4010080); ++ ++ if (dual_nand_ctlr_present) ++ msm_nand_nc10_xfr_settings(&info->mtd); ++ ++ if (msm_nand_scan(&info->mtd, 1)) ++ if (msm_onenand_scan(&info->mtd, 1)) { ++ pr_err("%s: No nand device found\n", __func__); ++ err = -ENXIO; ++ goto out_free_dma_buffer; ++ } ++ ++ flash_wr_reg(&info->msm_nand, MSM_NAND_DEV_CMD_VLD, ++ DEV_CMD_VLD_SEQ_READ_START_VLD | ++ DEV_CMD_VLD_ERASE_START_VLD | ++ DEV_CMD_VLD_WRITE_START_VLD | ++ DEV_CMD_VLD_READ_START_VLD); ++ ++ ppdata.of_node = pdev->dev.of_node; ++ err = mtd_device_parse_register(&info->mtd, NULL, &ppdata, NULL, 0); ++ ++ if (err < 0) { ++ pr_err("%s: mtd_device_parse_register failed with err=%d\n", ++ __func__, err); ++ goto out_free_dma_buffer; ++ } ++ ++ err = sysfs_create_file(&pdev->dev.kobj, &dev_attr_boot_layout.attr); ++ if (err) ++ goto out_free_dma_buffer; ++ ++ dev_set_drvdata(&pdev->dev, info); ++ ++ return 0; ++ ++out_free_dma_buffer: ++ dma_free_coherent(NULL, MSM_NAND_DMA_BUFFER_SIZE, ++ info->msm_nand.dma_buffer, ++ info->msm_nand.dma_addr); ++out_free_info: ++ return err; ++} ++ ++static int msm_nand_remove(struct platform_device *pdev) ++{ ++ struct msm_nand_info *info = dev_get_drvdata(&pdev->dev); ++ ++ dev_set_drvdata(&pdev->dev, NULL); ++ ++ if (info) { ++ msm_nand_release(&info->mtd); ++ dma_free_coherent(NULL, MSM_NAND_DMA_BUFFER_SIZE, ++ info->msm_nand.dma_buffer, ++ info->msm_nand.dma_addr); ++ } ++ ++ sysfs_remove_file(&pdev->dev.kobj, &dev_attr_boot_layout.attr); ++ ++ return 0; ++} ++ ++ ++#ifdef CONFIG_OF ++static const struct of_device_id msm_nand_of_match[] = { ++ { .compatible = "qcom,qcom_nand", }, ++ {}, ++}; ++MODULE_DEVICE_TABLE(of, msm_nand_of_match); ++#endif ++ ++ ++static struct platform_driver msm_nand_driver = { ++ .probe = msm_nand_probe, ++ .remove = msm_nand_remove, ++ .driver = { ++ .name = "qcom_nand", ++ .owner = THIS_MODULE, ++ .of_match_table = msm_nand_of_match, ++ } ++}; ++ ++ ++module_platform_driver(msm_nand_driver); ++ ++MODULE_LICENSE("GPL"); ++MODULE_DESCRIPTION("msm_nand flash driver code"); +diff --git a/drivers/mtd/nand/qcom_nand.h b/drivers/mtd/nand/qcom_nand.h +new file mode 100644 +index 0000000..468186c +--- /dev/null ++++ b/drivers/mtd/nand/qcom_nand.h +@@ -0,0 +1,196 @@ ++/* drivers/mtd/devices/msm_nand.h ++ * ++ * Copyright (c) 2008-2011, The Linux Foundation. All rights reserved. ++ * Copyright (C) 2007 Google, Inc. ++ * ++ * This software is licensed under the terms of the GNU General Public ++ * License version 2, as published by the Free Software Foundation, and ++ * may be copied, distributed, and modified under those terms. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ */ ++ ++#ifndef __DRIVERS_MTD_DEVICES_MSM_NAND_H ++#define __DRIVERS_MTD_DEVICES_MSM_NAND_H ++ ++extern unsigned long msm_nand_phys; ++extern unsigned long msm_nandc01_phys; ++extern unsigned long msm_nandc10_phys; ++extern unsigned long msm_nandc11_phys; ++extern unsigned long ebi2_register_base; ++ ++#define NC01(X) ((X) + msm_nandc01_phys - msm_nand_phys) ++#define NC10(X) ((X) + msm_nandc10_phys - msm_nand_phys) ++#define NC11(X) ((X) + msm_nandc11_phys - msm_nand_phys) ++ ++#define MSM_NAND_REG(off) (msm_nand_phys + (off)) ++ ++#define MSM_NAND_FLASH_CMD MSM_NAND_REG(0x0000) ++#define MSM_NAND_ADDR0 MSM_NAND_REG(0x0004) ++#define MSM_NAND_ADDR1 MSM_NAND_REG(0x0008) ++#define MSM_NAND_FLASH_CHIP_SELECT MSM_NAND_REG(0x000C) ++#define MSM_NAND_EXEC_CMD MSM_NAND_REG(0x0010) ++#define MSM_NAND_FLASH_STATUS MSM_NAND_REG(0x0014) ++#define MSM_NAND_BUFFER_STATUS MSM_NAND_REG(0x0018) ++#define MSM_NAND_SFLASHC_STATUS MSM_NAND_REG(0x001C) ++#define MSM_NAND_DEV0_CFG0 MSM_NAND_REG(0x0020) ++#define MSM_NAND_DEV0_CFG1 MSM_NAND_REG(0x0024) ++#define MSM_NAND_DEV0_ECC_CFG MSM_NAND_REG(0x0028) ++#define MSM_NAND_DEV1_ECC_CFG MSM_NAND_REG(0x002C) ++#define MSM_NAND_DEV1_CFG0 MSM_NAND_REG(0x0030) ++#define MSM_NAND_DEV1_CFG1 MSM_NAND_REG(0x0034) ++#define MSM_NAND_SFLASHC_CMD MSM_NAND_REG(0x0038) ++#define MSM_NAND_SFLASHC_EXEC_CMD MSM_NAND_REG(0x003C) ++#define MSM_NAND_READ_ID MSM_NAND_REG(0x0040) ++#define MSM_NAND_READ_STATUS MSM_NAND_REG(0x0044) ++#define MSM_NAND_CONFIG_DATA MSM_NAND_REG(0x0050) ++#define MSM_NAND_CONFIG MSM_NAND_REG(0x0054) ++#define MSM_NAND_CONFIG_MODE MSM_NAND_REG(0x0058) ++#define MSM_NAND_CONFIG_STATUS MSM_NAND_REG(0x0060) ++#define MSM_NAND_MACRO1_REG MSM_NAND_REG(0x0064) ++#define MSM_NAND_XFR_STEP1 MSM_NAND_REG(0x0070) ++#define MSM_NAND_XFR_STEP2 MSM_NAND_REG(0x0074) ++#define MSM_NAND_XFR_STEP3 MSM_NAND_REG(0x0078) ++#define MSM_NAND_XFR_STEP4 MSM_NAND_REG(0x007C) ++#define MSM_NAND_XFR_STEP5 MSM_NAND_REG(0x0080) ++#define MSM_NAND_XFR_STEP6 MSM_NAND_REG(0x0084) ++#define MSM_NAND_XFR_STEP7 MSM_NAND_REG(0x0088) ++#define MSM_NAND_GENP_REG0 MSM_NAND_REG(0x0090) ++#define MSM_NAND_GENP_REG1 MSM_NAND_REG(0x0094) ++#define MSM_NAND_GENP_REG2 MSM_NAND_REG(0x0098) ++#define MSM_NAND_GENP_REG3 MSM_NAND_REG(0x009C) ++#define MSM_NAND_DEV_CMD0 MSM_NAND_REG(0x00A0) ++#define MSM_NAND_DEV_CMD1 MSM_NAND_REG(0x00A4) ++#define MSM_NAND_DEV_CMD2 MSM_NAND_REG(0x00A8) ++#define MSM_NAND_DEV_CMD_VLD MSM_NAND_REG(0x00AC) ++#define DEV_CMD_VLD_SEQ_READ_START_VLD 0x10 ++#define DEV_CMD_VLD_ERASE_START_VLD 0x8 ++#define DEV_CMD_VLD_WRITE_START_VLD 0x4 ++#define DEV_CMD_VLD_READ_STOP_VLD 0x2 ++#define DEV_CMD_VLD_READ_START_VLD 0x1 ++ ++#define MSM_NAND_EBI2_MISR_SIG_REG MSM_NAND_REG(0x00B0) ++#define MSM_NAND_ADDR2 MSM_NAND_REG(0x00C0) ++#define MSM_NAND_ADDR3 MSM_NAND_REG(0x00C4) ++#define MSM_NAND_ADDR4 MSM_NAND_REG(0x00C8) ++#define MSM_NAND_ADDR5 MSM_NAND_REG(0x00CC) ++#define MSM_NAND_DEV_CMD3 MSM_NAND_REG(0x00D0) ++#define MSM_NAND_DEV_CMD4 MSM_NAND_REG(0x00D4) ++#define MSM_NAND_DEV_CMD5 MSM_NAND_REG(0x00D8) ++#define MSM_NAND_DEV_CMD6 MSM_NAND_REG(0x00DC) ++#define MSM_NAND_SFLASHC_BURST_CFG MSM_NAND_REG(0x00E0) ++#define MSM_NAND_ADDR6 MSM_NAND_REG(0x00E4) ++#define MSM_NAND_EBI2_ECC_BUF_CFG MSM_NAND_REG(0x00F0) ++#define MSM_NAND_HW_INFO MSM_NAND_REG(0x00FC) ++#define MSM_NAND_FLASH_BUFFER MSM_NAND_REG(0x0100) ++ ++/* device commands */ ++ ++#define MSM_NAND_CMD_SOFT_RESET 0x01 ++#define MSM_NAND_CMD_PAGE_READ 0x32 ++#define MSM_NAND_CMD_PAGE_READ_ECC 0x33 ++#define MSM_NAND_CMD_PAGE_READ_ALL 0x34 ++#define MSM_NAND_CMD_SEQ_PAGE_READ 0x15 ++#define MSM_NAND_CMD_PRG_PAGE 0x36 ++#define MSM_NAND_CMD_PRG_PAGE_ECC 0x37 ++#define MSM_NAND_CMD_PRG_PAGE_ALL 0x39 ++#define MSM_NAND_CMD_BLOCK_ERASE 0x3A ++#define MSM_NAND_CMD_FETCH_ID 0x0B ++#define MSM_NAND_CMD_STATUS 0x0C ++#define MSM_NAND_CMD_RESET 0x0D ++ ++/* Sflash Commands */ ++ ++#define MSM_NAND_SFCMD_DATXS 0x0 ++#define MSM_NAND_SFCMD_CMDXS 0x1 ++#define MSM_NAND_SFCMD_BURST 0x0 ++#define MSM_NAND_SFCMD_ASYNC 0x1 ++#define MSM_NAND_SFCMD_ABORT 0x1 ++#define MSM_NAND_SFCMD_REGRD 0x2 ++#define MSM_NAND_SFCMD_REGWR 0x3 ++#define MSM_NAND_SFCMD_INTLO 0x4 ++#define MSM_NAND_SFCMD_INTHI 0x5 ++#define MSM_NAND_SFCMD_DATRD 0x6 ++#define MSM_NAND_SFCMD_DATWR 0x7 ++ ++#define SFLASH_PREPCMD(numxfr, offval, delval, trnstp, mode, opcode) \ ++ ((numxfr<<20)|(offval<<12)|(delval<<6)|(trnstp<<5)|(mode<<4)|opcode) ++ ++#define SFLASH_BCFG 0x20100327 ++ ++/* Onenand addresses */ ++ ++#define ONENAND_MANUFACTURER_ID 0xF000 ++#define ONENAND_DEVICE_ID 0xF001 ++#define ONENAND_VERSION_ID 0xF002 ++#define ONENAND_DATA_BUFFER_SIZE 0xF003 ++#define ONENAND_BOOT_BUFFER_SIZE 0xF004 ++#define ONENAND_AMOUNT_OF_BUFFERS 0xF005 ++#define ONENAND_TECHNOLOGY 0xF006 ++#define ONENAND_START_ADDRESS_1 0xF100 ++#define ONENAND_START_ADDRESS_2 0xF101 ++#define ONENAND_START_ADDRESS_3 0xF102 ++#define ONENAND_START_ADDRESS_4 0xF103 ++#define ONENAND_START_ADDRESS_5 0xF104 ++#define ONENAND_START_ADDRESS_6 0xF105 ++#define ONENAND_START_ADDRESS_7 0xF106 ++#define ONENAND_START_ADDRESS_8 0xF107 ++#define ONENAND_START_BUFFER 0xF200 ++#define ONENAND_COMMAND 0xF220 ++#define ONENAND_SYSTEM_CONFIG_1 0xF221 ++#define ONENAND_SYSTEM_CONFIG_2 0xF222 ++#define ONENAND_CONTROLLER_STATUS 0xF240 ++#define ONENAND_INTERRUPT_STATUS 0xF241 ++#define ONENAND_START_BLOCK_ADDRESS 0xF24C ++#define ONENAND_WRITE_PROT_STATUS 0xF24E ++#define ONENAND_ECC_STATUS 0xFF00 ++#define ONENAND_ECC_ERRPOS_MAIN0 0xFF01 ++#define ONENAND_ECC_ERRPOS_SPARE0 0xFF02 ++#define ONENAND_ECC_ERRPOS_MAIN1 0xFF03 ++#define ONENAND_ECC_ERRPOS_SPARE1 0xFF04 ++#define ONENAND_ECC_ERRPOS_MAIN2 0xFF05 ++#define ONENAND_ECC_ERRPOS_SPARE2 0xFF06 ++#define ONENAND_ECC_ERRPOS_MAIN3 0xFF07 ++#define ONENAND_ECC_ERRPOS_SPARE3 0xFF08 ++ ++/* Onenand commands */ ++#define ONENAND_WP_US (1 << 2) ++#define ONENAND_WP_LS (1 << 1) ++ ++#define ONENAND_CMDLOAD 0x0000 ++#define ONENAND_CMDLOADSPARE 0x0013 ++#define ONENAND_CMDPROG 0x0080 ++#define ONENAND_CMDPROGSPARE 0x001A ++#define ONENAND_CMDERAS 0x0094 ++#define ONENAND_CMD_UNLOCK 0x0023 ++#define ONENAND_CMD_LOCK 0x002A ++ ++#define ONENAND_SYSCFG1_ECCENA(mode) (0x40E0 | (mode ? 0 : 0x8002)) ++#define ONENAND_SYSCFG1_ECCDIS(mode) (0x41E0 | (mode ? 0 : 0x8002)) ++ ++#define ONENAND_CLRINTR 0x0000 ++#define ONENAND_STARTADDR1_RES 0x07FF ++#define ONENAND_STARTADDR3_RES 0x07FF ++ ++#define DATARAM0_0 0x8 ++#define DEVICE_FLASHCORE_0 (0 << 15) ++#define DEVICE_FLASHCORE_1 (1 << 15) ++#define DEVICE_BUFFERRAM_0 (0 << 15) ++#define DEVICE_BUFFERRAM_1 (1 << 15) ++#define ONENAND_DEVICE_IS_DDP (1 << 3) ++ ++#define CLEAN_DATA_16 0xFFFF ++#define CLEAN_DATA_32 0xFFFFFFFF ++ ++#define EBI2_REG(off) (ebi2_register_base + (off)) ++#define EBI2_CHIP_SELECT_CFG0 EBI2_REG(0x0000) ++#define EBI2_CFG_REG EBI2_REG(0x0004) ++#define EBI2_NAND_ADM_MUX EBI2_REG(0x005C) ++ ++extern struct flash_platform_data msm_nand_data; ++ ++#endif +-- +1.7.10.4 + |