diff options
author | John Crispin <john@phrozen.org> | 2019-08-02 10:33:28 +0200 |
---|---|---|
committer | John Crispin <john@phrozen.org> | 2019-08-02 10:36:11 +0200 |
commit | 66458c49aa14ebc9ba2e4f9b6a323b8ff122807b (patch) | |
tree | 43cd8477d8341136c691d49b139038b14793f635 /target/linux/mediatek/patches-4.19/0306-spi-spi-mem-MediaTek-Add-SPI-NAND-Flash-interface-dr.patch | |
parent | cb49e46a8a4526d86270ced3ba3aa90225ca82d7 (diff) | |
download | upstream-66458c49aa14ebc9ba2e4f9b6a323b8ff122807b.tar.gz upstream-66458c49aa14ebc9ba2e4f9b6a323b8ff122807b.tar.bz2 upstream-66458c49aa14ebc9ba2e4f9b6a323b8ff122807b.zip |
mediatek: add v4.19 support
Bump the target to v4.19. Add a patch with additional eth driver
fixes/features that MTK provided aswell as the driver for the new mt7530
switch.
Signed-off-by: John Crispin <john@phrozen.org>
Diffstat (limited to 'target/linux/mediatek/patches-4.19/0306-spi-spi-mem-MediaTek-Add-SPI-NAND-Flash-interface-dr.patch')
-rw-r--r-- | target/linux/mediatek/patches-4.19/0306-spi-spi-mem-MediaTek-Add-SPI-NAND-Flash-interface-dr.patch | 1235 |
1 files changed, 1235 insertions, 0 deletions
diff --git a/target/linux/mediatek/patches-4.19/0306-spi-spi-mem-MediaTek-Add-SPI-NAND-Flash-interface-dr.patch b/target/linux/mediatek/patches-4.19/0306-spi-spi-mem-MediaTek-Add-SPI-NAND-Flash-interface-dr.patch new file mode 100644 index 0000000000..c307abead9 --- /dev/null +++ b/target/linux/mediatek/patches-4.19/0306-spi-spi-mem-MediaTek-Add-SPI-NAND-Flash-interface-dr.patch @@ -0,0 +1,1235 @@ +From 1ecb38eabd90efe93957d0a822a167560c39308a Mon Sep 17 00:00:00 2001 +From: Xiangsheng Hou <xiangsheng.hou@mediatek.com> +Date: Wed, 20 Mar 2019 16:19:51 +0800 +Subject: [PATCH 6/6] spi: spi-mem: MediaTek: Add SPI NAND Flash interface + driver for MediaTek MT7622 + +Change-Id: I3e78406bb9b46b0049d3988a5c71c7069e4f809c +Signed-off-by: Xiangsheng Hou <xiangsheng.hou@mediatek.com> +--- + drivers/spi/Kconfig | 9 + + drivers/spi/Makefile | 1 + + drivers/spi/spi-mtk-snfi.c | 1183 ++++++++++++++++++++++++++++++++++++ + 3 files changed, 1193 insertions(+) + create mode 100644 drivers/spi/spi-mtk-snfi.c + +Index: linux-4.19.48/drivers/spi/spi-mtk-snfi.c +=================================================================== +--- /dev/null ++++ linux-4.19.48/drivers/spi/spi-mtk-snfi.c +@@ -0,0 +1,1183 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Driver for MediaTek SPI Nand interface ++ * ++ * Copyright (C) 2018 MediaTek Inc. ++ * Authors: Xiangsheng Hou <xiangsheng.hou@mediatek.com> ++ * ++ */ ++ ++#include <linux/clk.h> ++#include <linux/delay.h> ++#include <linux/dma-mapping.h> ++#include <linux/interrupt.h> ++#include <linux/iopoll.h> ++#include <linux/mtd/mtd.h> ++#include <linux/mtd/mtk_ecc.h> ++#include <linux/mtd/spinand.h> ++#include <linux/module.h> ++#include <linux/of.h> ++#include <linux/of_device.h> ++#include <linux/platform_device.h> ++#include <linux/spi/spi.h> ++#include <linux/spi/spi-mem.h> ++ ++/* NAND controller register definition */ ++/* NFI control */ ++#define NFI_CNFG 0x00 ++#define CNFG_DMA BIT(0) ++#define CNFG_READ_EN BIT(1) ++#define CNFG_DMA_BURST_EN BIT(2) ++#define CNFG_BYTE_RW BIT(6) ++#define CNFG_HW_ECC_EN BIT(8) ++#define CNFG_AUTO_FMT_EN BIT(9) ++#define CNFG_OP_PROGRAM (3UL << 12) ++#define CNFG_OP_CUST (6UL << 12) ++#define NFI_PAGEFMT 0x04 ++#define PAGEFMT_512 0 ++#define PAGEFMT_2K 1 ++#define PAGEFMT_4K 2 ++#define PAGEFMT_FDM_SHIFT 8 ++#define PAGEFMT_FDM_ECC_SHIFT 12 ++#define NFI_CON 0x08 ++#define CON_FIFO_FLUSH BIT(0) ++#define CON_NFI_RST BIT(1) ++#define CON_BRD BIT(8) ++#define CON_BWR BIT(9) ++#define CON_SEC_SHIFT 12 ++#define NFI_INTR_EN 0x10 ++#define INTR_AHB_DONE_EN BIT(6) ++#define NFI_INTR_STA 0x14 ++#define NFI_CMD 0x20 ++#define NFI_STA 0x60 ++#define STA_EMP_PAGE BIT(12) ++#define NAND_FSM_MASK (0x1f << 24) ++#define NFI_FSM_MASK (0xf << 16) ++#define NFI_ADDRCNTR 0x70 ++#define CNTR_MASK GENMASK(16, 12) ++#define ADDRCNTR_SEC_SHIFT 12 ++#define ADDRCNTR_SEC(val) \ ++ (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) ++#define NFI_STRADDR 0x80 ++#define NFI_BYTELEN 0x84 ++#define NFI_CSEL 0x90 ++#define NFI_FDML(x) (0xa0 + (x) * sizeof(u32) * 2) ++#define NFI_FDMM(x) (0xa4 + (x) * sizeof(u32) * 2) ++#define NFI_MASTER_STA 0x224 ++#define MASTER_STA_MASK 0x0fff ++/* NFI_SPI control */ ++#define SNFI_MAC_OUTL 0x504 ++#define SNFI_MAC_INL 0x508 ++#define SNFI_RD_CTL2 0x510 ++#define RD_CMD_MASK 0x00ff ++#define RD_DUMMY_SHIFT 8 ++#define SNFI_RD_CTL3 0x514 ++#define RD_ADDR_MASK 0xffff ++#define SNFI_MISC_CTL 0x538 ++#define RD_MODE_X2 BIT(16) ++#define RD_MODE_X4 (2UL << 16) ++#define RD_QDUAL_IO (4UL << 16) ++#define RD_MODE_MASK (7UL << 16) ++#define RD_CUSTOM_EN BIT(6) ++#define WR_CUSTOM_EN BIT(7) ++#define WR_X4_EN BIT(20) ++#define SW_RST BIT(28) ++#define SNFI_MISC_CTL2 0x53c ++#define WR_LEN_SHIFT 16 ++#define SNFI_PG_CTL1 0x524 ++#define WR_LOAD_CMD_SHIFT 8 ++#define SNFI_PG_CTL2 0x528 ++#define WR_LOAD_ADDR_MASK 0xffff ++#define SNFI_MAC_CTL 0x500 ++#define MAC_WIP BIT(0) ++#define MAC_WIP_READY BIT(1) ++#define MAC_TRIG BIT(2) ++#define MAC_EN BIT(3) ++#define MAC_SIO_SEL BIT(4) ++#define SNFI_STA_CTL1 0x550 ++#define SPI_STATE_IDLE 0xf ++#define SNFI_CNFG 0x55c ++#define SNFI_MODE_EN BIT(0) ++#define SNFI_GPRAM_DATA 0x800 ++#define SNFI_GPRAM_MAX_LEN 16 ++ ++/* Dummy command trigger NFI to spi mode */ ++#define NAND_CMD_DUMMYREAD 0x00 ++#define NAND_CMD_DUMMYPROG 0x80 ++ ++#define MTK_TIMEOUT 500000 ++#define MTK_RESET_TIMEOUT 1000000 ++#define MTK_SNFC_MIN_SPARE 16 ++#define KB(x) ((x) * 1024UL) ++ ++/* ++ * supported spare size of each IP. ++ * order should be the same with the spare size bitfiled defination of ++ * register NFI_PAGEFMT. ++ */ ++static const u8 spare_size_mt7622[] = { ++ 16, 26, 27, 28 ++}; ++ ++struct mtk_snfi_caps { ++ const u8 *spare_size; ++ u8 num_spare_size; ++ u32 nand_sec_size; ++ u8 nand_fdm_size; ++ u8 nand_fdm_ecc_size; ++ u8 ecc_parity_bits; ++ u8 pageformat_spare_shift; ++ u8 bad_mark_swap; ++}; ++ ++struct mtk_snfi_bad_mark_ctl { ++ void (*bm_swap)(struct spi_mem *mem, u8 *buf, int raw); ++ u32 sec; ++ u32 pos; ++}; ++ ++struct mtk_snfi_nand_chip { ++ struct mtk_snfi_bad_mark_ctl bad_mark; ++ u32 spare_per_sector; ++}; ++ ++struct mtk_snfi_clk { ++ struct clk *nfi_clk; ++ struct clk *spi_clk; ++}; ++ ++struct mtk_snfi { ++ const struct mtk_snfi_caps *caps; ++ struct mtk_snfi_nand_chip snfi_nand; ++ struct mtk_snfi_clk clk; ++ struct mtk_ecc_config ecc_cfg; ++ struct mtk_ecc *ecc; ++ struct completion done; ++ struct device *dev; ++ ++ void __iomem *regs; ++ ++ u8 *buffer; ++}; ++ ++static inline u8 *oob_ptr(struct spi_mem *mem, int i) ++{ ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ u8 *poi; ++ ++ /* map the sector's FDM data to free oob: ++ * the beginning of the oob area stores the FDM data of bad mark ++ */ ++ ++ if (i < snfi_nand->bad_mark.sec) ++ poi = spinand->oobbuf + (i + 1) * snfi->caps->nand_fdm_size; ++ else if (i == snfi_nand->bad_mark.sec) ++ poi = spinand->oobbuf; ++ else ++ poi = spinand->oobbuf + i * snfi->caps->nand_fdm_size; ++ ++ return poi; ++} ++ ++static inline int mtk_data_len(struct spi_mem *mem) ++{ ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ ++ return snfi->caps->nand_sec_size + snfi_nand->spare_per_sector; ++} ++ ++static inline u8 *mtk_oob_ptr(struct spi_mem *mem, ++ const u8 *p, int i) ++{ ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ ++ return (u8 *)p + i * mtk_data_len(mem) + snfi->caps->nand_sec_size; ++} ++ ++static void mtk_snfi_bad_mark_swap(struct spi_mem *mem, ++ u8 *buf, int raw) ++{ ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ u32 bad_pos = snfi_nand->bad_mark.pos; ++ ++ if (raw) ++ bad_pos += snfi_nand->bad_mark.sec * mtk_data_len(mem); ++ else ++ bad_pos += snfi_nand->bad_mark.sec * snfi->caps->nand_sec_size; ++ ++ swap(spinand->oobbuf[0], buf[bad_pos]); ++} ++ ++static void mtk_snfi_set_bad_mark_ctl(struct mtk_snfi_bad_mark_ctl *bm_ctl, ++ struct spi_mem *mem) ++{ ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ ++ bm_ctl->bm_swap = mtk_snfi_bad_mark_swap; ++ bm_ctl->sec = mtd->writesize / mtk_data_len(mem); ++ bm_ctl->pos = mtd->writesize % mtk_data_len(mem); ++} ++ ++static void mtk_snfi_mac_enable(struct mtk_snfi *snfi) ++{ ++ u32 mac; ++ ++ mac = readl(snfi->regs + SNFI_MAC_CTL); ++ mac &= ~MAC_SIO_SEL; ++ mac |= MAC_EN; ++ ++ writel(mac, snfi->regs + SNFI_MAC_CTL); ++} ++ ++static int mtk_snfi_mac_trigger(struct mtk_snfi *snfi) ++{ ++ u32 mac, reg; ++ int ret = 0; ++ ++ mac = readl(snfi->regs + SNFI_MAC_CTL); ++ mac |= MAC_TRIG; ++ writel(mac, snfi->regs + SNFI_MAC_CTL); ++ ++ ret = readl_poll_timeout_atomic(snfi->regs + SNFI_MAC_CTL, reg, ++ reg & MAC_WIP_READY, 10, ++ MTK_TIMEOUT); ++ if (ret < 0) { ++ dev_err(snfi->dev, "polling wip ready for read timeout\n"); ++ return -EIO; ++ } ++ ++ ret = readl_poll_timeout_atomic(snfi->regs + SNFI_MAC_CTL, reg, ++ !(reg & MAC_WIP), 10, ++ MTK_TIMEOUT); ++ if (ret < 0) { ++ dev_err(snfi->dev, "polling flash update timeout\n"); ++ return -EIO; ++ } ++ ++ return ret; ++} ++ ++static void mtk_snfi_mac_leave(struct mtk_snfi *snfi) ++{ ++ u32 mac; ++ ++ mac = readl(snfi->regs + SNFI_MAC_CTL); ++ mac &= ~(MAC_TRIG | MAC_EN | MAC_SIO_SEL); ++ writel(mac, snfi->regs + SNFI_MAC_CTL); ++} ++ ++static int mtk_snfi_mac_op(struct mtk_snfi *snfi) ++{ ++ int ret = 0; ++ ++ mtk_snfi_mac_enable(snfi); ++ ++ ret = mtk_snfi_mac_trigger(snfi); ++ if (ret) ++ return ret; ++ ++ mtk_snfi_mac_leave(snfi); ++ ++ return ret; ++} ++ ++static irqreturn_t mtk_snfi_irq(int irq, void *id) ++{ ++ struct mtk_snfi *snfi = id; ++ u16 sta, ien; ++ ++ sta = readw(snfi->regs + NFI_INTR_STA); ++ ien = readw(snfi->regs + NFI_INTR_EN); ++ ++ if (!(sta & ien)) ++ return IRQ_NONE; ++ ++ writew(~sta & ien, snfi->regs + NFI_INTR_EN); ++ complete(&snfi->done); ++ ++ return IRQ_HANDLED; ++} ++ ++static int mtk_snfi_enable_clk(struct device *dev, struct mtk_snfi_clk *clk) ++{ ++ int ret; ++ ++ ret = clk_prepare_enable(clk->nfi_clk); ++ if (ret) { ++ dev_err(dev, "failed to enable nfi clk\n"); ++ return ret; ++ } ++ ++ ret = clk_prepare_enable(clk->spi_clk); ++ if (ret) { ++ dev_err(dev, "failed to enable spi clk\n"); ++ clk_disable_unprepare(clk->nfi_clk); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static void mtk_snfi_disable_clk(struct mtk_snfi_clk *clk) ++{ ++ clk_disable_unprepare(clk->nfi_clk); ++ clk_disable_unprepare(clk->spi_clk); ++} ++ ++static int mtk_snfi_reset(struct mtk_snfi *snfi) ++{ ++ u32 val; ++ int ret; ++ ++ /* SW reset controller */ ++ val = readl(snfi->regs + SNFI_MISC_CTL) | SW_RST; ++ writel(val, snfi->regs + SNFI_MISC_CTL); ++ ++ ret = readw_poll_timeout(snfi->regs + SNFI_STA_CTL1, val, ++ !(val & SPI_STATE_IDLE), 50, ++ MTK_RESET_TIMEOUT); ++ if (ret) { ++ dev_warn(snfi->dev, "spi state active in reset [0x%x] = 0x%x\n", ++ SNFI_STA_CTL1, val); ++ return ret; ++ } ++ ++ val = readl(snfi->regs + SNFI_MISC_CTL); ++ val &= ~SW_RST; ++ writel(val, snfi->regs + SNFI_MISC_CTL); ++ ++ /* reset all registers and force the NFI master to terminate */ ++ writew(CON_FIFO_FLUSH | CON_NFI_RST, snfi->regs + NFI_CON); ++ ret = readw_poll_timeout(snfi->regs + NFI_STA, val, ++ !(val & (NFI_FSM_MASK | NAND_FSM_MASK)), 50, ++ MTK_RESET_TIMEOUT); ++ if (ret) { ++ dev_warn(snfi->dev, "nfi active in reset [0x%x] = 0x%x\n", ++ NFI_STA, val); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int mtk_snfi_set_spare_per_sector(struct spinand_device *spinand, ++ const struct mtk_snfi_caps *caps, ++ u32 *sps) ++{ ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ const u8 *spare = caps->spare_size; ++ u32 sectors, i, closest_spare = 0; ++ ++ sectors = mtd->writesize / caps->nand_sec_size; ++ *sps = mtd->oobsize / sectors; ++ ++ if (*sps < MTK_SNFC_MIN_SPARE) ++ return -EINVAL; ++ ++ for (i = 0; i < caps->num_spare_size; i++) { ++ if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { ++ closest_spare = i; ++ if (*sps == spare[i]) ++ break; ++ } ++ } ++ ++ *sps = spare[closest_spare]; ++ ++ return 0; ++} ++ ++static void mtk_snfi_read_fdm_data(struct spi_mem *mem, ++ u32 sectors) ++{ ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ const struct mtk_snfi_caps *caps = snfi->caps; ++ u32 vall, valm; ++ int i, j; ++ u8 *oobptr; ++ ++ for (i = 0; i < sectors; i++) { ++ oobptr = oob_ptr(mem, i); ++ vall = readl(snfi->regs + NFI_FDML(i)); ++ valm = readl(snfi->regs + NFI_FDMM(i)); ++ ++ for (j = 0; j < caps->nand_fdm_size; j++) ++ oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); ++ } ++} ++ ++static void mtk_snfi_write_fdm_data(struct spi_mem *mem, ++ u32 sectors) ++{ ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ const struct mtk_snfi_caps *caps = snfi->caps; ++ u32 vall, valm; ++ int i, j; ++ u8 *oobptr; ++ ++ for (i = 0; i < sectors; i++) { ++ oobptr = oob_ptr(mem, i); ++ vall = 0; ++ valm = 0; ++ for (j = 0; j < 8; j++) { ++ if (j < 4) ++ vall |= (j < caps->nand_fdm_size ? oobptr[j] : ++ 0xff) << (j * 8); ++ else ++ valm |= (j < caps->nand_fdm_size ? oobptr[j] : ++ 0xff) << ((j - 4) * 8); ++ } ++ writel(vall, snfi->regs + NFI_FDML(i)); ++ writel(valm, snfi->regs + NFI_FDMM(i)); ++ } ++} ++ ++static int mtk_snfi_update_ecc_stats(struct spi_mem *mem, ++ u8 *buf, u32 sectors) ++{ ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct mtk_ecc_stats stats; ++ int rc, i; ++ ++ rc = readl(snfi->regs + NFI_STA) & STA_EMP_PAGE; ++ if (rc) { ++ memset(buf, 0xff, sectors * snfi->caps->nand_sec_size); ++ for (i = 0; i < sectors; i++) ++ memset(spinand->oobbuf, 0xff, ++ snfi->caps->nand_fdm_size); ++ return 0; ++ } ++ ++ mtk_ecc_get_stats(snfi->ecc, &stats, sectors); ++ mtd->ecc_stats.corrected += stats.corrected; ++ mtd->ecc_stats.failed += stats.failed; ++ ++ return 0; ++} ++ ++static int mtk_snfi_hw_runtime_config(struct spi_mem *mem) ++{ ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ struct nand_device *nand = mtd_to_nanddev(mtd); ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ const struct mtk_snfi_caps *caps = snfi->caps; ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ u32 fmt, spare, i = 0; ++ int ret; ++ ++ ret = mtk_snfi_set_spare_per_sector(spinand, caps, &spare); ++ if (ret) ++ return ret; ++ ++ /* calculate usable oob bytes for ecc parity data */ ++ snfi_nand->spare_per_sector = spare; ++ spare -= caps->nand_fdm_size; ++ ++ nand->memorg.oobsize = snfi_nand->spare_per_sector ++ * (mtd->writesize / caps->nand_sec_size); ++ mtd->oobsize = nanddev_per_page_oobsize(nand); ++ ++ snfi->ecc_cfg.strength = (spare << 3) / caps->ecc_parity_bits; ++ mtk_ecc_adjust_strength(snfi->ecc, &snfi->ecc_cfg.strength); ++ ++ switch (mtd->writesize) { ++ case 512: ++ fmt = PAGEFMT_512; ++ break; ++ case KB(2): ++ fmt = PAGEFMT_2K; ++ break; ++ case KB(4): ++ fmt = PAGEFMT_4K; ++ break; ++ default: ++ dev_err(snfi->dev, "invalid page len: %d\n", mtd->writesize); ++ return -EINVAL; ++ } ++ ++ /* Setup PageFormat */ ++ while (caps->spare_size[i] != snfi_nand->spare_per_sector) { ++ i++; ++ if (i == (caps->num_spare_size - 1)) { ++ dev_err(snfi->dev, "invalid spare size %d\n", ++ snfi_nand->spare_per_sector); ++ return -EINVAL; ++ } ++ } ++ ++ fmt |= i << caps->pageformat_spare_shift; ++ fmt |= caps->nand_fdm_size << PAGEFMT_FDM_SHIFT; ++ fmt |= caps->nand_fdm_ecc_size << PAGEFMT_FDM_ECC_SHIFT; ++ writel(fmt, snfi->regs + NFI_PAGEFMT); ++ ++ snfi->ecc_cfg.len = caps->nand_sec_size + caps->nand_fdm_ecc_size; ++ ++ mtk_snfi_set_bad_mark_ctl(&snfi_nand->bad_mark, mem); ++ ++ return 0; ++} ++ ++static int mtk_snfi_read_from_cache(struct spi_mem *mem, ++ const struct spi_mem_op *op, int oob_on) ++{ ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ u32 sectors = mtd->writesize / snfi->caps->nand_sec_size; ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ u32 reg, len, col_addr = 0; ++ int dummy_cycle, ret; ++ dma_addr_t dma_addr; ++ ++ len = sectors * (snfi->caps->nand_sec_size ++ + snfi_nand->spare_per_sector); ++ ++ dma_addr = dma_map_single(snfi->dev, snfi->buffer, ++ len, DMA_FROM_DEVICE); ++ ret = dma_mapping_error(snfi->dev, dma_addr); ++ if (ret) { ++ dev_err(snfi->dev, "dma mapping error\n"); ++ return -EINVAL; ++ } ++ ++ /* set Read cache command and dummy cycle */ ++ dummy_cycle = (op->dummy.nbytes << 3) >> (ffs(op->dummy.buswidth) - 1); ++ reg = ((op->cmd.opcode & RD_CMD_MASK) | ++ (dummy_cycle << RD_DUMMY_SHIFT)); ++ writel(reg, snfi->regs + SNFI_RD_CTL2); ++ ++ writel((col_addr & RD_ADDR_MASK), snfi->regs + SNFI_RD_CTL3); ++ ++ reg = readl(snfi->regs + SNFI_MISC_CTL); ++ reg |= RD_CUSTOM_EN; ++ reg &= ~(RD_MODE_MASK | WR_X4_EN); ++ ++ /* set data and addr buswidth */ ++ if (op->data.buswidth == 4) ++ reg |= RD_MODE_X4; ++ else if (op->data.buswidth == 2) ++ reg |= RD_MODE_X2; ++ ++ if (op->addr.buswidth == 4 || op->addr.buswidth == 2) ++ reg |= RD_QDUAL_IO; ++ writel(reg, snfi->regs + SNFI_MISC_CTL); ++ ++ writel(len, snfi->regs + SNFI_MISC_CTL2); ++ writew(sectors << CON_SEC_SHIFT, snfi->regs + NFI_CON); ++ reg = readw(snfi->regs + NFI_CNFG); ++ reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_DMA | CNFG_OP_CUST; ++ ++ if (!oob_on) { ++ reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; ++ writew(reg, snfi->regs + NFI_CNFG); ++ ++ snfi->ecc_cfg.mode = ECC_NFI_MODE; ++ snfi->ecc_cfg.sectors = sectors; ++ snfi->ecc_cfg.op = ECC_DECODE; ++ ret = mtk_ecc_enable(snfi->ecc, &snfi->ecc_cfg); ++ if (ret) { ++ dev_err(snfi->dev, "ecc enable failed\n"); ++ /* clear NFI_CNFG */ ++ reg &= ~(CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_DMA | ++ CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); ++ writew(reg, snfi->regs + NFI_CNFG); ++ goto out; ++ } ++ } else { ++ writew(reg, snfi->regs + NFI_CNFG); ++ } ++ ++ writel(lower_32_bits(dma_addr), snfi->regs + NFI_STRADDR); ++ readw(snfi->regs + NFI_INTR_STA); ++ writew(INTR_AHB_DONE_EN, snfi->regs + NFI_INTR_EN); ++ ++ init_completion(&snfi->done); ++ ++ /* set dummy command to trigger NFI enter SPI mode */ ++ writew(NAND_CMD_DUMMYREAD, snfi->regs + NFI_CMD); ++ reg = readl(snfi->regs + NFI_CON) | CON_BRD; ++ writew(reg, snfi->regs + NFI_CON); ++ ++ ret = wait_for_completion_timeout(&snfi->done, msecs_to_jiffies(500)); ++ if (!ret) { ++ dev_err(snfi->dev, "read ahb done timeout\n"); ++ writew(0, snfi->regs + NFI_INTR_EN); ++ ret = -ETIMEDOUT; ++ goto out; ++ } ++ ++ ret = readl_poll_timeout_atomic(snfi->regs + NFI_BYTELEN, reg, ++ ADDRCNTR_SEC(reg) >= sectors, 10, ++ MTK_TIMEOUT); ++ if (ret < 0) { ++ dev_err(snfi->dev, "polling read byte len timeout\n"); ++ ret = -EIO; ++ } else { ++ if (!oob_on) { ++ ret = mtk_ecc_wait_done(snfi->ecc, ECC_DECODE); ++ if (ret) { ++ dev_warn(snfi->dev, "wait ecc done timeout\n"); ++ } else { ++ mtk_snfi_update_ecc_stats(mem, snfi->buffer, ++ sectors); ++ mtk_snfi_read_fdm_data(mem, sectors); ++ } ++ } ++ } ++ ++ if (oob_on) ++ goto out; ++ ++ mtk_ecc_disable(snfi->ecc); ++out: ++ dma_unmap_single(snfi->dev, dma_addr, len, DMA_FROM_DEVICE); ++ writel(0, snfi->regs + NFI_CON); ++ writel(0, snfi->regs + NFI_CNFG); ++ reg = readl(snfi->regs + SNFI_MISC_CTL); ++ reg &= ~RD_CUSTOM_EN; ++ writel(reg, snfi->regs + SNFI_MISC_CTL); ++ ++ return ret; ++} ++ ++static int mtk_snfi_write_to_cache(struct spi_mem *mem, ++ const struct spi_mem_op *op, ++ int oob_on) ++{ ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ u32 sectors = mtd->writesize / snfi->caps->nand_sec_size; ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ u32 reg, len, col_addr = 0; ++ dma_addr_t dma_addr; ++ int ret; ++ ++ len = sectors * (snfi->caps->nand_sec_size ++ + snfi_nand->spare_per_sector); ++ ++ dma_addr = dma_map_single(snfi->dev, snfi->buffer, len, ++ DMA_TO_DEVICE); ++ ret = dma_mapping_error(snfi->dev, dma_addr); ++ if (ret) { ++ dev_err(snfi->dev, "dma mapping error\n"); ++ return -EINVAL; ++ } ++ ++ /* set program load cmd and address */ ++ reg = (op->cmd.opcode << WR_LOAD_CMD_SHIFT); ++ writel(reg, snfi->regs + SNFI_PG_CTL1); ++ writel(col_addr & WR_LOAD_ADDR_MASK, snfi->regs + SNFI_PG_CTL2); ++ ++ reg = readl(snfi->regs + SNFI_MISC_CTL); ++ reg |= WR_CUSTOM_EN; ++ reg &= ~(RD_MODE_MASK | WR_X4_EN); ++ ++ if (op->data.buswidth == 4) ++ reg |= WR_X4_EN; ++ writel(reg, snfi->regs + SNFI_MISC_CTL); ++ ++ writel(len << WR_LEN_SHIFT, snfi->regs + SNFI_MISC_CTL2); ++ writew(sectors << CON_SEC_SHIFT, snfi->regs + NFI_CON); ++ ++ reg = readw(snfi->regs + NFI_CNFG); ++ reg &= ~(CNFG_READ_EN | CNFG_BYTE_RW); ++ reg |= CNFG_DMA | CNFG_DMA_BURST_EN | CNFG_OP_PROGRAM; ++ ++ if (!oob_on) { ++ reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; ++ writew(reg, snfi->regs + NFI_CNFG); ++ ++ snfi->ecc_cfg.mode = ECC_NFI_MODE; ++ snfi->ecc_cfg.op = ECC_ENCODE; ++ ret = mtk_ecc_enable(snfi->ecc, &snfi->ecc_cfg); ++ if (ret) { ++ dev_err(snfi->dev, "ecc enable failed\n"); ++ /* clear NFI_CNFG */ ++ reg &= ~(CNFG_DMA_BURST_EN | CNFG_DMA | ++ CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); ++ writew(reg, snfi->regs + NFI_CNFG); ++ dma_unmap_single(snfi->dev, dma_addr, len, ++ DMA_FROM_DEVICE); ++ goto out; ++ } ++ /* write OOB into the FDM registers (OOB area in MTK NAND) */ ++ mtk_snfi_write_fdm_data(mem, sectors); ++ } else { ++ writew(reg, snfi->regs + NFI_CNFG); ++ } ++ writel(lower_32_bits(dma_addr), snfi->regs + NFI_STRADDR); ++ readw(snfi->regs + NFI_INTR_STA); ++ writew(INTR_AHB_DONE_EN, snfi->regs + NFI_INTR_EN); ++ ++ init_completion(&snfi->done); ++ ++ /* set dummy command to trigger NFI enter SPI mode */ ++ writew(NAND_CMD_DUMMYPROG, snfi->regs + NFI_CMD); ++ reg = readl(snfi->regs + NFI_CON) | CON_BWR; ++ writew(reg, snfi->regs + NFI_CON); ++ ++ ret = wait_for_completion_timeout(&snfi->done, msecs_to_jiffies(500)); ++ if (!ret) { ++ dev_err(snfi->dev, "custom program done timeout\n"); ++ writew(0, snfi->regs + NFI_INTR_EN); ++ ret = -ETIMEDOUT; ++ goto ecc_disable; ++ } ++ ++ ret = readl_poll_timeout_atomic(snfi->regs + NFI_ADDRCNTR, reg, ++ ADDRCNTR_SEC(reg) >= sectors, ++ 10, MTK_TIMEOUT); ++ if (ret) ++ dev_err(snfi->dev, "hwecc write timeout\n"); ++ ++ecc_disable: ++ mtk_ecc_disable(snfi->ecc); ++ ++out: ++ dma_unmap_single(snfi->dev, dma_addr, len, DMA_TO_DEVICE); ++ writel(0, snfi->regs + NFI_CON); ++ writel(0, snfi->regs + NFI_CNFG); ++ reg = readl(snfi->regs + SNFI_MISC_CTL); ++ reg &= ~WR_CUSTOM_EN; ++ writel(reg, snfi->regs + SNFI_MISC_CTL); ++ ++ return ret; ++} ++ ++static int mtk_snfi_read(struct spi_mem *mem, ++ const struct spi_mem_op *op) ++{ ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ u32 col_addr = op->addr.val; ++ int i, ret, sectors, oob_on = false; ++ ++ if (col_addr == mtd->writesize) ++ oob_on = true; ++ ++ ret = mtk_snfi_read_from_cache(mem, op, oob_on); ++ if (ret) { ++ dev_warn(snfi->dev, "read from cache fail\n"); ++ return ret; ++ } ++ ++ sectors = mtd->writesize / snfi->caps->nand_sec_size; ++ for (i = 0; i < sectors; i++) { ++ if (oob_on) ++ memcpy(oob_ptr(mem, i), ++ mtk_oob_ptr(mem, snfi->buffer, i), ++ snfi->caps->nand_fdm_size); ++ ++ if (i == snfi_nand->bad_mark.sec && snfi->caps->bad_mark_swap) ++ snfi_nand->bad_mark.bm_swap(mem, snfi->buffer, ++ oob_on); ++ } ++ ++ if (!oob_on) ++ memcpy(spinand->databuf, snfi->buffer, mtd->writesize); ++ ++ return ret; ++} ++ ++static int mtk_snfi_write(struct spi_mem *mem, ++ const struct spi_mem_op *op) ++{ ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand; ++ u32 ret, i, sectors, col_addr = op->addr.val; ++ int oob_on = false; ++ ++ if (col_addr == mtd->writesize) ++ oob_on = true; ++ ++ sectors = mtd->writesize / snfi->caps->nand_sec_size; ++ memset(snfi->buffer, 0xff, mtd->writesize + mtd->oobsize); ++ ++ if (!oob_on) ++ memcpy(snfi->buffer, spinand->databuf, mtd->writesize); ++ ++ for (i = 0; i < sectors; i++) { ++ if (i == snfi_nand->bad_mark.sec && snfi->caps->bad_mark_swap) ++ snfi_nand->bad_mark.bm_swap(mem, snfi->buffer, oob_on); ++ ++ if (oob_on) ++ memcpy(mtk_oob_ptr(mem, snfi->buffer, i), ++ oob_ptr(mem, i), ++ snfi->caps->nand_fdm_size); ++ } ++ ++ ret = mtk_snfi_write_to_cache(mem, op, oob_on); ++ if (ret) ++ dev_warn(snfi->dev, "write to cache fail\n"); ++ ++ return ret; ++} ++ ++static int mtk_snfi_command_exec(struct mtk_snfi *snfi, ++ const u8 *txbuf, u8 *rxbuf, ++ const u32 txlen, const u32 rxlen) ++{ ++ u32 tmp, i, j, reg, m; ++ u8 *p_tmp = (u8 *)(&tmp); ++ int ret = 0; ++ ++ /* Moving tx data to NFI_SPI GPRAM */ ++ for (i = 0, m = 0; i < txlen; ) { ++ for (j = 0, tmp = 0; i < txlen && j < 4; i++, j++) ++ p_tmp[j] = txbuf[i]; ++ ++ writel(tmp, snfi->regs + SNFI_GPRAM_DATA + m); ++ m += 4; ++ } ++ ++ writel(txlen, snfi->regs + SNFI_MAC_OUTL); ++ writel(rxlen, snfi->regs + SNFI_MAC_INL); ++ ret = mtk_snfi_mac_op(snfi); ++ if (ret) ++ return ret; ++ ++ /* For NULL input data, this loop will be skipped */ ++ if (rxlen) ++ for (i = 0, m = 0; i < rxlen; ) { ++ reg = readl(snfi->regs + ++ SNFI_GPRAM_DATA + m); ++ for (j = 0; i < rxlen && j < 4; i++, j++, rxbuf++) { ++ if (m == 0 && i == 0) ++ j = i + txlen; ++ *rxbuf = (reg >> (j * 8)) & 0xFF; ++ } ++ m += 4; ++ } ++ ++ return ret; ++} ++ ++/* ++ * mtk_snfi_exec_op - to process command/data to send to the ++ * SPI NAND by mtk controller ++ */ ++static int mtk_snfi_exec_op(struct spi_mem *mem, ++ const struct spi_mem_op *op) ++ ++{ ++ struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master); ++ struct spinand_device *spinand = spi_mem_get_drvdata(mem); ++ struct mtd_info *mtd = spinand_to_mtd(spinand); ++ struct nand_device *nand = mtd_to_nanddev(mtd); ++ const struct spi_mem_op *read_cache; ++ const struct spi_mem_op *write_cache; ++ u32 tmpbufsize, txlen = 0, rxlen = 0; ++ u8 *txbuf, *rxbuf = NULL, *buf; ++ int i, ret = 0; ++ ++ ret = mtk_snfi_reset(snfi); ++ if (ret) { ++ dev_warn(snfi->dev, "reset spi memory controller fail\n"); ++ return ret; ++ } ++ ++ /*if bbt initial, framework have detect nand information */ ++ if (nand->bbt.cache) { ++ read_cache = spinand->op_templates.read_cache; ++ write_cache = spinand->op_templates.write_cache; ++ ++ ret = mtk_snfi_hw_runtime_config(mem); ++ if (ret) ++ return ret; ++ ++ /* For Read/Write with cache, Erase use framework flow */ ++ if (op->cmd.opcode == read_cache->cmd.opcode) { ++ ret = mtk_snfi_read(mem, op); ++ if (ret) ++ dev_warn(snfi->dev, "snfi read fail\n"); ++ return ret; ++ } else if (op->cmd.opcode == write_cache->cmd.opcode) { ++ ret = mtk_snfi_write(mem, op); ++ if (ret) ++ dev_warn(snfi->dev, "snfi write fail\n"); ++ return ret; ++ } ++ } ++ ++ tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes + ++ op->dummy.nbytes + op->data.nbytes; ++ ++ txbuf = kzalloc(tmpbufsize, GFP_KERNEL); ++ if (!txbuf) ++ return -ENOMEM; ++ ++ txbuf[txlen++] = op->cmd.opcode; ++ ++ if (op->addr.nbytes) ++ for (i = 0; i < op->addr.nbytes; i++) ++ txbuf[txlen++] = op->addr.val >> ++ (8 * (op->addr.nbytes - i - 1)); ++ ++ txlen += op->dummy.nbytes; ++ ++ if (op->data.dir == SPI_MEM_DATA_OUT) ++ for (i = 0; i < op->data.nbytes; i++) { ++ buf = (u8 *)op->data.buf.out; ++ txbuf[txlen++] = buf[i]; ++ } ++ ++ if (op->data.dir == SPI_MEM_DATA_IN) { ++ rxbuf = (u8 *)op->data.buf.in; ++ rxlen += op->data.nbytes; ++ } ++ ++ ret = mtk_snfi_command_exec(snfi, txbuf, rxbuf, txlen, rxlen); ++ kfree(txbuf); ++ ++ return ret; ++} ++ ++static int mtk_snfi_init(struct mtk_snfi *snfi) ++{ ++ int ret; ++ ++ /* Reset the state machine and data FIFO */ ++ ret = mtk_snfi_reset(snfi); ++ if (ret) { ++ dev_warn(snfi->dev, "MTK reset controller fail\n"); ++ return ret; ++ } ++ ++ snfi->buffer = devm_kzalloc(snfi->dev, 4096 + 256, GFP_KERNEL); ++ if (!snfi->buffer) ++ return -ENOMEM; ++ ++ /* Clear interrupt, read clear. */ ++ readw(snfi->regs + NFI_INTR_STA); ++ writew(0, snfi->regs + NFI_INTR_EN); ++ ++ writel(0, snfi->regs + NFI_CON); ++ writel(0, snfi->regs + NFI_CNFG); ++ ++ /* Change to NFI_SPI mode. */ ++ writel(SNFI_MODE_EN, snfi->regs + SNFI_CNFG); ++ ++ return 0; ++} ++ ++static int mtk_snfi_check_buswidth(u8 width) ++{ ++ switch (width) { ++ case 1: ++ case 2: ++ case 4: ++ return 0; ++ ++ default: ++ break; ++ } ++ ++ return -ENOTSUPP; ++} ++ ++static bool mtk_snfi_supports_op(struct spi_mem *mem, ++ const struct spi_mem_op *op) ++{ ++ int ret = 0; ++ ++ /* For MTK Spi Nand controller, cmd buswidth just support 1 bit*/ ++ if (op->cmd.buswidth != 1) ++ ret = -ENOTSUPP; ++ ++ if (op->addr.nbytes) ++ ret |= mtk_snfi_check_buswidth(op->addr.buswidth); ++ ++ if (op->dummy.nbytes) ++ ret |= mtk_snfi_check_buswidth(op->dummy.buswidth); ++ ++ if (op->data.nbytes) ++ ret |= mtk_snfi_check_buswidth(op->data.buswidth); ++ ++ if (ret) ++ return false; ++ ++ return true; ++} ++ ++static const struct spi_controller_mem_ops mtk_snfi_ops = { ++ .supports_op = mtk_snfi_supports_op, ++ .exec_op = mtk_snfi_exec_op, ++}; ++ ++static const struct mtk_snfi_caps snfi_mt7622 = { ++ .spare_size = spare_size_mt7622, ++ .num_spare_size = 4, ++ .nand_sec_size = 512, ++ .nand_fdm_size = 8, ++ .nand_fdm_ecc_size = 1, ++ .ecc_parity_bits = 13, ++ .pageformat_spare_shift = 4, ++ .bad_mark_swap = 0, ++}; ++ ++static const struct of_device_id mtk_snfi_id_table[] = { ++ { .compatible = "mediatek,mt7622-snfi", .data = &snfi_mt7622, }, ++ { /* sentinel */ } ++}; ++ ++static int mtk_snfi_probe(struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ struct device_node *np = dev->of_node; ++ struct spi_controller *ctlr; ++ struct mtk_snfi *snfi; ++ struct resource *res; ++ int ret = 0, irq; ++ ++ ctlr = spi_alloc_master(&pdev->dev, sizeof(*snfi)); ++ if (!ctlr) ++ return -ENOMEM; ++ ++ snfi = spi_controller_get_devdata(ctlr); ++ snfi->caps = of_device_get_match_data(dev); ++ snfi->dev = dev; ++ ++ snfi->ecc = of_mtk_ecc_get(np); ++ if (IS_ERR_OR_NULL(snfi->ecc)) ++ goto err_put_master; ++ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ snfi->regs = devm_ioremap_resource(dev, res); ++ if (IS_ERR(snfi->regs)) { ++ ret = PTR_ERR(snfi->regs); ++ goto release_ecc; ++ } ++ ++ /* find the clocks */ ++ snfi->clk.nfi_clk = devm_clk_get(dev, "nfi_clk"); ++ if (IS_ERR(snfi->clk.nfi_clk)) { ++ dev_err(dev, "no nfi clk\n"); ++ ret = PTR_ERR(snfi->clk.nfi_clk); ++ goto release_ecc; ++ } ++ ++ snfi->clk.spi_clk = devm_clk_get(dev, "spi_clk"); ++ if (IS_ERR(snfi->clk.spi_clk)) { ++ dev_err(dev, "no spi clk\n"); ++ ret = PTR_ERR(snfi->clk.spi_clk); ++ goto release_ecc; ++ } ++ ++ ret = mtk_snfi_enable_clk(dev, &snfi->clk); ++ if (ret) ++ goto release_ecc; ++ ++ /* find the irq */ ++ irq = platform_get_irq(pdev, 0); ++ if (irq < 0) { ++ dev_err(dev, "no snfi irq resource\n"); ++ ret = -EINVAL; ++ goto clk_disable; ++ } ++ ++ ret = devm_request_irq(dev, irq, mtk_snfi_irq, 0, "mtk-snfi", snfi); ++ if (ret) { ++ dev_err(dev, "failed to request snfi irq\n"); ++ goto clk_disable; ++ } ++ ++ ret = dma_set_mask(dev, DMA_BIT_MASK(32)); ++ if (ret) { ++ dev_err(dev, "failed to set dma mask\n"); ++ goto clk_disable; ++ } ++ ++ ctlr->dev.of_node = np; ++ ctlr->mem_ops = &mtk_snfi_ops; ++ ++ platform_set_drvdata(pdev, snfi); ++ ret = mtk_snfi_init(snfi); ++ if (ret) { ++ dev_err(dev, "failed to init snfi\n"); ++ goto clk_disable; ++ } ++ ++ ret = devm_spi_register_master(dev, ctlr); ++ if (ret) ++ goto clk_disable; ++ ++ return 0; ++ ++clk_disable: ++ mtk_snfi_disable_clk(&snfi->clk); ++ ++release_ecc: ++ mtk_ecc_release(snfi->ecc); ++ ++err_put_master: ++ spi_master_put(ctlr); ++ ++ dev_err(dev, "MediaTek SPI NAND interface probe failed %d\n", ret); ++ return ret; ++} ++ ++static int mtk_snfi_remove(struct platform_device *pdev) ++{ ++ struct mtk_snfi *snfi = platform_get_drvdata(pdev); ++ ++ mtk_snfi_disable_clk(&snfi->clk); ++ ++ return 0; ++} ++ ++static int mtk_snfi_suspend(struct platform_device *pdev, pm_message_t state) ++{ ++ struct mtk_snfi *snfi = platform_get_drvdata(pdev); ++ ++ mtk_snfi_disable_clk(&snfi->clk); ++ ++ return 0; ++} ++ ++static int mtk_snfi_resume(struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ struct mtk_snfi *snfi = dev_get_drvdata(dev); ++ int ret; ++ ++ ret = mtk_snfi_enable_clk(dev, &snfi->clk); ++ if (ret) ++ return ret; ++ ++ ret = mtk_snfi_init(snfi); ++ if (ret) ++ dev_err(dev, "failed to init snfi controller\n"); ++ ++ return ret; ++} ++ ++static struct platform_driver mtk_snfi_driver = { ++ .driver = { ++ .name = "mtk-snfi", ++ .of_match_table = mtk_snfi_id_table, ++ }, ++ .probe = mtk_snfi_probe, ++ .remove = mtk_snfi_remove, ++ .suspend = mtk_snfi_suspend, ++ .resume = mtk_snfi_resume, ++}; ++ ++module_platform_driver(mtk_snfi_driver); ++ ++MODULE_LICENSE("GPL v2"); ++MODULE_AUTHOR("Xiangsheng Hou <xiangsheng.hou@mediatek.com>"); ++MODULE_DESCRIPTION("Mediatek SPI Memory Interface Driver"); +Index: linux-4.19.48/drivers/spi/Kconfig +=================================================================== +--- linux-4.19.48.orig/drivers/spi/Kconfig ++++ linux-4.19.48/drivers/spi/Kconfig +@@ -389,6 +389,15 @@ config SPI_MT65XX + say Y or M here.If you are not sure, say N. + SPI drivers for Mediatek MT65XX and MT81XX series ARM SoCs. + ++config SPI_MTK_SNFI ++ tristate "MediaTek SPI NAND interface" ++ select MTD_SPI_NAND ++ help ++ This selects the SPI NAND FLASH interface(SNFI), ++ which could be found on MediaTek Soc. ++ Say Y or M here.If you are not sure, say N. ++ Note Parallel Nand and SPI NAND is alternative on MediaTek SoCs. ++ + config SPI_NUC900 + tristate "Nuvoton NUC900 series SPI" + depends on ARCH_W90X900 +Index: linux-4.19.48/drivers/spi/Makefile +=================================================================== +--- linux-4.19.48.orig/drivers/spi/Makefile ++++ linux-4.19.48/drivers/spi/Makefile +@@ -57,6 +57,7 @@ obj-$(CONFIG_SPI_MPC512x_PSC) += spi-mp + obj-$(CONFIG_SPI_MPC52xx_PSC) += spi-mpc52xx-psc.o + obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52xx.o + obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o ++obj-$(CONFIG_SPI_MTK_SNFI) += spi-mtk-snfi.o + obj-$(CONFIG_SPI_MXS) += spi-mxs.o + obj-$(CONFIG_SPI_NUC900) += spi-nuc900.o + obj-$(CONFIG_SPI_OC_TINY) += spi-oc-tiny.o |