From 099b35adb98a2cf436723dc2ec3671c959034507 Mon Sep 17 00:00:00 2001 From: Felix Fietkau Date: Sat, 13 Oct 2007 22:41:08 +0000 Subject: add updated mac80211 - this no longer relies on patching includes in the kernel trees, but just uses its own instead git-svn-id: svn://svn.openwrt.org/openwrt/trunk@9290 3c298f89-4303-0410-b956-a3cf2f4a3e73 --- package/mac80211/src/include/net/mac80211.h | 1429 +++++++++++++++++++++++++++ 1 file changed, 1429 insertions(+) create mode 100644 package/mac80211/src/include/net/mac80211.h (limited to 'package/mac80211/src/include/net/mac80211.h') diff --git a/package/mac80211/src/include/net/mac80211.h b/package/mac80211/src/include/net/mac80211.h new file mode 100644 index 0000000000..2b1bffbf5e --- /dev/null +++ b/package/mac80211/src/include/net/mac80211.h @@ -0,0 +1,1429 @@ +/* + * mac80211 <-> driver interface + * + * Copyright 2002-2005, Devicescape Software, Inc. + * Copyright 2006-2007 Jiri Benc + * Copyright 2007 Johannes Berg + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#ifndef MAC80211_H +#define MAC80211_H + +#include +#include +#include +#include +#include +#include +#include +#include + +/** + * DOC: Introduction + * + * mac80211 is the Linux stack for 802.11 hardware that implements + * only partial functionality in hard- or firmware. This document + * defines the interface between mac80211 and low-level hardware + * drivers. + */ + +/** + * DOC: Calling mac80211 from interrupts + * + * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be + * called in hardware interrupt context. The low-level driver must not call any + * other functions in hardware interrupt context. If there is a need for such + * call, the low-level driver should first ACK the interrupt and perform the + * IEEE 802.11 code call after this, e.g. from a scheduled workqueue function. + */ + +/** + * DOC: Warning + * + * If you're reading this document and not the header file itself, it will + * be incomplete because not all documentation has been converted yet. + */ + +/** + * DOC: Frame format + * + * As a general rule, when frames are passed between mac80211 and the driver, + * they start with the IEEE 802.11 header and include the same octets that are + * sent over the air except for the FCS which should be calculated by the + * hardware. + * + * There are, however, various exceptions to this rule for advanced features: + * + * The first exception is for hardware encryption and decryption offload + * where the IV/ICV may or may not be generated in hardware. + * + * Secondly, when the hardware handles fragmentation, the frame handed to + * the driver from mac80211 is the MSDU, not the MPDU. + * + * Finally, for received frames, the driver is able to indicate that it has + * filled a radiotap header and put that in front of the frame; if it does + * not do so then mac80211 may add this under certain circumstances. + */ + +#define IEEE80211_CHAN_W_SCAN 0x00000001 +#define IEEE80211_CHAN_W_ACTIVE_SCAN 0x00000002 +#define IEEE80211_CHAN_W_IBSS 0x00000004 + +/* Channel information structure. Low-level driver is expected to fill in chan, + * freq, and val fields. Other fields will be filled in by 80211.o based on + * hostapd information and low-level driver does not need to use them. The + * limits for each channel will be provided in 'struct ieee80211_conf' when + * configuring the low-level driver with hw->config callback. If a device has + * a default regulatory domain, IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED + * can be set to let the driver configure all fields */ +struct ieee80211_channel { + short chan; /* channel number (IEEE 802.11) */ + short freq; /* frequency in MHz */ + int val; /* hw specific value for the channel */ + int flag; /* flag for hostapd use (IEEE80211_CHAN_*) */ + unsigned char power_level; + unsigned char antenna_max; +}; + +#define IEEE80211_RATE_ERP 0x00000001 +#define IEEE80211_RATE_BASIC 0x00000002 +#define IEEE80211_RATE_PREAMBLE2 0x00000004 +#define IEEE80211_RATE_SUPPORTED 0x00000010 +#define IEEE80211_RATE_OFDM 0x00000020 +#define IEEE80211_RATE_CCK 0x00000040 +#define IEEE80211_RATE_MANDATORY 0x00000100 + +#define IEEE80211_RATE_CCK_2 (IEEE80211_RATE_CCK | IEEE80211_RATE_PREAMBLE2) +#define IEEE80211_RATE_MODULATION(f) \ + (f & (IEEE80211_RATE_CCK | IEEE80211_RATE_OFDM)) + +/* Low-level driver should set PREAMBLE2, OFDM and CCK flags. + * BASIC, SUPPORTED, ERP, and MANDATORY flags are set in 80211.o based on the + * configuration. */ +struct ieee80211_rate { + int rate; /* rate in 100 kbps */ + int val; /* hw specific value for the rate */ + int flags; /* IEEE80211_RATE_ flags */ + int val2; /* hw specific value for the rate when using short preamble + * (only when IEEE80211_RATE_PREAMBLE2 flag is set, i.e., for + * 2, 5.5, and 11 Mbps) */ + signed char min_rssi_ack; + unsigned char min_rssi_ack_delta; + + /* following fields are set by 80211.o and need not be filled by the + * low-level driver */ + int rate_inv; /* inverse of the rate (LCM(all rates) / rate) for + * optimizing channel utilization estimates */ +}; + +/** + * enum ieee80211_phymode - PHY modes + * + * @MODE_IEEE80211A: 5GHz as defined by 802.11a/802.11h + * @MODE_IEEE80211B: 2.4 GHz as defined by 802.11b + * @MODE_IEEE80211G: 2.4 GHz as defined by 802.11g (with OFDM), + * backwards compatible with 11b mode + * @NUM_IEEE80211_MODES: internal + */ +enum ieee80211_phymode { + MODE_IEEE80211A, + MODE_IEEE80211B, + MODE_IEEE80211G, + + /* keep last */ + NUM_IEEE80211_MODES +}; + +/** + * struct ieee80211_hw_mode - PHY mode definition + * + * This structure describes the capabilities supported by the device + * in a single PHY mode. + * + * @mode: the PHY mode for this definition + * @num_channels: number of supported channels + * @channels: pointer to array of supported channels + * @num_rates: number of supported bitrates + * @rates: pointer to array of supported bitrates + * @list: internal + */ +struct ieee80211_hw_mode { + struct list_head list; + struct ieee80211_channel *channels; + struct ieee80211_rate *rates; + enum ieee80211_phymode mode; + int num_channels; + int num_rates; +}; + +/** + * struct ieee80211_tx_queue_params - transmit queue configuration + * + * The information provided in this structure is required for QoS + * transmit queue configuration. + * + * @aifs: arbitration interface space [0..255, -1: use default] + * @cw_min: minimum contention window [will be a value of the form + * 2^n-1 in the range 1..1023; 0: use default] + * @cw_max: maximum contention window [like @cw_min] + * @burst_time: maximum burst time in units of 0.1ms, 0 meaning disabled + */ +struct ieee80211_tx_queue_params { + int aifs; + int cw_min; + int cw_max; + int burst_time; +}; + +/** + * struct ieee80211_tx_queue_stats_data - transmit queue statistics + * + * @len: number of packets in queue + * @limit: queue length limit + * @count: number of frames sent + */ +struct ieee80211_tx_queue_stats_data { + unsigned int len; + unsigned int limit; + unsigned int count; +}; + +/** + * enum ieee80211_tx_queue - transmit queue number + * + * These constants are used with some callbacks that take a + * queue number to set parameters for a queue. + * + * @IEEE80211_TX_QUEUE_DATA0: data queue 0 + * @IEEE80211_TX_QUEUE_DATA1: data queue 1 + * @IEEE80211_TX_QUEUE_DATA2: data queue 2 + * @IEEE80211_TX_QUEUE_DATA3: data queue 3 + * @IEEE80211_TX_QUEUE_DATA4: data queue 4 + * @IEEE80211_TX_QUEUE_SVP: ?? + * @NUM_TX_DATA_QUEUES: number of data queues + * @IEEE80211_TX_QUEUE_AFTER_BEACON: transmit queue for frames to be + * sent after a beacon + * @IEEE80211_TX_QUEUE_BEACON: transmit queue for beacon frames + */ +enum ieee80211_tx_queue { + IEEE80211_TX_QUEUE_DATA0, + IEEE80211_TX_QUEUE_DATA1, + IEEE80211_TX_QUEUE_DATA2, + IEEE80211_TX_QUEUE_DATA3, + IEEE80211_TX_QUEUE_DATA4, + IEEE80211_TX_QUEUE_SVP, + + NUM_TX_DATA_QUEUES, + +/* due to stupidity in the sub-ioctl userspace interface, the items in + * this struct need to have fixed values. As soon as it is removed, we can + * fix these entries. */ + IEEE80211_TX_QUEUE_AFTER_BEACON = 6, + IEEE80211_TX_QUEUE_BEACON = 7 +}; + +struct ieee80211_tx_queue_stats { + struct ieee80211_tx_queue_stats_data data[NUM_TX_DATA_QUEUES]; +}; + +struct ieee80211_low_level_stats { + unsigned int dot11ACKFailureCount; + unsigned int dot11RTSFailureCount; + unsigned int dot11FCSErrorCount; + unsigned int dot11RTSSuccessCount; +}; + +/* Transmit control fields. This data structure is passed to low-level driver + * with each TX frame. The low-level driver is responsible for configuring + * the hardware to use given values (depending on what is supported). */ + +struct ieee80211_tx_control { + int tx_rate; /* Transmit rate, given as the hw specific value for the + * rate (from struct ieee80211_rate) */ + int rts_cts_rate; /* Transmit rate for RTS/CTS frame, given as the hw + * specific value for the rate (from + * struct ieee80211_rate) */ + +#define IEEE80211_TXCTL_REQ_TX_STATUS (1<<0)/* request TX status callback for + * this frame */ +#define IEEE80211_TXCTL_DO_NOT_ENCRYPT (1<<1) /* send this frame without + * encryption; e.g., for EAPOL + * frames */ +#define IEEE80211_TXCTL_USE_RTS_CTS (1<<2) /* use RTS-CTS before sending + * frame */ +#define IEEE80211_TXCTL_USE_CTS_PROTECT (1<<3) /* use CTS protection for the + * frame (e.g., for combined + * 802.11g / 802.11b networks) */ +#define IEEE80211_TXCTL_NO_ACK (1<<4) /* tell the low level not to + * wait for an ack */ +#define IEEE80211_TXCTL_RATE_CTRL_PROBE (1<<5) +#define IEEE80211_TXCTL_CLEAR_DST_MASK (1<<6) +#define IEEE80211_TXCTL_REQUEUE (1<<7) +#define IEEE80211_TXCTL_FIRST_FRAGMENT (1<<8) /* this is a first fragment of + * the frame */ +#define IEEE80211_TXCTL_LONG_RETRY_LIMIT (1<<10) /* this frame should be send + * using the through + * set_retry_limit configured + * long retry value */ + u32 flags; /* tx control flags defined + * above */ + u8 key_idx; /* keyidx from hw->set_key(), undefined if + * IEEE80211_TXCTL_DO_NOT_ENCRYPT is set */ + u8 retry_limit; /* 1 = only first attempt, 2 = one retry, .. + * This could be used when set_retry_limit + * is not implemented by the driver */ + u8 power_level; /* per-packet transmit power level, in dBm */ + u8 antenna_sel_tx; /* 0 = default/diversity, 1 = Ant0, 2 = Ant1 */ + u8 icv_len; /* length of the ICV/MIC field in octets */ + u8 iv_len; /* length of the IV field in octets */ + u8 queue; /* hardware queue to use for this frame; + * 0 = highest, hw->queues-1 = lowest */ + struct ieee80211_rate *rate; /* internal 80211.o rate */ + struct ieee80211_rate *rts_rate; /* internal 80211.o rate + * for RTS/CTS */ + int alt_retry_rate; /* retry rate for the last retries, given as the + * hw specific value for the rate (from + * struct ieee80211_rate). To be used to limit + * packet dropping when probing higher rates, if hw + * supports multiple retry rates. -1 = not used */ + int type; /* internal */ + int ifindex; /* internal */ +}; + + +/** + * enum mac80211_rx_flags - receive flags + * + * These flags are used with the @flag member of &struct ieee80211_rx_status. + * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. + * Use together with %RX_FLAG_MMIC_STRIPPED. + * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. + * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header. + * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, + * verification has been done by the hardware. + * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. + * If this flag is set, the stack cannot do any replay detection + * hence the driver or hardware will have to do that. + * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on + * the frame. + * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on + * the frame. + */ +enum mac80211_rx_flags { + RX_FLAG_MMIC_ERROR = 1<<0, + RX_FLAG_DECRYPTED = 1<<1, + RX_FLAG_RADIOTAP = 1<<2, + RX_FLAG_MMIC_STRIPPED = 1<<3, + RX_FLAG_IV_STRIPPED = 1<<4, + RX_FLAG_FAILED_FCS_CRC = 1<<5, + RX_FLAG_FAILED_PLCP_CRC = 1<<6, +}; + +/** + * struct ieee80211_rx_status - receive status + * + * The low-level driver should provide this information (the subset + * supported by hardware) to the 802.11 code with each received + * frame. + * @mactime: MAC timestamp as defined by 802.11 + * @freq: frequency the radio was tuned to when receiving this frame, in MHz + * @channel: channel the radio was tuned to + * @phymode: active PHY mode + * @ssi: signal strength when receiving this frame + * @signal: used as 'qual' in statistics reporting + * @noise: PHY noise when receiving this frame + * @antenna: antenna used + * @rate: data rate + * @flag: %RX_FLAG_* + */ +struct ieee80211_rx_status { + u64 mactime; + int freq; + int channel; + enum ieee80211_phymode phymode; + int ssi; + int signal; + int noise; + int antenna; + int rate; + int flag; +}; + +/** + * enum ieee80211_tx_status_flags - transmit status flags + * + * Status flags to indicate various transmit conditions. + * + * @IEEE80211_TX_STATUS_TX_FILTERED: The frame was not transmitted + * because the destination STA was in powersave mode. + * + * @IEEE80211_TX_STATUS_ACK: Frame was acknowledged + */ +enum ieee80211_tx_status_flags { + IEEE80211_TX_STATUS_TX_FILTERED = 1<<0, + IEEE80211_TX_STATUS_ACK = 1<<1, +}; + +/** + * struct ieee80211_tx_status - transmit status + * + * As much information as possible should be provided for each transmitted + * frame with ieee80211_tx_status(). + * + * @control: a copy of the &struct ieee80211_tx_control passed to the driver + * in the tx() callback. + * + * @flags: transmit status flags, defined above + * + * @ack_signal: signal strength of the ACK frame + * + * @excessive_retries: set to 1 if the frame was retried many times + * but not acknowledged + * + * @retry_count: number of retries + * + * @queue_length: ?? REMOVE + * @queue_number: ?? REMOVE + */ +struct ieee80211_tx_status { + struct ieee80211_tx_control control; + u8 flags; + bool excessive_retries; + u8 retry_count; + int ack_signal; + int queue_length; + int queue_number; +}; + +/** + * enum ieee80211_conf_flags - configuration flags + * + * Flags to define PHY configuration options + * + * @IEEE80211_CONF_SHORT_SLOT_TIME: use 802.11g short slot time + * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported) + * + */ +enum ieee80211_conf_flags { + IEEE80211_CONF_SHORT_SLOT_TIME = 1<<0, + IEEE80211_CONF_RADIOTAP = 1<<1, +}; + +/** + * struct ieee80211_conf - configuration of the device + * + * This struct indicates how the driver shall configure the hardware. + * + * @radio_enabled: when zero, driver is required to switch off the radio. + * TODO make a flag + * @channel: IEEE 802.11 channel number + * @freq: frequency in MHz + * @channel_val: hardware specific channel value for the channel + * @phymode: PHY mode to activate (REMOVE) + * @chan: channel to switch to, pointer to the channel information + * @mode: pointer to mode definition + * @regulatory_domain: ?? + * @beacon_int: beacon interval (TODO make interface config) + * @flags: configuration flags defined above + * @power_level: transmit power limit for current regulatory domain in dBm + * @antenna_max: maximum antenna gain + * @antenna_sel_tx: transmit antenna selection, 0: default/diversity, + * 1/2: antenna 0/1 + * @antenna_sel_rx: receive antenna selection, like @antenna_sel_tx + */ +struct ieee80211_conf { + int channel; /* IEEE 802.11 channel number */ + int freq; /* MHz */ + int channel_val; /* hw specific value for the channel */ + + enum ieee80211_phymode phymode; + struct ieee80211_channel *chan; + struct ieee80211_hw_mode *mode; + unsigned int regulatory_domain; + int radio_enabled; + + int beacon_int; + u32 flags; + u8 power_level; + u8 antenna_max; + u8 antenna_sel_tx; + u8 antenna_sel_rx; +}; + +/** + * enum ieee80211_if_types - types of 802.11 network interfaces + * + * @IEEE80211_IF_TYPE_INVALID: invalid interface type, not used + * by mac80211 itself + * @IEEE80211_IF_TYPE_AP: interface in AP mode. + * @IEEE80211_IF_TYPE_MGMT: special interface for communication with hostap + * daemon. Drivers should never see this type. + * @IEEE80211_IF_TYPE_STA: interface in STA (client) mode. + * @IEEE80211_IF_TYPE_IBSS: interface in IBSS (ad-hoc) mode. + * @IEEE80211_IF_TYPE_MNTR: interface in monitor (rfmon) mode. + * @IEEE80211_IF_TYPE_WDS: interface in WDS mode. + * @IEEE80211_IF_TYPE_VLAN: VLAN interface bound to an AP, drivers + * will never see this type. + */ +enum ieee80211_if_types { + IEEE80211_IF_TYPE_INVALID, + IEEE80211_IF_TYPE_AP, + IEEE80211_IF_TYPE_STA, + IEEE80211_IF_TYPE_IBSS, + IEEE80211_IF_TYPE_MNTR, + IEEE80211_IF_TYPE_WDS, + IEEE80211_IF_TYPE_VLAN, +}; + +/** + * struct ieee80211_if_init_conf - initial configuration of an interface + * + * @if_id: internal interface ID. This number has no particular meaning to + * drivers and the only allowed usage is to pass it to + * ieee80211_beacon_get() and ieee80211_get_buffered_bc() functions. + * This field is not valid for monitor interfaces + * (interfaces of %IEEE80211_IF_TYPE_MNTR type). + * @type: one of &enum ieee80211_if_types constants. Determines the type of + * added/removed interface. + * @mac_addr: pointer to MAC address of the interface. This pointer is valid + * until the interface is removed (i.e. it cannot be used after + * remove_interface() callback was called for this interface). + * + * This structure is used in add_interface() and remove_interface() + * callbacks of &struct ieee80211_hw. + * + * When you allow multiple interfaces to be added to your PHY, take care + * that the hardware can actually handle multiple MAC addresses. However, + * also take care that when there's no interface left with mac_addr != %NULL + * you remove the MAC address from the device to avoid acknowledging packets + * in pure monitor mode. + */ +struct ieee80211_if_init_conf { + int if_id; + enum ieee80211_if_types type; + void *mac_addr; +}; + +/** + * struct ieee80211_if_conf - configuration of an interface + * + * @type: type of the interface. This is always the same as was specified in + * &struct ieee80211_if_init_conf. The type of an interface never changes + * during the life of the interface; this field is present only for + * convenience. + * @bssid: BSSID of the network we are associated to/creating. + * @ssid: used (together with @ssid_len) by drivers for hardware that + * generate beacons independently. The pointer is valid only during the + * config_interface() call, so copy the value somewhere if you need + * it. + * @ssid_len: length of the @ssid field. + * @beacon: beacon template. Valid only if @host_gen_beacon_template in + * &struct ieee80211_hw is set. The driver is responsible of freeing + * the sk_buff. + * @beacon_control: tx_control for the beacon template, this field is only + * valid when the @beacon field was set. + * + * This structure is passed to the config_interface() callback of + * &struct ieee80211_hw. + */ +struct ieee80211_if_conf { + int type; + u8 *bssid; + u8 *ssid; + size_t ssid_len; + struct sk_buff *beacon; + struct ieee80211_tx_control *beacon_control; +}; + +/** + * enum ieee80211_key_alg - key algorithm + * @ALG_WEP: WEP40 or WEP104 + * @ALG_TKIP: TKIP + * @ALG_CCMP: CCMP (AES) + */ +enum ieee80211_key_alg { + ALG_WEP, + ALG_TKIP, + ALG_CCMP, +}; + + +/** + * enum ieee80211_key_flags - key flags + * + * These flags are used for communication about keys between the driver + * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. + * + * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates + * that the STA this key will be used with could be using QoS. + * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the + * driver to indicate that it requires IV generation for this + * particular key. + * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by + * the driver for a TKIP key if it requires Michael MIC + * generation in software. + */ +enum ieee80211_key_flags { + IEEE80211_KEY_FLAG_WMM_STA = 1<<0, + IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, + IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, +}; + +/** + * struct ieee80211_key_conf - key information + * + * This key information is given by mac80211 to the driver by + * the set_key() callback in &struct ieee80211_ops. + * + * @hw_key_idx: To be set by the driver, this is the key index the driver + * wants to be given when a frame is transmitted and needs to be + * encrypted in hardware. + * @alg: The key algorithm. + * @flags: key flags, see &enum ieee80211_key_flags. + * @keyidx: the key index (0-3) + * @keylen: key material length + * @key: key material + */ +struct ieee80211_key_conf { + enum ieee80211_key_alg alg; + u8 hw_key_idx; + u8 flags; + s8 keyidx; + u8 keylen; + u8 key[0]; +}; + +#define IEEE80211_SEQ_COUNTER_RX 0 +#define IEEE80211_SEQ_COUNTER_TX 1 + +/** + * enum set_key_cmd - key command + * + * Used with the set_key() callback in &struct ieee80211_ops, this + * indicates whether a key is being removed or added. + * + * @SET_KEY: a key is set + * @DISABLE_KEY: a key must be disabled + */ +enum set_key_cmd { + SET_KEY, DISABLE_KEY, +}; + +/** + * enum sta_notify_cmd - sta notify command + * + * Used with the sta_notify() callback in &struct ieee80211_ops, this + * indicates addition and removal of a station to station table + * + * @STA_NOTIFY_ADD: a station was added to the station table + * @STA_NOTIFY_REMOVE: a station being removed from the station table + */ +enum sta_notify_cmd { + STA_NOTIFY_ADD, STA_NOTIFY_REMOVE +}; + +/** + * enum ieee80211_hw_flags - hardware flags + * + * These flags are used to indicate hardware capabilities to + * the stack. Generally, flags here should have their meaning + * done in a way that the simplest hardware doesn't need setting + * any particular flags. There are some exceptions to this rule, + * however, so you are advised to review these flags carefully. + * + * @IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE: + * The device only needs to be supplied with a beacon template. + * If you need the host to generate each beacon then don't use + * this flag and call ieee80211_beacon_get() when you need the + * next beacon frame. Note that if you set this flag, you must + * implement the set_tim() callback for powersave mode to work + * properly. + * This flag is only relevant for access-point mode. + * + * @IEEE80211_HW_RX_INCLUDES_FCS: + * Indicates that received frames passed to the stack include + * the FCS at the end. + * + * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: + * Some wireless LAN chipsets buffer broadcast/multicast frames + * for power saving stations in the hardware/firmware and others + * rely on the host system for such buffering. This option is used + * to configure the IEEE 802.11 upper layer to buffer broadcast and + * multicast frames when there are power saving stations so that + * the driver can fetch them with ieee80211_get_buffered_bc(). Note + * that not setting this flag works properly only when the + * %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is also not set because + * otherwise the stack will not know when the DTIM beacon was sent. + * + * @IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED: + * Channels are already configured to the default regulatory domain + * specified in the device's EEPROM + */ +enum ieee80211_hw_flags { + IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE = 1<<0, + IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, + IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, + IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED = 1<<3, +}; + +/** + * struct ieee80211_hw - hardware information and state + * + * This structure contains the configuration and hardware + * information for an 802.11 PHY. + * + * @wiphy: This points to the &struct wiphy allocated for this + * 802.11 PHY. You must fill in the @perm_addr and @dev + * members of this structure using SET_IEEE80211_DEV() + * and SET_IEEE80211_PERM_ADDR(). + * + * @conf: &struct ieee80211_conf, device configuration, don't use. + * + * @workqueue: single threaded workqueue available for driver use, + * allocated by mac80211 on registration and flushed on + * unregistration. + * + * @priv: pointer to private area that was allocated for driver use + * along with this structure. + * + * @flags: hardware flags, see &enum ieee80211_hw_flags. + * + * @extra_tx_headroom: headroom to reserve in each transmit skb + * for use by the driver (e.g. for transmit headers.) + * + * @channel_change_time: time (in microseconds) it takes to change channels. + * + * @max_rssi: Maximum value for ssi in RX information, use + * negative numbers for dBm and 0 to indicate no support. + * + * @max_signal: like @max_rssi, but for the signal value. + * + * @max_noise: like @max_rssi, but for the noise value. + * + * @queues: number of available hardware transmit queues for + * data packets. WMM/QoS requires at least four. + */ +struct ieee80211_hw { + struct ieee80211_conf conf; + struct wiphy *wiphy; + struct workqueue_struct *workqueue; + void *priv; + u32 flags; + unsigned int extra_tx_headroom; + int channel_change_time; + u8 queues; + s8 max_rssi; + s8 max_signal; + s8 max_noise; +}; + +/** + * SET_IEEE80211_DEV - set device for 802.11 hardware + * + * @hw: the &struct ieee80211_hw to set the device for + * @dev: the &struct device of this 802.11 device + */ +static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) +{ + set_wiphy_dev(hw->wiphy, dev); +} + +/** + * SET_IEEE80211_PERM_ADDR - set the permanenet MAC address for 802.11 hardware + * + * @hw: the &struct ieee80211_hw to set the MAC address for + * @addr: the address to set + */ +static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) +{ + memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); +} + +/** + * DOC: Hardware crypto acceleration + * + * mac80211 is capable of taking advantage of many hardware + * acceleration designs for encryption and decryption operations. + * + * The set_key() callback in the &struct ieee80211_ops for a given + * device is called to enable hardware acceleration of encryption and + * decryption. The callback takes an @address parameter that will be + * the broadcast address for default keys, the other station's hardware + * address for individual keys or the zero address for keys that will + * be used only for transmission. + * Multiple transmission keys with the same key index may be used when + * VLANs are configured for an access point. + * + * The @local_address parameter will always be set to our own address, + * this is only relevant if you support multiple local addresses. + * + * When transmitting, the TX control data will use the @hw_key_idx + * selected by the driver by modifying the &struct ieee80211_key_conf + * pointed to by the @key parameter to the set_key() function. + * + * The set_key() call for the %SET_KEY command should return 0 if + * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be + * added; if you return 0 then hw_key_idx must be assigned to the + * hardware key index, you are free to use the full u8 range. + * + * When the cmd is %DISABLE_KEY then it must succeed. + * + * Note that it is permissible to not decrypt a frame even if a key + * for it has been uploaded to hardware, the stack will not make any + * decision based on whether a key has been uploaded or not but rather + * based on the receive flags. + * + * The &struct ieee80211_key_conf structure pointed to by the @key + * parameter is guaranteed to be valid until another call to set_key() + * removes it, but it can only be used as a cookie to differentiate + * keys. + */ + +/** + * DOC: Frame filtering + * + * mac80211 requires to see many management frames for proper + * operation, and users may want to see many more frames when + * in monitor mode. However, for best CPU usage and power consumption, + * having as few frames as possible percolate through the stack is + * desirable. Hence, the hardware should filter as much as possible. + * + * To achieve this, mac80211 uses filter flags (see below) to tell + * the driver's configure_filter() function which frames should be + * passed to mac80211 and which should be filtered out. + * + * The configure_filter() callback is invoked with the parameters + * @mc_count and @mc_list for the combined multicast address list + * of all virtual interfaces, @changed_flags telling which flags + * were changed and @total_flags with the new flag states. + * + * If your device has no multicast address filters your driver will + * need to check both the %FIF_ALLMULTI flag and the @mc_count + * parameter to see whether multicast frames should be accepted + * or dropped. + * + * All unsupported flags in @total_flags must be cleared, i.e. you + * should clear all bits except those you honoured. + */ + +/** + * enum ieee80211_filter_flags - hardware filter flags + * + * These flags determine what the filter in hardware should be + * programmed to let through and what should not be passed to the + * stack. It is always safe to pass more frames than requested, + * but this has negative impact on power consumption. + * + * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, + * think of the BSS as your network segment and then this corresponds + * to the regular ethernet device promiscuous mode. + * + * @FIF_ALLMULTI: pass all multicast frames, this is used if requested + * by the user or if the hardware is not capable of filtering by + * multicast address. + * + * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the + * %RX_FLAG_FAILED_FCS_CRC for them) + * + * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set + * the %RX_FLAG_FAILED_PLCP_CRC for them + * + * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate + * to the hardware that it should not filter beacons or probe responses + * by BSSID. Filtering them can greatly reduce the amount of processing + * mac80211 needs to do and the amount of CPU wakeups, so you should + * honour this flag if possible. + * + * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then + * only those addressed to this station + * + * @FIF_OTHER_BSS: pass frames destined to other BSSes + */ +enum ieee80211_filter_flags { + FIF_PROMISC_IN_BSS = 1<<0, + FIF_ALLMULTI = 1<<1, + FIF_FCSFAIL = 1<<2, + FIF_PLCPFAIL = 1<<3, + FIF_BCN_PRBRESP_PROMISC = 1<<4, + FIF_CONTROL = 1<<5, + FIF_OTHER_BSS = 1<<6, +}; + +/** + * enum ieee80211_erp_change_flags - erp change flags + * + * These flags are used with the erp_ie_changed() callback in + * &struct ieee80211_ops to indicate which parameter(s) changed. + * @IEEE80211_ERP_CHANGE_PROTECTION: protection changed + * @IEEE80211_ERP_CHANGE_PREAMBLE: barker preamble mode changed + */ +enum ieee80211_erp_change_flags { + IEEE80211_ERP_CHANGE_PROTECTION = 1<<0, + IEEE80211_ERP_CHANGE_PREAMBLE = 1<<1, +}; + + +/** + * struct ieee80211_ops - callbacks from mac80211 to the driver + * + * This structure contains various callbacks that the driver may + * handle or, in some cases, must handle, for example to configure + * the hardware to a new channel or to transmit a frame. + * + * @tx: Handler that 802.11 module calls for each transmitted frame. + * skb contains the buffer starting from the IEEE 802.11 header. + * The low-level driver should send the frame out based on + * configuration in the TX control data. Must be implemented and + * atomic. + * + * @start: Called before the first netdevice attached to the hardware + * is enabled. This should turn on the hardware and must turn on + * frame reception (for possibly enabled monitor interfaces.) + * Returns negative error codes, these may be seen in userspace, + * or zero. + * When the device is started it should not have a MAC address + * to avoid acknowledging frames before a non-monitor device + * is added. + * Must be implemented. + * + * @stop: Called after last netdevice attached to the hardware + * is disabled. This should turn off the hardware (at least + * it must turn off frame reception.) + * May be called right after add_interface if that rejects + * an interface. + * Must be implemented. + * + * @add_interface: Called when a netdevice attached to the hardware is + * enabled. Because it is not called for monitor mode devices, @open + * and @stop must be implemented. + * The driver should perform any initialization it needs before + * the device can be enabled. The initial configuration for the + * interface is given in the conf parameter. + * The callback may refuse to add an interface by returning a + * negative error code (which will be seen in userspace.) + * Must be implemented. + * + * @remove_interface: Notifies a driver that an interface is going down. + * The @stop callback is called after this if it is the last interface + * and no monitor interfaces are present. + * When all interfaces are removed, the MAC address in the hardware + * must be cleared so the device no longer acknowledges packets, + * the mac_addr member of the conf structure is, however, set to the + * MAC address of the device going away. + * Hence, this callback must be implemented. + * + * @config: Handler for configuration requests. IEEE 802.11 code calls this + * function to change hardware configuration, e.g., channel. + * + * @config_interface: Handler for configuration requests related to interfaces + * (e.g. BSSID changes.) + * + * @configure_filter: Configure the device's RX filter. + * See the section "Frame filtering" for more information. + * This callback must be implemented and atomic. + * + * @set_tim: Set TIM bit. If the hardware/firmware takes care of beacon + * generation (that is, %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is set) + * mac80211 calls this function when a TIM bit must be set or cleared + * for a given AID. Must be atomic. + * + * @set_key: See the section "Hardware crypto acceleration" + * This callback can sleep, and is only called between add_interface + * and remove_interface calls, i.e. while the interface with the + * given local_address is enabled. + * + * @set_ieee8021x: Enable/disable IEEE 802.1X. This item requests wlan card + * to pass unencrypted EAPOL-Key frames even when encryption is + * configured. If the wlan card does not require such a configuration, + * this function pointer can be set to NULL. + * + * @set_port_auth: Set port authorization state (IEEE 802.1X PAE) to be + * authorized (@authorized=1) or unauthorized (=0). This function can be + * used if the wlan hardware or low-level driver implements PAE. + * mac80211 will filter frames based on authorization state in any case, + * so this function pointer can be NULL if low-level driver does not + * require event notification about port state changes. + * + * @hw_scan: Ask the hardware to service the scan request, no need to start + * the scan state machine in stack. + * + * @get_stats: return low-level statistics + * + * @set_privacy_invoked: For devices that generate their own beacons and probe + * response or association responses this updates the state of privacy_invoked + * returns 0 for success or an error number. + * + * @get_sequence_counter: For devices that have internal sequence counters this + * callback allows mac80211 to access the current value of a counter. + * This callback seems not well-defined, tell us if you need it. + * + * @set_rts_threshold: Configuration of RTS threshold (if device needs it) + * + * @set_frag_threshold: Configuration of fragmentation threshold. Assign this if + * the device does fragmentation by itself; if this method is assigned then + * the stack will not do fragmentation. + * + * @set_retry_limit: Configuration of retry limits (if device needs it) + * + * @sta_notify: Notifies low level driver about addition or removal + * of assocaited station or AP. + * + * @erp_ie_changed: Handle ERP IE change notifications. Must be atomic. + * + * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), + * bursting) for a hardware TX queue. The @queue parameter uses the + * %IEEE80211_TX_QUEUE_* constants. Must be atomic. + * + * @get_tx_stats: Get statistics of the current TX queue status. This is used + * to get number of currently queued packets (queue length), maximum queue + * size (limit), and total number of packets sent using each TX queue + * (count). This information is used for WMM to find out which TX + * queues have room for more packets and by hostapd to provide + * statistics about the current queueing state to external programs. + * + * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, + * this is only used for IBSS mode debugging and, as such, is not a + * required function. Must be atomic. + * + * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize + * with other STAs in the IBSS. This is only used in IBSS mode. This + * function is optional if the firmware/hardware takes full care of + * TSF synchronization. + * + * @beacon_update: Setup beacon data for IBSS beacons. Unlike access point, + * IBSS uses a fixed beacon frame which is configured using this + * function. + * If the driver returns success (0) from this callback, it owns + * the skb. That means the driver is responsible to kfree_skb() it. + * The control structure is not dynamically allocated. That means the + * driver does not own the pointer and if it needs it somewhere + * outside of the context of this function, it must copy it + * somewhere else. + * This handler is required only for IBSS mode. + * + * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. + * This is needed only for IBSS mode and the result of this function is + * used to determine whether to reply to Probe Requests. + */ +struct ieee80211_ops { + int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb, + struct ieee80211_tx_control *control); + int (*start)(struct ieee80211_hw *hw); + void (*stop)(struct ieee80211_hw *hw); + int (*add_interface)(struct ieee80211_hw *hw, + struct ieee80211_if_init_conf *conf); + void (*remove_interface)(struct ieee80211_hw *hw, + struct ieee80211_if_init_conf *conf); + int (*config)(struct ieee80211_hw *hw, struct ieee80211_conf *conf); + int (*config_interface)(struct ieee80211_hw *hw, + int if_id, struct ieee80211_if_conf *conf); + void (*configure_filter)(struct ieee80211_hw *hw, + unsigned int changed_flags, + unsigned int *total_flags, + int mc_count, struct dev_addr_list *mc_list); + int (*set_tim)(struct ieee80211_hw *hw, int aid, int set); + int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, + const u8 *local_address, const u8 *address, + struct ieee80211_key_conf *key); + int (*set_ieee8021x)(struct ieee80211_hw *hw, int use_ieee8021x); + int (*set_port_auth)(struct ieee80211_hw *hw, u8 *addr, + int authorized); + int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len); + int (*get_stats)(struct ieee80211_hw *hw, + struct ieee80211_low_level_stats *stats); + int (*set_privacy_invoked)(struct ieee80211_hw *hw, + int privacy_invoked); + int (*get_sequence_counter)(struct ieee80211_hw *hw, + u8* addr, u8 keyidx, u8 txrx, + u32* iv32, u16* iv16); + int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); + int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); + int (*set_retry_limit)(struct ieee80211_hw *hw, + u32 short_retry, u32 long_retr); + void (*sta_notify)(struct ieee80211_hw *hw, int if_id, + enum sta_notify_cmd, const u8 *addr); + void (*erp_ie_changed)(struct ieee80211_hw *hw, u8 changes, + int cts_protection, int preamble); + int (*conf_tx)(struct ieee80211_hw *hw, int queue, + const struct ieee80211_tx_queue_params *params); + int (*get_tx_stats)(struct ieee80211_hw *hw, + struct ieee80211_tx_queue_stats *stats); + u64 (*get_tsf)(struct ieee80211_hw *hw); + void (*reset_tsf)(struct ieee80211_hw *hw); + int (*beacon_update)(struct ieee80211_hw *hw, + struct sk_buff *skb, + struct ieee80211_tx_control *control); + int (*tx_last_beacon)(struct ieee80211_hw *hw); +}; + +/** + * ieee80211_alloc_hw - Allocate a new hardware device + * + * This must be called once for each hardware device. The returned pointer + * must be used to refer to this device when calling other functions. + * mac80211 allocates a private data area for the driver pointed to by + * @priv in &struct ieee80211_hw, the size of this area is given as + * @priv_data_len. + * + * @priv_data_len: length of private data + * @ops: callbacks for this device + */ +struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, + const struct ieee80211_ops *ops); + +/** + * ieee80211_register_hw - Register hardware device + * + * You must call this function before any other functions + * except ieee80211_register_hwmode. + * + * @hw: the device to register as returned by ieee80211_alloc_hw() + */ +int ieee80211_register_hw(struct ieee80211_hw *hw); + +#ifdef CONFIG_MAC80211_LEDS +extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); +extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); +extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); +#endif +/** + * ieee80211_get_tx_led_name - get name of TX LED + * + * mac80211 creates a transmit LED trigger for each wireless hardware + * that can be used to drive LEDs if your driver registers a LED device. + * This function returns the name (or %NULL if not configured for LEDs) + * of the trigger so you can automatically link the LED device. + * + * @hw: the hardware to get the LED trigger name for + */ +static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) +{ +#ifdef CONFIG_MAC80211_LEDS + return __ieee80211_get_tx_led_name(hw); +#else + return NULL; +#endif +} + +/** + * ieee80211_get_rx_led_name - get name of RX LED + * + * mac80211 creates a receive LED trigger for each wireless hardware + * that can be used to drive LEDs if your driver registers a LED device. + * This function returns the name (or %NULL if not configured for LEDs) + * of the trigger so you can automatically link the LED device. + * + * @hw: the hardware to get the LED trigger name for + */ +static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) +{ +#ifdef CONFIG_MAC80211_LEDS + return __ieee80211_get_rx_led_name(hw); +#else + return NULL; +#endif +} + +static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) +{ +#ifdef CONFIG_MAC80211_LEDS + return __ieee80211_get_assoc_led_name(hw); +#else + return NULL; +#endif +} + + +/* Register a new hardware PHYMODE capability to the stack. */ +int ieee80211_register_hwmode(struct ieee80211_hw *hw, + struct ieee80211_hw_mode *mode); + +/** + * ieee80211_unregister_hw - Unregister a hardware device + * + * This function instructs mac80211 to free allocated resources + * and unregister netdevices from the networking subsystem. + * + * @hw: the hardware to unregister + */ +void ieee80211_unregister_hw(struct ieee80211_hw *hw); + +/** + * ieee80211_free_hw - free hardware descriptor + * + * This function frees everything that was allocated, including the + * private data for the driver. You must call ieee80211_unregister_hw() + * before calling this function + * + * @hw: the hardware to free + */ +void ieee80211_free_hw(struct ieee80211_hw *hw); + +/* trick to avoid symbol clashes with the ieee80211 subsystem */ +void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, + struct ieee80211_rx_status *status); + +/** + * ieee80211_rx - receive frame + * + * Use this function to hand received frames to mac80211. The receive + * buffer in @skb must start with an IEEE 802.11 header or a radiotap + * header if %RX_FLAG_RADIOTAP is set in the @status flags. + * + * This function may not be called in IRQ context. + * + * @hw: the hardware this frame came in on + * @skb: the buffer to receive, owned by mac80211 after this call + * @status: status of this frame; the status pointer need not be valid + * after this function returns + */ +static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, + struct ieee80211_rx_status *status) +{ + __ieee80211_rx(hw, skb, status); +} + +/** + * ieee80211_rx_irqsafe - receive frame + * + * Like ieee80211_rx() but can be called in IRQ context + * (internally defers to a workqueue.) + * + * @hw: the hardware this frame came in on + * @skb: the buffer to receive, owned by mac80211 after this call + * @status: status of this frame; the status pointer need not be valid + * after this function returns and is not freed by mac80211, + * it is recommended that it points to a stack area + */ +void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, + struct sk_buff *skb, + struct ieee80211_rx_status *status); + +/** + * ieee80211_tx_status - transmit status callback + * + * Call this function for all transmitted frames after they have been + * transmitted. It is permissible to not call this function for + * multicast frames but this can affect statistics. + * + * @hw: the hardware the frame was transmitted by + * @skb: the frame that was transmitted, owned by mac80211 after this call + * @status: status information for this frame; the status pointer need not + * be valid after this function returns and is not freed by mac80211, + * it is recommended that it points to a stack area + */ +void ieee80211_tx_status(struct ieee80211_hw *hw, + struct sk_buff *skb, + struct ieee80211_tx_status *status); +void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, + struct sk_buff *skb, + struct ieee80211_tx_status *status); + +/** + * ieee80211_beacon_get - beacon generation function + * @hw: pointer obtained from ieee80211_alloc_hw(). + * @if_id: interface ID from &struct ieee80211_if_init_conf. + * @control: will be filled with information needed to send this beacon. + * + * If the beacon frames are generated by the host system (i.e., not in + * hardware/firmware), the low-level driver uses this function to receive + * the next beacon frame from the 802.11 code. The low-level is responsible + * for calling this function before beacon data is needed (e.g., based on + * hardware interrupt). Returned skb is used only once and low-level driver + * is responsible of freeing it. + */ +struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, + int if_id, + struct ieee80211_tx_control *control); + +/** + * ieee80211_rts_get - RTS frame generation function + * @hw: pointer obtained from ieee80211_alloc_hw(). + * @if_id: interface ID from &struct ieee80211_if_init_conf. + * @frame: pointer to the frame that is going to be protected by the RTS. + * @frame_len: the frame length (in octets). + * @frame_txctl: &struct ieee80211_tx_control of the frame. + * @rts: The buffer where to store the RTS frame. + * + * If the RTS frames are generated by the host system (i.e., not in + * hardware/firmware), the low-level driver uses this function to receive + * the next RTS frame from the 802.11 code. The low-level is responsible + * for calling this function before and RTS frame is needed. + */ +void ieee80211_rts_get(struct ieee80211_hw *hw, int if_id, + const void *frame, size_t frame_len, + const struct ieee80211_tx_control *frame_txctl, + struct ieee80211_rts *rts); + +/** + * ieee80211_rts_duration - Get the duration field for an RTS frame + * @hw: pointer obtained from ieee80211_alloc_hw(). + * @if_id: interface ID from &struct ieee80211_if_init_conf. + * @frame_len: the length of the frame that is going to be protected by the RTS. + * @frame_txctl: &struct ieee80211_tx_control of the frame. + * + * If the RTS is generated in firmware, but the host system must provide + * the duration field, the low-level driver uses this function to receive + * the duration field value in little-endian byteorder. + */ +__le16 ieee80211_rts_duration(struct ieee80211_hw *hw, int if_id, + size_t frame_len, + const struct ieee80211_tx_control *frame_txctl); + +/** + * ieee80211_ctstoself_get - CTS-to-self frame generation function + * @hw: pointer obtained from ieee80211_alloc_hw(). + * @if_id: interface ID from &struct ieee80211_if_init_conf. + * @frame: pointer to the frame that is going to be protected by the CTS-to-self. + * @frame_len: the frame length (in octets). + * @frame_txctl: &struct ieee80211_tx_control of the frame. + * @cts: The buffer where to store the CTS-to-self frame. + * + * If the CTS-to-self frames are generated by the host system (i.e., not in + * hardware/firmware), the low-level driver uses this function to receive + * the next CTS-to-self frame from the 802.11 code. The low-level is responsible + * for calling this function before and CTS-to-self frame is needed. + */ +void ieee80211_ctstoself_get(struct ieee80211_hw *hw, int if_id, + const void *frame, size_t frame_len, + const struct ieee80211_tx_control *frame_txctl, + struct ieee80211_cts *cts); + +/** + * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame + * @hw: pointer obtained from ieee80211_alloc_hw(). + * @if_id: interface ID from &struct ieee80211_if_init_conf. + * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. + * @frame_txctl: &struct ieee80211_tx_control of the frame. + * + * If the CTS-to-self is generated in firmware, but the host system must provide + * the duration field, the low-level driver uses this function to receive + * the duration field value in little-endian byteorder. + */ +__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, int if_id, + size_t frame_len, + const struct ieee80211_tx_control *frame_txctl); + +/** + * ieee80211_generic_frame_duration - Calculate the duration field for a frame + * @hw: pointer obtained from ieee80211_alloc_hw(). + * @if_id: interface ID from &struct ieee80211_if_init_conf. + * @frame_len: the length of the frame. + * @rate: the rate (in 100kbps) at which the frame is going to be transmitted. + * + * Calculate the duration field of some generic frame, given its + * length and transmission rate (in 100kbps). + */ +__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, int if_id, + size_t frame_len, + int rate); + +/** + * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames + * @hw: pointer as obtained from ieee80211_alloc_hw(). + * @if_id: interface ID from &struct ieee80211_if_init_conf. + * @control: will be filled with information needed to send returned frame. + * + * Function for accessing buffered broadcast and multicast frames. If + * hardware/firmware does not implement buffering of broadcast/multicast + * frames when power saving is used, 802.11 code buffers them in the host + * memory. The low-level driver uses this function to fetch next buffered + * frame. In most cases, this is used when generating beacon frame. This + * function returns a pointer to the next buffered skb or NULL if no more + * buffered frames are available. + * + * Note: buffered frames are returned only after DTIM beacon frame was + * generated with ieee80211_beacon_get() and the low-level driver must thus + * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns + * NULL if the previous generated beacon was not DTIM, so the low-level driver + * does not need to check for DTIM beacons separately and should be able to + * use common code for all beacons. + */ +struct sk_buff * +ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, + struct ieee80211_tx_control *control); + +/** + * ieee80211_get_hdrlen_from_skb - get header length from data + * + * Given an skb with a raw 802.11 header at the data pointer this function + * returns the 802.11 header length in bytes (not including encryption + * headers). If the data in the sk_buff is too short to contain a valid 802.11 + * header the function returns 0. + * + * @skb: the frame + */ +int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); + +/** + * ieee80211_get_hdrlen - get header length from frame control + * + * This function returns the 802.11 header length in bytes (not including + * encryption headers.) + * + * @fc: the frame control field (in CPU endianness) + */ +int ieee80211_get_hdrlen(u16 fc); + +/** + * ieee80211_wake_queue - wake specific queue + * @hw: pointer as obtained from ieee80211_alloc_hw(). + * @queue: queue number (counted from zero). + * + * Drivers should use this function instead of netif_wake_queue. + */ +void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); + +/** + * ieee80211_stop_queue - stop specific queue + * @hw: pointer as obtained from ieee80211_alloc_hw(). + * @queue: queue number (counted from zero). + * + * Drivers should use this function instead of netif_stop_queue. + */ +void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); + +/** + * ieee80211_start_queues - start all queues + * @hw: pointer to as obtained from ieee80211_alloc_hw(). + * + * Drivers should use this function instead of netif_start_queue. + */ +void ieee80211_start_queues(struct ieee80211_hw *hw); + +/** + * ieee80211_stop_queues - stop all queues + * @hw: pointer as obtained from ieee80211_alloc_hw(). + * + * Drivers should use this function instead of netif_stop_queue. + */ +void ieee80211_stop_queues(struct ieee80211_hw *hw); + +/** + * ieee80211_wake_queues - wake all queues + * @hw: pointer as obtained from ieee80211_alloc_hw(). + * + * Drivers should use this function instead of netif_wake_queue. + */ +void ieee80211_wake_queues(struct ieee80211_hw *hw); + +/** + * ieee80211_scan_completed - completed hardware scan + * + * When hardware scan offload is used (i.e. the hw_scan() callback is + * assigned) this function needs to be called by the driver to notify + * mac80211 that the scan finished. + * + * @hw: the hardware that finished the scan + */ +void ieee80211_scan_completed(struct ieee80211_hw *hw); + +#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x" +#define MAC_ARG(x) ((u8*)(x))[0], ((u8*)(x))[1], ((u8*)(x))[2], \ + ((u8*)(x))[3], ((u8*)(x))[4], ((u8*)(x))[5] + +#endif /* MAC80211_H */ -- cgit v1.2.3