aboutsummaryrefslogtreecommitdiffstats
Commit message (Expand)AuthorAgeFilesLines
...
* [tools] pkg-config: fix occasional install problemLuka Perkov2013-11-202-1/+23
* procd: fix the running hook #38868John Crispin2013-11-201-3/+3
* lantiq: move patch to proper folderJohn Crispin2013-11-201-0/+0
* mac80211: fix reorder issues with multicast packets (client mode)Felix Fietkau2013-11-201-0/+10
* mac80211: fix an overflow issue in minstrel_htFelix Fietkau2013-11-201-1/+1
* lantiq: update default mii modesJohn Crispin2013-11-202-2/+2
* lantiq: fix etop registersJohn Crispin2013-11-201-0/+121
* procd: add validation to the log init scriptJohn Crispin2013-11-201-10/+23
* lantiq: fix an endless loop in the vmmc platform codeJohn Crispin2013-11-201-1/+1
* mxs: build/profile-related changesZoltan HERPAI2013-11-203-8/+29
* package: uboot-mxs: cosmetic fixZoltan HERPAI2013-11-201-1/+1
* mac80211: small rate control fixFelix Fietkau2013-11-201-0/+11
* libubox: fix compile error (#14497)John Crispin2013-11-191-2/+2
* ralink: set wmr-300 mac properlyJohn Crispin2013-11-191-0/+1
* mtd: add a "mtd verify" callJohn Crispin2013-11-193-2/+72
* libubox: ubox: procd: move md5.{c,h} to libuboxJohn Crispin2013-11-193-6/+6
* procd: update to latest git headJohn Crispin2013-11-191-2/+2
* ralink: add missing CONFIG_ symbol to mt7620nJohn Crispin2013-11-191-0/+1
* libubox: update to latest git headJohn Crispin2013-11-191-2/+2
* mpc85xx: Fix NAPI poll mechanism in GIANFAR ethernet driverFelix Fietkau2013-11-192-162/+109
* procd: emit tty events for ttyUSB* even when they come from the usb-serial su...Felix Fietkau2013-11-191-7/+10
* base-files: add the DEVICENAME variable for hotplug scriptsFelix Fietkau2013-11-191-0/+1
* scripts/gen-dependencies.sh: prevent zero-length dep.* files from accumulatin...Felix Fietkau2013-11-191-1/+1
* imx6: build images for ventana boards that are supportedLuka Perkov2013-11-181-0/+2
* imx6: merge all gateworks boards into one profileLuka Perkov2013-11-182-50/+32
* imx6: add support for more then one nand type per profileLuka Perkov2013-11-182-11/+22
* imx6: refresh kernel configLuka Perkov2013-11-181-1/+0
* image: remove spaces from toupper functionLuka Perkov2013-11-181-1/+1
* ath9k: merge a few reset / calibration fixesFelix Fietkau2013-11-1810-19/+241
* cmake.mk: fix support for ccacheFelix Fietkau2013-11-181-2/+2
* hostapd: remove random pool support - the entropy it gathers is questionable ...Felix Fietkau2013-11-186-177/+5
* uClibc: Deactivate oversized thread stack cacheFelix Fietkau2013-11-181-0/+11
* [omap]: make default packages selected for realImre Kaloz2013-11-181-2/+2
* firewall: optimize DNAT rules and skip invalid rules and redirects (#14485)Jo-Philipp Wich2013-11-181-2/+2
* ralink: add support for ralink mt7620 nand eval boardJohn Crispin2013-11-183-0/+118
* ralink: improve mt7620n detectionJohn Crispin2013-11-181-0/+57
* ralink: add mt7620 nand driverJohn Crispin2013-11-182-0/+2418
* ralink: make all none 3x5x boards default to a vlan1/2 setupJohn Crispin2013-11-181-6/+1
* ralink: make usb work on the mt7530 eval kitJohn Crispin2013-11-181-0/+8
* mac80211: ath10k: add board.bin file againHauke Mehrtens2013-11-171-0/+1
* at91: fix typo in network fileHauke Mehrtens2013-11-171-1/+1
* kernel: add vmxnet3 moduleHauke Mehrtens2013-11-171-0/+16
* xfsprogs: move to submenu FilesystemHauke Mehrtens2013-11-171-0/+1
* kirkwood: add missing kernel config CONFIG_REGMAP=yHauke Mehrtens2013-11-171-1/+1
* mac80211: update ath10k firmwareHauke Mehrtens2013-11-171-4/+2
* kernel: backport get_cycles() fixHauke Mehrtens2013-11-171-0/+69
* mac80211: add blink api backportHauke Mehrtens2013-11-171-0/+65
* ralink: add mt7620n dts filesJohn Crispin2013-11-172-0/+359
* ramips: fix wmr300 network detectionJohn Crispin2013-11-171-1/+1
* kernel: add fix to block2mtd driver for modified error loggingZoltan HERPAI2013-11-171-0/+12
83 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
--  Semantic analysis.
--  Copyright (C) 2002, 2003, 2004, 2005 Tristan Gingold
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Grt.Algos;
with Errorout; use Errorout;
with Name_Table;
with Str_Table;
with Flags; use Flags;

with Vhdl.Std_Package; use Vhdl.Std_Package;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Evaluation; use Vhdl.Evaluation;
with Vhdl.Nodes_Utils; use Vhdl.Nodes_Utils;
with Vhdl.Sem_Scopes; use Vhdl.Sem_Scopes;
with Vhdl.Sem_Names; use Vhdl.Sem_Names;
with Vhdl.Sem;
with Vhdl.Sem_Types;
with Vhdl.Sem_Stmts; use Vhdl.Sem_Stmts;
with Vhdl.Sem_Assocs; use Vhdl.Sem_Assocs;
with Vhdl.Sem_Decls;
with Vhdl.Sem_Psl;
with Vhdl.Xrefs; use Vhdl.Xrefs;
with Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Ieee.Numeric;

package body Vhdl.Sem_Expr is

   -- Replace type of TARGET by A_TYPE.
   -- If TARGET has already a type, it must be an overload list, and in this
   -- case, this list is freed, or it must be A_TYPE.
   -- A_TYPE can't be an overload list.
   --
   -- This procedure can be called in the second pass, when the type is known.
   procedure Replace_Type (Target: Iir; A_Type: Iir)
   is
      Old_Type: Iir;
   begin
      pragma Assert (not Is_Overload_List (A_Type));

      Old_Type := Get_Type (Target);
      if Old_Type /= Null_Iir then
         if Is_Overload_List (Old_Type) then
            Free_Iir (Old_Type);
         elsif Old_Type = A_Type then
            return;
         else
            -- Cannot replace an existing type by another one.
            raise Internal_Error;
         end if;
      end if;
      if A_Type = Null_Iir then
         return;
      end if;
      Set_Type (Target, A_Type);
   end Replace_Type;

   --  Return true if EXPR is overloaded, ie has several meanings.
   function Is_Overloaded (Expr : Iir) return Boolean
   is
      Expr_Type : constant Iir := Get_Type (Expr);
   begin
      return Expr_Type = Null_Iir or else Is_Overload_List (Expr_Type);
   end Is_Overloaded;

   --  Return the common type of base types LEFT and RIGHT.
   --  LEFT are RIGHT must be really base types (not subtypes).
   --  Roughly speaking, it returns LEFT (= RIGHT) if LEFT = RIGHT (ie, same
   --  type), null otherwise.
   --  However, it handles implicite conversions of universal types.
   function Get_Common_Basetype (Left: Iir; Right: Iir)
     return Iir is
   begin
      if Left = Right then
         return Left;
      end if;
      case Get_Kind (Left) is
         when Iir_Kind_Integer_Type_Definition =>
            if Right = Convertible_Integer_Type_Definition then
               return Left;
            elsif Left = Convertible_Integer_Type_Definition
              and then Get_Kind (Right) = Iir_Kind_Integer_Type_Definition
            then
               return Right;
            end if;
         when Iir_Kind_Floating_Type_Definition =>
            if Right = Convertible_Real_Type_Definition then
               return Left;
            elsif Left = Convertible_Real_Type_Definition
              and then Get_Kind (Right) = Iir_Kind_Floating_Type_Definition
            then
               return Right;
            end if;
         when others =>
            null;
      end case;
      return Null_Iir;
   end Get_Common_Basetype;

   -- LEFT are RIGHT must be really a type (not a subtype).
   function Are_Basetypes_Compatible (Left: Iir; Right: Iir)
     return Compatibility_Level is
   begin
      if Left = Right then
         return Fully_Compatible;
      end if;
      case Get_Kind (Left) is
         when Iir_Kind_Integer_Type_Definition =>
            if Right = Convertible_Integer_Type_Definition then
               if Left = Universal_Integer_Type_Definition then
                  return Fully_Compatible;
               else
                  return Via_Conversion;
               end if;
            elsif Left = Convertible_Integer_Type_Definition
              and then Get_Kind (Right) = Iir_Kind_Integer_Type_Definition
            then
               if Right = Universal_Integer_Type_Definition then
                  return Fully_Compatible;
               else
                  return Via_Conversion;
               end if;
            end if;
         when Iir_Kind_Floating_Type_Definition =>
            if Right = Convertible_Real_Type_Definition then
               if Left = Universal_Real_Type_Definition then
                  return Fully_Compatible;
               else
                  return Via_Conversion;
               end if;
            elsif Left = Convertible_Real_Type_Definition
              and then Get_Kind (Right) = Iir_Kind_Floating_Type_Definition
            then
               if Right = Universal_Real_Type_Definition then
                  return Fully_Compatible;
               else
                  return Via_Conversion;
               end if;
            end if;
         when Iir_Kind_Foreign_Vector_Type_Definition =>
            declare
               use Vhdl.Ieee.Std_Logic_1164;
               El_Type : Iir;
            begin
               if Right = Bit_Type_Definition
                 or else Right = Boolean_Type_Definition
                 or else Right = Bit_Vector_Type_Definition
                 or else Right = Std_Logic_Type
                 or else Right = Std_Ulogic_Type
               then
                  return Fully_Compatible;
               end if;
               if Get_Kind (Right) = Iir_Kind_Array_Type_Definition then
                  El_Type := Get_Base_Type (Get_Element_Subtype (Right));
                  if El_Type = Std_Logic_Type
                    or else El_Type = Std_Ulogic_Type
                    or else El_Type = Bit_Type_Definition
                  then
                     return Fully_Compatible;
                  end if;
               end if;
            end;
         when others =>
            null;
      end case;
      return Not_Compatible;
   end Are_Basetypes_Compatible;

   function Are_Types_Compatible (Left: Iir; Right: Iir)
                                 return Compatibility_Level is
   begin
      return Are_Basetypes_Compatible (Get_Base_Type (Left),
                                       Get_Base_Type (Right));
   end Are_Types_Compatible;

   function Are_Nodes_Compatible (Left: Iir; Right: Iir)
                                 return Compatibility_Level is
   begin
      return Are_Types_Compatible (Get_Type (Left), Get_Type (Right));
   end Are_Nodes_Compatible;

   --  Return TRUE iif LEFT_TYPE and RIGHT_TYPES are compatible. RIGHT_TYPES
   --  may be an overload list.
   function Compatibility_Types1 (Left_Type : Iir; Right_Types : Iir)
                                 return Compatibility_Level
   is
      El : Iir;
      Right_List : Iir_List;
      It : List_Iterator;
      Level : Compatibility_Level;
   begin
      pragma Assert (not Is_Overload_List (Left_Type));

      if Is_Overload_List (Right_Types) then
         Right_List := Get_Overload_List (Right_Types);
         Level := Not_Compatible;
         It := List_Iterate (Right_List);
         while Is_Valid (It) loop
            El := Get_Element (It);
            Level := Compatibility_Level'Max
              (Level, Are_Types_Compatible (Left_Type, El));
            if Level = Fully_Compatible then
               return Fully_Compatible;
            end if;
            Next (It);
         end loop;
         return Level;
      else
         return Are_Types_Compatible (Left_Type, Right_Types);
      end if;
   end Compatibility_Types1;

   --  Return compatibility for nodes LEFT and RIGHT.
   --  LEFT is expected to be an interface of a function definition.
   --  Type of RIGHT can be an overload_list
   --  RIGHT might be implicitly converted to LEFT.
   function Compatibility_Nodes (Left : Iir; Right : Iir)
     return Compatibility_Level
   is
      Left_Type : constant Iir := Get_Base_Type (Get_Type (Left));
      Right_Type : constant Iir := Get_Type (Right);
   begin
      --  Check.
      case Get_Kind (Left_Type) is
         when Iir_Kind_Floating_Type_Definition
           | Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Record_Type_Definition
           | Iir_Kind_File_Type_Definition
           | Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Access_Type_Definition
           | Iir_Kind_Array_Type_Definition =>
            null;
         when others =>
            Error_Kind ("compatibility_nodes", Left_Type);
      end case;

      return Compatibility_Types1 (Left_Type, Right_Type);
   end Compatibility_Nodes;

   function Is_String_Type (A_Type : Iir) return Boolean
   is
      Base_Type : constant Iir := Get_Base_Type (A_Type);
      El_Bt : Iir;
   begin
      --  LRM 7.3.1
      --  [...] the type of the literal must be a one-dimensional array ...
      if not Is_One_Dimensional_Array_Type (Base_Type) then
         return False;
      end if;
      --  LRM 7.3.1
      --  ... of a character type ...
      El_Bt := Get_Base_Type (Get_Element_Subtype (Base_Type));
      if Get_Kind (El_Bt) /= Iir_Kind_Enumeration_Type_Definition then
         return False;
      end if;
      if not Get_Is_Character_Type (El_Bt) then
         return False;
      end if;
      return True;
   end Is_String_Type;

   --  Return TRUE iff A_TYPE can be the type of string or bit string literal
   --  EXPR.  EXPR is needed to distinguish between string and bit string
   --  for VHDL87 rule about the type of a bit string.
   function Is_String_Literal_Type (A_Type : Iir; Expr : Iir) return Boolean
   is
      El_Bt : Iir;
   begin
      if not Is_String_Type (A_Type) then
         return False;
      end if;
      El_Bt := Get_Base_Type (Get_Element_Subtype (A_Type));
      --  LRM87 7.3.1
      --  ... (for string literals) or of type BIT (for bit string literals).
      if Flags.Vhdl_Std = Vhdl_87
        and then Get_Bit_String_Base (Expr) /= Base_None
        and then El_Bt /= Bit_Type_Definition
      then
         return False;
      end if;
      return True;
   end Is_String_Literal_Type;

   --  Return TRUE iff A_TYPE can be the type of an aggregate.
   function Is_Aggregate_Type (A_Type : Iir) return Boolean is
   begin
      --  LRM 7.3.2 Aggregates
      --  [...]  the type of the aggregate must be a composite type.
      case Get_Kind (Get_Base_Type (A_Type)) is
         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Record_Type_Definition =>
            return True;
         when others =>
            return False;
      end case;
   end Is_Aggregate_Type;

   --  Return TRUE iff A_TYPE can be the type of a null literal.
   function Is_Null_Literal_Type (A_Type : Iir) return Boolean is
   begin
      --  LRM 7.3.1 Literals
      --  The literal NULL represents the null access value for any access
      --  type.
      return
        Get_Kind (Get_Base_Type (A_Type)) = Iir_Kind_Access_Type_Definition;
   end Is_Null_Literal_Type;

   --  Return TRUE iff A_TYPE can be the type of allocator EXPR.  Note that
   --  the allocator must have been analyzed.
   function Is_Allocator_Type (A_Type : Iir; Expr : Iir) return Boolean
   is
      Base_Type : constant Iir := Get_Base_Type (A_Type);
      Designated_Type : Iir;
   begin
      --  LRM 7.3.6 Allocators
      --  [...] the value returned is of an access type having the named
      --  designated type.

      if Get_Kind (Base_Type) /= Iir_Kind_Access_Type_Definition then
         return False;
      end if;
      Designated_Type := Get_Allocator_Designated_Type (Expr);
      pragma Assert (Designated_Type /= Null_Iir);
      --  Cheat: there is no allocators on universal types.
      return Get_Base_Type (Get_Designated_Type (Base_Type))
        = Get_Base_Type (Designated_Type);
   end Is_Allocator_Type;

   --  Return TRUE iff the type of EXPR is compatible with A_TYPE
   function Is_Expr_Compatible (A_Type : Iir; Expr : Iir)
                               return Compatibility_Level
   is
      Expr_Type : constant Iir := Get_Type (Expr);
      Is_Compatible : Boolean;
   begin
      if Expr_Type /= Null_Iir then
         return Compatibility_Types1 (A_Type, Expr_Type);
      end if;

      case Get_Kind (Expr) is
         when Iir_Kind_Aggregate =>
            Is_Compatible := Is_Aggregate_Type (A_Type);
         when Iir_Kind_String_Literal8 =>
            Is_Compatible := Is_String_Literal_Type (A_Type, Expr);
         when Iir_Kind_Null_Literal =>
            Is_Compatible := Is_Null_Literal_Type (A_Type);
         when Iir_Kind_Allocator_By_Expression
           | Iir_Kind_Allocator_By_Subtype =>
            Is_Compatible := Is_Allocator_Type (A_Type, Expr);
         when Iir_Kind_Parenthesis_Expression =>
            return Is_Expr_Compatible (A_Type, Get_Expression (Expr));
         when others =>
            --  Error while EXPR was typed.  FIXME: should create an ERROR
            --  node?
            Is_Compatible := False;
      end case;
      if Is_Compatible then
         return Fully_Compatible;
      else
         return Not_Compatible;
      end if;
   end Is_Expr_Compatible;

   function Check_Is_Expression (Expr : Iir; Loc : Iir) return Iir
   is
   begin
      if Expr = Null_Iir then
         return Null_Iir;
      end if;
      case Get_Kind (Expr) is
         when Iir_Kind_Type_Declaration
           | Iir_Kind_Subtype_Declaration
           | Iir_Kinds_Subtype_Definition
           | Iir_Kind_Design_Unit
           | Iir_Kind_Architecture_Body
           | Iir_Kind_Configuration_Declaration
           | Iir_Kind_Entity_Declaration
           | Iir_Kind_Package_Declaration
           | Iir_Kind_Package_Instantiation_Declaration
           | Iir_Kinds_Concurrent_Statement
           | Iir_Kinds_Sequential_Statement
           | Iir_Kind_Library_Declaration
           | Iir_Kind_Library_Clause
           | Iir_Kind_Component_Declaration
           | Iir_Kind_Procedure_Declaration
           | Iir_Kind_Range_Array_Attribute
           | Iir_Kind_Reverse_Range_Array_Attribute
           | Iir_Kind_Subtype_Attribute
           | Iir_Kind_Element_Attribute
           | Iir_Kind_Element_Declaration
           | Iir_Kind_Attribute_Declaration
           | Iir_Kind_Psl_Declaration
           | Iir_Kind_Signature
           | Iir_Kind_Interface_Terminal_Declaration
           | Iir_Kind_Terminal_Declaration =>
            Error_Msg_Sem (+Loc, "%n not allowed in an expression", +Expr);
            return Null_Iir;
         when Iir_Kind_Function_Declaration =>
            return Expr;
         when Iir_Kind_Overload_List =>
            return Expr;
         when Iir_Kinds_Literal
           | Iir_Kind_Character_Literal
           | Iir_Kind_Simple_Aggregate
           | Iir_Kind_Unit_Declaration
           | Iir_Kind_Enumeration_Literal =>
            return Expr;
         when Iir_Kinds_External_Name =>
            return Expr;
         when Iir_Kinds_Object_Declaration
           | Iir_Kind_Aggregate
           | Iir_Kind_Allocator_By_Expression
           | Iir_Kind_Allocator_By_Subtype
           | Iir_Kind_Qualified_Expression
           | Iir_Kind_Overflow_Literal =>
            return Expr;
         when Iir_Kinds_Dyadic_Operator
           | Iir_Kinds_Monadic_Operator =>
            return Expr;
         when Iir_Kind_Slice_Name
           | Iir_Kind_Indexed_Name
           | Iir_Kind_Selected_Element
           | Iir_Kind_Dereference
           | Iir_Kind_Implicit_Dereference
           | Iir_Kinds_Expression_Attribute
           | Iir_Kind_Attribute_Value
           | Iir_Kind_Parenthesis_Expression
           | Iir_Kind_Type_Conversion
           | Iir_Kind_Function_Call =>
            return Expr;
         when Iir_Kind_Psl_Endpoint_Declaration
           | Iir_Kind_Psl_Boolean_Parameter
           | Iir_Kind_Psl_Prev
           | Iir_Kind_Psl_Stable
           | Iir_Kind_Psl_Rose
           | Iir_Kind_Psl_Fell
           | Iir_Kind_Psl_Onehot
           | Iir_Kind_Psl_Onehot0 =>
            return Expr;
         when Iir_Kind_Simple_Name
           | Iir_Kind_Parenthesis_Name
           | Iir_Kind_Attribute_Name
           | Iir_Kind_Selected_Name
           | Iir_Kind_Selected_By_All_Name =>
            return Expr;
         when Iir_Kind_Error =>
            return Expr;
         when others =>
            Error_Kind ("check_is_expression", Expr);
            --N := Get_Type (Expr);
            --return Expr;
      end case;
   end Check_Is_Expression;

   -- Find a type compatible with A_TYPE in TYPE_LIST (which can be an
   -- overload list or a simple type) and return it.
   -- In case of failure, return null.
   function Search_Overloaded_Type (Type_List: Iir; A_Type: Iir)
     return Iir
   is
      Type_List_List : Iir_List;
      It : List_Iterator;
      El: Iir;
      Com : Iir;
      Res : Iir;
   begin
      if not Is_Overload_List (Type_List) then
         return Get_Common_Basetype (Get_Base_Type (Type_List),
                                     Get_Base_Type (A_Type));
      else
         Type_List_List := Get_Overload_List (Type_List);
         Res := Null_Iir;
         It := List_Iterate (Type_List_List);
         while Is_Valid (It) loop
            El := Get_Element (It);
            Com := Get_Common_Basetype (Get_Base_Type (El),
                                        Get_Base_Type (A_Type));
            if Com /= Null_Iir then
               if Res = Null_Iir then
                  Res := Com;
               else
                  --  Several compatible types.
                  return Null_Iir;
               end if;
            end if;
            Next (It);
         end loop;
         return Res;
      end if;
   end Search_Overloaded_Type;

   --  LIST1, LIST2 are either a type node or an overload list of types.
   --  Return THE type which is compatible with LIST1 are LIST2.
   --  Return null_iir if there is no such type or if there are several types.
   function Search_Compatible_Type (List1, List2 : Iir) return Iir
   is
      List1_List : Iir_List;
      It : List_Iterator;
      Res : Iir;
      El : Iir;
      Tmp : Iir;
   begin
      if Is_Overload_List (List1) then
         List1_List := Get_Overload_List (List1);
         Res := Null_Iir;
         It := List_Iterate (List1_List);
         while Is_Valid (It) loop
            El := Get_Element (It);
            Tmp := Search_Overloaded_Type (List2, El);
            if Tmp /= Null_Iir then
               if Res = Null_Iir then
                  Res := Tmp;
               else
                  --  Several types match.
                  return Null_Iir;
               end if;
            end if;
            Next (It);
         end loop;
         return Res;
      else
         return Search_Overloaded_Type (List2, List1);
      end if;
   end Search_Compatible_Type;

   -- Analyze the range expression EXPR.
   -- If A_TYPE is not null_iir, EXPR is expected to be of type A_TYPE.
   -- LRM93 3.2.1.1
   -- FIXME: avoid to run it on an already analyzed node, be careful
   --  with range_type_expr.
   function Sem_Simple_Range_Expression
     (Expr: Iir_Range_Expression; A_Type: Iir; Any_Dir : Boolean)
      return Iir_Range_Expression
   is
      Base_Type: Iir;
      Left, Right: Iir;
      Left_Type, Right_Type : Iir;
      Expr_Type : Iir;
   begin
      Expr_Type := Get_Type (Expr);
      Left := Get_Left_Limit_Expr (Expr);
      Right := Get_Right_Limit_Expr (Expr);

      if Expr_Type = Null_Iir then
         --  Pass 1.

         if A_Type = Null_Iir then
            Base_Type := Null_Iir;
         else
            Base_Type := Get_Base_Type (A_Type);
         end if;

         --  Analyze left and right bounds.
         Right := Sem_Expression_Ov (Right, Base_Type);
         Left := Sem_Expression_Ov (Left, Base_Type);

         if Left = Null_Iir or else Right = Null_Iir then
            if A_Type /= Null_Iir then
               --  Can continue with the error.
               if Left = Null_Iir then
                  Left := Create_Error_Expr
                    (Get_Left_Limit_Expr (Expr), A_Type);
               end if;
               if Right = Null_Iir then
                  Right := Create_Error_Expr
                    (Get_Right_Limit_Expr (Expr), A_Type);
               end if;
            else
               --  Error.
               return Null_Iir;
            end if;
         end if;

         Left_Type := Get_Type (Left);
         Right_Type := Get_Type (Right);
         --  Check for string or aggregate literals
         --  FIXME: improve error message
         if Left_Type = Null_Iir then
            Error_Msg_Sem (+Left, "bad expression for a scalar");
            return Null_Iir;
         end if;
         if Right_Type = Null_Iir then
            Error_Msg_Sem (+Right, "bad expression for a scalar");
            return Null_Iir;
         end if;

         if Is_Overload_List (Left_Type)
           or else Is_Overload_List (Right_Type)
         then
            if Base_Type /= Null_Iir then
               --  Cannot happen, since sem_expression_ov should resolve
               --  ambiguties if a type is given.
               raise Internal_Error;
            end if;

            --  Try to find a common type.
            Expr_Type := Search_Compatible_Type (Left_Type, Right_Type);
            if Expr_Type = Null_Iir then
               if Compatibility_Types1 (Universal_Integer_Type_Definition,
                                        Left_Type) /= Not_Compatible
                 and then
                 Compatibility_Types1 (Universal_Integer_Type_Definition,
                                       Right_Type) /= Not_Compatible
               then
                  Expr_Type := Universal_Integer_Type_Definition;
               elsif Compatibility_Types1 (Universal_Real_Type_Definition,
                                           Left_Type) /= Not_Compatible
                 and then
                 Compatibility_Types1 (Universal_Real_Type_Definition,
                                       Right_Type) /= Not_Compatible
               then
                  Expr_Type := Universal_Real_Type_Definition;
               else
                  --  FIXME: handle overload
                  Error_Msg_Sem
                    (+Expr,
                     "left and right expressions of range are not compatible");
                  return Null_Iir;
               end if;
            end if;
            Left := Sem_Expression (Left, Expr_Type);
            Right := Sem_Expression (Right, Expr_Type);
            if Left = Null_Iir or else Right = Null_Iir then
               return Null_Iir;
            end if;
         else
            Expr_Type := Get_Common_Basetype (Get_Base_Type (Left_Type),
                                              Get_Base_Type (Right_Type));
            if Expr_Type = Null_Iir then
               Error_Msg_Sem
                 (+Expr,
                  "left and right expressions of range are not compatible");
               return Null_Iir;
            end if;
         end if;

         --  The type of the range is known, finish analysis.
      else
         --  Second call.

         pragma Assert (A_Type /= Null_Iir);

         if Is_Overload_List (Expr_Type) then
            --  FIXME: resolve overload
            raise Internal_Error;
         else
            if Are_Types_Compatible (Expr_Type, A_Type) = Not_Compatible then
               Error_Msg_Sem
                 (+Expr, "type of range doesn't match expected type");
               return Null_Iir;
            end if;

            return Expr;
         end if;
      end if;

      Check_Read (Left);
      Check_Read (Right);

      Left := Eval_Expr_If_Static (Left);
      Right := Eval_Expr_If_Static (Right);

      Set_Left_Limit_Expr (Expr, Left);
      Set_Right_Limit_Expr (Expr, Right);

      Set_Left_Limit (Expr, Left);
      Set_Right_Limit (Expr, Right);

      Set_Expr_Staticness (Expr, Min (Get_Expr_Staticness (Left),
                                      Get_Expr_Staticness (Right)));

      if A_Type /= Null_Iir then
         if Are_Types_Compatible (Expr_Type, A_Type) = Not_Compatible then
            Error_Msg_Sem (+Expr, "type of range doesn't match expected type");
            return Null_Iir;
         end if;

         --  Use A_TYPE for the type of the expression.
         Expr_Type := A_Type;
      end if;

      Set_Type (Expr, Expr_Type);
      if Get_Kind (Expr_Type)
        not in Iir_Kinds_Scalar_Type_And_Subtype_Definition
      then
         Error_Msg_Sem (+Expr, "type of range is not a scalar type");
         return Null_Iir;
      end if;

      if Get_Expr_Staticness (Expr) = Locally
        and then Get_Type_Staticness (Expr_Type) = Locally
        and then Get_Kind (Expr_Type) in Iir_Kinds_Subtype_Definition
      then
         Eval_Check_Range (Expr, Expr_Type, Any_Dir);
      end if;

      return Expr;
   end Sem_Simple_Range_Expression;

   -- The result can be:
   --  a subtype definition
   --  a range attribute
   --  a range type definition
   -- LRM93 3.2.1.1
   -- FIXME: avoid to run it on an already analyzed node, be careful
   --  with range_type_expr.
   function Sem_Range_Expression (Expr: Iir; A_Type: Iir; Any_Dir : Boolean)
                                 return Iir
   is
      Res : Iir;
      Res_Type : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Range_Expression =>
            Res := Sem_Simple_Range_Expression (Expr, A_Type, Any_Dir);
            return Res;

         when Iir_Kinds_Denoting_Name
           | Iir_Kind_Attribute_Name
           | Iir_Kind_Parenthesis_Name =>
            if Get_Named_Entity (Expr) = Null_Iir then
               Sem_Name (Expr);
            end if;
            Res := Name_To_Range (Expr);
            if Is_Error (Res) then
               return Null_Iir;
            end if;

            case Get_Kind (Res) is
               when Iir_Kind_Simple_Name
                 | Iir_Kind_Selected_Name =>
                  pragma Assert (Get_Kind (Get_Named_Entity (Res))
                                   in Iir_Kinds_Type_Declaration);
                  Res_Type := Get_Type (Get_Named_Entity (Res));
               when Iir_Kind_Range_Array_Attribute
                 | Iir_Kind_Reverse_Range_Array_Attribute =>
                  Res_Type := Get_Type (Res);
               when others =>
                  Error_Msg_Sem (+Expr, "name must denote a range");
                  return Null_Iir;
            end case;
            if A_Type /= Null_Iir
              and then Get_Base_Type (Res_Type) /= Get_Base_Type (A_Type)
            then
               Error_Not_Match (Expr, A_Type);
               return Null_Iir;
            end if;

         when others =>
            Error_Msg_Sem (+Expr, "range expression required");
            return Null_Iir;
      end case;

      if Get_Kind (Res_Type)
        not in Iir_Kinds_Scalar_Type_And_Subtype_Definition
      then
         Error_Msg_Sem (+Expr, "%n is not a range type", +Res);
         return Null_Iir;
      end if;

      Res := Eval_Range_If_Static (Res);

      if A_Type /= Null_Iir
        and then Get_Type_Staticness (A_Type) = Locally
        and then Get_Kind (A_Type) in Iir_Kinds_Subtype_Definition
      then
         if Get_Expr_Staticness (Res) = Locally then
            Eval_Check_Range (Res, A_Type, Any_Dir);
         end if;
      end if;
      return Res;
   end Sem_Range_Expression;

   function Sem_Discrete_Range (Expr: Iir; A_Type: Iir; Any_Dir : Boolean)
                               return Iir
   is
      Res : Iir;
      Res_Type : Iir;
   begin
      if Get_Kind (Expr) = Iir_Kind_Subtype_Definition then
         Res := Sem_Types.Sem_Subtype_Indication (Expr);
         if Res = Null_Iir then
            return Null_Iir;
         end if;

         Res_Type := Res;
         if A_Type /= Null_Iir
           and then (Are_Types_Compatible
                       (A_Type, Get_Type_Of_Subtype_Indication (Res))
                       = Not_Compatible)
         then
            --  A_TYPE is known when analyzing an index_constraint within
            --  a subtype indication.
            Error_Msg_Sem (+Expr, "subtype %n doesn't match expected type %n",
                           (+Res, +A_Type));
            --  FIXME: override type of RES ?
         end if;
      else
         Res := Sem_Range_Expression (Expr, A_Type, Any_Dir);

         if Res = Null_Iir then
            return Null_Iir;
         end if;

         Res_Type := Get_Type (Res);
      end if;

      --  Check the type is discrete.
      if Get_Kind (Res_Type) not in Iir_Kinds_Discrete_Type_Definition then
         if Get_Kind (Res_Type) /= Iir_Kind_Error then
            --  FIXME: avoid that test with error.
            if Get_Kind (Res) not in Iir_Kinds_Denoting_Name then
               Error_Msg_Sem (+Res, "range is not discrete");
            else
               Error_Msg_Sem
                 (+Expr, "%n is not a discrete range type", +Res);
            end if;
         end if;
         return Null_Iir;
      end if;

      return Res;
   end Sem_Discrete_Range;

   function Sem_Discrete_Range_Integer (Expr: Iir) return Iir
   is
      Res : Iir;
      Range_Type : Iir;
   begin
      Res := Sem_Discrete_Range (Expr, Null_Iir, True);
      if Res = Null_Iir then
         return Null_Iir;
      end if;
      if Get_Kind (Expr) /= Iir_Kind_Range_Expression then
         return Res;
      end if;

      Range_Type := Get_Type (Res);
      if Range_Type = Convertible_Integer_Type_Definition then
         --  LRM 3.2.1.1  Index constraints and discrete ranges
         --  For a discrete range used in a constrained array
         --  definition and defined by a range, an implicit
         --  conversion to the predefined type INTEGER is assumed
         --  if each bound is either a numeric literal or an
         --  attribute, and the type of both bounds (prior to the
         --  implicit conversion) is the type universal_integer.

         --  FIXME: catch phys/phys.
         Set_Type (Res, Integer_Type_Definition);
         if Get_Expr_Staticness (Res) = Locally then
            Eval_Check_Range (Res, Integer_Subtype_Definition, True);
         end if;
      elsif Range_Type = Universal_Integer_Type_Definition then
         if Vhdl_Std >= Vhdl_08 then
            --  LRM08 5.3.2.2
            --  For a discrete range used in a constrained array definition
            --  and defined by a range, an implicit conversion to the
            --  predefined type INTEGER is assumed if the type of both bounds
            --  (prior the implicit conversion) is the type universal_integer.
            null;
         elsif Flag_Relaxed_Rules then
            null;
         elsif Vhdl_Std /= Vhdl_93 then
            --  GHDL: this is not allowed, however often used:
            --  eg: for i in 0 to v'length + 1 loop
            --  eg: for i in -1 to 1 loop

            --  Be tolerant.
            Warning_Msg_Sem (Warnid_Universal, +Res,
                             "universal integer bound must be numeric literal "
                               & "or attribute");
         else
            Error_Msg_Sem (+Res, "universal integer bound must be numeric "
                             & "literal or attribute");
         end if;
         Set_Type (Res, Integer_Type_Definition);
      end if;
      return Res;
   end Sem_Discrete_Range_Integer;

   function Is_Ieee_Operation (Imp : Iir) return Boolean
   is
      pragma Assert (Get_Kind (Imp) = Iir_Kind_Function_Declaration);
      Parent : constant Iir := Get_Parent (Imp);
   begin
      --  TODO: numeric_bit, numeric_bit_unsigned, numeric_std_unsigned.
      return Parent = Vhdl.Ieee.Numeric.Numeric_Std_Pkg
        or Parent = Vhdl.Ieee.Std_Logic_1164.Std_Logic_1164_Pkg;
   end Is_Ieee_Operation;

   procedure Set_Function_Call_Staticness (Expr : Iir; Imp : Iir)
   is
      Staticness : Iir_Staticness;
   begin
      --  LRM93 7.4.1 (Locally Static Primaries)
      --  4. a function call whose function name denotes an implicitly
      --     defined operator, and whose actual parameters are each
      --     locally static expressions;
      --
      --  LRM93 7.4.2 (Globally Static Primaries)
      --  9. a function call whose function name denotes a pure function,
      --     and whose actual parameters are each globally static
      --     expressions.
      --
      --  LRM08 9.4.2 Locally statuc primaries
      --  [...] if every operator in the expression denotes [...] an operator
      --  defined in one of the packages STD_LOGIC_1164, NUMERIC_BIT,
      --  NUMERIC_STD, NUMERIC_BIT_UNSIGNED or NUMERIC_STD_UNSIGNED in library
      --  IEEE, and if every primary in the expression is a locally static
      --  primary, where a locally static primary is defined to be one of the
      --  following:
      --  [...]
      --  e) A function call whose function name denotes an implicitely
      --    defined operation or an operation defined in one of the packages
      --    STD_LOGIC_1164, NUMERIC_BIT, NUMERIC_STD, NUMERIC_BIT_UNSIGNED,
      --    or NUMERIC_STD_UNSIGNED in library IEEE and whose actual
      --    parameters are each locally static expressions.
      --
      --  GHDL note: operation is defined in:
      --  LRM08 5 Types
      --  The set of operations of a type includes the explicitly declared
      --  subprograms that have a parameter of result of the type.  The
      --  remaining operations of a type are the basic operations and the
      --  predefined operations.
      case Get_Kind (Expr) is
         when Iir_Kinds_Monadic_Operator =>
            Staticness := Get_Expr_Staticness (Get_Operand (Expr));
         when Iir_Kinds_Dyadic_Operator =>
            Staticness := Min (Get_Expr_Staticness (Get_Left (Expr)),
                               Get_Expr_Staticness (Get_Right (Expr)));
         when Iir_Kind_Function_Call =>
            Staticness := Locally;
            declare
               Assoc : Iir;
            begin
               Assoc := Get_Parameter_Association_Chain (Expr);
               while Assoc /= Null_Iir loop
                  if Get_Kind (Assoc)
                    = Iir_Kind_Association_Element_By_Expression
                  then
                     Staticness := Min
                       (Get_Expr_Staticness (Get_Actual (Assoc)),
                        Staticness);
                  end if;
                  Assoc := Get_Chain (Assoc);
               end loop;
            end;
         when Iir_Kind_Procedure_Call =>
            return;
         when others =>
            Error_Kind ("set_function_call_staticness (1)", Expr);
      end case;

      --  Staticness.
      case Get_Kind (Imp) is
         when Iir_Kind_Function_Declaration =>
            case Get_Implicit_Definition (Imp) is
               when Iir_Predefined_Error =>
                  raise Internal_Error;
               when Iir_Predefined_Pure_Functions =>
                  null;
               when Iir_Predefined_Impure_Functions =>
                  --  Predefined functions such as Now, Endfile are not static.
                  Staticness := None;
               when Iir_Predefined_Explicit =>
                  if Vhdl_Std >= Vhdl_08
                    and then Is_Ieee_Operation (Imp)
                  then
                     null;
                  elsif Get_Pure_Flag (Imp) then
                     Staticness := Min (Staticness, Globally);
                  else
                     Staticness := None;
                  end if;
            end case;
         when Iir_Kind_Interface_Function_Declaration =>
            Staticness := None;
         when others =>
            Error_Kind ("set_function_call_staticness", Imp);
      end case;
      Set_Expr_Staticness (Expr, Staticness);
   end Set_Function_Call_Staticness;

   --  Add CALLEE in the callees list of SUBPRG (which must be a subprg decl).
   procedure Add_In_Callees_List (Subprg : Iir; Callee : Iir)
   is
      Holder : constant Iir := Get_Callees_List_Holder (Subprg);
      List : Iir_List;
   begin
      List := Get_Callees_List (Holder);
      if List = Null_Iir_List then
         List := Create_Iir_List;
         Set_Callees_List (Holder, List);
      end if;
      --  FIXME: May use a flag in IMP to speed up the
      --  add operation.
      Add_Element (List, Callee);
   end Add_In_Callees_List;

   --  Check purity rules when SUBPRG calls CALLEE.
   --  Both SUBPRG and CALLEE are subprogram declarations.
   --  Update purity_state/impure_depth of SUBPRG if it is a procedure.
   procedure Sem_Call_Purity_Check (Subprg : Iir; Callee : Iir; Loc : Iir) is
   begin
      if Callee = Subprg then
         return;
      end if;

      --  Handle easy cases.
      case Get_Kind (Subprg) is
         when Iir_Kind_Function_Declaration =>
            if not Get_Pure_Flag (Subprg) then
               return;
            end if;
         when Iir_Kind_Procedure_Declaration =>
            if Get_Purity_State (Subprg) = Impure then
               return;
            end if;
         when Iir_Kinds_Process_Statement =>
            return;
         when others =>
            Error_Kind ("sem_call_purity_check(0)", Subprg);
      end case;

      case Get_Kind (Callee) is
         when Iir_Kind_Function_Declaration
           | Iir_Kind_Interface_Function_Declaration =>
            if Get_Pure_Flag (Callee) then
               --  Pure functions may be called anywhere.
               return;
            end if;
            --  CALLEE is impure.
            case Get_Kind (Subprg) is
               when Iir_Kind_Function_Declaration =>
                  Error_Pure (Semantic, Subprg, Callee, Loc);
               when Iir_Kind_Procedure_Declaration =>
                  Set_Purity_State (Subprg, Impure);
               when others =>
                  Error_Kind ("sem_call_purity_check(1)", Subprg);
            end case;
         when Iir_Kind_Procedure_Declaration =>
            declare
               Depth : Iir_Int32;
               Callee_Body : constant Iir := Get_Subprogram_Body (Callee);
               Subprg_Body : constant Iir := Get_Subprogram_Body (Subprg);
            begin
               --  Get purity depth of callee, if possible.
               case Get_Purity_State (Callee) is
                  when Pure =>
                     return;
                  when Impure =>
                     Depth := Iir_Depth_Impure;
                  when Maybe_Impure =>
                     if Callee_Body = Null_Iir then
                        --  Cannot be 'maybe_impure' if no body!
                        raise Internal_Error;
                     end if;
                     Depth := Get_Impure_Depth (Callee_Body);
                  when Unknown =>
                     --  Add in list.
                     Add_In_Callees_List (Subprg, Callee);

                     if Callee_Body /= Null_Iir then
                        Depth := Get_Impure_Depth (Callee_Body);
                     else
                        return;
                     end if;
               end case;
               case Get_Kind (Subprg) is
                  when Iir_Kind_Function_Declaration =>
                     if Depth = Iir_Depth_Impure then
                        Error_Pure (Semantic, Subprg, Callee, Loc);
                     else
                        if Depth < Get_Subprogram_Depth (Subprg) then
                           Error_Pure (Semantic, Subprg, Callee, Loc);
                        end if;
                     end if;
                  when Iir_Kind_Procedure_Declaration =>
                     if Depth = Iir_Depth_Impure then
                        Set_Purity_State (Subprg, Impure);
                        --  FIXME: free callee list ? (wait state).
                     else
                        --  Set depth to the worst.
                        if Depth < Get_Impure_Depth (Subprg_Body) then
                           Set_Impure_Depth (Subprg_Body, Depth);
                        end if;
                     end if;
                  when others =>
                     Error_Kind ("sem_call_purity_check(2)", Subprg);
               end case;
            end;
         when Iir_Kind_Interface_Procedure_Declaration =>
            --  We have no idea about this procedure.
            null;
         when others =>
            Error_Kind ("sem_call_purity_check", Callee);
      end case;
   end Sem_Call_Purity_Check;

   procedure Sem_Call_Wait_Check (Subprg : Iir; Callee : Iir; Loc : Iir)
   is
      procedure Error_Wait is
      begin
         Report_Start_Group;
         Error_Msg_Sem
           (+Loc, "%n must not contain wait statement, but calls",
            (1 => +Subprg));
         Error_Msg_Sem
           (+Callee, "%n which has (indirectly) a wait statement", +Callee);
         Report_End_Group;
      end Error_Wait;
   begin
      pragma Assert (Get_Kind (Callee) = Iir_Kind_Procedure_Declaration);

      case Get_Wait_State (Callee) is
         when False =>
            return;
         when True =>
            null;
         when Unknown =>
            Add_In_Callees_List (Subprg, Callee);
            return;
      end case;

      --  LRM 8.1
      --  It is an error if a wait statement appears [...] in a procedure that
      --  has a parent that is a function subprogram.
      --
      --  Furthermore, it is an error if a wait statement appears [...] in a
      --  procedure that has a parent that is such a process statement.
      case Get_Kind (Subprg) is
         when Iir_Kind_Sensitized_Process_Statement =>
            Error_Wait;
            return;
         when Iir_Kind_Process_Statement =>
            return;
         when Iir_Kind_Function_Declaration =>
            Error_Wait;
            return;
         when Iir_Kind_Procedure_Declaration =>
            if Is_Subprogram_Method (Subprg) then
               Error_Wait;
            else
               Set_Wait_State (Subprg, True);
            end if;
         when others =>
            Error_Kind ("sem_call_wait_check", Subprg);
      end case;
   end Sem_Call_Wait_Check;

   procedure Sem_Call_All_Sensitized_Check
     (Subprg : Iir; Callee : Iir; Loc : Iir)
   is
   begin
      --  No need to deal with 'process (all)' if standard predates it.
      if Vhdl_Std < Vhdl_08 then
         return;
      end if;

      --  If subprogram called is pure, then there is no signals reference.
      case Get_Kind (Callee) is
         when Iir_Kind_Function_Declaration =>
            if Get_Pure_Flag (Callee) then
               return;
            end if;
         when Iir_Kind_Procedure_Declaration =>
            if Get_Purity_State (Callee) = Pure then
               return;
            end if;
         when Iir_Kind_Interface_Function_Declaration
           | Iir_Kind_Interface_Procedure_Declaration =>
            --  FIXME: how to compute sensitivity ?  Recurse ?
            return;
         when others =>
            Error_Kind ("sem_call_all_sensitized_check", Callee);
      end case;

      case Get_All_Sensitized_State (Callee) is
         when Invalid_Signal =>
            case Get_Kind (Subprg) is
               when Iir_Kind_Sensitized_Process_Statement =>
                  if Get_Sensitivity_List (Subprg) = Iir_List_All then
                     --  LRM08 11.3
                     --
                     --  It is an error if a process statement with the
                     --  reserved word ALL as its process sensitivity list
                     --  is the parent of a subprogram declared in a design
                     --  unit other than that containing the process statement
                     --  and the subprogram reads an explicitly declared
                     --  signal that is not a formal signal parameter or
                     --  member of a formal signal parameter of the
                     --  subprogram or of any of its parents.  Similarly,
                     --  it is an error if such subprogram reads an implicit
                     --  signal whose explicit ancestor is not a formal signal
                     --  parameter or member of a formal parameter of
                     --  the subprogram or of any of its parents.
                     Report_Start_Group;
                     Error_Msg_Sem (+Loc, "all-sensitized %n can't call %n",
                                    (+Subprg, +Callee));
                     Error_Msg_Sem
                       (+Loc,
                        " (as this subprogram reads (indirectly) a signal)");
                     Report_End_Group;
                  end if;
               when Iir_Kind_Process_Statement =>
                  return;
               when Iir_Kind_Function_Declaration
                 | Iir_Kind_Procedure_Declaration =>
                  Set_All_Sensitized_State (Subprg, Invalid_Signal);
               when others =>
                  Error_Kind ("sem_call_all_sensitized_check", Subprg);
            end case;
         when Read_Signal =>
            --  Put this subprogram in callees list as it may read a signal.
            --  Used by canon to build the sensitivity list.
            Add_In_Callees_List (Subprg, Callee);
            if Get_Kind (Subprg) in Iir_Kinds_Subprogram_Declaration then
               if Get_All_Sensitized_State (Subprg) < Read_Signal then
                  Set_All_Sensitized_State (Subprg, Read_Signal);
               end if;
            end if;
         when Unknown =>
            --  Put this subprogram in callees list as it may read a signal.
            --  Used by canon to build the sensitivity list.
            Add_In_Callees_List (Subprg, Callee);
         when No_Signal =>
            null;
      end case;
   end Sem_Call_All_Sensitized_Check;

   --  Set IMP as the implementation to being called by EXPR.
   --  If the context is a subprogram or a process (ie, if current_subprogram
   --  is not NULL), then mark IMP as callee of current_subprogram, and
   --  update states.
   procedure Sem_Subprogram_Call_Finish (Expr : Iir; Imp : Iir)
   is
      Subprg : constant Iir := Get_Current_Subprogram;
   begin
      Set_Function_Call_Staticness (Expr, Imp);
      Sem_Decls.Mark_Subprogram_Used (Imp);

      --  Check purity/wait/passive.

      if Subprg = Null_Iir then
         --  Not inside a suprogram or a process.
         return;
      end if;
      if Subprg = Imp then
         --  Recursive call.
         return;
      end if;

      if Is_Implicit_Subprogram (Imp) then
         --  FIXME: impure predefined functions.
         null;
      else
         Sem_Call_Purity_Check (Subprg, Imp, Expr);
         Sem_Call_All_Sensitized_Check (Subprg, Imp, Expr);
         if Get_Kind (Imp) = Iir_Kind_Procedure_Declaration then
            Sem_Call_Wait_Check (Subprg, Imp, Expr);
            --  Check passive.
            if Get_Passive_Flag (Imp) = False then
               case Get_Kind (Subprg) is
                  when Iir_Kinds_Process_Statement =>
                     if Get_Passive_Flag (Subprg) then
                        Error_Msg_Sem
                          (+Expr, "%n is passive, but calls non-passive %n",
                           (+Subprg, +Imp));
                     end if;
                  when others =>
                     null;
               end case;
            end if;
         end if;
      end if;
   end Sem_Subprogram_Call_Finish;

   --  EXPR is a function or procedure call.
   function Sem_Subprogram_Call_Stage1
     (Expr : Iir; A_Type : Iir; Is_Func_Call : Boolean) return Iir
   is
      Imp : Iir;
      A_Func: Iir;
      Imp_List: Iir_List;
      New_List : Iir_List;
      Assoc_Chain: Iir;
      Inter_Chain : Iir;
      Res_Type: Iir_List;
      Imp_It : List_Iterator;
      Inter: Iir;
      Match : Compatibility_Level;
      Match_Max : Compatibility_Level;
   begin
      --  Sem_Name has gathered all the possible names for the prefix of this
      --  call.  Reduce this list to only names that match the types.
      Imp := Get_Implementation (Expr);
      Imp_List := Get_Overload_List (Imp);
      Assoc_Chain := Get_Parameter_Association_Chain (Expr);
      Match_Max := Via_Conversion;

      New_List := Create_Iir_List;
      Imp_It := List_Iterate (Imp_List);
      while Is_Valid (Imp_It) loop
         A_Func := Get_Element (Imp_It);

         case Get_Kind (A_Func) is
            when Iir_Kinds_Functions_And_Literals
              | Iir_Kind_Interface_Function_Declaration =>
               if not Is_Func_Call then
                  --  The identifier of a function call must be a function or
                  --  an enumeration literal.
                  goto Continue;
               end if;
            when Iir_Kind_Procedure_Declaration
              | Iir_Kind_Interface_Procedure_Declaration =>
               if Is_Func_Call then
                  --  The identifier of a procedure call must be a procedure.
                  goto Continue;
               end if;
            when others =>
               Error_Kind ("sem_subprogram_call_stage1", A_Func);
         end case;

         --  Keep this interpretation only if compatible.
         if A_Type = Null_Iir
           or else (Compatibility_Nodes (A_Type, Get_Return_Type (A_Func))
                      /= Not_Compatible)
         then
            Sem_Association_Chain
              (Get_Interface_Declaration_Chain (A_Func),
               Assoc_Chain, False, Missing_Parameter, Expr, Match);
            if Match >= Match_Max then
               --  Only previous interpretations were only Via_Conversion
               --  compatible, and this one is fully compatible, discard
               --  previous and future Via_Conversion interpretations.
               if Match > Match_Max then
                  Destroy_Iir_List (New_List);
                  New_List := Create_Iir_List;
                  Match_Max := Match;
               end if;
               Append_Element (New_List, A_Func);
            end if;
         end if;

         << Continue >> null;
         Next (Imp_It);
      end loop;
      Destroy_Iir_List (Imp_List);
      Imp_List := New_List;
      Set_Overload_List (Imp, Imp_List);

      -- Set_Implementation (Expr, Inter_List);
      -- A set of possible functions to call is in INTER_LIST.
      -- Create a set of possible return type in RES_TYPE.
      case Get_Nbr_Elements (Imp_List) is
         when 0 =>
            --  FIXME: display subprogram name.
            Error_Msg_Sem
              (+Expr, "cannot resolve overloading for subprogram call");
            return Null_Iir;

         when 1 =>
            --  Simple case: no overloading.
            Inter := Get_First_Element (Imp_List);
            Free_Overload_List (Imp);
            Set_Implementation (Expr, Inter);
            if Is_Func_Call then
               Set_Type (Expr, Get_Return_Type (Inter));
            end if;
            Inter_Chain := Get_Interface_Declaration_Chain (Inter);
            Sem_Association_Chain
              (Inter_Chain, Assoc_Chain,
               True, Missing_Parameter, Expr, Match);
            Set_Parameter_Association_Chain (Expr, Assoc_Chain);
            pragma Assert (Match /= Not_Compatible);
            Check_Subprogram_Associations (Inter_Chain, Assoc_Chain);
            Sem_Subprogram_Call_Finish (Expr, Inter);
            return Expr;

         when others =>
            if Is_Func_Call then
               if A_Type /= Null_Iir then
                  -- Cannot find a single interpretation for a given
                  -- type.
                  Report_Start_Group;
                  Error_Overload (Expr);
                  Disp_Overload_List (Imp_List, Expr);
                  Report_End_Group;
                  return Null_Iir;
               end if;

               --  Create the list of types for the result.
               Res_Type := Create_Iir_List;
               Imp_It := List_Iterate (Imp_List);
               while Is_Valid (Imp_It) loop
                  Add_Element
                    (Res_Type, Get_Return_Type (Get_Element (Imp_It)));
                  Next (Imp_It);
               end loop;

               if Get_Nbr_Elements (Res_Type) = 1 then
                  -- several implementations but one profile.
                  Report_Start_Group;
                  Error_Overload (Expr);
                  Disp_Overload_List (Imp_List, Expr);
                  Report_End_Group;
                  return Null_Iir;
               end if;
               Set_Type (Expr, Create_Overload_List (Res_Type));
            else
               --  For a procedure call, the context does't help to resolve
               --  overload.
               Report_Start_Group;
               Error_Overload (Expr);
               Disp_Overload_List (Imp_List, Expr);
               Report_End_Group;
            end if;
            return Expr;
      end case;
   end Sem_Subprogram_Call_Stage1;

   -- For a procedure call, A_TYPE must be null.
   --  Associations must have already been analyzed by sem_association_list.
   function Sem_Subprogram_Call (Expr: Iir; A_Type: Iir) return Iir
   is
      Is_Func: constant Boolean := Get_Kind (Expr) = Iir_Kind_Function_Call;
      Res_Type: Iir;
      Res: Iir;
      Inter_List: Iir;
      Param_Chain : Iir;
      Inter: Iir;
      Assoc_Chain : Iir;
      Match : Compatibility_Level;
      Overload_List : Iir_List;
      Overload_It : List_Iterator;
   begin
      if Is_Func then
         Res_Type := Get_Type (Expr);
      end if;

      if not Is_Func or else Res_Type = Null_Iir then
         -- First call to sem_subprogram_call.
         -- Create the list of possible implementations and possible
         -- return types, according to arguments and A_TYPE.

         -- Select possible interpretations among all interpretations.
         -- NOTE: the list of possible implementations was already created
         --  during the transformation of iir_kind_parenthesis_name to
         --  iir_kind_function_call.
         Inter_List := Get_Implementation (Expr);
         if Is_Error (Inter_List) then
            return Null_Iir;
         elsif Is_Overload_List (Inter_List) then
            --  Subprogram name is overloaded.
            return Sem_Subprogram_Call_Stage1 (Expr, A_Type, Is_Func);
         else
            --  Only one interpretation for the subprogram name.
            if Is_Func then
               if not Is_Function_Declaration (Inter_List) then
                  Report_Start_Group;
                  Error_Msg_Sem (+Expr, "name does not designate a function");
                  Error_Msg_Sem (+Expr, "name is %n defined at %l",
                                 (+Inter_List, +Inter_List));
                  Report_End_Group;
                  return Null_Iir;
               end if;
            else
               if not Is_Procedure_Declaration (Inter_List) then
                  Report_Start_Group;
                  Error_Msg_Sem (+Expr, "name does not designate a procedure");
                  Error_Msg_Sem (+Expr, "name is %n defined at %l",
                                 (+Inter_List, +Inter_List));
                  Report_End_Group;
                  return Null_Iir;
               end if;
            end if;

            Assoc_Chain := Get_Parameter_Association_Chain (Expr);
            Param_Chain := Get_Interface_Declaration_Chain (Inter_List);
            Sem_Association_Chain
              (Param_Chain, Assoc_Chain,
               True, Missing_Parameter, Expr, Match);
            Set_Parameter_Association_Chain (Expr, Assoc_Chain);
            if Match = Not_Compatible then
               --  No need to disp an error message, this is done by
               --  sem_subprogram_arguments.
               return Null_Iir;
            end if;
            if Is_Func then
               Set_Type (Expr, Get_Return_Type (Inter_List));
            end if;
            Check_Subprogram_Associations (Param_Chain, Assoc_Chain);
            Set_Implementation (Expr, Inter_List);
            Sem_Subprogram_Call_Finish (Expr, Inter_List);
            return Expr;
         end if;
      end if;

      --  Second call to Sem_Function_Call (only for functions).
      pragma Assert (Is_Func);
      pragma Assert (A_Type /= Null_Iir);

      -- The implementation list was set.
      -- The return type was set.
      -- A_TYPE is not null, A_TYPE is *the* return type.

      Inter_List := Get_Implementation (Expr);

      -- Find a single implementation.
      Res := Null_Iir;
      if Is_Overload_List (Inter_List) then
         -- INTER_LIST is a list of possible declaration to call.
         -- Find one, based on the return type A_TYPE.
         Overload_List := Get_Overload_List (Inter_List);
         Overload_It := List_Iterate (Overload_List);
         while Is_Valid (Overload_It) loop
            Inter := Get_Element (Overload_It);
            if Are_Basetypes_Compatible
              (A_Type, Get_Base_Type (Get_Return_Type (Inter)))
              /= Not_Compatible
            then
               if Res /= Null_Iir then
                  Report_Start_Group;
                  Error_Overload (Expr);
                  Disp_Overload_List (Overload_List, Expr);
                  Report_End_Group;
                  return Null_Iir;
               else
                  Res := Inter;
               end if;
            end if;
            Next (Overload_It);
         end loop;
      else
         if Are_Basetypes_Compatible
           (A_Type, Get_Base_Type (Get_Return_Type (Inter_List)))
           /= Not_Compatible
         then
            Res := Inter_List;
         end if;
      end if;
      if Res = Null_Iir then
         Error_Not_Match (Expr, A_Type);
         return Null_Iir;
      end if;

      -- Clean up.
      if Res_Type /= Null_Iir and then Is_Overload_List (Res_Type) then
         Free_Iir (Res_Type);
      end if;

      if Is_Overload_List (Inter_List) then
         Free_Iir (Inter_List);
      end if;

      --  Simple case: this is not a call to a function, but an enumeration
      --  literal.
      if Get_Kind (Res) = Iir_Kind_Enumeration_Literal then
         -- Free_Iir (Expr);
         return Res;
      end if;

      -- Set types.
      Set_Type (Expr, Get_Return_Type (Res));
      Assoc_Chain := Get_Parameter_Association_Chain (Expr);
      Param_Chain := Get_Interface_Declaration_Chain (Res);
      Sem_Association_Chain
        (Param_Chain, Assoc_Chain, True, Missing_Parameter, Expr, Match);
      Set_Parameter_Association_Chain (Expr, Assoc_Chain);
      if Match = Not_Compatible then
         return Null_Iir;
      end if;
      Check_Subprogram_Associations (Param_Chain, Assoc_Chain);
      Set_Implementation (Expr, Res);
      Sem_Subprogram_Call_Finish (Expr, Res);
      return Expr;
   end Sem_Subprogram_Call;

   procedure Sem_Procedure_Call (Call : Iir_Procedure_Call; Stmt : Iir)
   is
      Imp: Iir;
      Name : Iir;
      Parameters_Chain : Iir;
      Param : Iir;
      Formal : Iir;
      Prefix : Iir;
      Inter : Iir;
   begin
      Name := Get_Prefix (Call);
      if Name = Null_Iir
        or else Is_Error (Name)
        or else Get_Kind (Name) = Iir_Kind_String_Literal8
      then
         pragma Assert (Flags.Flag_Force_Analysis);
         return;
      end if;

      --  FIXME: check for denoting name.
      Sem_Name (Name);

      --  Return now if the procedure declaration wasn't found.
      Imp := Get_Named_Entity (Name);
      if Is_Error (Imp) then
         return;
      end if;
      Set_Implementation (Call, Imp);

      Name_To_Method_Object (Call, Name);
      Parameters_Chain := Get_Parameter_Association_Chain (Call);
      if Sem_Actual_Of_Association_Chain (Parameters_Chain) = False then
         return;
      end if;
      if Sem_Subprogram_Call (Call, Null_Iir) /= Call then
         return;
      end if;
      Imp := Get_Implementation (Call);
      if Is_Overload_List (Imp) then
         --  Failed to resolve overload.
         return;
      end if;
      Set_Named_Entity (Name, Imp);
      Set_Prefix (Call, Finish_Sem_Name (Name));

      --  LRM 2.1.1.2 Signal Parameters
      --  A process statement contains a driver for each actual signal
      --  associated with a formal signal parameter of mode OUT or INOUT in
      --  a subprogram call.
      --  Similarly, a subprogram contains a driver for each formal signal
      --  parameter of mode OUT or INOUT declared in its subrogram
      --  specification.
      Param := Parameters_Chain;
      Inter := Get_Interface_Declaration_Chain (Imp);
      while Param /= Null_Iir loop
         --  Association_Element_By_Individual duplicates existing
         --  associations.
         if Get_Kind (Param) /= Iir_Kind_Association_Element_By_Individual
         then
            Formal := Get_Formal (Param);
            if Formal = Null_Iir then
               Formal := Inter;
               Inter := Get_Chain (Inter);
            else
               Formal := Get_Base_Name (Formal);
               Inter := Null_Iir;
            end if;
            if Get_Kind (Formal) = Iir_Kind_Interface_Signal_Declaration
              and then Get_Mode (Formal) in Iir_Out_Modes
              and then
              Get_Kind (Param) = Iir_Kind_Association_Element_By_Expression
            then
               Prefix := Name_To_Object (Get_Actual (Param));
               if Prefix /= Null_Iir then
                  case Get_Kind (Get_Object_Prefix (Prefix)) is
                     when Iir_Kind_Signal_Declaration
                       | Iir_Kind_Interface_Signal_Declaration =>
                        Prefix := Get_Longest_Static_Prefix (Prefix);
                        Sem_Stmts.Sem_Add_Driver (Prefix, Stmt);
                     when others =>
                        null;
                  end case;
               end if;
            end if;
         end if;
         Param := Get_Chain (Param);
      end loop;
   end Sem_Procedure_Call;

   --  List must be an overload list containing subprograms declarations.
   --  Try to resolve overload and return the uniq interpretation if one,
   --  NULL_IIR otherwise.
   --
   --  If there are two functions, one primitive of a universal
   --  type and the other not, return the primitive of the universal type.
   --  This implements implicit type conversions rules.
   --  Cf Sem_Names.Extract_Call_Without_Implicit_Conversion
   --
   --  The typical case is the use of comparison operator with literals or
   --  attributes, like: s'length = 0
   function Get_Non_Implicit_Subprogram (List : Iir_List) return Iir
   is
      It : List_Iterator;
      El : Iir;
      Res : Iir;
      Ref_Type : Iir;
   begin
      --  Conditions:
      --  1. All the possible functions must return boolean.
      --  2. There is only one implicit function for universal or real.
      Res := Null_Iir;
      It := List_Iterate (List);
      while Is_Valid (It) loop
         El := Get_Element (It);

         --  Only comparison operators need this special handling.
         if Get_Base_Type (Get_Return_Type (El)) /= Boolean_Type_Definition
         then
            return Null_Iir;
         end if;

         if Is_Implicit_Subprogram (El) then
            Ref_Type := Get_Type (Get_Interface_Declaration_Chain (El));
            if Ref_Type = Universal_Integer_Type_Definition
              or Ref_Type = Universal_Real_Type_Definition
            then
               --  There could be only one such subprogram.
               pragma Assert (Res = Null_Iir);
               Res := El;
            end if;
         end if;
         Next (It);
      end loop;
      return Res;
   end Get_Non_Implicit_Subprogram;

   --  Honor the -fexplicit flag.
   --  If LIST is composed of 2 declarations that matches the 'explicit' rule,
   --   return the explicit declaration.
   --  Otherwise, return NULL_IIR.
   function Get_Explicit_Subprogram (List : Iir_List) return Iir
   is
      Sub1 : Iir;
      Sub2 : Iir;
      It : List_Iterator;
      Res : Iir;
   begin
      if Get_Nbr_Elements (List) /= 2 then
         return Null_Iir;
      end if;

      It := List_Iterate (List);
      Sub1 := Get_Element (It);
      Next (It);
      Sub2 := Get_Element (It);
      Next (It);
      pragma Assert (not Is_Valid (It));

      --  One must be an implicit declaration, the other must be an explicit
      --  declaration.
      pragma Assert (Get_Kind (Sub1) = Iir_Kind_Function_Declaration);
      pragma Assert (Get_Kind (Sub2) = Iir_Kind_Function_Declaration);
      if Is_Implicit_Subprogram (Sub1) then
         if Is_Implicit_Subprogram (Sub2) then
            return Null_Iir;
         end if;
         Res := Sub2;
      else
         if not Is_Implicit_Subprogram (Sub2) then
            return Null_Iir;
         end if;
         Res := Sub1;
      end if;

      --  They must have the same profile.
      if Get_Subprogram_Hash (Sub1) /= Get_Subprogram_Hash (Sub2)
        or else not Is_Same_Profile (Sub1, Sub2)
      then
         return Null_Iir;
      end if;

      --  They must be declared in a package.
      if Get_Kind (Get_Parent (Sub1)) /= Iir_Kind_Package_Declaration
        or else Get_Kind (Get_Parent (Sub2)) /= Iir_Kind_Package_Declaration
      then
         return Null_Iir;
      end if;

      return Res;
   end Get_Explicit_Subprogram;

   --  Set when the -fexplicit option was adviced.
   Explicit_Advice_Given : Boolean := False;

   -- LEFT and RIGHT must be set.
   function Set_Operator_Unique_Interpretation
     (Expr : Iir; Decl : Iir) return Iir
   is
      Is_Dyadic : constant Boolean :=
        Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
      Inter : Iir;
      Err        : Boolean;
      Left       : Iir;
      Left_Type  : Iir;
      Right      : Iir;
      Right_Type : Iir;
   begin
      Set_Type (Expr, Get_Return_Type (Decl));
      Inter := Get_Interface_Declaration_Chain (Decl);
      Err := False;

      --  Left operand (or single operand)
      Left := Get_Left (Expr);
      Left_Type := Get_Type (Inter);
      if Is_Overloaded (Left) then
         Left := Sem_Expression_Ov (Left, Get_Base_Type (Left_Type));
         if Left = Null_Iir then
            Err := True;
         end if;
      end if;
      Check_Subprogram_Association_Expression (Inter, Left, Null_Iir, Left);
      Set_Left (Expr, Left);

      --  Right operand
      if Is_Dyadic then
         Right := Get_Right (Expr);
         Inter := Get_Chain (Inter);
         Right_Type := Get_Type (Inter);
         if Is_Overloaded (Right) then
            Right := Sem_Expression_Ov (Right, Get_Base_Type (Right_Type));
            if Right = Null_Iir then
               Err := True;
            end if;
         end if;
         Check_Subprogram_Association_Expression
           (Inter, Right, Null_Iir, Right);
         Set_Right (Expr, Right);
      end if;

      if not Err then
         Set_Implementation (Expr, Decl);
         Sem_Subprogram_Call_Finish (Expr, Decl);
         if Get_Expr_Staticness (Expr) = Locally then
            return Eval_Expr_If_Static (Expr);
         else
            --  The result is not static, but an operand may be static.
            --  Evaluate it.
            Left := Eval_Expr_Check_If_Static (Left, Left_Type);
            Set_Left (Expr, Left);
            if Is_Dyadic then
               Right := Eval_Expr_Check_If_Static (Right, Right_Type);
               Set_Right (Expr, Right);
            end if;
         end if;
      end if;
      return Expr;
   end Set_Operator_Unique_Interpretation;

   --  Display an error message for sem_operator.
   procedure Error_Operator_Overload (Expr : Iir; List : Iir_List)
   is
      Operator : Name_Id;
   begin
      Operator := Utils.Get_Operator_Name (Expr);
      Report_Start_Group;
      Error_Msg_Sem (+Expr, "operator %i is overloaded", +Operator);
      Disp_Overload_List (List, Expr);
      Report_End_Group;
   end Error_Operator_Overload;

   --  Return False in case of error.
   function Sem_Operator_Operands (Expr : Iir) return Boolean
   is
      Is_Dyadic : constant Boolean :=
        Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
      Left, Right: Iir;
   begin
      --  First pass.
      --  Analyze operands.
      --  FIXME: should try to analyze right operand even if analyze
      --  of left operand has failed ??
      Left := Get_Left (Expr);
      if Get_Type (Left) = Null_Iir then
         Left := Sem_Expression_Ov (Left, Null_Iir);
         if Left = Null_Iir then
            return False;
         end if;
         Set_Left (Expr, Left);
      end if;
      if Is_Dyadic then
         Right := Get_Right (Expr);
         if Get_Type (Right) = Null_Iir then
            Right := Sem_Expression_Ov (Right, Null_Iir);
            if Right = Null_Iir then
               return False;
            end if;
            Set_Right (Expr, Right);
         end if;
      end if;
      return True;
   end Sem_Operator_Operands;

   --  Return the compatibility level between operation EXPR (either monadic
   --  or dyadic) and operator DECL (also monadic or dyadic).
   --  RES_TYPE is the expected expression type, which can be NULL_IIR.
   --  Note: even if the result is fully_compatible, at the end the
   --  compatibility could be via_conversion if the result has be to be
   --  converted.
   function Sem_Operator_Compatibility
     (Decl : Iir; Expr : Iir; Is_Dyadic : Boolean; Res_Type : Iir)
     return Compatibility_Level
   is
      Left_Inter, Right_Inter : Iir;
      Res, Level : Compatibility_Level;
   begin
      --  Check return type.
      if Res_Type /= Null_Iir then
         Res := Are_Types_Compatible (Res_Type, Get_Return_Type (Decl));
         if Res = Not_Compatible then
            return Not_Compatible;
         end if;
      else
         Res := Fully_Compatible;
      end if;

      Left_Inter := Get_Interface_Declaration_Chain (Decl);
      Right_Inter := Get_Chain (Left_Inter);

      --  Operator can be either monadic or dyadic.
      pragma Assert (Right_Inter = Null_Iir
                       or else Get_Chain (Right_Inter) = Null_Iir);

      --  Check arity.

      --  LRM93 2.5.2 Operator overloading
      --  The subprogram specification of a unary operator must have
      --  a single parameter [...]
      --  The subprogram specification of a binary operator must have
      --  two parameters [...]
      --
      --  GHDL: So even in presence of default expression in a parameter,
      --  a unary operation has to match with a binary operator.
      if (Right_Inter /= Null_Iir) /= Is_Dyadic then
         return Not_Compatible;
      end if;

      -- Check operands.
      Level := Is_Expr_Compatible (Get_Type (Left_Inter), Get_Left (Expr));
      if Level = Not_Compatible then
         return Not_Compatible;
      end if;
      Res := Compatibility_Level'Min (Res, Level);

      if Is_Dyadic then
         Level := Is_Expr_Compatible (Get_Type (Right_Inter),
                                      Get_Right (Expr));
         if Level = Not_Compatible then
            return Not_Compatible;
         end if;
         Res := Compatibility_Level'Min (Res, Level);
      end if;

      return Res;
   end Sem_Operator_Compatibility;

   function Sem_Operator_Pass1 (Expr : Iir; Res_Type : Iir) return Iir
   is
      Is_Dyadic : constant Boolean :=
        Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
      Operator : constant Name_Id := Utils.Get_Operator_Name (Expr);
      Interpretation : Name_Interpretation_Type;
      Level : Compatibility_Level;
      Decl : Iir;
      Overload_List : Iir_List;
      Res_Type_List : Iir;
      It : List_Iterator;
   begin
      --  First pass.
      --  Analyze operands.
      --  FIXME: should try to analyze right operand even if analyze
      --  of left operand has failed ??
      if not Sem_Operator_Operands (Expr) then
         return Null_Iir;
      end if;

      Overload_List := Create_Iir_List;

      --  Try to find an implementation among user defined function
      Interpretation := Get_Interpretation (Operator);
      while Valid_Interpretation (Interpretation) loop
         Decl := Get_Non_Alias_Declaration (Interpretation);

         --  It is compatible with operand types ?
         pragma Assert (Is_Function_Declaration (Decl));

         --  LRM08 12.3 Visibility
         --  [...] or all visible declarations denote the same named entity.
         --
         --  GHDL: If DECL has already been seen, then skip it.
         if not Get_Seen_Flag (Decl) then
            Level := Sem_Operator_Compatibility
              (Decl, Expr, Is_Dyadic, Res_Type);
            if Level /= Not_Compatible then
               --  Match.
               Set_Seen_Flag (Decl, True);
               Append_Element (Overload_List, Decl);
            end if;
         end if;

         Interpretation := Get_Next_Interpretation (Interpretation);
      end loop;

      --  Clear seen_flags.
      It := List_Iterate (Overload_List);
      while Is_Valid (It) loop
         Set_Seen_Flag (Get_Element (It), False);
         Next (It);
      end loop;

      --  The list of possible implementations was computed.
      case Get_Nbr_Elements (Overload_List) is
         when 0 =>
            if Get_Kind (Expr) = Iir_Kind_Implicit_Condition_Operator then
               --  TODO: display expression type.
               Error_Msg_Sem (+Expr, "cannot convert expression to boolean "
                                & "(no ""??"" found)");
            else
               Error_Msg_Sem (+Expr,
                              "no function declarations for %n", +Expr);
            end if;
            Destroy_Iir_List (Overload_List);
            return Null_Iir;

         when 1 =>
            Decl := Get_First_Element (Overload_List);
            Destroy_Iir_List (Overload_List);
            return Set_Operator_Unique_Interpretation (Expr, Decl);

         when others =>
            --  Preference for universal operator.
            --  This roughly corresponds to:
            --
            --  LRM 7.3.5
            --  An implicit conversion of a convertible universal operand
            --  is applied if and only if the innermost complete context
            --  determines a unique (numeric) target type for the implicit
            --  conversion, and there is no legal interpretation of this
            --  context without this conversion.
            if Is_Dyadic then
               Decl := Get_Non_Implicit_Subprogram (Overload_List);
               if Decl /= Null_Iir then
                  Destroy_Iir_List (Overload_List);
                  return Set_Operator_Unique_Interpretation (Expr, Decl);
               end if;
            end if;

            Set_Implementation (Expr, Create_Overload_List (Overload_List));

            --  Create the list of possible return types, if it is not yet
            --  determined.
            if Res_Type = Null_Iir then
               Res_Type_List := Create_List_Of_Types (Overload_List);
               if Is_Overload_List (Res_Type_List) then
                  --  There are many possible return types.
                  --  Try again.
                  Set_Type (Expr, Res_Type_List);
                  return Expr;
               end if;
            end if;

            --  The return type is known.
            --  Search for explicit subprogram.

            --  It was impossible to find one solution.
            Error_Operator_Overload (Expr, Overload_List);

            --  Give an advice.
            if not Flags.Flag_Explicit
              and then not Explicit_Advice_Given
              and then Flags.Vhdl_Std < Vhdl_08
            then
               Decl := Get_Explicit_Subprogram (Overload_List);
               if Decl /= Null_Iir then
                  Error_Msg_Sem
                    (+Expr, "(you may want to use the -fexplicit option)");
                  Explicit_Advice_Given := True;
               end if;
            end if;

            return Null_Iir;
      end case;
   end Sem_Operator_Pass1;

   function Sem_Operator_Pass2_Interpretation
     (Expr : Iir; Res_Type : Iir) return Iir
   is
      Is_Dyadic : constant Boolean :=
        Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
      Decl : Iir;
      Overload : Iir;
      Overload_List : Iir_List;
      Full_Compat : Iir;
      Conv_Compat : Iir;
      It : List_Iterator;
      Level : Compatibility_Level;
   begin
      --  Second pass
      --  Find the uniq implementation for this call.
      Overload := Get_Implementation (Expr);
      Overload_List := Get_Overload_List (Overload);

      Full_Compat := Null_Iir;
      Conv_Compat := Null_Iir;

      It := List_Iterate (Overload_List);
      while Is_Valid (It) loop
         Decl := Get_Element (It);
         Level := Sem_Operator_Compatibility (Decl, Expr, Is_Dyadic, Res_Type);
         case Level is
            when Not_Compatible =>
               --  Ignored
               null;
            when Fully_Compatible =>
               if Full_Compat = Null_Iir then
                  Full_Compat := Decl;
               else
                  --  There are several fully compatible functions.
                  --  TODO: remove non-fully compatible functions from the list
                  --   before displaying the list.
                  Error_Operator_Overload (Expr, Overload_List);
                  return Null_Iir;
               end if;
            when Via_Conversion =>
               if Conv_Compat = Null_Iir then
                  Conv_Compat := Decl;
               else
                  --  Not yet an error, as there can be one fully compatible
                  --  function.
                  Conv_Compat := Overload;
               end if;
         end case;
         Next (It);
      end loop;

      if Full_Compat = Null_Iir then
         if Conv_Compat = Overload then
            --  Several results through implicit conversion.
            --  TODO: remove incompatible declarations from the list before
            --   displaying it.
            Error_Operator_Overload (Expr, Overload_List);
            return Null_Iir;
         else
            Full_Compat := Conv_Compat;
         end if;
      end if;

      Free_Iir (Overload);
      Overload := Get_Type (Expr);
      Free_Overload_List (Overload);
      Destroy_Iir_List (Overload_List);
      if Full_Compat = Null_Iir then
         Error_Msg_Sem (+Expr,
                        "no matching function declarations for %n", +Expr);
         return Null_Iir;
      else
         return Full_Compat;
      end if;
   end Sem_Operator_Pass2_Interpretation;

   function Sem_Operator (Expr : Iir; Res_Type : Iir) return Iir
   is
      Interpretation : Iir;
   begin
      if Get_Type (Expr) = Null_Iir then
         return Sem_Operator_Pass1 (Expr, Res_Type);
      else
         Interpretation := Sem_Operator_Pass2_Interpretation (Expr, Res_Type);
         if Interpretation = Null_Iir then
            return Null_Iir;
         else
            return Set_Operator_Unique_Interpretation (Expr, Interpretation);
         end if;
      end if;
   end Sem_Operator;

   --  Analyze LIT whose elements must be of type EL_TYPE, and return
   --  the length.
   --  FIXME: the errors are reported, but there is no mark of that.
   function Sem_String_Literal (Str : Iir; El_Type : Iir) return Natural
   is
      function Find_Literal (Etype : Iir_Enumeration_Type_Definition;
                             C : Character)
                            return Iir_Enumeration_Literal
      is
         Id : constant Name_Id := Name_Table.Get_Identifier (C);
         Inter : Name_Interpretation_Type;
         Decl : Iir;
      begin
         Inter := Get_Interpretation (Id);
         while Valid_Interpretation (Inter) loop
            Decl := Get_Non_Alias_Declaration (Inter);
            if Get_Kind (Decl) = Iir_Kind_Enumeration_Literal
              and then Get_Type (Decl) = Etype
            then
               return Decl;
            end if;
            Inter := Get_Next_Interpretation (Inter);
         end loop;

         --  LRM08 9.3 Operands
         --  The character literals corresponding to the graphic characters
         --  contained within a string literal or a bit string literal shall
         --  be visible at the place of the string literal.

         --  Character C is not visible...
         if Find_Name_In_Flist (Get_Enumeration_Literal_List (Etype), Id)
           = Null_Iir
         then
            --  ... because it is not defined.
            Error_Msg_Sem
              (+Str, "type %n does not define character %c", (+Etype, +C));
         else
            --  ... because it is not visible.
            Error_Msg_Sem (+Str, "character %c of type %n is not visible",
                           (+C, +Etype));
         end if;
         return Null_Iir;
      end Find_Literal;

      type Characters_Pos is array (Character range <>) of Nat8;
      Len : constant Nat32 := Get_String_Length (Str);
      Id : constant String8_Id := Get_String8_Id (Str);
      El : Iir;
      Enum_Pos : Iir_Int32;
      Ch : Character;

      --  Create a cache of literals, to speed-up a little bit the
      --  search.
      No_Pos : constant Nat8 := Nat8'Last;
      Map : Characters_Pos (' ' .. Character'Last) := (others => No_Pos);
      Res : Nat8;
   begin
      for I in 1 .. Len loop
         Ch := Str_Table.Char_String8 (Id, I);
         if Ch not in Map'Range then
            --  Invalid character.
            pragma Assert (Flags.Flag_Force_Analysis);
            Res := 0;
         else
            Res := Map (Ch);
            if Res = No_Pos then
               El := Find_Literal (El_Type, Ch);
               if El = Null_Iir then
                  Res := 0;
               else
               Enum_Pos := Get_Enum_Pos (El);
               Res := Nat8 (Enum_Pos);
               Map (Ch) := Res;
               end if;
            end if;
         end if;
         Str_Table.Set_Element_String8 (Id, I, Res);
      end loop;

      --  LRM08 9.4.2 Locally static primaries
      --  a) A literal of any type other than type TIME
      Set_Expr_Staticness (Str, Locally);

      return Natural (Len);
   end Sem_String_Literal;

   procedure Sem_String_Literal (Lit: Iir)
   is
      Lit_Type : constant Iir := Get_Type (Lit);
      Lit_Base_Type : constant Iir := Get_Base_Type (Lit_Type);

      -- The subtype created for the literal.
      N_Type: Iir;
      -- type of the index of the array type.
      Index_Type: Iir;
      Len : Natural;
      El_Type : Iir;
   begin
      El_Type := Get_Base_Type (Get_Element_Subtype (Lit_Base_Type));
      Len := Sem_String_Literal (Lit, El_Type);

      if Get_Constraint_State (Lit_Type) = Fully_Constrained then
         --  The type of the context is constrained.
         Index_Type := Get_Index_Type (Lit_Type, 0);
         if Get_Type_Staticness (Index_Type) = Locally then
            if Eval_Discrete_Type_Length (Index_Type) = Int64 (Len) then
               return;
            else
               Error_Msg_Sem (+Lit, "string length does not match that of %n",
                              +Index_Type);
               --  Change the type.
            end if;
         else
            --  FIXME: emit a warning because of dubious construct (the type
            --  of the string is not locally constrained) ?
            return;
         end if;
      end if;

      -- Context type is not constained.  Set type of the string literal,
      -- according to LRM93 7.3.2.2.
      N_Type := Create_Unidim_Array_By_Length
        (Lit_Base_Type, Int64 (Len), Lit);
      Set_Type (Lit, N_Type);
      Set_Literal_Subtype (Lit, N_Type);
   end Sem_String_Literal;

   procedure Count_Choices (Info : out Choice_Info_Type;
                            Choice_Chain : Iir)
   is
      Choice : Iir;
   begin
      Info := (Nbr_Choices => 0,
               Nbr_Alternatives => 0,
               Others_Choice => Null_Iir,
               Arr => null,
               Annex_Arr => null);
      Choice := Choice_Chain;
      while Is_Valid (Choice) loop
         case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
            when Iir_Kind_Choice_By_Expression
              | Iir_Kind_Choice_By_Range =>
               if Get_Choice_Staticness (Choice) = Locally then
                  Info.Nbr_Choices := Info.Nbr_Choices + 1;
               end if;
            when Iir_Kind_Choice_By_Others =>
               Info.Others_Choice := Choice;
         end case;
         if not Get_Same_Alternative_Flag (Choice) then
            Info.Nbr_Alternatives := Info.Nbr_Alternatives + 1;
         end if;
         Choice := Get_Chain (Choice);
      end loop;
   end Count_Choices;

   procedure Fill_Choices_Array (Info : in out Choice_Info_Type;
                                 Choice_Chain : Iir)
   is
      Index : Natural;
      Choice : Iir;
      Expr : Iir;
   begin
      Info.Arr := new Iir_Array (1 .. Info.Nbr_Choices);

      --  Fill the array.
      Index := 0;
      Choice := Choice_Chain;
      while Choice /= Null_Iir loop
         case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
            when Iir_Kind_Choice_By_Expression =>
               Expr := Get_Choice_Expression (Choice);
            when Iir_Kind_Choice_By_Range =>
               Expr := Get_Choice_Range (Choice);
               Expr := Get_Range_From_Discrete_Range (Expr);
            when Iir_Kind_Choice_By_Others =>
               Expr := Null_Iir;
         end case;
         if Is_Valid (Expr) and then Get_Expr_Staticness (Expr) = Locally
         then
            Index := Index + 1;
            Info.Arr (Index) := Choice;
         end if;
         Choice := Get_Chain (Choice);
      end loop;

      pragma Assert (Index = Info.Nbr_Choices);
   end Fill_Choices_Array;

   procedure Swap_Choice_Info (Info : Choice_Info_Type;
                               From : Natural; To : Natural)
   is
      Tmp : Iir;
   begin
      Tmp := Info.Arr (To);
      Info.Arr (To) := Info.Arr (From);
      Info.Arr (From) := Tmp;

      if Info.Annex_Arr /= null then
         declare
            T : Int32;
         begin
            T := Info.Annex_Arr (To);
            Info.Annex_Arr (To) := Info.Annex_Arr (From);
            Info.Annex_Arr (From) := T;
         end;
      end if;
   end Swap_Choice_Info;

   procedure Sort_String_Choices (Info : in out Choice_Info_Type)
   is
      --  Compare two elements of ARR.
      --  Return true iff OP1 < OP2.
      function Lt (Op1, Op2 : Natural) return Boolean
      is
         E1 : constant Iir := Get_Choice_Expression (Info.Arr (Op1));
         E2 : constant Iir := Get_Choice_Expression (Info.Arr (Op2));
      begin
         return Compare_String_Literals (E1, E2) = Compare_Lt;
      end Lt;

      procedure Swap (From : Natural; To : Natural) is
      begin
         Swap_Choice_Info (Info, From, To);
      end Swap;

      procedure Str_Heap_Sort is
         new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
   begin
      Str_Heap_Sort (Info.Nbr_Choices);
   end Sort_String_Choices;

   procedure Sem_String_Choices_Range (Choice_Chain : Iir; Sel : Iir)
   is
      --  Type of SEL.
      Sel_Type : Iir;

      --  Type of the element of SEL.
      Sel_El_Type : Iir;
      --  Number of literals in the element type.
      Sel_El_Length : Int64;

      --  Length of SEL (number of characters in SEL).
      Sel_Length : Int64;

      --  True if length of a choice mismatches
      Has_Length_Error : Boolean := False;

      El : Iir;

      Info : Choice_Info_Type;

      procedure Sem_Simple_Choice (Choice : Iir)
      is
         Expr : Iir;
         Choice_Len : Int64;
      begin
         --  LRM93 8.8
         --  In such case, each choice appearing in any of the case statement
         --  alternative must be a locally static expression whose value is of
         --  the same length as that of the case expression.
         Expr := Sem_Expression (Get_Choice_Expression (Choice), Sel_Type);
         if Expr = Null_Iir then
            Has_Length_Error := True;
            return;
         end if;
         Set_Choice_Expression (Choice, Expr);
         if Get_Expr_Staticness (Expr) < Locally then
            Error_Msg_Sem (+Expr, "choice must be locally static expression");
            Has_Length_Error := True;
            return;
         end if;
         Set_Choice_Staticness (Choice, Locally);
         Expr := Eval_Expr (Expr);
         Set_Choice_Expression (Choice, Expr);
         if Get_Kind (Expr) = Iir_Kind_Overflow_Literal then
            Error_Msg_Sem
              (+Expr, "bound error during evaluation of choice expression");
            Has_Length_Error := True;
            return;
         end if;

         --  If the choice is an aggregate (which could be static in vhdl08),
         --  transform it into a simple aggregate to ease the comparisons.
         if Get_Kind (Expr) = Iir_Kind_Aggregate then
            Expr := Eval_String_Literal (Expr);
            Set_Choice_Expression (Choice, Expr);
         end if;

         Choice_Len := Eval_Discrete_Type_Length
           (Get_String_Type_Bound_Type (Get_Type (Expr)));
         if Sel_Length = -1 then
            Sel_Length := Choice_Len;
         else
            if Choice_Len /= Sel_Length then
               Has_Length_Error := True;
               Error_Msg_Sem (+Expr, "incorrect length for the choice value");
               return;
            end if;
         end if;
      end Sem_Simple_Choice;

      function Eq (Op1, Op2 : Natural) return Boolean is
      begin
         return Compare_String_Literals
           (Get_Choice_Expression (Info.Arr (Op1)),
            Get_Choice_Expression (Info.Arr (Op2)))
           = Compare_Eq;
      end Eq;
   begin
      --  LRM93 8.8
      --  If the expression is of one-dimensional character array type, then
      --  the expression must be one of the following:
      --  FIXME: to complete.
      Sel_Type := Get_Type (Sel);
      if not Is_One_Dimensional_Array_Type (Sel_Type) then
         Error_Msg_Sem
           (+Sel,
            "expression must be discrete or one-dimension array subtype");
         return;
      end if;
      if Get_Type_Staticness (Sel_Type) = Locally then
         Sel_Length := Eval_Discrete_Type_Length
           (Get_String_Type_Bound_Type (Sel_Type));
      else
         --  LRM08 10.9 Case statement
         --  If the expression is of a one-dimensional character array type and
         --  is not described by either of the preceding two paragraphs, then
         --  the values of all of the choices, except the OTHERS choice, if
         --  present, shall be of the same length.
         if Flags.Vhdl_Std >= Vhdl_08 then
            Sel_Length := -1;
         else
            Error_Msg_Sem (+Sel, "array type must be locally static");
            return;
         end if;
         --  Use the base type so that the subtype of the choices is computed.
         Sel_Type := Get_Base_Type (Sel_Type);
      end if;
      Sel_El_Type := Get_Element_Subtype (Sel_Type);
      Sel_El_Length := Eval_Discrete_Type_Length (Sel_El_Type);

      El := Choice_Chain;
      Info.Others_Choice := Null_Iir;
      while El /= Null_Iir loop
         case Get_Kind (El) is
            when Iir_Kind_Choice_By_None =>
               raise Internal_Error;
            when Iir_Kind_Choice_By_Range =>
               Error_Msg_Sem
                 (+El, "range choice are not allowed for non-discrete type");
            when Iir_Kind_Choice_By_Expression =>
               Sem_Simple_Choice (El);
            when Iir_Kind_Choice_By_Others =>
               if Info.Others_Choice /= Null_Iir then
                  Error_Msg_Sem (+El, "duplicate others choice");
               elsif Get_Chain (El) /= Null_Iir then
                  Error_Msg_Sem
                    (+El, "choice others must be the last alternative");
               end if;
               Info.Others_Choice := El;
            when others =>
               Error_Kind ("sem_string_choices_range", El);
         end case;
         El := Get_Chain (El);
      end loop;

      --  Null choices.
      if Sel_Length = 0 then
         return;
      end if;
      if Has_Length_Error then
         return;
      end if;

      --  LRM 8.8
      --
      --  If the expression is the name of an object whose subtype is locally
      --  static, whether a scalar type or an array type, then each value of
      --  the subtype must be represented once and only once in the set of
      --  choices of the case statement and no other value is allowed; [...]

      -- 1. Allocate Arr, fill it and sort
      Count_Choices (Info, Choice_Chain);
      Fill_Choices_Array (Info, Choice_Chain);
      Sort_String_Choices (Info);

      -- 2. Check for duplicate choices
      for I in 1 .. Info.Nbr_Choices - 1 loop
         if Eq (I, I + 1) then
            Error_Msg_Sem
              (+Info.Arr (I),
               "duplicate choice with choice at %l", +Info.Arr (I + 1));
            exit;
         end if;
      end loop;

      -- 3. Free Arr
      Free (Info.Arr);

      --  Check for missing choice.
      --  Do not try to compute the expected number of choices as this can
      --  easily overflow.
      if Info.Others_Choice = Null_Iir then
         declare
            Nbr : Int64 := Int64 (Info.Nbr_Choices);
         begin
            for I in 1 .. Sel_Length loop
               Nbr := Nbr / Sel_El_Length;
               if Nbr = 0 and then Choice_Chain /= Null_Iir then
                  --  An error has already been reported by parse if there is
                  --  no choices.
                  Error_Msg_Sem (+Choice_Chain, "missing choice(s)");
                  exit;
               end if;
            end loop;
         end;
      end if;
   end Sem_String_Choices_Range;

   --  Get low limit of ASSOC.
   --  First, get the expression of the association, then the low limit.
   --  ASSOC may be either association_by_range (in this case the low limit
   --   is to be fetched), or association_by_expression (and the low limit
   --   is the expression).
   function Get_Assoc_Low (Assoc : Iir) return Iir
   is
      Expr : Iir;
   begin
      case Get_Kind (Assoc) is
         when Iir_Kind_Choice_By_Expression =>
            return Get_Choice_Expression (Assoc);
         when Iir_Kind_Choice_By_Range =>
            Expr := Get_Choice_Range (Assoc);
            Expr := Get_Range_From_Discrete_Range (Expr);
            case Get_Kind (Expr) is
               when Iir_Kind_Range_Expression =>
                  return Get_Low_Limit (Expr);
               when others =>
                  return Expr;
            end case;
         when others =>
            Error_Kind ("get_assoc_low", Assoc);
      end case;
   end Get_Assoc_Low;

   function Get_Assoc_High (Assoc : Iir) return Iir
   is
      Expr : Iir;
   begin
      case Get_Kind (Assoc) is
         when Iir_Kind_Choice_By_Expression =>
            return Get_Choice_Expression (Assoc);
         when Iir_Kind_Choice_By_Range =>
            Expr := Get_Choice_Range (Assoc);
            Expr := Get_Range_From_Discrete_Range (Expr);
            case Get_Kind (Expr) is
               when Iir_Kind_Range_Expression =>
                  return Get_High_Limit (Expr);
               when others =>
                  return Expr;
            end case;
         when others =>
            Error_Kind ("get_assoc_high", Assoc);
      end case;
   end Get_Assoc_High;

   procedure Sort_Discrete_Choices (Info : in out Choice_Info_Type)
   is
      --  Compare two elements of ARR.
      --  Return true iff OP1 < OP2.
      function Lt (Op1, Op2 : Natural) return Boolean is
      begin
         return (Eval_Pos (Get_Assoc_Low (Info.Arr (Op1)))
                   < Eval_Pos (Get_Assoc_Low (Info.Arr (Op2))));
      end Lt;

      procedure Swap (From : Natural; To : Natural) is
      begin
         Swap_Choice_Info (Info, From, To);
      end Swap;

      procedure Disc_Heap_Sort is
         new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
   begin
      Disc_Heap_Sort (Info.Nbr_Choices);
   end Sort_Discrete_Choices;

   procedure Sem_Check_Continuous_Choices (Choice_Chain : Iir;
                                           Choice_Type : Iir;
                                           Low : out Iir;
                                           High : out Iir;
                                           Loc : Location_Type;
                                           Is_Sub_Range : Boolean)
   is
      --  Nodes that can appear.
      Info : Choice_Info_Type;

      Type_Has_Bounds : Boolean;
   begin
      --  Set TYPE_HAS_BOUNDS
      case Get_Kind (Choice_Type) is
         when Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            Type_Has_Bounds := True;
         when Iir_Kind_Integer_Type_Definition =>
            Type_Has_Bounds := False;
         when others =>
            Error_Kind ("sem_check_continuous_choices(3)", Choice_Type);
      end case;

      --  Check the choices are within the bounds.
      if Type_Has_Bounds
        and then Get_Type_Staticness (Choice_Type) = Locally
      then
         declare
            Choice : Iir;
            Ok : Boolean;
            Has_Err : Boolean;
            Expr : Iir;
         begin
            Has_Err := False;
            Choice := Choice_Chain;
            while Choice /= Null_Iir loop
               Ok := True;
               case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
                  when Iir_Kind_Choice_By_Expression =>
                     Expr := Get_Choice_Expression (Choice);
                     if Get_Expr_Staticness (Expr) = Locally then
                        Ok := Eval_Is_In_Bound (Expr, Choice_Type);
                     end if;
                  when Iir_Kind_Choice_By_Range =>
                     Expr := Get_Choice_Range (Choice);
                     Expr := Get_Range_From_Discrete_Range (Expr);
                     if Get_Expr_Staticness (Expr) = Locally then
                        Ok := Eval_Is_Range_In_Bound (Expr, Choice_Type, True);
                     end if;
                  when Iir_Kind_Choice_By_Others =>
                     null;
               end case;
               if not Ok then
                  Error_Msg_Sem (+Choice, "%n out of index range", +Expr);
                  Has_Err := True;
               end if;
               Choice := Get_Chain (Choice);
            end loop;

            --  In case of error (value not in range), don't try to extract
            --  bounds or to sort values.
            if Has_Err then
               High := Null_Iir;
               Low := Null_Iir;
               return;
            end if;
         end;
      end if;

      --  Compute the number of elements and sort.
      Count_Choices (Info, Choice_Chain);
      Fill_Choices_Array (Info, Choice_Chain);
      Sort_Discrete_Choices (Info);

      --  Set low and high bounds.
      if Info.Nbr_Choices > 0 then
         Low := Get_Assoc_Low (Info.Arr (Info.Arr'First));
         High := Get_Assoc_High (Info.Arr (Info.Arr'Last));
      else
         Low := Null_Iir;
         High := Null_Iir;
      end if;

      --  Fourth:
      --  check for lacking choice (if no others)
      --  check for overlapping choices
      declare
         --  Emit an error message for absence of choices in position L to H
         --  of index type BT at location LOC.
         procedure Error_No_Choice (Bt : Iir;
                                    L, H : Int64;
                                    Loc : Location_Type) is
         begin
            if L = H then
               Error_Msg_Sem (+Loc, "no choice for " & Disp_Discrete (Bt, L));
            else
               Error_Msg_Sem
                 (+Loc, "no choices for " & Disp_Discrete (Bt, L)
                    & " to " & Disp_Discrete (Bt, H));
            end if;
         end Error_No_Choice;

         --  Lowest and highest bounds.
         Lb, Hb : Iir;
         Pos : Int64;
         Pos_Max : Int64;
         E_Pos : Int64;
         Choice : Iir;
         Need_Others : Boolean;

         Bt : constant Iir := Get_Base_Type (Choice_Type);
      begin
         if not Is_Sub_Range
           and then Get_Type_Staticness (Choice_Type) = Locally
           and then Type_Has_Bounds
         then
            Get_Low_High_Limit (Get_Range_Constraint (Choice_Type), Lb, Hb);
         else
            Lb := Low;
            Hb := High;
         end if;
         if Lb = Null_Iir or else Hb = Null_Iir then
            --  Return now in case of error.
            Free (Info.Arr);
            return;
         end if;
         --  Checks all values between POS and POS_MAX are handled.
         Pos := Eval_Pos (Lb);
         Pos_Max := Eval_Pos (Hb);
         if Pos > Pos_Max then
            --  Null range.
            Free (Info.Arr);
            return;
         end if;
         Need_Others := False;
         for I in Info.Arr'Range loop
            Choice := Info.Arr (I);
            E_Pos := Eval_Pos (Get_Assoc_Low (Choice));
            if E_Pos > Pos_Max then
               --  Choice out of bound, already handled.
               Error_No_Choice (Bt, Pos, Pos_Max, Get_Location (Choice));
               --  Avoid other errors.
               Pos := Pos_Max + 1;
               exit;
            end if;
            if Pos < E_Pos then
               Need_Others := True;
               if Info.Others_Choice = Null_Iir then
                  Error_No_Choice (Bt, Pos, E_Pos - 1, Get_Location (Choice));
               end if;
            elsif Pos > E_Pos then
               Need_Others := True;
               if Pos = E_Pos + 1 then
                  Error_Msg_Sem
                    (+Choice,
                     "duplicate choice for " & Disp_Discrete (Bt, E_Pos));
               else
                  Error_Msg_Sem
                    (+Choice, "duplicate choices for "
                       & Disp_Discrete (Bt, E_Pos)
                       & " to " & Disp_Discrete (Bt, Pos));
               end if;
            end if;

            if Get_Kind (Choice) = Iir_Kind_Choice_By_Range then
               Pos := Eval_Pos (Get_Assoc_High (Choice)) + 1;
            else
               Pos := E_Pos + 1;
            end if;
         end loop;
         if Pos /= Pos_Max + 1 then
            Need_Others := True;
            if Info.Others_Choice = Null_Iir then
               Error_No_Choice (Bt, Pos, Pos_Max, Loc);
            end if;
         end if;

         if not Need_Others and then Info.Others_Choice /= Null_Iir then
            Warning_Msg_Sem (Warnid_Others, +Info.Others_Choice,
                             "redundant 'others' choices");
         end if;
      end;

      --  LRM93 7.3.2.2 Array aggregates
      --  An others choice is locally static if the applicable index constraint
      --  if locally static.
      if Info.Nbr_Choices > 0
        and then Info.Others_Choice /= Null_Iir
        and then Get_Type_Staticness (Choice_Type) /= Locally
      then
         Warning_Msg_Sem
           (Warnid_Static, +Info.Others_Choice,
            "'others' choice allowed only if the index constraint is static");
      end if;

      Free (Info.Arr);
   end Sem_Check_Continuous_Choices;

   procedure Sem_Choices_Range (Choice_Chain : in out Iir;
                                Choice_Type : Iir;
                                Low : out Iir;
                                High : out Iir;
                                Loc : Location_Type;
                                Is_Sub_Range : Boolean;
                                Is_Case_Stmt : Boolean)
   is
      --  Number of positionnal choice.
      Nbr_Pos : Int64;

      --  Number of named choices.
      Nbr_Named : Natural;

      --  True if others choice is present.
      Has_Others : Boolean;

      --  True if one association doesn't have the element_type flag (ie the
      --  expression is of the same type as an aggregate).
      Has_Array : Boolean;

      Has_Error : Boolean;

      Pos_Max : Int64;
      El : Iir;
      Prev_El : Iir;

      --  Staticness of the current choice.
      Choice_Staticness : Iir_Staticness;

      --  Staticness of all the choices.
      Staticness : Iir_Staticness;

      --  The choice was parsed as a choice by expression, but in fact the
      --  expression is a range (eg: a subtype name).  Change the choice by
      --  a range choice.
      function Replace_By_Range_Choice (Name : Iir; Range_Type : Iir)
                                       return Boolean
      is
         N_Choice : Iir;
         Name1 : Iir;
      begin
         if Are_Types_Compatible (Range_Type, Choice_Type) = Not_Compatible
         then
            Error_Not_Match (Name, Choice_Type);
            return False;
         end if;

         Name1 := Finish_Sem_Name (Name);
         N_Choice := Create_Iir (Iir_Kind_Choice_By_Range);
         Location_Copy (N_Choice, El);
         Set_Chain (N_Choice, Get_Chain (El));
         Set_Associated_Expr (N_Choice, Get_Associated_Expr (El));
         Set_Associated_Chain (N_Choice, Get_Associated_Chain (El));
         Set_Same_Alternative_Flag (N_Choice, Get_Same_Alternative_Flag (El));
         Set_Choice_Range (N_Choice, Eval_Range_If_Static (Name1));
         Set_Choice_Staticness (N_Choice, Get_Type_Staticness (Range_Type));
         Set_Element_Type_Flag (N_Choice, Get_Element_Type_Flag (El));
         Free_Iir (El);

         if Prev_El = Null_Iir then
            Choice_Chain := N_Choice;
         else
            Set_Chain (Prev_El, N_Choice);
         end if;
         El := N_Choice;

         return True;
      end Replace_By_Range_Choice;

      --  Analyze a simple (by expression or by range) choice.
      --  Return FALSE in case of error.
      function Sem_Simple_Choice return Boolean
      is
         Expr : Iir;
         Ent : Iir;
      begin
         if Get_Kind (El) = Iir_Kind_Choice_By_Range then
            Expr := Get_Choice_Range (El);
            Expr := Sem_Discrete_Range (Expr, Choice_Type, True);
            if Expr = Null_Iir then
               return False;
            end if;
            case Get_Kind (Expr) is
               when Iir_Kind_Range_Expression
                 | Iir_Kinds_Range_Attribute
                 | Iir_Kinds_Denoting_Name =>
                  Expr := Eval_Range_If_Static (Expr);
                  Set_Choice_Staticness (El, Get_Expr_Staticness (Expr));
               when Iir_Kinds_Scalar_Subtype_Definition =>
                  Set_Choice_Staticness (El, Get_Type_Staticness (Expr));
               when others =>
                  Error_Kind ("sem_sime_choice(1)", Expr);
            end case;
            Set_Choice_Range (El, Expr);
         else
            Expr := Get_Choice_Expression (El);
            case Get_Kind (Expr) is
               when Iir_Kind_Selected_Name
                 | Iir_Kind_Simple_Name
                 | Iir_Kind_Character_Literal
                 | Iir_Kind_Parenthesis_Name
                 | Iir_Kind_Selected_By_All_Name
                 | Iir_Kind_Attribute_Name =>
                  Sem_Name (Expr);
                  Ent := Get_Named_Entity (Expr);
                  if Ent = Error_Mark then
                     return False;
                  end if;

                  --  So range or expression ?
                  --  FIXME: share code with sem_name for slice/index.
                  case Get_Kind (Ent) is
                     when Iir_Kind_Range_Array_Attribute
                       | Iir_Kind_Reverse_Range_Array_Attribute
                       | Iir_Kind_Range_Expression =>
                        return Replace_By_Range_Choice (Expr, Ent);
                     when Iir_Kind_Subtype_Declaration
                       | Iir_Kind_Type_Declaration =>
                        Ent := Is_Type_Name (Expr);
                        Set_Expr_Staticness (Expr, Get_Type_Staticness (Ent));
                        return Replace_By_Range_Choice (Expr, Ent);
                     when others =>
                        Expr := Name_To_Expression
                          (Expr, Get_Base_Type (Choice_Type));
                  end case;
               when others =>
                  Expr :=
                    Sem_Expression_Ov (Expr, Get_Base_Type (Choice_Type));
            end case;
            if Expr = Null_Iir then
               return False;
            end if;
            Expr := Eval_Expr_If_Static (Expr);
            Set_Choice_Expression (El, Expr);
            Set_Choice_Staticness (El, Get_Expr_Staticness (Expr));
         end if;
         return True;
      end Sem_Simple_Choice;
   begin
      Low := Null_Iir;
      High := Null_Iir;

      --  First:
      --  Analyze the choices
      --  compute the range of positionnal choices
      --  compute the number of choice elements (extracted from lists).
      --  check for others presence.
      Nbr_Pos := 0;
      Nbr_Named := 0;
      Has_Others := False;
      Has_Error := False;
      Has_Array := False;
      Staticness := Locally;
      El := Choice_Chain;
      Prev_El := Null_Iir;
      while El /= Null_Iir loop
         if not Get_Element_Type_Flag (El) then
            Has_Array := True;
         end if;
         case Get_Kind (El) is
            when Iir_Kind_Choice_By_None =>
               Nbr_Pos := Nbr_Pos + 1;
            when Iir_Kind_Choice_By_Expression
              | Iir_Kind_Choice_By_Range =>
               if Sem_Simple_Choice then
                  Choice_Staticness := Get_Choice_Staticness (El);
                  Staticness := Min (Staticness, Choice_Staticness);
                  if Choice_Staticness /= Locally
                    and then Is_Case_Stmt
                  then
                     --  FIXME: explain why
                     Error_Msg_Sem (+El, "choice is not locally static");
                  end if;
               else
                  Has_Error := True;
               end if;
               Nbr_Named := Nbr_Named + 1;
            when Iir_Kind_Choice_By_Name =>
               --  It is not possible to have such a choice in an array
               --  aggregate.
               --  Should have been caught previously.
               raise Internal_Error;
            when Iir_Kind_Choice_By_Others =>
               if Has_Others then
                  Error_Msg_Sem (+El, "duplicate others choice");
               elsif Get_Chain (El) /= Null_Iir then
                  Error_Msg_Sem
                    (+El, "choice others should be the last alternative");
               end if;
               Has_Others := True;
            when others =>
               Error_Kind ("sem_choices_range", El);
         end case;
         Prev_El := El;
         El := Get_Chain (El);
      end loop;

      if Has_Error then
         --  Nothing can be done here...
         return;
      end if;
      if Nbr_Pos > 0 and then Nbr_Named > 0 then
         --  LRM93 7.3.2.2
         --  Apart from the final element with the single choice OTHERS, the
         --  rest (if any) of the element associations of an array aggregate
         --  must be either all positionnal or all named.
         Error_Msg_Sem
           (+Loc, "element associations must be all positional or all named");
         return;
      end if;

      --  For a positional aggregate.
      if Nbr_Pos > 0 then
         --  Check number of elements match, but only if it is possible.
         if Get_Type_Staticness (Choice_Type) /= Locally then
            return;
         end if;
         Pos_Max := Eval_Discrete_Type_Length (Choice_Type);
         if (not Has_Others and not Is_Sub_Range)
           and then Nbr_Pos < Pos_Max
           --  For aggregates, a positional association can be a vector.
           and then (Vhdl_Std < Vhdl_08 or Is_Case_Stmt or not Has_Array)
         then
            Error_Msg_Sem (+Loc, "not enough elements associated");
         elsif Nbr_Pos > Pos_Max then
            Error_Msg_Sem (+Loc, "too many elements associated");
         end if;
         return;
      end if;

      --  Second:
      --  Create the list of choices
      if Nbr_Named = 0 and then Has_Others then
         --  This is only a others association.
         return;
      end if;
      if Staticness /= Locally then
         --  Emit a message for aggregrate.  The message has already been
         --  emitted for a case stmt.
         --  FIXME: what about individual associations?
         if not Is_Case_Stmt then
            --  LRM93 7.3.2.2
            --  A named association of an array aggregate is allowed to have
            --  a choice that is not locally static, or likewise a choice that
            --  is a null range, only if the aggregate includes a single
            --  element association and the element association has a single
            --  choice.
            if Nbr_Named > 1 or Has_Others then
               Error_Msg_Sem (+Loc, "not static choice exclude others choice");
            end if;
         end if;
         return;
      end if;

      Sem_Check_Continuous_Choices
        (Choice_Chain, Choice_Type, Low, High, Loc, Is_Sub_Range);
   end Sem_Choices_Range;

   -- Perform semantisation on a (sub)aggregate AGGR, which is of type
   -- A_TYPE.
   -- return FALSE is case of failure
   function Sem_Record_Aggregate
     (Aggr : Iir_Aggregate; A_Type : Iir; Constrained : Boolean)
     return boolean
   is
      El_List : constant Iir_Flist := Get_Elements_Declaration_List (A_Type);

      --  Type of the element.
      El_Type : Iir;

      Matches: Iir_Array (0 .. Get_Nbr_Elements (El_List) - 1);
      Ok : Boolean;

      --  Add a choice for element REC_EL.
      --  Checks the element is not already associated.
      --  Checks type of expression is compatible with type of element.
      procedure Add_Match (El : Iir; Rec_El : Iir_Element_Declaration)
      is
         Ass_Type : Iir;
         Pos : constant Natural := Natural (Get_Element_Position (Rec_El));
      begin
         if Matches (Pos) /= Null_Iir then
            Error_Msg_Sem (+El, "%n was already associated", +Matches (Pos));
            Ok := False;
            return;
         end if;
         Matches (Pos) := El;

         --  LRM 7.3.2.1  Record aggregates
         --  An element association with more than once choice, [...], is
         --  only allowed if the elements specified are all of the same type.
         Ass_Type := Get_Type (Rec_El);
         if El_Type = Null_Iir then
            El_Type := Ass_Type;
         elsif Are_Types_Compatible (El_Type, Ass_Type) = Not_Compatible then
            Error_Msg_Sem (+El, "elements are not of the same type");
            Ok := False;
         end if;
      end Add_Match;

      --  Analyze a simple choice: extract the record element corresponding
      --  to the expression, and create a choice_by_name.
      --  FIXME: should mutate the node.
      function Sem_Simple_Choice (Ass : Iir) return Iir
      is
         Expr : constant Iir := Get_Choice_Expression (Ass);
         N_El : Iir;
         Aggr_El : Iir_Element_Declaration;
      begin
         if Get_Kind (Expr) /= Iir_Kind_Simple_Name then
            Error_Msg_Sem (+Ass, "element association must be a simple name");
            Ok := False;
            return Ass;
         end if;
         Aggr_El := Find_Name_In_Flist (El_List, Get_Identifier (Expr));
         if Aggr_El = Null_Iir then
            Error_Msg_Sem (+Ass, "record has no such element %n", +Ass);
            Ok := False;
            return Ass;
         end if;
         Set_Named_Entity (Expr, Aggr_El);
         Xref_Ref (Expr, Aggr_El);

         --  Was a choice_by_expression, now by_name.
         N_El := Create_Iir (Iir_Kind_Choice_By_Name);
         Location_Copy (N_El, Ass);
         Set_Choice_Name (N_El, Expr);
         Set_Associated_Expr (N_El, Get_Associated_Expr (Ass));
         Set_Associated_Chain (N_El, Get_Associated_Chain (Ass));
         Set_Chain (N_El, Get_Chain (Ass));
         Set_Same_Alternative_Flag (N_El, Get_Same_Alternative_Flag (Ass));

         Free_Iir (Ass);
         Add_Match (N_El, Aggr_El);
         return N_El;
      end Sem_Simple_Choice;

      Assoc_Chain : Iir;
      El, Prev_El : Iir;
      Expr: Iir;
      Has_Named : Boolean;
      Rec_El_Index : Natural;
      Expr_Staticness : Iir_Staticness;

      --  True if at least one element constrains the subtype.  For unbounded
      --  records.
      Add_Constraints : Boolean;
   begin
      Set_Aggregate_Expand_Flag (Aggr, True);

      Ok := True;
      Assoc_Chain := Get_Association_Choices_Chain (Aggr);
      Matches := (others => Null_Iir);
      Expr_Staticness := Locally;
      Add_Constraints := False;

      El_Type := Null_Iir;
      Has_Named := False;
      Rec_El_Index := 0;
      Prev_El := Null_Iir;
      El := Assoc_Chain;
      while El /= Null_Iir loop
         Expr := Get_Associated_Expr (El);

         --  If there is an associated expression with the choice, then the
         --  choice is a new alternative, and has no expected type.
         if not Get_Same_Alternative_Flag (El) then
            pragma Assert (Expr /= Null_Iir);
            El_Type := Null_Iir;
         end if;

         case Get_Kind (El) is
            when Iir_Kind_Choice_By_None =>
               if Has_Named then
                  Error_Msg_Sem
                    (+El, "positional association after named one");
                  Ok := False;
               elsif Rec_El_Index > Matches'Last then
                  Error_Msg_Sem (+El, "too many elements");
                  exit;
               else
                  Add_Match (El, Get_Nth_Element (El_List, Rec_El_Index));
                  Rec_El_Index := Rec_El_Index + 1;
               end if;
            when Iir_Kind_Choice_By_Expression =>
               Has_Named := True;
               El := Sem_Simple_Choice (El);
               --  This creates a choice_by_name, which replaces the
               --  choice_by_expression.
               if Prev_El = Null_Iir then
                  Set_Association_Choices_Chain (Aggr, El);
               else
                  Set_Chain (Prev_El, El);
               end if;
            when Iir_Kind_Choice_By_Others =>
               Has_Named := True;
               if Get_Chain (El) /= Null_Iir then
                  Error_Msg_Sem
                    (+El, "choice others must be the last alternative");
               end if;
               declare
                  Found : Boolean := False;
               begin
                  for I in Matches'Range loop
                     if Matches (I) = Null_Iir then
                        Add_Match (El, Get_Nth_Element (El_List, I));
                        Found := True;
                     end if;
                  end loop;
                  if not Found then
                     --  LRM08 9.3.3.2 Record aggregates
                     --  If the choise OTHERS is given as a choice, it shall
                     --  represent at least one element.
                     --  GHDL: so that the type of the associated expression
                     --   is known.
                     Error_Msg_Sem (+El, "no element for choice others");
                     Ok := False;
                  end if;
               end;
            when others =>
               Error_Kind ("sem_record_aggregate", El);
         end case;

         --  Analyze the expression associated.
         if not Get_Same_Alternative_Flag (El) then
            if El_Type /= Null_Iir then
               --  Analyze the expression only if the choice is correct.
               Expr := Sem_Expression_Wildcard
                 (Expr, El_Type, Constrained);
               if Expr /= Null_Iir then
                  Set_Associated_Expr
                    (El, Eval_Expr_Check_If_Static (Expr, El_Type));
                  Expr_Staticness := Min (Expr_Staticness,
                                          Get_Expr_Staticness (Expr));
                  if not Add_Constraints
                    and then Is_Fully_Constrained_Type (Get_Type (Expr))
                    and then not Is_Fully_Constrained_Type (El_Type)
                  then
                     Add_Constraints := True;
                  end if;
                  if not Is_Static_Construct (Expr) then
                     Set_Aggregate_Expand_Flag (Aggr, False);
                  end if;
               else
                  Ok := False;
               end if;
            else
               --  This case is not possible unless there is an error.
               pragma Assert (not Ok);
               null;
            end if;
         end if;

         Prev_El := El;
         El := Get_Chain (El);
      end loop;

      if Has_Named then
         --  TODO: support named element on expanded aggregate
         Set_Aggregate_Expand_Flag (Aggr, False);
      end if;

      --  Check for missing associations.
      for I in Matches'Range loop
         if Matches (I) = Null_Iir then
            Error_Msg_Sem
              (+Aggr, "no value for %n", +Get_Nth_Element (El_List, I));
            Ok := False;
         end if;
      end loop;
      Set_Expr_Staticness (Aggr, Min (Get_Expr_Staticness (Aggr),
                                      Expr_Staticness));

      --  Create a constrained subtype for the aggregate type
      if Ok and Add_Constraints then
         declare
            Rec_Type : Iir;
            Rec_El_List : Iir_Flist;
            Rec_El : Iir;
            Rec_El_Type : Iir;
            New_Rec_El : Iir;
            Assoc_Expr : Iir;
            Constraint : Iir_Constraint;
            Composite_Found : Boolean;
            Staticness : Iir_Staticness;
         begin
            Rec_Type := Sem_Types.Copy_Subtype_Indication (Get_Type (Aggr));
            Rec_El_List := Get_Elements_Declaration_List (Rec_Type);
            Constraint := Fully_Constrained;
            Composite_Found := False;
            Staticness := Locally;
            for I in Flist_First .. Flist_Last (El_List) loop
               El := Matches (I);
               Assoc_Expr := Get_Associated_Expr (El);
               El_Type := Get_Type (Assoc_Expr);
               Rec_El := Get_Nth_Element (Rec_El_List, I);
               Rec_El_Type := Get_Type (Rec_El);
               if Is_Fully_Constrained_Type (El_Type)
                 and then not Is_Fully_Constrained_Type (Rec_El_Type)
               then
                  Rec_El_Type := El_Type;
                  New_Rec_El :=
                    Create_Iir (Iir_Kind_Record_Element_Constraint);
                  Location_Copy (New_Rec_El, Rec_El);
                  Set_Parent (New_Rec_El, Rec_Type);
                  Set_Identifier (New_Rec_El, Get_Identifier (Rec_El));
                  pragma Assert (I = Natural (Get_Element_Position (Rec_El)));
                  Set_Element_Position (New_Rec_El, Iir_Index32 (I));
                  Set_Nth_Element (Rec_El_List, I, New_Rec_El);
                  Set_Type (New_Rec_El, Rec_El_Type);
                  Append_Owned_Element_Constraint (Rec_Type, New_Rec_El);
               end if;
               Staticness := Min (Staticness,
                                  Get_Type_Staticness (Rec_El_Type));
               Sem_Types.Update_Record_Constraint
                 (Constraint, Composite_Found, Rec_El_Type);
            end loop;
            Set_Type_Staticness (Rec_Type, Staticness);
            Set_Constraint_State (Rec_Type, Constraint);
            Set_Type (Aggr, Rec_Type);
            Set_Literal_Subtype (Aggr, Rec_Type);
         end;
      end if;

      return Ok;
   end Sem_Record_Aggregate;

   --  Information for each dimension of an aggregate.
   type Array_Aggr_Info is record
      --  False if one sub-aggregate has no others choices.
      --  If FALSE, the dimension is constrained.
      Has_Others : Boolean := True;

      --  True if one sub-aggregate is by named/by position.
      Has_Named : Boolean := False;

      --  True if one sub-aggregate is dynamic.
      Has_Dynamic : Boolean := False;

      --  True if one association is a choice by range and the expression is
      --  of the type of the aggregate (vhdl-08).  If so, Dir is also set.
      Has_Dir : Boolean := False;

      --  Direction of the range.
      Dir : Direction_Type;

      --  LOW and HIGH limits for the dimension.
      Low : Iir := Null_Iir;
      High : Iir := Null_Iir;

      --  Minimum length of the dimension.  This is a minimax.
      Min_Length : Natural := 0;

      --  If not NULL_IIR, this is the bounds of the dimension.
      --  If every dimension has bounds, then the aggregate is constrained.
      Index_Subtype : Iir := Null_Iir;

      --  Number of associations in last-level (not for sub-aggregate).  This
      --  is used only to decide whether or not a static aggregate can be
      --  expanded.
      Nbr_Assocs : Natural := 0;

      --  True if there is an error.
      Error : Boolean := False;

      --  True if one element doesn't match the bounds.
      Has_Bound_Error : Boolean := False;
   end record;

   type Array_Aggr_Info_Arr is array (Natural range <>) of Array_Aggr_Info;

   procedure Sem_Array_Aggregate_Elements
     (Aggr : Iir;
      A_Type : Iir;
      Expr_Staticness : in out Iir_Staticness;
      Info : in out Array_Aggr_Info)
   is
      Element_Type : constant Iir := Get_Element_Subtype (A_Type);
      El : Iir;
      El_Expr : Iir;
      Expr : Iir;
      El_Staticness : Iir_Staticness;
      Assoc_Chain : Iir;
      Res_Type : Iir;

      --  True if the type of the expression is the type of the aggregate.
      Is_Array : Boolean;

      --  Null_Iir if the type of aggregagte elements myst be of the element
      --  type.
      Elements_Types : Iir;
      Elements_Types_List : Iir_List;
   begin
      --  LRM93 7.3.2.2 Array aggregates
      --  [...] the expression of each element association must be of the
      --  element type.

      --  LRM08 9.3.3.3 Array aggregates
      --  For an aggregate of a one-dimensional array type, [each choice shall
      --  specify values of the index type], and the expression of each element
      --  association shall be of either the element type or the type of the
      --  aggregate.
      if Flags.Vhdl_Std >= Vhdl_08
        and then Is_One_Dimensional_Array_Type (A_Type)
      then
         Elements_Types_List := Create_Iir_List;
         Append_Element (Elements_Types_List, Element_Type);
         Append_Element (Elements_Types_List, Get_Base_Type (A_Type));
         Elements_Types := Create_Overload_List (Elements_Types_List);
      else
         Elements_Types := Null_Iir;
      end if;

      Assoc_Chain := Get_Association_Choices_Chain (Aggr);

      El := Assoc_Chain;
      while El /= Null_Iir loop
         if not Get_Same_Alternative_Flag (El) then
            El_Expr := Get_Associated_Expr (El);
            Is_Array := False;

            --  Directly analyze the expression with the type of the element
            --  if it cannot be the type of the aggregate.
            --  In VHDL-2008, also do it when the expression is an aggregate.
            --  This is not in the LRM, but otherwise this would create a lot
            --  of ambiguities when the element type is a composite type.  Eg:
            --
            --    type time_unit is record
            --      val : time;
            --      name : string (1 to 3);
            --    end record;
            --    type time_names_type is array (1 to 2) of time_unit;
            --    constant time_names : time_names_type :=
            --      ((fs, "fs "), (ps, "ps "));
            --
            --  The type of the first sub-aggregate could be either time_unit
            --  or time_names_type.  Because it's determined by the context,
            --  it is ambiguous.  But there is no point in using aggregates
            --  to specify a range of choices.
            --  FIXME: fix LRM ?

            --  LRM08 9.3.3.3 Array aggregates
            --  If the type of the expression of an element association is the
            --  type of the aggregate, then either the element association
            --  shall be positional or the choice shall be a discrete range.
            if Elements_Types = Null_Iir
              or else not Kind_In (El, Iir_Kind_Choice_By_None,
                                   Iir_Kind_Choice_By_Range)
              or else Get_Kind (El_Expr) = Iir_Kind_Aggregate
            then
               Expr := Sem_Expression (El_Expr, Element_Type);
            else
               Expr := Sem_Expression_Wildcard (El_Expr, Null_Iir);
               if Expr /= Null_Iir then
                  Res_Type := Compatible_Types_Intersect
                    (Get_Type (Expr), Elements_Types);
                  if Res_Type = Null_Iir then
                     Error_Msg_Sem
                       (+Get_Associated_Expr (El),
                        "type of element not compatible with the "
                          & "expected type");
                     Set_Type (Expr, Error_Type);
                     Set_Associated_Expr (El, Expr);
                     Expr := Null_Iir;
                  elsif Is_Overload_List (Res_Type) then
                     Error_Msg_Sem
                       (+Expr, "type of element is ambiguous");
                     Free_Overload_List (Res_Type);
                     Set_Type (El_Expr, Error_Type);
                     Expr := Null_Iir;
                  else
                     pragma Assert (Is_Defined_Type (Res_Type));
                     Is_Array :=
                       Get_Base_Type (Res_Type) = Get_Base_Type (A_Type);
                     Expr := Sem_Expression_Wildcard (Expr, Res_Type);
                  end if;
               end if;
            end if;

            if Expr /= Null_Iir then
               El_Staticness := Get_Expr_Staticness (Expr);
               Expr := Eval_Expr_If_Static (Expr);
               Set_Associated_Expr (El, Expr);

               if not Is_Static_Construct (Expr) then
                  Set_Aggregate_Expand_Flag (Aggr, False);
               end if;

               if not Is_Array
                 and then not Eval_Is_In_Bound (Expr, Element_Type)
               then
                  Info.Has_Bound_Error := True;
                  Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                   "element is out of the bounds");
               end if;

               if Is_Array
                 and then Get_Kind (El) = Iir_Kind_Choice_By_Range
               then
                  declare
                     Ch_Rng : constant Iir := Get_Choice_Range (El);
                     Expr_Type : constant Iir := Get_Type (Expr);
                     Idx : Iir;
                  begin
                     if Get_Expr_Staticness (Ch_Rng) = Locally then
                        --  Check for matching length.
                        if Get_Index_Constraint_Flag (Expr_Type) then
                           Idx := Get_Index_Type (Expr_Type, 0);
                           if Get_Type_Staticness (Idx) = Locally
                             and then
                             (Eval_Discrete_Type_Length (Idx)
                                /= Eval_Discrete_Range_Length (Ch_Rng))
                           then
                              Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                               "length mismatch");
                              Expr := Build_Overflow (Expr, Expr_Type);
                              Set_Associated_Expr (El, Expr);
                           end if;
                        end if;

                        --  Check for matching direction.
                        if Info.Has_Dir then
                           if Get_Direction (Ch_Rng) /= Info.Dir then
                              Error_Msg_Sem (+El, "direction mismatch");
                           end if;
                        else
                           Info.Has_Dir := True;
                           Info.Dir := Get_Direction (Ch_Rng);
                        end if;
                     end if;
                  end;
               end if;

               Expr_Staticness := Min (Expr_Staticness, El_Staticness);

               Info.Nbr_Assocs := Info.Nbr_Assocs + 1;
            else
               Info.Error := True;
            end if;
         end if;

         Set_Element_Type_Flag (El, not Is_Array);

         if Is_Array then
            --  LRM08 9.3.3.3 Array aggregates
            --  If the type of the expression of an element association
            --  is the type of the aggregate, then either the element
            --  association shall be positional or the choice shall be
            --  a discrete range.

            --  GHDL: must be checked for all associations, so do it outside
            --  the above 'if' statement.
            --  GHDL: improve error message.
            case Get_Kind (El) is
               when Iir_Kind_Choice_By_None
                 | Iir_Kind_Choice_By_Range =>
                  null;
               when Iir_Kind_Choice_By_Others =>
                  Error_Msg_Sem
                    (+El, "expression for 'others' must be an element");
               when others =>
                  Error_Msg_Sem
                    (+El, "positional association or "
                       & "discrete range choice required");
            end case;
         end if;

         El := Get_Chain (El);
      end loop;

      if Elements_Types /= Null_Iir then
         Free_Overload_List (Elements_Types);
      end if;
   end Sem_Array_Aggregate_Elements;

   procedure Sem_Array_Aggregate_Choice_Length
     (Choice : Iir;
      Len : in out Natural;
      Len_Staticness : in out Iir_Staticness)
   is
      --  Extract length from associated expression.
      --  Always has an associated expr, as not named.
      Expr : constant Iir := Get_Associated_Expr (Choice);
      Expr_Type : constant Iir := Get_Type (Expr);
      Expr_Index : Iir;
      Index_Staticness : Iir_Staticness;
   begin
      if Is_Error (Expr_Type) then
         return;
      end if;
      if Get_Constraint_State (Expr_Type) /= Fully_Constrained then
         Len_Staticness := None;
         return;
      end if;

      Expr_Index := Get_Index_Type (Expr_Type, 0);
      Index_Staticness := Get_Type_Staticness (Expr_Index);
      case Index_Staticness is
         when Locally =>
            Len := Len + Natural
              (Eval_Discrete_Type_Length (Expr_Index));
         when Globally | None =>