aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/coolrunner2/coolrunner2_fixup.cc
blob: 50710e2bdfeb6dff13fc374ead77ec8aa5013312 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sub_sgn is
  port (
    clk : in std_logic;
    a : in signed(7 downto 0);
    b : out signed(7 downto 0)
  );
end sub_sgn;

architecture rtl of sub_sgn is
begin
  process(clk)
  begin
    if rising_edge(clk) then
      b <= a;
    end if;
  end process;
end rtl;


library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity repro_sgn is
  port (
    clk : in std_logic;
    a : in signed(7 downto 0);
    b : out signed(7 downto 0)
  );
end repro_sgn;

architecture rtl of repro_sgn is
begin
  i_sub_sgn : entity work.sub_sgn
  port map (
    clk => clk,
    a => a,
    b => b
  );
end rtl;
href='#n335'>335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2020 R. Ou <rqou@robertou.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/sigtools.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

RTLIL::Wire *makexorbuffer(RTLIL::Module *module, SigBit inwire, const char *cellname)
{
	RTLIL::Wire *outwire = nullptr;

	if (inwire == SigBit(true))
	{
		// Constant 1
		outwire = module->addWire(
			module->uniquify(stringf("$xc2fix$%s_BUF1_XOR_OUT", cellname)));
		auto xor_cell = module->addCell(
			module->uniquify(stringf("$xc2fix$%s_BUF1_XOR", cellname)),
			ID(MACROCELL_XOR));
		xor_cell->setParam(ID(INVERT_OUT), true);
		xor_cell->setPort(ID(OUT), outwire);
	}
	else if (inwire == SigBit(false))
	{
		// Constant 0
		outwire = module->addWire(
			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
		auto xor_cell = module->addCell(
			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
			ID(MACROCELL_XOR));
		xor_cell->setParam(ID(INVERT_OUT), false);
		xor_cell->setPort(ID(OUT), outwire);
	}
	else if (inwire == SigBit(RTLIL::State::Sx))
	{
		// x; treat as 0
		log_warning("While buffering, changing x to 0 into cell %s\n", cellname);
		outwire = module->addWire(
			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
		auto xor_cell = module->addCell(
			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
			ID(MACROCELL_XOR));
		xor_cell->setParam(ID(INVERT_OUT), false);
		xor_cell->setPort(ID(OUT), outwire);
	}
	else
	{
		auto inwire_name = inwire.wire->name.c_str();

		outwire = module->addWire(
			module->uniquify(stringf("$xc2fix$%s_BUF_XOR_OUT", inwire_name)));

		auto and_to_xor_wire = module->addWire(
			module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));

		auto and_cell = module->addCell(
			module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
			ID(ANDTERM));
		and_cell->setParam(ID(TRUE_INP), 1);
		and_cell->setParam(ID(COMP_INP), 0);
		and_cell->setPort(ID(OUT), and_to_xor_wire);
		and_cell->setPort(ID(IN), inwire);
		and_cell->setPort(ID(IN_B), SigSpec());

		auto xor_cell = module->addCell(
			module->uniquify(stringf("$xc2fix$%s_BUF_XOR", inwire_name)),
			ID(MACROCELL_XOR));
		xor_cell->setParam(ID(INVERT_OUT), false);
		xor_cell->setPort(ID(IN_PTC), and_to_xor_wire);
		xor_cell->setPort(ID(OUT), outwire);
	}

	return outwire;
}

RTLIL::Wire *makeptermbuffer(RTLIL::Module *module, SigBit inwire)
{
	auto inwire_name = inwire.wire->name.c_str();

	auto outwire = module->addWire(
		module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));

	auto and_cell = module->addCell(
		module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
		ID(ANDTERM));
	and_cell->setParam(ID(TRUE_INP), 1);
	and_cell->setParam(ID(COMP_INP), 0);
	and_cell->setPort(ID(OUT), outwire);
	and_cell->setPort(ID(IN), inwire);
	and_cell->setPort(ID(IN_B), SigSpec());

	return outwire;
}

struct Coolrunner2FixupPass : public Pass {
	Coolrunner2FixupPass() : Pass("coolrunner2_fixup", "insert necessary buffer cells for CoolRunner-II architecture") { }
	void help() override
	{
		log("\n");
		log("    coolrunner2_fixup [options] [selection]\n");
		log("\n");
		log("Insert necessary buffer cells for CoolRunner-II architecture.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		log_header(design, "Executing COOLRUNNER2_FIXUP pass (insert necessary buffer cells for CoolRunner-II architecture).\n");
		extra_args(args, 1, design);

		for (auto module : design->selected_modules())
		{
			SigMap sigmap(module);

			// Find all the FF outputs
			pool<SigBit> sig_fed_by_ff;
			for (auto cell : module->selected_cells())
			{
				if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
							ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
				{
					auto output = sigmap(cell->getPort(ID::Q)[0]);
					sig_fed_by_ff.insert(output);
				}
			}

			// Find all the XOR outputs
			pool<SigBit> sig_fed_by_xor;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(MACROCELL_XOR))
				{
					auto output = sigmap(cell->getPort(ID(OUT))[0]);
					sig_fed_by_xor.insert(output);
				}
			}

			// Find all the input/inout outputs
			pool<SigBit> sig_fed_by_io;
			for (auto cell : module->selected_cells())
			{
				if (cell->type.in(ID(IBUF), ID(IOBUFE)))
				{
					if (cell->hasPort(ID::O)) {
						auto output = sigmap(cell->getPort(ID::O)[0]);
						sig_fed_by_io.insert(output);
					}
				}
			}

			// Find all the pterm outputs
			pool<SigBit> sig_fed_by_pterm;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(ANDTERM))
				{
					auto output = sigmap(cell->getPort(ID(OUT))[0]);
					sig_fed_by_pterm.insert(output);
				}
			}

			// Find all the bufg outputs
			pool<SigBit> sig_fed_by_bufg;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(BUFG))
				{
					auto output = sigmap(cell->getPort(ID::O)[0]);
					sig_fed_by_bufg.insert(output);
				}
			}

			// Find all the bufgsr outputs
			pool<SigBit> sig_fed_by_bufgsr;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(BUFGSR))
				{
					auto output = sigmap(cell->getPort(ID::O)[0]);
					sig_fed_by_bufgsr.insert(output);
				}
			}

			// Find all the bufgts outputs
			pool<SigBit> sig_fed_by_bufgts;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(BUFGTS))
				{
					auto output = sigmap(cell->getPort(ID::O)[0]);
					sig_fed_by_bufgts.insert(output);
				}
			}

			// This is used to fix the input -> FF -> output scenario
			pool<SigBit> sig_fed_by_ibuf;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(IBUF))
				{
					auto output = sigmap(cell->getPort(ID::O)[0]);
					sig_fed_by_ibuf.insert(output);
				}
			}

			// Find all of the sinks for each output from an IBUF
			dict<SigBit, std::pair<int, RTLIL::Cell *>> ibuf_fanouts;
			for (auto cell : module->selected_cells())
			{
				for (auto &conn : cell->connections())
				{
					if (cell->input(conn.first))
					{
						for (auto wire_in : sigmap(conn.second))
						{
							if (sig_fed_by_ibuf[wire_in])
							{
								auto existing_count = ibuf_fanouts[wire_in].first;
								ibuf_fanouts[wire_in] =
									std::pair<int, RTLIL::Cell *>(existing_count + 1, cell);
							}
						}
					}
				}
			}

			dict<SigBit, RTLIL::Cell *> ibuf_out_to_packed_reg_cell;
			pool<SigBit> packed_reg_out;
			for (auto x : ibuf_fanouts)
			{
				auto ibuf_out_wire = x.first;
				auto fanout_count = x.second.first;
				auto maybe_ff_cell = x.second.second;

				// The register can be packed with the IBUF only if it's
				// actually a register and it's the only fanout. Otherwise,
				// the pad-to-zia path has to be used up and the register
				// can't be packed with the ibuf.
				if (fanout_count == 1 && maybe_ff_cell->type.in(
					ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
					ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
				{
					SigBit input;
					if (maybe_ff_cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
						input = sigmap(maybe_ff_cell->getPort(ID::T)[0]);
					else
						input = sigmap(maybe_ff_cell->getPort(ID::D)[0]);
					SigBit output = sigmap(maybe_ff_cell->getPort(ID::Q)[0]);

					if (input == ibuf_out_wire)
					{
						log("Found IBUF %s that can be packed with FF %s (type %s)\n",
							ibuf_out_wire.wire->name.c_str(),
							maybe_ff_cell->name.c_str(),
							maybe_ff_cell->type.c_str());

						ibuf_out_to_packed_reg_cell[ibuf_out_wire] = maybe_ff_cell;
						packed_reg_out.insert(output);
					}
				}
			}

			for (auto cell : module->selected_cells())
			{
				if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
							ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
				{
					// Buffering FF inputs. FF inputs can only come from either
					// an IO pin or from an XOR. Otherwise AND/XOR cells need
					// to be inserted.
					SigBit input;
					if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
						input = sigmap(cell->getPort(ID::T)[0]);
					else
						input = sigmap(cell->getPort(ID::D)[0]);

					// If the input wasn't an XOR nor an IO, then a buffer
					// definitely needs to be added.
					// Otherwise, if it is an IO, only leave unbuffered
					// if we're being packed with the IO.
					if ((!sig_fed_by_xor[input] && !sig_fed_by_io[input]) ||
						(sig_fed_by_io[input] && ibuf_out_to_packed_reg_cell[input] != cell))
					{
						log("Buffering input to \"%s\"\n", cell->name.c_str());

						auto xor_to_ff_wire = makexorbuffer(module, input, cell->name.c_str());

						if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
							cell->setPort(ID::T, xor_to_ff_wire);
						else
							cell->setPort(ID::D, xor_to_ff_wire);
					}

					// Buffering FF clocks. FF clocks can only come from either
					// a pterm or a bufg. In some cases this will be handled
					// in coolrunner2_sop (e.g. if clock is generated from
					// AND-ing two signals) but not in all cases.
					SigBit clock;
					if (cell->type.in(ID(LDCP), ID(LDCP_N)))
						clock = sigmap(cell->getPort(ID::G)[0]);
					else
						clock = sigmap(cell->getPort(ID::C)[0]);

					if (!sig_fed_by_pterm[clock] && !sig_fed_by_bufg[clock])
					{
						log("Buffering clock to \"%s\"\n", cell->name.c_str());

						auto pterm_to_ff_wire = makeptermbuffer(module, clock);

						if (cell->type.in(ID(LDCP), ID(LDCP_N)))
							cell->setPort(ID::G, pterm_to_ff_wire);
						else
							cell->setPort(ID::C, pterm_to_ff_wire);
					}

					// Buffering FF set/reset. This can only come from either
					// a pterm or a bufgsr.
					SigBit set;
					set = sigmap(cell->getPort(ID(PRE))[0]);
					if (set != SigBit(false))
					{
						if (!sig_fed_by_pterm[set] && !sig_fed_by_bufgsr[set])
						{
							log("Buffering set to \"%s\"\n", cell->name.c_str());

							auto pterm_to_ff_wire = makeptermbuffer(module, set);

							cell->setPort(ID(PRE), pterm_to_ff_wire);
						}
					}

					SigBit reset;
					reset = sigmap(cell->getPort(ID::CLR)[0]);
					if (reset != SigBit(false))
					{
						if (!sig_fed_by_pterm[reset] && !sig_fed_by_bufgsr[reset])
						{
							log("Buffering reset to \"%s\"\n", cell->name.c_str());

							auto pterm_to_ff_wire = makeptermbuffer(module, reset);

							cell->setPort(ID::CLR, pterm_to_ff_wire);
						}
					}

					// Buffering FF clock enable
					// FIXME: This doesn't fully fix PTC conflicts
					// FIXME: Need to ensure constant enables are optimized out
					if (cell->type.in(ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
					{
						SigBit ce;
						ce = sigmap(cell->getPort(ID(CE))[0]);
						if (!sig_fed_by_pterm[ce])
						{
							log("Buffering clock enable to \"%s\"\n", cell->name.c_str());

							auto pterm_to_ff_wire = makeptermbuffer(module, ce);

							cell->setPort(ID(CE), pterm_to_ff_wire);
						}
					}
				}
			}

			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(IOBUFE))
				{
					// Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
					SigBit input = sigmap(cell->getPort(ID::I)[0]);

					if ((!sig_fed_by_xor[input] && !sig_fed_by_ff[input]) ||
						packed_reg_out[input])
					{
						log("Buffering input to \"%s\"\n", cell->name.c_str());

						auto xor_to_io_wire = makexorbuffer(module, input, cell->name.c_str());

						cell->setPort(ID::I, xor_to_io_wire);
					}

					// Buffer IOBUFE enables. This can only be fed from a pterm
					// or a bufgts.
					if (cell->hasPort(ID::E))
					{
						SigBit oe;
						oe = sigmap(cell->getPort(ID::E)[0]);
						if (!sig_fed_by_pterm[oe] && !sig_fed_by_bufgts[oe])
						{
							log("Buffering output enable to \"%s\"\n", cell->name.c_str());

							auto pterm_to_oe_wire = makeptermbuffer(module, oe);

							cell->setPort(ID::E, pterm_to_oe_wire);
						}
					}
				}
			}

			// Now we have to fix up some cases where shared logic can
			// cause XORs to have multiple fanouts to something other than
			// pterms (which is not ok)

			// Find all the XOR outputs
			dict<SigBit, RTLIL::Cell *> xor_out_to_xor_cell;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(MACROCELL_XOR))
				{
					auto output = sigmap(cell->getPort(ID(OUT))[0]);
					xor_out_to_xor_cell[output] = cell;
				}
			}

			// Find all of the sinks for each output from an XOR
			pool<SigBit> xor_fanout_once;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(ANDTERM))
					continue;

				for (auto &conn : cell->connections())
				{
					if (cell->input(conn.first))
					{
						for (auto wire_in : sigmap(conn.second))
						{
							auto xor_cell = xor_out_to_xor_cell[wire_in];
							if (xor_cell)
							{
								if (xor_fanout_once[wire_in])
								{
									log("Additional fanout found for %s into %s (type %s), duplicating\n",
										xor_cell->name.c_str(),
										cell->name.c_str(),
										cell->type.c_str());

									auto new_xor_cell = module->addCell(
										module->uniquify(xor_cell->name), xor_cell);
									auto new_wire = module->addWire(
										module->uniquify(wire_in.wire->name));
									new_xor_cell->setPort(ID(OUT), new_wire);
									cell->setPort(conn.first, new_wire);
								}
								xor_fanout_once.insert(wire_in);
							}
						}
					}
				}
			}

			// Do the same fanout fixing for OR terms. By doing this
			// after doing XORs, both pieces will be duplicated when necessary.

			// Find all the OR outputs
			dict<SigBit, RTLIL::Cell *> or_out_to_or_cell;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == ID(ORTERM))
				{
					auto output = sigmap(cell->getPort(ID(OUT))[0]);
					or_out_to_or_cell[output] = cell;
				}
			}

			// Find all of the sinks for each output from an OR
			pool<SigBit> or_fanout_once;
			for (auto cell : module->selected_cells())
			{
				for (auto &conn : cell->connections())
				{
					if (cell->input(conn.first))
					{
						for (auto wire_in : sigmap(conn.second))
						{
							auto or_cell = or_out_to_or_cell[wire_in];
							if (or_cell)
							{
								if (or_fanout_once[wire_in])
								{
									log("Additional fanout found for %s into %s (type %s), duplicating\n",
										or_cell->name.c_str(),
										cell->name.c_str(),
										cell->type.c_str());

									auto new_or_cell = module->addCell(
										module->uniquify(or_cell->name), or_cell);
									auto new_wire = module->addWire(
										module->uniquify(wire_in.wire->name));
									new_or_cell->setPort(ID(OUT), new_wire);
									cell->setPort(conn.first, new_wire);
								}
								or_fanout_once.insert(wire_in);
							}
						}
					}
				}
			}
		}
	}
} Coolrunner2FixupPass;

PRIVATE_NAMESPACE_END