aboutsummaryrefslogtreecommitdiffstats
path: root/common/project.cc
Commit message (Expand)AuthorAgeFilesLines
* Read settings and check validityMiodrag Milanovic2018-08-111-2/+18
* Save settings and give nicer names to someMiodrag Milanovic2018-08-101-1/+9
* Use settings for json and pcfMiodrag Milanovic2018-08-081-14/+48
* clangformatMiodrag Milanovic2018-08-081-7/+6
* Added project loaderMiodrag Milanovic2018-08-061-0/+87
id='n69' href='#n69'>69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 *  ezSAT -- A simple and easy to use CNF generator for SAT solvers
 *
 *  Copyright (C) 2013  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#ifndef EZSAT_H
#define EZSAT_H

#include <set>
#include <map>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdint.h>

class ezSAT
{
	// each token (terminal or non-terminal) is represented by an integer number
	//
	// the zero token:
	// the number zero is not used as valid token number and is used to encode
	// unused parameters for the functions.
	//
	// positive numbers are literals, with 1 = CONST_TRUE and 2 = CONST_FALSE;
	//
	// negative numbers are non-literal expressions. each expression is represented
	// by an operator id and a list of expressions (literals or non-literals).

public:
	enum OpId {
		OpNot, OpAnd, OpOr, OpXor, OpIFF, OpITE
	};

	static const int CONST_TRUE;
	static const int CONST_FALSE;

private:
	bool flag_keep_cnf;
	bool flag_non_incremental;

	bool non_incremental_solve_used_up;

	std::map<std::string, int> literalsCache;
	std::vector<std::string> literals;

	std::map<std::pair<OpId, std::vector<int>>, int> expressionsCache;
	std::vector<std::pair<OpId, std::vector<int>>> expressions;

	bool cnfConsumed;
	int cnfVariableCount, cnfClausesCount;
	std::vector<int> cnfLiteralVariables, cnfExpressionVariables;
	std::vector<std::vector<int>> cnfClauses, cnfClausesBackup;

	void add_clause(const std::vector<int> &args);
	void add_clause(const std::vector<int> &args, bool argsPolarity, int a = 0, int b = 0, int c = 0);
	void add_clause(int a, int b = 0, int c = 0);

	int bind_cnf_not(const std::vector<int> &args);
	int bind_cnf_and(const std::vector<int> &args);
	int bind_cnf_or(const std::vector<int> &args);

protected:
	void preSolverCallback();

public:
	int solverTimeout;
	bool solverTimoutStatus;

	ezSAT();
	virtual ~ezSAT();

	unsigned int statehash;
	void addhash(unsigned int);

	void keep_cnf() { flag_keep_cnf = true; }
	void non_incremental() { flag_non_incremental = true; }

	bool mode_keep_cnf() const { return flag_keep_cnf; }
	bool mode_non_incremental() const { return flag_non_incremental; }

	// manage expressions

	int value(bool val);
	int literal();
	int literal(const std::string &name);
	int frozen_literal();
	int frozen_literal(const std::string &name);
	int expression(OpId op, int a = 0, int b = 0, int c = 0, int d = 0, int e = 0, int f = 0);
	int expression(OpId op, const std::vector<int> &args);

	void lookup_literal(int id, std::string &name) const;
	const std::string &lookup_literal(int id) const;

	void lookup_expression(int id, OpId &op, std::vector<int> &args) const;
	const std::vector<int> &lookup_expression(int id, OpId &op) const;

	int parse_string(const std::string &text);
	std::string to_string(int id) const;

	int numLiterals() const { return literals.size(); }
	int numExpressions() const { return expressions.size(); }

	int eval(int id, const std::vector<int> &values) const;

	// SAT solver interface
	// If you are planning on using the solver API (and not simply create a CNF) you must use a child class
	// of ezSAT that actually implements a solver backend, such as ezMiniSAT (see ezminisat.h).

	virtual bool solver(const std::vector<int> &modelExpressions, std::vector<bool> &modelValues, const std::vector<int> &assumptions);

	bool solve(const std::vector<int> &modelExpressions, std::vector<bool> &modelValues, const std::vector<int> &assumptions) {
		return solver(modelExpressions, modelValues, assumptions);
	}

	bool solve(const std::vector<int> &modelExpressions, std::vector<bool> &modelValues, int a = 0, int b = 0, int c = 0, int d = 0, int e = 0, int f = 0) {
		std::vector<int> assumptions;
		if (a != 0) assumptions.push_back(a);
		if (b != 0) assumptions.push_back(b);
		if (c != 0) assumptions.push_back(c);
		if (d != 0) assumptions.push_back(d);
		if (e != 0) assumptions.push_back(e);
		if (f != 0) assumptions.push_back(f);
		return solver(modelExpressions, modelValues, assumptions);
	}

	bool solve(int a = 0, int b = 0, int c = 0, int d = 0, int e = 0, int f = 0) {
		std::vector<int> assumptions, modelExpressions;
		std::vector<bool> modelValues;
		if (a != 0) assumptions.push_back(a);
		if (b != 0) assumptions.push_back(b);
		if (c != 0) assumptions.push_back(c);
		if (d != 0) assumptions.push_back(d);
		if (e != 0) assumptions.push_back(e);
		if (f != 0) assumptions.push_back(f);
		return solver(modelExpressions, modelValues, assumptions);
	}

	void setSolverTimeout(int newTimeoutSeconds) {
		solverTimeout = newTimeoutSeconds;
	}

	bool getSolverTimoutStatus() {
		return solverTimoutStatus;
	}

	// manage CNF (usually only accessed by SAT solvers)

	virtual void clear();
	virtual void freeze(int id);
	virtual bool eliminated(int idx);
	void assume(int id);
	void assume(int id, int context_id) { assume(OR(id, NOT(context_id))); }
	int bind(int id, bool auto_freeze = true);
	int bound(int id) const;

	int numCnfVariables() const { return cnfVariableCount; }
	int numCnfClauses() const { return cnfClausesCount; }
	const std::vector<std::vector<int>> &cnf() const { return cnfClauses; }

	void consumeCnf();
	void consumeCnf(std::vector<std::vector<int>> &cnf);

	// use this function to get the full CNF in keep_cnf mode
	void getFullCnf(std::vector<std::vector<int>> &full_cnf) const;

	std::string cnfLiteralInfo(int idx) const;

	// simple helpers for build expressions easily

	struct _V {
		int id;
		std::string name;
		_V(int id) : id(id) { }
		_V(const char *name) : id(0), name(name) { }
		_V(const std::string &name) : id(0), name(name) { }
		int get(ezSAT *that) {
			if (name.empty())
				return id;
			return that->frozen_literal(name);
		}
	};

	int VAR(_V a) {
		return a.get(this);
	}

	int NOT(_V a) {
		return expression(OpNot, a.get(this));
	}

	int AND(_V a = 0, _V b = 0, _V c = 0, _V d = 0, _V e = 0, _V f = 0) {
		return expression(OpAnd, a.get(this), b.get(this), c.get(this), d.get(this), e.get(this), f.get(this));
	}

	int OR(_V a = 0, _V b = 0, _V c = 0, _V d = 0, _V e = 0, _V f = 0) {
		return expression(OpOr, a.get(this), b.get(this), c.get(this), d.get(this), e.get(this), f.get(this));
	}

	int XOR(_V a = 0, _V b = 0, _V c = 0, _V d = 0, _V e = 0, _V f = 0) {
		return expression(OpXor, a.get(this), b.get(this), c.get(this), d.get(this), e.get(this), f.get(this));
	}

	int IFF(_V a, _V b = 0, _V c = 0, _V d = 0, _V e = 0, _V f = 0) {
		return expression(OpIFF, a.get(this), b.get(this), c.get(this), d.get(this), e.get(this), f.get(this));
	}

	int ITE(_V a, _V b, _V c) {
		return expression(OpITE, a.get(this), b.get(this), c.get(this));
	}

	void SET(_V a, _V b) {
		assume(IFF(a.get(this), b.get(this)));
	}

	// simple helpers for building expressions with bit vectors

	std::vector<int> vec_const(const std::vector<bool> &bits);
	std::vector<int> vec_const_signed(int64_t value, int numBits);
	std::vector<int> vec_const_unsigned(uint64_t value, int numBits);
	std::vector<int> vec_var(int numBits);
	std::vector<int> vec_var(std::string name, int numBits);
	std::vector<int> vec_cast(const std::vector<int> &vec1, int toBits, bool signExtend = false);

	std::vector<int> vec_not(const std::vector<int> &vec1);
	std::vector<int> vec_and(const std::vector<int> &vec1, const std::vector<int> &vec2);
	std::vector<int> vec_or(const std::vector<int> &vec1, const std::vector<int> &vec2);
	std::vector<int> vec_xor(const std::vector<int> &vec1, const std::vector<int> &vec2);

	std::vector<int> vec_iff(const std::vector<int> &vec1, const std::vector<int> &vec2);
	std::vector<int> vec_ite(const std::vector<int> &vec1, const std::vector<int> &vec2, const std::vector<int> &vec3);
	std::vector<int> vec_ite(int sel, const std::vector<int> &vec1, const std::vector<int> &vec2);

	std::vector<int> vec_count(const std::vector<int> &vec, int numBits, bool clip = true);
	std::vector<int> vec_add(const std::vector<int> &vec1, const std::vector<int> &vec2);
	std::vector<int> vec_sub(const std::vector<int> &vec1, const std::vector<int> &vec2);
	std::vector<int> vec_neg(const std::vector<int> &vec);

	void vec_cmp(const std::vector<int> &vec1, const std::vector<int> &vec2, int &carry, int &overflow, int &sign, int &zero);

	int vec_lt_signed(const std::vector<int> &vec1, const std::vector<int> &vec2);
	int vec_le_signed(const std::vector<int> &vec1, const std::vector<int> &vec2);
	int vec_ge_signed(const std::vector<int> &vec1, const std::vector<int> &vec2);
	int vec_gt_signed(const std::vector<int> &vec1, const std::vector<int> &vec2);

	int vec_lt_unsigned(const std::vector<int> &vec1, const std::vector<int> &vec2);
	int vec_le_unsigned(const std::vector<int> &vec1, const std::vector<int> &vec2);
	int vec_ge_unsigned(const std::vector<int> &vec1, const std::vector<int> &vec2);
	int vec_gt_unsigned(const std::vector<int> &vec1, const std::vector<int> &vec2);

	int vec_eq(const std::vector<int> &vec1, const std::vector<int> &vec2);
	int vec_ne(const std::vector<int> &vec1, const std::vector<int> &vec2);

	std::vector<int> vec_shl(const std::vector<int> &vec1, int shift, bool signExtend = false);
	std::vector<int> vec_srl(const std::vector<int> &vec1, int shift);

	std::vector<int> vec_shr(const std::vector<int> &vec1, int shift, bool signExtend = false) { return vec_shl(vec1, -shift, signExtend); }
	std::vector<int> vec_srr(const std::vector<int> &vec1, int shift) { return vec_srl(vec1, -shift); }

	std::vector<int> vec_shift(const std::vector<int> &vec1, int shift, int extend_left, int extend_right);
	std::vector<int> vec_shift_right(const std::vector<int> &vec1, const std::vector<int> &vec2, bool vec2_signed, int extend_left, int extend_right);
	std::vector<int> vec_shift_left(const std::vector<int> &vec1, const std::vector<int> &vec2, bool vec2_signed, int extend_left, int extend_right);

	void vec_append(std::vector<int> &vec, const std::vector<int> &vec1) const;
	void vec_append_signed(std::vector<int> &vec, const std::vector<int> &vec1, int64_t value);
	void vec_append_unsigned(std::vector<int> &vec, const std::vector<int> &vec1, uint64_t value);

	int64_t vec_model_get_signed(const std::vector<int> &modelExpressions, const std::vector<bool> &modelValues, const std::vector<int> &vec1) const;
	uint64_t vec_model_get_unsigned(const std::vector<int> &modelExpressions, const std::vector<bool> &modelValues, const std::vector<int> &vec1) const;

	int vec_reduce_and(const std::vector<int> &vec1);
	int vec_reduce_or(const std::vector<int> &vec1);

	void vec_set(const std::vector<int> &vec1, const std::vector<int> &vec2);
	void vec_set_signed(const std::vector<int> &vec1, int64_t value);
	void vec_set_unsigned(const std::vector<int> &vec1, uint64_t value);

	// helpers for generating ezSATbit and ezSATvec objects

	struct ezSATbit bit(_V a);
	struct ezSATvec vec(const std::vector<int> &vec);

	// printing CNF and internal state

	void printDIMACS(FILE *f, bool verbose = false) const;
	void printInternalState(FILE *f) const;

	// more sophisticated constraints (designed to be used directly with assume(..))

	int onehot(const std::vector<int> &vec, bool max_only = false);
	int manyhot(const std::vector<int> &vec, int min_hot, int max_hot = -1);
	int ordered(const std::vector<int> &vec1, const std::vector<int> &vec2, bool allow_equal = true);
};

// helper classes for using operator overloading when generating complex expressions

struct ezSATbit
{
	ezSAT &sat;
	int id;

	ezSATbit(ezSAT &sat, ezSAT::_V a) : sat(sat), id(sat.VAR(a)) { }

	ezSATbit operator ~() { return ezSATbit(sat, sat.NOT(id)); }
	ezSATbit operator &(const ezSATbit &other) { return ezSATbit(sat, sat.AND(id, other.id)); }
	ezSATbit operator |(const ezSATbit &other) { return ezSATbit(sat, sat.OR(id, other.id)); }
	ezSATbit operator ^(const ezSATbit &other) { return ezSATbit(sat, sat.XOR(id, other.id)); }
	ezSATbit operator ==(const ezSATbit &other) { return ezSATbit(sat, sat.IFF(id, other.id)); }
	ezSATbit operator !=(const ezSATbit &other) { return ezSATbit(sat, sat.NOT(sat.IFF(id, other.id))); }

	operator int() const { return id; }
	operator ezSAT::_V() const { return ezSAT::_V(id); }
	operator std::vector<int>() const { return std::vector<int>(1, id); }
};

struct ezSATvec
{
	ezSAT &sat;
	std::vector<int> vec;

	ezSATvec(ezSAT &sat, const std::vector<int> &vec) : sat(sat), vec(vec) { }

	ezSATvec operator ~() { return ezSATvec(sat, sat.vec_not(vec)); }
	ezSATvec operator -() { return ezSATvec(sat, sat.vec_neg(vec)); }

	ezSATvec operator &(const ezSATvec &other) { return ezSATvec(sat, sat.vec_and(vec, other.vec)); }
	ezSATvec operator |(const ezSATvec &other) { return ezSATvec(sat, sat.vec_or(vec, other.vec)); }
	ezSATvec operator ^(const ezSATvec &other) { return ezSATvec(sat, sat.vec_xor(vec, other.vec)); }

	ezSATvec operator +(const ezSATvec &other) { return ezSATvec(sat, sat.vec_add(vec, other.vec)); }
	ezSATvec operator -(const ezSATvec &other) { return ezSATvec(sat, sat.vec_sub(vec, other.vec)); }

	ezSATbit operator < (const ezSATvec &other) { return ezSATbit(sat, sat.vec_lt_unsigned(vec, other.vec)); }
	ezSATbit operator <=(const ezSATvec &other) { return ezSATbit(sat, sat.vec_le_unsigned(vec, other.vec)); }
	ezSATbit operator ==(const ezSATvec &other) { return ezSATbit(sat, sat.vec_eq(vec, other.vec)); }
	ezSATbit operator !=(const ezSATvec &other) { return ezSATbit(sat, sat.vec_ne(vec, other.vec)); }
	ezSATbit operator >=(const ezSATvec &other) { return ezSATbit(sat, sat.vec_ge_unsigned(vec, other.vec)); }
	ezSATbit operator > (const ezSATvec &other) { return ezSATbit(sat, sat.vec_gt_unsigned(vec, other.vec)); }

	ezSATvec operator <<(int shift) { return ezSATvec(sat, sat.vec_shl(vec, shift)); }
	ezSATvec operator >>(int shift) { return ezSATvec(sat, sat.vec_shr(vec, shift)); }

	operator std::vector<int>() const { return vec; }
};

#endif