/tests/asicworld/

350' href='#n350'>350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  Claire Xenia Wolf <claire@yosyshq.com>
 *  Copyright (C) 2018-19  gatecat <gatecat@ds0.me>
 *  Copyright (C) 2021  Symbiflow Authors
 *
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#ifndef FPGA_INTERCHANGE_ARCH_H
#define FPGA_INTERCHANGE_ARCH_H

#include <boost/iostreams/device/mapped_file.hpp>
#include <iostream>
#include <regex>

#include "PhysicalNetlist.capnp.h"
#include "arch_api.h"
#include "constraints.h"
#include "nextpnr_types.h"
#include "relptr.h"

#include "arch_iterators.h"
#include "cell_parameters.h"
#include "chipdb.h"
#include "dedicated_interconnect.h"
#include "lookahead.h"
#include "pseudo_pip_model.h"
#include "site_lut_mapping_cache.h"
#include "site_router.h"
#include "site_routing_cache.h"

NEXTPNR_NAMESPACE_BEGIN

struct ArchArgs
{
    std::string chipdb;
    std::string package;
    bool rebuild_lookahead;
    bool dont_write_lookahead;
    bool disable_lut_mapping_cache;
};

struct ArchRanges
{
    using ArchArgsT = ArchArgs;
    // Bels
    using AllBelsRangeT = BelRange;
    using TileBelsRangeT = BelRange;
    using BelAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
    using BelPinsRangeT = IdStringRange;
    using CellBelPinRangeT = const std::vector<IdString> &;
    // Wires
    using AllWiresRangeT = WireRange;
    using DownhillPipRangeT = DownhillPipRange;
    using UphillPipRangeT = UphillPipRange;
    using WireBelPinRangeT = BelPinRange;
    using WireAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
    // Pips
    using AllPipsRangeT = AllPipRange;
    using PipAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
    // Groups
    using AllGroupsRangeT = std::vector<GroupId>;
    using GroupBelsRangeT = std::vector<BelId>;
    using GroupWiresRangeT = std::vector<WireId>;
    using GroupPipsRangeT = std::vector<PipId>;
    using GroupGroupsRangeT = std::vector<GroupId>;
    // Decals
    using DecalGfxRangeT = std::vector<GraphicElement>;
    // Placement validity
    using CellTypeRangeT = const IdStringRange;
    using BelBucketRangeT = const BelBucketRange;
    using BucketBelRangeT = FilteredBelRange;
};

static constexpr size_t kMaxState = 8;

struct TileStatus
{
    std::vector<ExclusiveStateGroup<kMaxState>> tags;
    std::vector<CellInfo *> boundcells;
    std::vector<SiteRouter> sites;
    PseudoPipModel pseudo_pip_model;
};

struct Cluster
{
    uint32_t index;
    CellInfo *root;
    std::vector<CellInfo *> cluster_nodes;
    dict<IdString, IdString> cell_cluster_node_map;
    dict<IdString, std::vector<std::pair<IdString, CellInfo *>>> cluster_node_cells;
};

struct Arch : ArchAPI<ArchRanges>
{
    boost::iostreams::mapped_file_source blob_file;
    const ChipInfoPOD *chip_info;
    int32_t package_index;

    // Guard initialization of "by_name" maps if accessed from multiple
    // threads on a "const Context *".
    mutable std::mutex by_name_mutex;
    mutable dict<IdString, int> tile_by_name;
    mutable dict<IdString, std::pair<int, int>> site_by_name;

    dict<WireId, NetInfo *> wire_to_net;
    dict<PipId, NetInfo *> pip_to_net;

    DedicatedInterconnect dedicated_interconnect;
    dict<int32_t, TileStatus> tileStatus;
    PseudoPipData pseudo_pip_data;

    ArchArgs args;
    Arch(ArchArgs args);
    virtual ~Arch();
    void init();

    std::string getChipName() const final;

    IdString archId() const final { return id(chip_info->name.get()); }
    ArchArgs archArgs() const final { return args; }
    IdString archArgsToId(ArchArgs args) const final;

    // -------------------------------------------------

    uint32_t get_tile_index(int x, int y) const { return (y * chip_info->width + x); }
    uint32_t get_tile_index(Loc loc) const { return get_tile_index(loc.x, loc.y); }
    template <typename TileIndex, typename CoordIndex>
    void get_tile_x_y(TileIndex tile_index, CoordIndex *x, CoordIndex *y) const
    {
        *x = tile_index % chip_info->width;
        *y = tile_index / chip_info->width;
    }

    template <typename TileIndex> void get_tile_loc(TileIndex tile_index, Loc *loc) const
    {
        get_tile_x_y(tile_index, &loc->x, &loc->y);
    }

    int getGridDimX() const final { return chip_info->width; }
    int getGridDimY() const final { return chip_info->height; }
    int getTileBelDimZ(int x, int y) const final
    {
        return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].bel_data.size();
    }
    int getTilePipDimZ(int x, int y) const final
    {
        return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].site_types.size();
    }
    char getNameDelimiter() const final { return '/'; }

    std::string get_part() const;

    // -------------------------------------------------

    void setup_byname() const;

    BelId getBelByName(IdStringList name) const final;

    IdStringList getBelName(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        const SiteInstInfoPOD &site = get_site_inst(bel);
        std::array<IdString, 2> ids{id(site.name.get()), IdString(bel_info(chip_info, bel).name)};
        return IdStringList(ids);
    }

    uint32_t getBelChecksum(BelId bel) const final { return bel.index; }

    void map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants);
    void map_port_pins(BelId bel, CellInfo *cell) const;

    TileStatus &get_tile_status(int32_t tile)
    {
        auto result = tileStatus.emplace(tile, TileStatus());
        if (result.second) {
            auto &tile_type = chip_info->tile_types[chip_info->tiles[tile].type];
            result.first->second.boundcells.resize(tile_type.bel_data.size(), nullptr);
            result.first->second.tags.resize(default_tags.size());

            result.first->second.sites.reserve(tile_type.site_types.size());
            for (size_t i = 0; i < tile_type.site_types.size(); ++i) {
                result.first->second.sites.push_back(SiteRouter(i));
            }

            result.first->second.pseudo_pip_model.init(getCtx(), tile);
        }

        return result.first->second;
    }

    const SiteRouter &get_site_status(const TileStatus &tile_status, const BelInfoPOD &bel_data) const
    {
        return tile_status.sites.at(bel_data.site);
    }

    SiteRouter &get_site_status(TileStatus &tile_status, const BelInfoPOD &bel_data)
    {
        return tile_status.sites.at(bel_data.site);
    }

    BelId get_vcc_bel() const
    {
        auto &constants = *chip_info->constants;
        BelId bel;
        bel.tile = constants.vcc_bel_tile;
        bel.index = constants.vcc_bel_index;
        return bel;
    }

    BelId get_gnd_bel() const
    {
        auto &constants = *chip_info->constants;
        BelId bel;
        bel.tile = constants.gnd_bel_tile;
        bel.index = constants.gnd_bel_index;
        return bel;
    }

    PhysicalNetlist::PhysNetlist::NetType get_net_type(NetInfo *net) const
    {
        NPNR_ASSERT(net != nullptr);
        IdString gnd_cell_name(chip_info->constants->gnd_cell_name);
        IdString gnd_cell_port(chip_info->constants->gnd_cell_port);

        IdString vcc_cell_name(chip_info->constants->vcc_cell_name);
        IdString vcc_cell_port(chip_info->constants->vcc_cell_port);
        if (net->driver.cell->type == gnd_cell_name && net->driver.port == gnd_cell_port) {
            return PhysicalNetlist::PhysNetlist::NetType::GND;
        } else if (net->driver.cell->type == vcc_cell_name && net->driver.port == vcc_cell_port) {
            return PhysicalNetlist::PhysNetlist::NetType::VCC;
        } else {
            return PhysicalNetlist::PhysNetlist::NetType::SIGNAL;
        }
    }

    void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) final
    {
        NPNR_ASSERT(bel != BelId());

        TileStatus &tile_status = get_tile_status(bel.tile);
        NPNR_ASSERT(tile_status.boundcells[bel.index] == nullptr);

        const auto &bel_data = bel_info(chip_info, bel);
        NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);

        if (io_port_types.count(cell->type) == 0) {
            int32_t mapping = bel_info(chip_info, bel).pin_map[get_cell_type_index(cell->type)];
            if (mapping < 0) {
                report_invalid_bel(bel, cell);
            }
            NPNR_ASSERT(mapping >= 0);

            if (cell->cell_mapping != mapping) {
                map_cell_pins(cell, mapping, /*bind_constants=*/false);
            }
            constraints.bindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));

            // Clean previous cell placement in tile
            if (cell->bel != BelId()) {
                TileStatus &prev_tile_status = get_tile_status(cell->bel.tile);
                NPNR_ASSERT(prev_tile_status.boundcells[cell->bel.index] != nullptr);

                const auto &prev_bel_data = bel_info(chip_info, cell->bel);
                NPNR_ASSERT(prev_bel_data.category == BEL_CATEGORY_LOGIC);

                get_site_status(prev_tile_status, prev_bel_data).unbindBel(cell);
                prev_tile_status.boundcells[cell->bel.index] = nullptr;

                constraints.unbindBel(prev_tile_status.tags.data(), get_cell_constraints(cell->bel, cell->type));
            }
        } else {
            map_port_pins(bel, cell);
            // FIXME: Probably need to actually constraint io port cell/bel,
            // but the current BBA emission doesn't support that.  This only
            // really matters if the placer can choose IO port locations.
        }

        get_site_status(tile_status, bel_data).bindBel(cell);

        tile_status.boundcells[bel.index] = cell;

        cell->bel = bel;
        cell->belStrength = strength;

        refreshUiBel(bel);
    }

    void unbindBel(BelId bel) final
    {
        NPNR_ASSERT(bel != BelId());

        TileStatus &tile_status = get_tile_status(bel.tile);
        NPNR_ASSERT(tile_status.boundcells[bel.index] != nullptr);

        CellInfo *cell = tile_status.boundcells[bel.index];
        tile_status.boundcells[bel.index] = nullptr;

        cell->bel = BelId();
        cell->belStrength = STRENGTH_NONE;

        // FIXME: Probably need to actually constraint io port cell/bel,
        // but the current BBA emission doesn't support that.  This only
        // really matters if the placer can choose IO port locations.
        if (io_port_types.count(cell->type) == 0) {
            constraints.unbindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));
        }

        const auto &bel_data = bel_info(chip_info, bel);
        get_site_status(tile_status, bel_data).unbindBel(cell);

        refreshUiBel(bel);
    }

    bool checkBelAvail(BelId bel) const final
    {
        // FIXME: This could consult the constraint system to see if this BEL
        // is blocked (e.g. site type is wrong).
        return getBoundBelCell(bel) == nullptr;
    }

    CellInfo *getBoundBelCell(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        auto iter = tileStatus.find(bel.tile);
        if (iter == tileStatus.end()) {
            return nullptr;
        } else {
            return iter->second.boundcells[bel.index];
        }
    }

    CellInfo *getConflictingBelCell(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        // FIXME: This could consult the constraint system to see why this BEL
        // is blocked.
        return getBoundBelCell(bel);
    }

    BelRange getBels() const final
    {
        BelRange range;
        range.b.cursor_tile = 0;
        range.b.cursor_index = -1;
        range.b.chip = chip_info;
        ++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
        range.e.cursor_tile = chip_info->width * chip_info->height;
        range.e.cursor_index = 0;
        range.e.chip = chip_info;
        return range;
    }

    Loc getBelLocation(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        Loc loc;
        get_tile_x_y(bel.tile, &loc.x, &loc.y);
        loc.z = bel.index;
        return loc;
    }

    BelId getBelByLocation(Loc loc) const final;
    BelRange getBelsByTile(int x, int y) const final;

    bool getBelGlobalBuf(BelId bel) const final
    {
        auto &bel_data = bel_info(chip_info, bel);
        IdString bel_name(bel_data.name);

        // Note: Check profiles and see if this should be something other than
        // a linear scan.  Expectation is that for most arches, this will be
        // fast enough.
        for (int32_t global_bel : chip_info->cell_map->global_buffers) {
            IdString global_bel_name(global_bel);
            if (bel_name == global_bel_name) {
                return true;
            }
        }

        return false;
    }

    bool getBelHidden(BelId bel) const final { return bel_info(chip_info, bel).category != BEL_CATEGORY_LOGIC; }

    IdString getBelType(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        return IdString(bel_info(chip_info, bel).type);
    }

    std::vector<std::pair<IdString, std::string>> getBelAttrs(BelId bel) const final;

    int get_bel_pin_index(BelId bel, IdString pin) const
    {
        NPNR_ASSERT(bel != BelId());
        int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
        const int32_t *ports = bel_info(chip_info, bel).ports.get();
        for (int i = 0; i < num_bel_wires; i++) {
            if (ports[i] == pin.index) {
                return i;
            }
        }

        return -1;
    }

    WireId getBelPinWire(BelId bel, IdString pin) const final;
    PortType getBelPinType(BelId bel, IdString pin) const final;

    IdStringRange getBelPins(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());

        int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
        const int32_t *ports = bel_info(chip_info, bel).ports.get();

        IdStringRange str_range;
        str_range.b.cursor = &ports[0];
        str_range.e.cursor = &ports[num_bel_wires];

        return str_range;
    }

    const std::vector<IdString> &getBelPinsForCellPin(const CellInfo *cell_info, IdString pin) const final;

    // -------------------------------------------------

    WireId getWireByName(IdStringList name) const final;

    const TileWireInfoPOD &wire_info(WireId wire) const
    {
        if (wire.tile == -1) {
            const TileWireRefPOD &wr = chip_info->nodes[wire.index].tile_wires[0];
            return chip_info->tile_types[chip_info->tiles[wr.tile].type].wire_data[wr.index];
        } else {
            return loc_info(chip_info, wire).wire_data[wire.index];
        }
    }

    IdStringList getWireName(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        if (wire.tile != -1) {
            const auto &tile_type = loc_info(chip_info, wire);
            if (tile_type.wire_data[wire.index].site != -1) {
                const SiteInstInfoPOD &site = get_site_inst(wire);
                std::array<IdString, 2> ids{id(site.name.get()), IdString(tile_type.wire_data[wire.index].name)};
                return IdStringList(ids);
            }
        }

        int32_t tile = wire.tile == -1 ? chip_info->nodes[wire.index].tile_wires[0].tile : wire.tile;
        IdString tile_name = id(chip_info->tiles[tile].name.get());
        std::array<IdString, 2> ids{tile_name, IdString(wire_info(wire).name)};
        return IdStringList(ids);
    }

    IdString getWireType(WireId wire) const final;
    std::vector<std::pair<IdString, std::string>> getWireAttrs(WireId wire) const final;

    uint32_t getWireChecksum(WireId wire) const final { return wire.index; }

    void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) final;

    void unbindWire(WireId wire) final
    {
        NPNR_ASSERT(wire != WireId());
        unassign_wire(wire);
        refreshUiWire(wire);
    }

    bool checkWireAvail(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        auto w2n = wire_to_net.find(wire);
        return w2n == wire_to_net.end() || w2n->second == nullptr;
    }

    NetInfo *getBoundWireNet(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        auto w2n = wire_to_net.find(wire);
        return w2n == wire_to_net.end() ? nullptr : w2n->second;
    }

    WireId getConflictingWireWire(WireId wire) const final { return wire; }

    NetInfo *getConflictingWireNet(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        auto w2n = wire_to_net.find(wire);
        return w2n == wire_to_net.end() ? nullptr : w2n->second;
    }

    DelayQuad getWireDelay(WireId wire) const final { return DelayQuad(0); }

    TileWireRange get_tile_wire_range(WireId wire) const
    {
        TileWireRange range;
        range.b.chip = chip_info;
        range.b.baseWire = wire;
        range.b.cursor = -1;
        ++range.b;

        range.e.chip = chip_info;
        range.e.baseWire = wire;
        if (wire.tile == -1) {
            range.e.cursor = chip_info->nodes[wire.index].tile_wires.size();
        } else {
            range.e.cursor = 1;
        }
        return range;
    }

    BelPinRange getWireBelPins(WireId wire) const final
    {
        BelPinRange range;
        NPNR_ASSERT(wire != WireId());

        TileWireRange twr = get_tile_wire_range(wire);
        range.b.chip = chip_info;
        range.b.twi = twr.b;
        range.b.twi_end = twr.e;
        range.b.cursor = -1;
        ++range.b;

        range.e.chip = chip_info;
        range.e.twi = twr.e;
        range.e.twi_end = twr.e;
        range.e.cursor = 0;
        return range;
    }

    WireRange getWires() const final
    {
        WireRange range;
        range.b.chip = chip_info;
        range.b.cursor_tile = -1;
        range.b.cursor_index = 0;
        range.e.chip = chip_info;
        range.e.cursor_tile = chip_info->tiles.size();
        range.e.cursor_index = 0;
        return range;
    }

    bool is_site_wire(WireId wire) const;
    WireCategory get_wire_category(WireId wire) const;

    // -------------------------------------------------

    PipId getPipByName(IdStringList name) const final;
    IdStringList getPipName(PipId pip) const final;
    IdString getPipType(PipId pip) const final;
    std::vector<std::pair<IdString, std::string>> getPipAttrs(PipId pip) const final;

    void assign_net_to_wire(WireId wire, NetInfo *net, const char *src, bool require_empty);

    void assign_pip_pseudo_wires(PipId pip, NetInfo *net)
    {
        NPNR_ASSERT(net != nullptr);
        WireId wire;
        wire.tile = pip.tile;
        const PipInfoPOD &pip_data = pip_info(chip_info, pip);
        for (int32_t wire_index : pip_data.pseudo_cell_wires) {
            wire.index = wire_index;
            if (getBoundWireNet(wire) != net)
                assign_net_to_wire(wire, net, "pseudo", /*require_empty=*/true);
        }

        if (pip_data.pseudo_cell_wires.size() > 0) {
            get_tile_status(pip.tile).pseudo_pip_model.bindPip(getCtx(), pip);
        }
    }

    void remove_pip_pseudo_wires(PipId pip, NetInfo *net);

    void unassign_wire(WireId wire);

    void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) final;

    void unbindPip(PipId pip) final;

    bool checkPipAvail(PipId pip) const final;
    bool checkPipAvailForNet(PipId pip, NetInfo *net) const final;

    NetInfo *getBoundPipNet(PipId pip) const final
    {
        NPNR_ASSERT(pip != PipId());
        auto p2n = pip_to_net.find(pip);
        return p2n == pip_to_net.end() ? nullptr : p2n->second;
    }

    WireId getConflictingPipWire(PipId pip) const final
    {
        // FIXME: This doesn't account for pseudo pips.
        return getPipDstWire(pip);
    }

    NetInfo *getConflictingPipNet(PipId pip) const final
    {
        // FIXME: This doesn't account for pseudo pips.
        auto p2n = pip_to_net.find(pip);
        return p2n == pip_to_net.end() ? nullptr : p2n->second;
    }

    AllPipRange getPips() const final
    {
        AllPipRange range;
        range.b.cursor_tile = 0;
        range.b.cursor_index = -1;
        range.b.chip = chip_info;
        ++range.b; //-1 and then ++ deals with the case of no wries in the first tile
        range.e.cursor_tile = chip_info->width * chip_info->height;
        range.e.cursor_index = 0;
        range.e.chip = chip_info;
        return range;
    }

    Loc getPipLocation(PipId pip) const final
    {
        Loc loc;
        get_tile_loc(pip.tile, &loc);
        loc.z = 0;
        return loc;
    }

    uint32_t getPipChecksum(PipId pip) const final { return pip.index; }

    WireId getPipSrcWire(PipId pip) const final NPNR_ALWAYS_INLINE
    {
        return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].src_index);
    }

    WireId getPipDstWire(PipId pip) const final NPNR_ALWAYS_INLINE
    {
        return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].dst_index);
    }

    DelayQuad getPipDelay(PipId pip) const final;

    DownhillPipRange getPipsDownhill(WireId wire) const final
    {
        DownhillPipRange range;
        NPNR_ASSERT(wire != WireId());
        TileWireRange twr = get_tile_wire_range(wire);
        range.b.chip = chip_info;
        range.b.twi = twr.b;
        range.b.twi_end = twr.e;
        range.b.cursor = -1;
        ++range.b;
        range.e.chip = chip_info;
        range.e.twi = twr.e;
        range.e.twi_end = twr.e;
        range.e.cursor = 0;
        return range;
    }

    UphillPipRange getPipsUphill(WireId wire) const final
    {
        UphillPipRange range;
        NPNR_ASSERT(wire != WireId());
        TileWireRange twr = get_tile_wire_range(wire);
        range.b.chip = chip_info;
        range.b.twi = twr.b;
        range.b.twi_end = twr.e;
        range.b.cursor = -1;
        ++range.b;
        range.e.chip = chip_info;
        range.e.twi = twr.e;
        range.e.twi_end = twr.e;
        range.e.cursor = 0;
        return range;
    }

    // -------------------------------------------------

    // FIXME: Use groups to get access to sites.
    GroupId getGroupByName(IdStringList name) const final { return GroupId(); }
    IdStringList getGroupName(GroupId group) const final { return IdStringList(); }
    std::vector<GroupId> getGroups() const final { return {}; }
    std::vector<BelId> getGroupBels(GroupId group) const final { return {}; }
    std::vector<WireId> getGroupWires(GroupId group) const final { return {}; }
    std::vector<PipId> getGroupPips(GroupId group) const final { return {}; }
    std::vector<GroupId> getGroupGroups(GroupId group) const final { return {}; }

    // -------------------------------------------------
    delay_t estimateDelay(WireId src, WireId dst) const final;
    delay_t predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const final;
    ArcBounds getRouteBoundingBox(WireId src, WireId dst) const final;
    delay_t getDelayEpsilon() const final { return 20; }
    delay_t getRipupDelayPenalty() const final { return 120; }
    float getDelayNS(delay_t v) const final { return v * 0.001; }
    delay_t getDelayFromNS(float ns) const final { return delay_t(ns * 1000); }
    uint32_t getDelayChecksum(delay_t v) const final { return v; }
    bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const final;

    // -------------------------------------------------

    void place_iobufs(WireId pad_wire, NetInfo *net,
                      const dict<CellInfo *, IdString, hash_ptr_ops> &tightly_attached_bels,
                      pool<CellInfo *, hash_ptr_ops> *placed_cells);

    void pack_ports();

    // Clusters
    void pack_cluster();
    void prepare_cluster(const ClusterPOD *cluster, uint32_t index);
    void prepare_macro_cluster(const ClusterPOD *cluster, uint32_t index);
    dict<ClusterId, Cluster> clusters;

    // User constraints
    void place_constraints();

    void decode_lut_cells();

    const GlobalCellPOD *global_cell_info(IdString cell_type) const;
    void place_globals();
    void route_globals();

    bool pack() final;
    bool place() final;
    bool route() final;
    // -------------------------------------------------

    std::vector<GraphicElement> getDecalGraphics(DecalId decal) const final;

    DecalXY getBelDecal(BelId bel) const final;
    DecalXY getWireDecal(WireId wire) const final;
    DecalXY getPipDecal(PipId pip) const final;
    DecalXY getGroupDecal(GroupId group) const final;

    // -------------------------------------------------

    // Get the delay through a cell from one port to another, returning false
    // if no path exists. This only considers combinational delays, as required by the Arch API
    bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const final;
    // Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port
    TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const final;
    // Get the TimingClockingInfo of a port
    TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const final;

    // -------------------------------------------------

    const BelBucketRange getBelBuckets() const final
    {
        BelBucketRange bel_bucket_range;
        bel_bucket_range.b.cursor.cursor = chip_info->bel_buckets.begin();
        bel_bucket_range.e.cursor.cursor = chip_info->bel_buckets.end();
        return bel_bucket_range;
    }

    BelBucketId getBelBucketForBel(BelId bel) const final
    {
        BelBucketId bel_bucket;
        bel_bucket.name = IdString(bel_info(chip_info, bel).bel_bucket);
        return bel_bucket;
    }

    const IdStringRange getCellTypes() const final
    {
        const CellMapPOD &cell_map = *chip_info->cell_map;

        IdStringRange id_range;
        id_range.b.cursor = cell_map.cell_names.begin();
        id_range.e.cursor = cell_map.cell_names.end();

        return id_range;
    }

    IdString getBelBucketName(BelBucketId bucket) const final { return bucket.name; }

    BelBucketId getBelBucketByName(IdString name) const final
    {
        for (BelBucketId bel_bucket : getBelBuckets()) {
            if (bel_bucket.name == name) {
                return bel_bucket;
            }
        }

        NPNR_ASSERT_FALSE("Failed to find BEL bucket for name.");
        return BelBucketId();
    }

    size_t get_cell_type_index(IdString cell_type) const;

    BelBucketId getBelBucketForCellType(IdString cell_type) const final
    {
        if (io_port_types.count(cell_type)) {
            BelBucketId bucket;
            bucket.name = id("IOPORTS");
            return bucket;
        }

        BelBucketId bucket;
        const CellMapPOD &cell_map = *chip_info->cell_map;
        bucket.name = IdString(cell_map.cell_bel_buckets[get_cell_type_index(cell_type)]);
        return bucket;
    }

    FilteredBelRange getBelsInBucket(BelBucketId bucket) const final
    {
        BelRange range = getBels();
        FilteredBelRange filtered_range(range.begin(), range.end(),
                                        [this, bucket](BelId bel) { return getBelBucketForBel(bel) == bucket; });

        return filtered_range;
    }

    bool isValidBelForCellType(IdString cell_type, BelId bel) const final
    {
        if (io_port_types.count(cell_type)) {
            return pads.count(bel) > 0;
        }

        const auto &bel_data = bel_info(chip_info, bel);
        if (bel_data.category != BEL_CATEGORY_LOGIC) {
            return false;
        }

        auto cell_type_index = get_cell_type_index(cell_type);
        return bel_data.pin_map[cell_type_index] != -1;
    }

    bool is_cell_valid_constraints(const CellInfo *cell, const TileStatus &tile_status, bool explain) const
    {
        if (io_port_types.count(cell->type)) {
            return true;
        }

        BelId bel = cell->bel;
        NPNR_ASSERT(bel != BelId());

        return constraints.isValidBelForCellType(getCtx(), get_constraint_prototype(bel), tile_status.tags.data(),
                                                 get_cell_constraints(bel, cell->type),
                                                 id(chip_info->tiles[bel.tile].name.get()), cell->name, bel, explain);
    }

    // Return true whether all Bels at a given location are valid
    bool isBelLocationValid(BelId bel) const final
    {
        auto iter = tileStatus.find(bel.tile);
        if (iter == tileStatus.end()) {
            return true;
        }
        const TileStatus &tile_status = iter->second;
        CellInfo *cell = tile_status.boundcells[bel.index];
        auto &bel_data = bel_info(chip_info, bel);
        auto &site_status = get_site_status(tile_status, bel_data);

        if (cell != nullptr) {
            if (!dedicated_interconnect.isBelLocationValid(bel, cell))
                return false;

            if (io_port_types.count(cell->type)) {
                // FIXME: Probably need to actually constraint io port cell/bel,
                // but the current BBA emission doesn't support that.  This only
                // really matters if the placer can choose IO port locations.
                return true;
            }

            if (!is_cell_valid_constraints(cell, tile_status, explain_constraints)) {
                return false;
            }

            for (auto ci : site_status.cells_in_site) {
                if (ci->cluster != ClusterId() && ci->cluster != cell->cluster &&
                    cluster_info(chip_info, clusters.at(ci->cluster).index).disallow_other_cells)
                    return false;

                if (cell->cluster != ClusterId() && ci->cluster != cell->cluster &&
                    cluster_info(chip_info, clusters.at(cell->cluster).index).disallow_other_cells)
                    return false;
            }
        }

        // Still check site status if cell is nullptr; as other bels in the site could be illegal (for example when
        // dedicated paths can no longer be used after ripping up a cell)
        bool routing_status = site_status.checkSiteRouting(getCtx(), tile_status);

        return routing_status;
    }

    CellInfo *getClusterRootCell(ClusterId cluster) const override;
    ArcBounds getClusterBounds(ClusterId cluster) const override;
    Loc getClusterOffset(const CellInfo *cell) const override;
    bool isClusterStrict(const CellInfo *cell) const override;
    bool normal_cluster_placement(const Context *, const Cluster &, const ClusterPOD &, CellInfo *, BelId,
                                  std::vector<std::pair<CellInfo *, BelId>> &) const;
    bool macro_cluster_placement(const Context *, const Cluster &, const ClusterPOD &, CellInfo *, BelId,
                                 std::vector<std::pair<CellInfo *, BelId>> &) const;
    bool getClusterPlacement(ClusterId cluster, BelId root_bel,
                             std::vector<std::pair<CellInfo *, BelId>> &placement) const override;

    IdString get_bel_tiletype(BelId bel) const { return IdString(loc_info(chip_info, bel).name); }

    dict<WireId, Loc> sink_locs, source_locs;
    // -------------------------------------------------
    void assignArchInfo() final {}

    // -------------------------------------------------

    static const std::string defaultPlacer;
    static const std::vector<std::string> availablePlacers;

    static const std::string defaultRouter;
    static const std::vector<std::string> availableRouters;

    // -------------------------------------------------
    void read_logical_netlist(const std::string &filename);
    void write_physical_netlist(const std::string &filename) const;
    void parse_xdc(const std::string &filename);

    pool<IdString> io_port_types;
    pool<BelId> pads;

    bool is_site_port(PipId pip) const
    {
        const PipInfoPOD &pip_data = pip_info(chip_info, pip);
        if (pip_data.site == -1) {
            return false;
        }

        BelId bel;
        bel.tile = pip.tile;
        bel.index = pip_data.bel;

        const BelInfoPOD &bel_data = bel_info(chip_info, bel);

        return bel_data.category == BEL_CATEGORY_SITE_PORT;
    }

    // Is the driver and all users of this net located within the same site?
    //
    // Returns false if any element of the net is not placed.
    bool is_net_within_site(const NetInfo &net) const;

    using ArchConstraints = Constraints<kMaxState>;
    ArchConstraints constraints;
    std::vector<ArchConstraints::TagState> default_tags;
    bool explain_constraints;

    struct StateRange
    {
        const int32_t *b;
        const int32_t *e;

        const int32_t *begin() const { return b; }
        const int32_t *end() const { return e; }
    };

    struct Constraint : ArchConstraints::Constraint<StateRange>
    {
        const CellConstraintPOD *constraint;
        Constraint(const CellConstraintPOD *constraint) : constraint(constraint) {}

        size_t tag() const final { return constraint->tag; }

        ArchConstraints::ConstraintType constraint_type() const final
        {
            return Constraints<kMaxState>::ConstraintType(constraint->constraint_type);
        }

        ArchConstraints::ConstraintStateType state() const final
        {
            NPNR_ASSERT(constraint_type() == Constraints<kMaxState>::CONSTRAINT_TAG_IMPLIES);
            NPNR_ASSERT(constraint->states.size() == 1);
            return constraint->states[0];
        }

        StateRange states() const final
        {
            StateRange range;
            range.b = constraint->states.get();
            range.e = range.b + constraint->states.size();

            return range;
        }
    };

    struct ConstraintIterator
    {
        const CellConstraintPOD *constraint;
        ConstraintIterator() {}

        ConstraintIterator operator++()
        {
            ++constraint;
            return *this;
        }

        bool operator!=(const ConstraintIterator &other) const { return constraint != other.constraint; }

        bool operator==(const ConstraintIterator &other) const { return constraint == other.constraint; }

        Constraint operator*() const { return Constraint(constraint); }
    };

    struct ConstraintRange
    {
        ConstraintIterator b, e;

        ConstraintIterator begin() const { return b; }
        ConstraintIterator end() const { return e; }
    };

    uint32_t get_constraint_prototype(BelId bel) const { return chip_info->tiles[bel.tile].type; }

    ConstraintRange get_cell_constraints(BelId bel, IdString cell_type) const
    {
        const auto &bel_data = bel_info(chip_info, bel);
        NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);

        int32_t mapping = bel_data.pin_map[get_cell_type_index(cell_type)];
        NPNR_ASSERT(mapping >= 0);

        auto &cell_bel_map = chip_info->cell_map->cell_bel_map[mapping];
        ConstraintRange range;
        range.b.constraint = cell_bel_map.constraints.get();
        range.e.constraint = range.b.constraint + cell_bel_map.constraints.size();

        return range;
    }

    const char *get_site_name(int32_t tile, size_t site) const
    {
        return site_inst_info(chip_info, tile, site).name.get();
    }

    const char *get_site_name(BelId bel) const
    {
        auto &bel_data = bel_info(chip_info, bel);
        return get_site_name(bel.tile, bel_data.site);