/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/consteval.h" #include "kernel/log.h" #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN RTLIL::SigSpec find_any_lvalue(const RTLIL::Process *proc) { RTLIL::SigSpec lvalue; for (auto sync : proc->syncs) for (auto &action : sync->actions) if (action.first.size() > 0) { lvalue = action.first; lvalue.sort_and_unify(); break; } for (auto sync : proc->syncs) { RTLIL::SigSpec this_lvalue; for (auto &action : sync->actions) this_lvalue.append(action.first); this_lvalue.sort_and_unify(); RTLIL::SigSpec common_sig = this_lvalue.extract(lvalue); if (common_sig.size() > 0) lvalue = common_sig; } return lvalue; } void gen_dffsr_complex(RTLIL::Module *mod, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::SigSpec clk, bool clk_polarity, std::map> &async_rules, RTLIL::Process *proc) { RTLIL::SigSpec sig_sr_set = RTLIL::SigSpec(0, sig_d.size()); RTLIL::SigSpec sig_sr_clr = RTLIL::SigSpec(0, sig_d.size()); for (auto &it : async_rules) { RTLIL::SigSpec sync_value = it.first; RTLIL::SigSpec sync_value_inv; RTLIL::SigSpec sync_high_signals; RTLIL::SigSpec sync_low_signals; for (auto &it2 : it.second) if (it2->type == RTLIL::SyncType::ST0) sync_low_signals.append(it2->signal); else if (it2->type == RTLIL::SyncType::ST1) sync_high_signals.append(it2->signal); else log_abort(); if (sync_low_signals.size() > 1) { RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($reduce_or)); cell->parameters[ID::A_SIGNED] = RTLIL::Const(0); cell->parameters[ID::A_WIDTH] = RTLIL::Const(sync_low_signals.size()); cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1); cell->setPort(ID::A, sync_low_signals); cell->setPort(ID::Y, sync_low_signals = mod->addWire(NEW_ID)); } if (sync_low_signals.size() > 0) { RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($not)); cell->parameters[ID::A_SIGNED] = RTLIL::Const(0); cell->parameters[ID::A_WIDTH] = RTLIL::Const(sync_low_signals.size()); cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1); cell->setPort(ID::A, sync_low_signals); cell->setPort(ID::Y, mod->addWire(NEW_ID)); sync_high_signals.append(cell->getPort(ID::Y)); } if (sync_high_signals.size() > 1) { RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($reduce_or)); cell->parameters[ID::A_SIGNED] = RTLIL::Const(0); cell->parameters[ID::A_WIDTH] = RTLIL::Const(sync_high_signals.size()); cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1); cell->setPort(ID::A, sync_high_signals); cell->setPort(ID::Y, sync_high_signals = mod->addWire(NEW_ID)); } RTLIL::Cell *inv_cell = mod->addCell(NEW_ID, ID($not)); inv_cell->parameters[ID::A_SIGNED] = RTLIL::Const(0); inv_cell->parameters[ID::A_WIDTH] = RTLIL::Const(sig_d.size()); inv_cell->parameters[ID::Y_WIDTH] = RTLIL::Const(sig_d.size()); inv_cell->setPort(ID::A, sync_value); inv_cell->setPort(ID::Y, sync_value_inv = mod->addWire(NEW_ID, sig_d.size())); RTLIL::Cell *mux_set_cell = mod->addCell(NEW_ID, ID($mux)); mux_set_cell->parameters[ID::WIDTH] = RTLIL::Const(sig_d.size()); mux_set_cell->setPort(ID::A, sig_sr_set); mux_set_cell->setPort(ID::B, sync_value); mux_set_cell->setPort(ID::S, sync_high_signals); mux_set_cell->setPort(ID::Y, sig_sr_set = mod->addWire(NEW_ID, sig_d.size())); RTLIL::Cell *mux_clr_cell = mod->addCell(NEW_ID, ID($mux)); mux_clr_cell->parameters[ID::WIDTH] = RTLIL::Const(sig_d.size()); mux_clr_cell->setPort(ID::A, sig_sr_clr); mux_clr_cell->setPort(ID::B, sync_value_inv); mux_clr_cell->setPort(ID::S, sync_high_signals); mux_clr_cell->setPort(ID::Y, sig_sr_clr = mod->addWire(NEW_ID, sig_d.size())); } std::stringstream sstr; sstr << "$procdff$" << (autoidx++); RTLIL::Cell *cell = mod->addCell(sstr.str(), ID($dffsr)); cell->attributes = proc->attributes; cell->parameters[ID::WIDTH] = RTLIL::Const(sig_d.size()); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1); cell->parameters[ID::SET_POLARITY] = RTLIL::Const(true, 1); cell->parameters[ID::CLR_POLARITY] = RTLIL::Const(true, 1); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->setPort(ID::CLK, clk); cell->setPort(ID::SET, sig_sr_set); cell->setPort(ID::CLR, sig_sr_clr); log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative"); } void gen_dffsr(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_out, bool clk_polarity, bool set_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec set, RTLIL::Process *proc) { std::stringstream sstr; sstr << "$procdff$" << (autoidx++); RTLIL::SigSpec sig_set_inv = mod->addWire(NEW_ID, sig_in.size()); RTLIL::SigSpec sig_sr_set = mod->addWire(NEW_ID, sig_in.size()); RTLIL::SigSpec sig_sr_clr = mod->addWire(NEW_ID, sig_in.size()); RTLIL::Cell *inv_set = mod->addCell(NEW_ID, ID($not)); inv_set->parameters[ID::A_SIGNED] = RTLIL::Const(0); inv_set->parameters[ID::A_WIDTH] = RTLIL::Const(sig_in.size()); inv_set->parameters[ID::Y_WIDTH] = RTLIL::Const(sig_in.size()); inv_set->setPort(ID::A, sig_set); inv_set->setPort(ID::Y, sig_set_inv); RTLIL::Cell *mux_sr_set = mod->addCell(NEW_ID, ID($mux)); mux_sr_set->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size()); mux_sr_set->setPort(set_polarity ? ID::A : ID::B, RTLIL::Const(0, sig_in.size())); mux_sr_set->setPort(set_polarity ? ID::B : ID::A, sig_set); mux_sr_set->setPort(ID::Y, sig_sr_set); mux_sr_set->setPort(ID::S, set); RTLIL::Cell *mux_sr_clr = mod->addCell(NEW_ID, ID($mux)); mux_sr_clr->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size()); mux_sr_clr->setPort(set_polarity ? ID::A : ID::B, RTLIL::Const(0, sig_in.size())); mux_sr_clr->setPort(set_polarity ? ID::B : ID::A, sig_set_inv); mux_sr_clr->setPort(ID::Y, sig_sr_clr); mux_sr_clr->setPort(ID::S, set); RTLIL::Cell *cell = mod->addCell(sstr.str(), ID($dffsr)); cell->attributes = proc->attributes; cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size()); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1); cell->parameters[ID::SET_POLARITY] = RTLIL::Const(true, 1); cell->parameters[ID::CLR_POLARITY] = RTLIL::Const(true, 1); cell->setPort(ID::D, sig_in); cell->setPort(ID::Q, sig_out); cell->setPort(ID::CLK, clk); cell->setPort(ID::SET, sig_sr_set); cell->setPort(ID::CLR, sig_sr_clr); log(" created %s cell `%s' with %s edge clock and %s level non-const reset.\n", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative", set_polarity ? "positive" : "negative"); } void gen_dff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::Const val_rst, RTLIL::SigSpec sig_out, bool clk_polarity, bool arst_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec *arst, RTLIL::Process *proc) { std::stringstream sstr; sstr << "$procdff$" << (autoidx++); RTLIL::Cell *cell = mod->addCell(sstr.str(), clk.empty() ? ID($ff) : arst ? ID($adff) : ID($dff)); cell->attributes = proc->attributes; cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size()); if (arst) { cell->parameters[ID::ARST_POLARITY] = RTLIL::Const(arst_polarity, 1); cell->parameters[ID::ARST_VALUE] = val_rst; } if (!clk.empty()) { cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1); } cell->setPort(ID::D, sig_in); cell->setPort(ID::Q, sig_out); if (arst) cell->setPort(ID::ARST, *arst); if (!clk.empty()) cell->setPort(ID::CLK, clk); if (!clk.empty()) log(" created %s cell `%s' with %s edge clock", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative"); else log(" created %s cell `%s' with global clock", cell->type.c_str(), cell->name.c_str()); if (arst) log(" and %s level reset", arst_polarity ? "positive" : "negative"); log(".\n"); } void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce) { while (1) { RTLIL::SigSpec sig = find_any_lvalue(proc); bool free_sync_level = false; if (sig.size() == 0) break; log("Creating register for signal `%s.%s' using process `%s.%s'.\n", mod->name.c_str(), log_signal(sig), mod->name.c_str(), proc->name.c_str()); RTLIL::SigSpec insig = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); RTLIL::SigSpec rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); RTLIL::SyncRule *sync_level = NULL; RTLIL::SyncRule *sync_edge = NULL; RTLIL::SyncRule *sync_always = NULL; bool global_clock = false; std::map> many_async_rules; for (auto sync : proc->syncs) for (auto &action : sync->actions) { if (action.first.extract(sig).size() == 0) continue; if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) { if (sync_level != NULL && sync_level != sync) { // log_error("Multiple level sensitive events found for this signal!\n"); many_async_rules[rstval].insert(sync_level); rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); } rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); sig.replace(action.first, action.second, &rstval); sync_level = sync; } else if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) { if (sync_edge != NULL && sync_edge != sync) log_error("Multiple edge sensitive events found for this signal!\n"); sig.replace(action.first, action.second, &insig); sync_edge = sync; } else if (sync->type == RTLIL::SyncType::STa) { if (sync_always != NULL && sync_always != sync) log_error("Multiple always events found for this signal!\n"); sig.replace(action.first, action.second, &insig); sync_always = sync; } else if (sync->type == RTLIL::SyncType::STg) { sig.replace(action.first, action.second, &insig); global_clock = true; } else { log_error("Event with any-edge sensitivity found for this signal!\n"); } action.first.remove2(sig, &action.second); } if (many_async_rules.size() > 0) { many_async_rules[rstval].insert(sync_level); if (many_async_rules.size() == 1) { sync_level = new RTLIL::SyncRule; sync_level->type = RTLIL::SyncType::ST1; sync_level->signal = mod->addWire(NEW_ID); sync_level->actions.push_back(RTLIL::SigSig(sig, rstval)); free_sync_level = true; RTLIL::SigSpec inputs, compare; for (auto &it : many_async_rules[rstval]) { inputs.append(it->signal); compare.append(it->type == RTLIL::SyncType::ST0 ? RTLIL::State::S1 : RTLIL::State::S0); } log_assert(inputs.size() == compare.size()); RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($ne)); cell->parameters[ID::A_SIGNED] = RTLIL::Const(false, 1); cell->parameters[ID::B_SIGNED] = RTLIL::Const(false, 1); cell->parameters[ID::A_WIDTH] = RTLIL::Const(inputs.size()); cell->parameters[ID::B_WIDTH] = RTLIL::Const(inputs.size()); cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1); cell->setPort(ID::A, inputs); cell->setPort(ID::B, compare); cell->setPort(ID::Y, sync_level->signal); many_async_rules.clear(); } else { rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); sync_level = NULL; } } SigSpec sig_q = sig; ce.assign_map.apply(insig); ce.assign_map.apply(rstval); ce.assign_map.apply(sig); if (rstval == sig) { if (sync_level->type == RTLIL::SyncType::ST1) insig = mod->Mux(NEW_ID, insig, sig, sync_level->signal); else insig = mod->Mux(NEW_ID, sig, insig, sync_level->signal); rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); sync_level = NULL; } if (sync_always) { if (sync_edge || sync_level || many_async_rules.size() > 0) log_error("Mixed always event with edge and/or level sensitive events!\n"); log(" created direct connection (no actual register cell created).\n"); mod->connect(RTLIL::SigSig(sig, insig)); continue; } if (!sync_edge && !global_clock) log_error("Missing edge-sensitive event for this signal!\n"); if (many_async_rules.size() > 0) { log_warning("Complex async reset for dff `%s'.\n", log_signal(sig)); gen_dffsr_complex(mod, insig, sig, sync_edge->signal, sync_edge->type == RTLIL::SyncType::STp, many_async_rules, proc); } else if (!rstval.is_fully_const() && !ce.eval(rstval)) { log_warning("Async reset value `%s' is not constant!\n", log_signal(rstval)); gen_dffsr(mod, insig, rstval, sig_q, sync_edge->type == RTLIL::SyncType::STp, sync_level && sync_level->type == RTLIL::SyncType::ST1, sync_edge->signal, sync_level->signal, proc); } else gen_dff(mod, insig, rstval.as_const(), sig_q, sync_edge && sync_edge->type == RTLIL::SyncType::STp, sync_level && sync_level->type == RTLIL::SyncType::ST1, sync_edge ? sync_edge->signal : SigSpec(), sync_level ? &sync_level->signal : NULL, proc); if (free_sync_level) delete sync_level; } } struct ProcDffPass : public Pass { ProcDffPass() : Pass("proc_dff", "extract flip-flops from processes") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" proc_dff [selection]\n"); log("\n"); log("This pass identifies flip-flops in the processes and converts them to\n"); log("d-type flip-flop cells.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing PROC_DFF pass (convert process syncs to FFs).\n"); extra_args(args, 1, design); for (auto mod : design->modules()) if (design->selected(mod)) { ConstEval ce(mod); for (auto &proc_it : mod->processes) if (design->selected(mod, proc_it.second)) proc_dff(mod, proc_it.second, ce); } } } ProcDffPass; PRIVATE_NAMESPACE_END