/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/log.h" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/consteval.h" #include "kernel/celltypes.h" #include "fsmdata.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN static RTLIL::Module *module; static SigMap assign_map; typedef std::pair sig2driver_entry_t; static SigSet sig2driver, sig2user; static std::set muxtree_cells; static SigPool sig_at_port; static bool check_state_mux_tree(RTLIL::SigSpec old_sig, RTLIL::SigSpec sig, pool &recursion_monitor, dict &mux_tree_cache) { if (mux_tree_cache.find(sig) != mux_tree_cache.end()) return mux_tree_cache.at(sig); if (sig.is_fully_const() || old_sig == sig) { ret_true: mux_tree_cache[sig] = true; return true; } if (sig_at_port.check_any(assign_map(sig))) { ret_false: mux_tree_cache[sig] = false; return false; } std::set cellport_list; sig2driver.find(sig, cellport_list); for (auto &cellport : cellport_list) { if ((cellport.first->type != "$mux" && cellport.first->type != "$pmux") || cellport.second != ID::Y) { goto ret_false; } if (recursion_monitor.count(cellport.first)) { log_warning("logic loop in mux tree at signal %s in module %s.\n", log_signal(sig), RTLIL::id2cstr(module->name)); goto ret_false; } recursion_monitor.insert(cellport.first); RTLIL::SigSpec sig_a = assign_map(cellport.first->getPort(ID::A)); RTLIL::SigSpec sig_b = assign_map(cellport.first->getPort(ID::B)); if (!check_state_mux_tree(old_sig, sig_a, recursion_monitor, mux_tree_cache)) { recursion_monitor.erase(cellport.first); goto ret_false; } for (int i = 0; i < sig_b.size(); i += sig_a.size()) if (!check_state_mux_tree(old_sig, sig_b.extract(i, sig_a.size()), recursion_monitor, mux_tree_cache)) { recursion_monitor.erase(cellport.first); goto ret_false; } recursion_monitor.erase(cellport.first); muxtree_cells.insert(cellport.first); } goto ret_true; } static bool check_state_users(RTLIL::SigSpec sig) { if (sig_at_port.check_any(assign_map(sig))) return false; std::set cellport_list; sig2user.find(sig, cellport_list); for (auto &cellport : cellport_list) { RTLIL::Cell *cell = cellport.first; if (muxtree_cells.count(cell) > 0) continue; if (cell->type == "$logic_not" && assign_map(cell->getPort(ID::A)) == sig) continue; if (cellport.second != ID::A && cellport.second != ID::B) return false; if (!cell->hasPort(ID::A) || !cell->hasPort(ID::B) || !cell->hasPort(ID::Y)) return false; for (auto &port_it : cell->connections()) if (port_it.first != ID::A && port_it.first != ID::B && port_it.first != ID::Y) return false; if (assign_map(cell->getPort(ID::A)) == sig && cell->getPort(ID::B).is_fully_const()) continue; if (assign_map(cell->getPort(ID::B)) == sig && cell->getPort(ID::A).is_fully_const()) continue; return false; } return true; } static void detect_fsm(RTLIL::Wire *wire) { bool has_fsm_encoding_attr = wire->attributes.count(ID::fsm_encoding) > 0 && wire->attributes.at(ID::fsm_encoding).decode_string() != "none"; bool has_fsm_encoding_none = wire->attributes.count(ID::fsm_encoding) > 0 && wire->attributes.at(ID::fsm_encoding).decode_string() == "none"; bool has_init_attr = wire->attributes.count("\\init") > 0; bool is_module_port = sig_at_port.check_any(assign_map(RTLIL::SigSpec(wire))); bool looks_like_state_reg = false, looks_like_good_state_reg = false; bool is_self_resetting = false; if (has_fsm_encoding_none) return; if (wire->width <= 1) { if (has_fsm_encoding_attr) { log_warning("Removing fsm_encoding attribute from 1-bit net: %s.%s\n", log_id(wire->module), log_id(wire)); wire->attributes.erase(ID::fsm_encoding); } return; } std::set cellport_list; sig2driver.find(RTLIL::SigSpec(wire), cellport_list); for (auto &cellport : cellport_list) { if ((cellport.first->type != "$dff" && cellport.first->type != "$adff") || cellport.second != "\\Q") continue; muxtree_cells.clear(); pool recursion_monitor; RTLIL::SigSpec sig_q = assign_map(cellport.first->getPort("\\Q")); RTLIL::SigSpec sig_d = assign_map(cellport.first->getPort("\\D")); dict mux_tree_cache; if (sig_q != assign_map(wire)) continue; looks_like_state_reg = check_state_mux_tree(sig_q, sig_d, recursion_monitor, mux_tree_cache); looks_like_good_state_reg = check_state_users(sig_q); if (!looks_like_state_reg) break; ConstEval ce(wire->module); std::set cellport_list; sig2user.find(sig_q, cellport_list); auto sig_q_bits = sig_q.to_sigbit_pool(); for (auto &cellport : cellport_list) { RTLIL::Cell *cell = cellport.first; bool set_output = false, clr_output = false; if (cell->type.in("$ne", "$reduce_or", "$reduce_bool")) set_output = true; if (cell->type.in("$eq", "$logic_not", "$reduce_and")) clr_output = true; if (set_output || clr_output) { for (auto &port_it : cell->connections()) if (cell->input(port_it.first)) for (auto bit : assign_map(port_it.second)) if (bit.wire != nullptr && !sig_q_bits.count(bit)) goto next_cellport; } if (set_output || clr_output) { for (auto &port_it : cell->connections()) if (cell->output(port_it.first)) { SigSpec sig = assign_map(port_it.second); Const val(set_output ? State::S1 : State::S0, GetSize(sig)); ce.set(sig, val); } } next_cellport:; } SigSpec sig_y = sig_d, sig_undef; if (ce.eval(sig_y, sig_undef)) is_self_resetting = true; } if (has_fsm_encoding_attr) { vector warnings; if (is_module_port) warnings.push_back("Forcing FSM recoding on module port might result in larger circuit.\n"); if (!looks_like_good_state_reg) warnings.push_back("Users of state reg look like FSM recoding might result in larger circuit.\n"); if (has_init_attr) warnings.push_back("Initialization value on FSM state register is ignored. Possible simulation-synthesis mismatch!\n"); if (!looks_like_state_reg) warnings.push_back("Doesn't look like a proper FSM. Possible simulation-synthesis mismatch!\n"); if (is_self_resetting) warnings.push_back("FSM seems to be self-resetting. Possible simulation-synthesis mismatch!\n"); if (!warnings.empty()) { string warnmsg = stringf("Regarding the user-specified fsm_encoding attribute on %s.%s:\n", log_id(wire->module), log_id(wire)); for (auto w : warnings) warnmsg += " " + w; log_warning("%s", warnmsg.c_str()); } else { log("FSM state register %s.%s already has fsm_encoding attribute.\n", log_id(wire->module), log_id(wire)); } } else if (looks_like_state_reg && looks_like_good_state_reg && !has_init_attr && !is_module_port && !is_self_resetting) { log("Found FSM state register %s.%s.\n", log_id(wire->module), log_id(wire)); wire->attributes[ID::fsm_encoding] = RTLIL::Const("auto"); } else if (looks_like_state_reg) { log("Not marking %s.%s as FSM state register:\n", log_id(wire->module), log_id(wire)); if (is_module_port) log(" Register is connected to module port.\n"); if (!looks_like_good_state_reg) log(" Users of register don't seem to benefit from recoding.\n"); if (has_init_attr) log(" Register has an initialization value.\n"); if (is_self_resetting) log(" Circuit seems to be self-resetting.\n"); } } struct FsmDetectPass : public Pass { FsmDetectPass() : Pass("fsm_detect", "finding FSMs in design") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" fsm_detect [selection]\n"); log("\n"); log("This pass detects finite state machines by identifying the state signal.\n"); log("The state signal is then marked by setting the attribute 'fsm_encoding'\n"); log("on the state signal to \"auto\".\n"); log("\n"); log("Existing 'fsm_encoding' attributes are not changed by this pass.\n"); log("\n"); log("Signals can be protected from being detected by this pass by setting the\n"); log("'fsm_encoding' attribute to \"none\".\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing FSM_DETECT pass (finding FSMs in design).\n"); extra_args(args, 1, design); CellTypes ct; ct.setup_internals(); ct.setup_internals_mem(); ct.setup_stdcells(); ct.setup_stdcells_mem(); for (auto &mod_it : design->modules_) { if (!design->selected(mod_it.second)) continue; module = mod_it.second; assign_map.set(module); sig2driver.clear(); sig2user.clear(); sig_at_port.clear(); for (auto &cell_it : module->cells_) for (auto &conn_it : cell_it.second->connections()) { if (ct.cell_output(cell_it.second->type, conn_it.first) || !ct.cell_known(cell_it.second->type)) { RTLIL::SigSpec sig = conn_it.second; assign_map.apply(sig); sig2driver.insert(sig, sig2driver_entry_t(cell_it.second, conn_it.first)); } if (!ct.cell_known(cell_it.second->type) || ct.cell_input(cell_it.second->type, conn_it.first)) { RTLIL::SigSpec sig = conn_it.second; assign_map.apply(sig); sig2user.insert(sig, sig2driver_entry_t(cell_it.second, conn_it.first)); } } for (auto &wire_it : module->wires_) if (wire_it.second->port_id != 0) sig_at_port.add(assign_map(RTLIL::SigSpec(wire_it.second))); for (auto &wire_it : module->wires_) if (design->selected(module, wire_it.second)) detect_fsm(wire_it.second); } assign_map.clear(); sig2driver.clear(); sig2user.clear(); muxtree_cells.clear(); } } FsmDetectPass; PRIVATE_NAMESPACE_END