/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN void aiger_encode(std::ostream &f, int x) { log_assert(x >= 0); while (x & ~0x7f) { f.put((x & 0x7f) | 0x80); x = x >> 7; } f.put(x); } struct AigerWriter { Module *module; bool zinit_mode; SigMap sigmap; dict init_map; pool input_bits, output_bits; dict not_map, ff_map, alias_map; dict> and_map; vector> asserts, assumes; vector> liveness, fairness; pool initstate_bits; vector> aig_gates; vector aig_latchin, aig_latchinit, aig_outputs; int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0; int aig_b = 0, aig_c = 0, aig_j = 0, aig_f = 0; dict aig_map; dict ordered_outputs; dict ordered_latches; dict init_inputs; int initstate_ff = 0; int mkgate(int a0, int a1) { aig_m++, aig_a++; aig_gates.push_back(a0 > a1 ? make_pair(a0, a1) : make_pair(a1, a0)); return 2*aig_m; } int bit2aig(SigBit bit) { auto it = aig_map.find(bit); if (it != aig_map.end()) { log_assert(it->second >= 0); return it->second; } // NB: Cannot use iterator returned from aig_map.insert() // since this function is called recursively int a = -1; if (not_map.count(bit)) { a = bit2aig(not_map.at(bit)) ^ 1; } else if (and_map.count(bit)) { auto args = and_map.at(bit); int a0 = bit2aig(args.first); int a1 = bit2aig(args.second); a = mkgate(a0, a1); } else if (alias_map.count(bit)) { a = bit2aig(alias_map.at(bit)); } else if (initstate_bits.count(bit)) { a = initstate_ff; } if (bit == State::Sx || bit == State::Sz) log_error("Design contains 'x' or 'z' bits. Use 'setundef' to replace those constants.\n"); log_assert(a >= 0); aig_map[bit] = a; return a; } AigerWriter(Module *module, bool zinit_mode, bool imode, bool omode, bool bmode, bool lmode) : module(module), zinit_mode(zinit_mode), sigmap(module) { pool undriven_bits; pool unused_bits; // promote public wires for (auto wire : module->wires()) if (wire->name[0] == '\\') sigmap.add(wire); // promote input wires for (auto wire : module->wires()) if (wire->port_input) sigmap.add(wire); // promote output wires for (auto wire : module->wires()) if (wire->port_output) sigmap.add(wire); for (auto wire : module->wires()) { if (wire->attributes.count(ID::init)) { SigSpec initsig = sigmap(wire); Const initval = wire->attributes.at(ID::init); for (int i = 0; i < GetSize(wire) && i < GetSize(initval); i++) if (initval[i] == State::S0 || initval[i] == State::S1) init_map[initsig[i]] = initval[i] == State::S1; } for (int i = 0; i < GetSize(wire); i++) { SigBit wirebit(wire, i); SigBit bit = sigmap(wirebit); if (bit.wire == nullptr) { if (wire->port_output) { aig_map[wirebit] = (bit == State::S1) ? 1 : 0; output_bits.insert(wirebit); } continue; } undriven_bits.insert(bit); unused_bits.insert(bit); if (wire->port_input) input_bits.insert(bit); if (wire->port_output) { if (bit != wirebit) alias_map[wirebit] = bit; output_bits.insert(wirebit); } } } for (auto bit : input_bits) undriven_bits.erase(bit); for (auto bit : output_bits) unused_bits.erase(bit); for (auto cell : module->cells()) { if (cell->type == ID($_NOT_)) { SigBit A = sigmap(cell->getPort(ID::A).as_bit()); SigBit Y = sigmap(cell->getPort(ID::Y).as_bit()); unused_bits.erase(A); undriven_bits.erase(Y); not_map[Y] = A; continue; } if (cell->type.in(ID($_FF_), ID($_DFF_N_), ID($_DFF_P_))) { SigBit D = sigmap(cell->getPort(ID::D).as_bit()); SigBit Q = sigmap(cell->getPort(ID::Q).as_bit()); unused_bits.erase(D); undriven_bits.erase(Q); ff_map[Q] = D; continue; } if (cell->type == ID($_AND_)) { SigBit A = sigmap(cell->getPort(ID::A).as_bit()); SigBit B = sigmap(cell->getPort(ID::B).as_bit()); SigBit Y = sigmap(cell->getPort(ID::Y).as_bit()); unused_bits.erase(A); unused_bits.erase(B); undriven_bits.erase(Y); and_map[Y] = make_pair(A, B); continue; } if (cell->type == ID($initstate)) { SigBit Y = sigmap(cell->getPort(ID::Y).as_bit()); undriven_bits.erase(Y); initstate_bits.insert(Y); continue; } if (cell->type == ID($assert)) { SigBit A = sigmap(cell->getPort(ID::A).as_bit()); SigBit EN = sigmap(cell->getPort(ID::EN).as_bit()); unused_bits.erase(A); unused_bits.erase(EN); asserts.push_back(make_pair(A, EN)); continue; } if (cell->type == ID($assume)) { SigBit A = sigmap(cell->getPort(ID::A).as_bit()); SigBit EN = sigmap(cell->getPort(ID::EN).as_bit()); unused_bits.erase(A); unused_bits.erase(EN); assumes.push_back(make_pair(A, EN)); continue; } if (cell->type == ID($live)) { SigBit A = sigmap(cell->getPort(ID::A).as_bit()); SigBit EN = sigmap(cell->getPort(ID::EN).as_bit()); unused_bits.erase(A); unused_bits.erase(EN); liveness.push_back(make_pair(A, EN)); continue; } if (cell->type == ID($fair)) { SigBit A = sigmap(cell->getPort(ID::A).as_bit()); SigBit EN = sigmap(cell->getPort(ID::EN).as_bit()); unused_bits.erase(A); unused_bits.erase(EN); fairness.push_back(make_pair(A, EN)); continue; } if (cell->type == ID($anyconst)) { for (auto bit : sigmap(cell->getPort(ID::Y))) { undriven_bits.erase(bit); ff_map[bit] = bit; } continue; } if (cell->type == ID($anyseq)) { for (auto bit : sigmap(cell->getPort(ID::Y))) { undriven_bits.erase(bit); input_bits.insert(bit); } continue; } log_error("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell)); } for (auto bit : unused_bits) undriven_bits.erase(bit); if (!undriven_bits.empty()) { undriven_bits.sort(); for (auto bit : undriven_bits) { log_warning("Treating undriven bit %s.%s like $anyseq.\n", log_id(module), log_signal(bit)); input_bits.insert(bit); } log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module)); } init_map.sort(); input_bits.sort(); output_bits.sort(); not_map.sort(); ff_map.sort(); and_map.sort(); aig_map[State::S0] = 0; aig_map[State::S1] = 1; for (auto bit : input_bits) { aig_m++, aig_i++; aig_map[bit] = 2*aig_m; } if (imode && input_bits.empty()) { aig_m++, aig_i++; } if (zinit_mode) { for (auto it : ff_map) { if (init_map.count(it.first)) continue; aig_m++, aig_i++; init_inputs[it.first] = 2*aig_m; } } int fair_live_inputs_cnt = GetSize(liveness); int fair_live_inputs_m = aig_m; aig_m += fair_live_inputs_cnt; aig_i += fair_live_inputs_cnt; for (auto it : ff_map) { aig_m++, aig_l++; aig_map[it.first] = 2*aig_m; ordered_latches[it.first] = aig_l-1; if (init_map.count(it.first) == 0) aig_latchinit.push_back(2); else aig_latchinit.push_back(init_map.at(it.first) ? 1 : 0); } if (!initstate_bits.empty() || !init_inputs.empty()) { aig_m++, aig_l++; initstate_ff = 2*aig_m+1; aig_latchinit.push_back(0); } int fair_live_latches_cnt = GetSize(fairness) + 2*GetSize(liveness); int fair_live_latches_m = aig_m; int fair_live_latches_l = aig_l; aig_m += fair_live_latches_cnt; aig_l += fair_live_latches_cnt; for (int i = 0; i < fair_live_latches_cnt; i++) aig_latchinit.push_back(0); if (zinit_mode) { for (auto it : ff_map) { int l = ordered_latches[it.first]; if (aig_latchinit.at(l) == 1) aig_map[it.first] ^= 1; if (aig_latchinit.at(l) == 2) { int gated_ffout = mkgate(aig_map[it.first], initstate_ff^1); int gated_initin = mkgate(init_inputs[it.first], initstate_ff); aig_map[it.first] = mkgate(gated_ffout^1, gated_initin^1)^1; } } } for (auto it : ff_map) { int a = bit2aig(it.second); int l = ordered_latches[it.first]; if (zinit_mode && aig_latchinit.at(l) == 1) aig_latchin.push_back(a ^ 1); else aig_latchin.push_back(a); } if (lmode && aig_l == 0) { aig_m++, aig_l++; aig_latchinit.push_back(0); aig_latchin.push_back(0); } if (!initstate_bits.empty() || !init_inputs.empty()) aig_latchin.push_back(1); for (auto bit : output_bits) { aig_o++; ordered_outputs[bit] = aig_o-1; aig_outputs.push_back(bit2aig(bit)); } if (omode && output_bits.empty()) { aig_o++; aig_outputs.push_back(0); } for (auto it : asserts) { aig_b++; int bit_a = bit2aig(it.first); int bit_en = bit2aig(it.second); aig_outputs.push_back(mkgate(bit_a^1, bit_en)); } if (bmode && asserts.empty()) { aig_b++; aig_outputs.push_back(0); } for (auto it : assumes) { aig_c++; int bit_a = bit2aig(it.first); int bit_en = bit2aig(it.second); aig_outputs.push_back(mkgate(bit_a^1, bit_en)^1); } for (auto it : liveness) { int input_m = ++fair_live_inputs_m; int latch_m1 = ++fair_live_latches_m; int latch_m2 = ++fair_live_latches_m; log_assert(GetSize(aig_latchin) == fair_live_latches_l); fair_live_latches_l += 2; int bit_a = bit2aig(it.first); int bit_en = bit2aig(it.second); int bit_s = 2*input_m; int bit_q1 = 2*latch_m1; int bit_q2 = 2*latch_m2; int bit_d1 = mkgate(mkgate(bit_s, bit_en)^1, bit_q1^1)^1; int bit_d2 = mkgate(mkgate(bit_d1, bit_a)^1, bit_q2^1)^1; aig_j++; aig_latchin.push_back(bit_d1); aig_latchin.push_back(bit_d2); aig_outputs.push_back(mkgate(bit_q1, bit_q2^1)); } for (auto it : fairness) { int latch_m = ++fair_live_latches_m; log_assert(GetSize(aig_latchin) == fair_live_latches_l); fair_live_latches_l += 1; int bit_a = bit2aig(it.first); int bit_en = bit2aig(it.second); int bit_q = 2*latch_m; aig_f++; aig_latchin.push_back(mkgate(mkgate(bit_q^1, bit_en^1)^1, bit_a^1)); aig_outputs.push_back(bit_q^1); } } void write_aiger(std::ostream &f, bool ascii_mode, bool miter_mode, bool symbols_mode) { int aig_obc = aig_o + aig_b + aig_c; int aig_obcj = aig_obc + aig_j; int aig_obcjf = aig_obcj + aig_f; log_assert(aig_m == aig_i + aig_l + aig_a); log_assert(aig_l == GetSize(aig_latchin)); log_assert(aig_l == GetSize(aig_latchinit)); log_assert(aig_obcjf == GetSize(aig_outputs)); if (miter_mode) { if (aig_b || aig_c || aig_j || aig_f) log_error("Running AIGER back-end in -miter mode, but design contains $assert, $assume, $live and/or $fair cells!\n"); f << stringf("%s %d %d %d 0 %d %d\n", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_a, aig_o); } else { f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a); if (aig_b || aig_c || aig_j || aig_f) f << stringf(" %d %d %d %d", aig_b, aig_c, aig_j, aig_f); f << stringf("\n"); } if (ascii_mode) { for (int i = 0; i < aig_i; i++) f << stringf("%d\n", 2*i+2); for (int i = 0; i < aig_l; i++) { if (zinit_mode || aig_latchinit.at(i) == 0) f << stringf("%d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i)); else if (aig_latchinit.at(i) == 1) f << stringf("%d %d 1\n", 2*(aig_i+i)+2, aig_latchin.at(i)); else if (aig_latchinit.at(i) == 2) f << stringf("%d %d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i), 2*(aig_i+i)+2); } for (int i = 0; i < aig_obc; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("1\n"); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obcj; i < aig_obcjf; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = 0; i < aig_a; i++) f << stringf("%d %d %d\n", 2*(aig_i+aig_l+i)+2, aig_gates.at(i).first, aig_gates.at(i).second); } else { for (int i = 0; i < aig_l; i++) { if (zinit_mode || aig_latchinit.at(i) == 0) f << stringf("%d\n", aig_latchin.at(i)); else if (aig_latchinit.at(i) == 1) f << stringf("%d 1\n", aig_latchin.at(i)); else if (aig_latchinit.at(i) == 2) f << stringf("%d %d\n", aig_latchin.at(i), 2*(aig_i+i)+2); } for (int i = 0; i < aig_obc; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("1\n"); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obcj; i < aig_obcjf; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = 0; i < aig_a; i++) { int lhs = 2*(aig_i+aig_l+i)+2; int rhs0 = aig_gates.at(i).first; int rhs1 = aig_gates.at(i).second; int delta0 = lhs - rhs0; int delta1 = rhs0 - rhs1; aiger_encode(f, delta0); aiger_encode(f, delta1); } } if (symbols_mode) { dict> symbols; for (auto wire : module->wires()) { if (wire->name[0] == '$') continue; SigSpec sig = sigmap(wire); for (int i = 0; i < GetSize(wire); i++) { if (sig[i].wire == nullptr) { if (wire->port_output) sig[i] = SigBit(wire, i); else continue; } if (wire->port_input) { int a = aig_map.at(sig[i]); log_assert((a & 1) == 0); if (GetSize(wire) != 1) symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("%s[%d]", log_id(wire), i)); else symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("%s", log_id(wire))); } if (wire->port_output) { int o = ordered_outputs.at(SigSpec(wire, i)); if (GetSize(wire) != 1) symbols[stringf("%c%d", miter_mode ? 'b' : 'o', o)].push_back(stringf("%s[%d]", log_id(wire), i)); else symbols[stringf("%c%d", miter_mode ? 'b' : 'o', o)].push_back(stringf("%s", log_id(wire))); } if (init_inputs.count(sig[i])) { int a = init_inputs.at(sig[i]); log_assert((a & 1) == 0); if (GetSize(wire) != 1) symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("init:%s[%d]", log_id(wire), i)); else symbols[stringf("i%d", (a >> 1)-1)].push_back(stringf("init:%s", log_id(wire))); } if (ordered_latches.count(sig[i])) { int l = ordered_latches.at(sig[i]); const char *p = (zinit_mode && (aig_latchinit.at(l) == 1)) ? "!" : ""; if (GetSize(wire) != 1) symbols[stringf("l%d", l)].push_back(stringf("%s%s[%d]", p, log_id(wire), i)); else symbols[stringf("l%d", l)].push_back(stringf("%s%s", p, log_id(wire))); } } } symbols.sort(); for (auto &sym : symbols) { f << sym.first; std::sort(sym.second.begin(), sym.second.end()); for (auto &s : sym.second) f << " " << s; f << std::endl; } } f << stringf("c\nGenerated by %s\n", yosys_version_str); } void write_map(std::ostream &f, bool verbose_map) { dict input_lines; dict init_lines; dict output_lines; dict latch_lines; dict wire_lines; for (auto wire : module->wires()) { if (!verbose_map && wire->name[0] == '$') continue; SigSpec sig = sigmap(wire); for (int i = 0; i < GetSize(wire); i++) { if (aig_map.count(sig[i]) == 0 || sig[i].wire == nullptr) continue; int a = aig_map.at(sig[i]); if (verbose_map) wire_lines[a] += stringf("wire %d %d %s\n", a, wire->start_offset+i, log_id(wire)); if (wire->port_input) { log_assert((a & 1) == 0); input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, wire->start_offset+i, log_id(wire)); } if (wire->port_output) { int o = ordered_outputs.at(sig[i]); output_lines[o] += stringf("output %d %d %s\n", o, wire->start_offset+i, log_id(wire)); } if (init_inputs.count(sig[i])) { int a = init_inputs.at(sig[i]); log_assert((a & 1) == 0); init_lines[a] += stringf("init %d %d %s\n", (a >> 1)-1, wire->start_offset+i, log_id(wire)); } if (ordered_latches.count(sig[i])) { int l = ordered_latches.at(sig[i]); if (zinit_mode && (aig_latchinit.at(l) == 1)) latch_lines[l] += stringf("invlatch %d %d %s\n", l, wire->start_offset+i, log_id(wire)); else latch_lines[l] += stringf("latch %d %d %s\n", l, wire->start_offset+i, log_id(wire)); } } } input_lines.sort(); for (auto &it : input_lines) f << it.second; init_lines.sort(); for (auto &it : init_lines) f << it.second; output_lines.sort(); for (auto &it : output_lines) f << it.second; latch_lines.sort(); for (auto &it : latch_lines) f << it.second; wire_lines.sort(); for (auto &it : wire_lines) f << it.second; } }; struct AigerBackend : public Backend { AigerBackend() : Backend("aiger", "write design to AIGER file") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_aiger [options] [filename]\n"); log("\n"); log("Write the current design to an AIGER file. The design must be flattened and\n"); log("must not contain any cell types except $_AND_, $_NOT_, simple FF types,\n"); log("$assert and $assume cells, and $initstate cells.\n"); log("\n"); log("$assert and $assume cells are converted to AIGER bad state properties and\n"); log("invariant constraints.\n"); log("\n"); log(" -ascii\n"); log(" write ASCII version of AIGER format\n"); log("\n"); log(" -zinit\n"); log(" convert FFs to zero-initialized FFs, adding additional inputs for\n"); log(" uninitialized FFs.\n"); log("\n"); log(" -miter\n"); log(" design outputs are AIGER bad state properties\n"); log("\n"); log(" -symbols\n"); log(" include a symbol table in the generated AIGER file\n"); log("\n"); log(" -map \n"); log(" write an extra file with port and latch symbols\n"); log("\n"); log(" -vmap \n"); log(" like -map, but more verbose\n"); log("\n"); log(" -I, -O, -B, -L\n"); log(" If the design contains no input/output/assert/flip-flop then create one\n"); log(" dummy input/output/bad_state-pin or latch to make the tools reading the\n"); log(" AIGER file happy.\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector args, RTLIL::Design *design) YS_OVERRIDE { bool ascii_mode = false; bool zinit_mode = false; bool miter_mode = false; bool symbols_mode = false; bool verbose_map = false; bool imode = false; bool omode = false; bool bmode = false; bool lmode = false; std::string map_filename; log_header(design, "Executing AIGER backend.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-ascii") { ascii_mode = true; continue; } if (args[argidx] == "-zinit") { zinit_mode = true; continue; } if (args[argidx] == "-miter") { miter_mode = true; continue; } if (args[argidx] == "-symbols") { symbols_mode = true; continue; } if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) { map_filename = args[++argidx]; continue; } if (map_filename.empty() && args[argidx] == "-vmap" && argidx+1 < args.size()) { map_filename = args[++argidx]; verbose_map = true; continue; } if (args[argidx] == "-I") { imode = true; continue; } if (args[argidx] == "-O") { omode = true; continue; } if (args[argidx] == "-B") { bmode = true; continue; } if (args[argidx] == "-L") { lmode = true; continue; } break; } extra_args(f, filename, args, argidx, !ascii_mode); Module *top_module = design->top_module(); if (top_module == nullptr) log_error("Can't find top module in current design!\n"); if (!design->selected_whole_module(top_module)) log_cmd_error("Can't handle partially selected module %s!\n", log_id(top_module)); if (!top_module->processes.empty()) log_error("Found unmapped processes in module %s: unmapped processes are not supported in AIGER backend!\n", log_id(top_module)); if (!top_module->memories.empty()) log_error("Found unmapped memories in module %s: unmapped memories are not supported in AIGER backend!\n", log_id(top_module)); AigerWriter writer(top_module, zinit_mode, imode, omode, bmode, lmode); writer.write_aiger(*f, ascii_mode, miter_mode, symbols_mode); if (!map_filename.empty()) { rewrite_filename(filename); std::ofstream mapf; mapf.open(map_filename.c_str(), std::ofstream::trunc); if (mapf.fail()) log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno)); writer.write_map(mapf, verbose_map); } } } AigerBackend; PRIVATE_NAMESPACE_END