diff options
Diffstat (limited to 'tests/openmsp430/rtl/omsp_frontend.v')
-rw-r--r-- | tests/openmsp430/rtl/omsp_frontend.v | 966 |
1 files changed, 0 insertions, 966 deletions
diff --git a/tests/openmsp430/rtl/omsp_frontend.v b/tests/openmsp430/rtl/omsp_frontend.v deleted file mode 100644 index 343944bd2..000000000 --- a/tests/openmsp430/rtl/omsp_frontend.v +++ /dev/null @@ -1,966 +0,0 @@ -//---------------------------------------------------------------------------- -// Copyright (C) 2009 , Olivier Girard -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions -// are met: -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// * Neither the name of the authors nor the names of its contributors -// may be used to endorse or promote products derived from this software -// without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE -// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, -// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF -// THE POSSIBILITY OF SUCH DAMAGE -// -//---------------------------------------------------------------------------- -// -// *File Name: omsp_frontend.v -// -// *Module Description: -// openMSP430 Instruction fetch and decode unit -// -// *Author(s): -// - Olivier Girard, olgirard@gmail.com -// -//---------------------------------------------------------------------------- -// $Rev: 134 $ -// $LastChangedBy: olivier.girard $ -// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $ -//---------------------------------------------------------------------------- -`ifdef OMSP_NO_INCLUDE -`else -`include "openMSP430_defines.v" -`endif - -module omsp_frontend ( - -// OUTPUTs - dbg_halt_st, // Halt/Run status from CPU - decode_noirq, // Frontend decode instruction - e_state, // Execution state - exec_done, // Execution completed - inst_ad, // Decoded Inst: destination addressing mode - inst_as, // Decoded Inst: source addressing mode - inst_alu, // ALU control signals - inst_bw, // Decoded Inst: byte width - inst_dest, // Decoded Inst: destination (one hot) - inst_dext, // Decoded Inst: destination extended instruction word - inst_irq_rst, // Decoded Inst: Reset interrupt - inst_jmp, // Decoded Inst: Conditional jump - inst_mov, // Decoded Inst: mov instruction - inst_sext, // Decoded Inst: source extended instruction word - inst_so, // Decoded Inst: Single-operand arithmetic - inst_src, // Decoded Inst: source (one hot) - inst_type, // Decoded Instruction type - irq_acc, // Interrupt request accepted (one-hot signal) - mab, // Frontend Memory address bus - mb_en, // Frontend Memory bus enable - mclk_enable, // Main System Clock enable - mclk_wkup, // Main System Clock wake-up (asynchronous) - nmi_acc, // Non-Maskable interrupt request accepted - pc, // Program counter - pc_nxt, // Next PC value (for CALL & IRQ) - -// INPUTs - cpu_en_s, // Enable CPU code execution (synchronous) - cpuoff, // Turns off the CPU - dbg_halt_cmd, // Halt CPU command - dbg_reg_sel, // Debug selected register for rd/wr access - fe_pmem_wait, // Frontend wait for Instruction fetch - gie, // General interrupt enable - irq, // Maskable interrupts - mclk, // Main system clock - mdb_in, // Frontend Memory data bus input - nmi_pnd, // Non-maskable interrupt pending - nmi_wkup, // NMI Wakeup - pc_sw, // Program counter software value - pc_sw_wr, // Program counter software write - puc_rst, // Main system reset - scan_enable, // Scan enable (active during scan shifting) - wdt_irq, // Watchdog-timer interrupt - wdt_wkup, // Watchdog Wakeup - wkup // System Wake-up (asynchronous) -); - -// OUTPUTs -//========= -output dbg_halt_st; // Halt/Run status from CPU -output decode_noirq; // Frontend decode instruction -output [3:0] e_state; // Execution state -output exec_done; // Execution completed -output [7:0] inst_ad; // Decoded Inst: destination addressing mode -output [7:0] inst_as; // Decoded Inst: source addressing mode -output [11:0] inst_alu; // ALU control signals -output inst_bw; // Decoded Inst: byte width -output [15:0] inst_dest; // Decoded Inst: destination (one hot) -output [15:0] inst_dext; // Decoded Inst: destination extended instruction word -output inst_irq_rst; // Decoded Inst: Reset interrupt -output [7:0] inst_jmp; // Decoded Inst: Conditional jump -output inst_mov; // Decoded Inst: mov instruction -output [15:0] inst_sext; // Decoded Inst: source extended instruction word -output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic -output [15:0] inst_src; // Decoded Inst: source (one hot) -output [2:0] inst_type; // Decoded Instruction type -output [13:0] irq_acc; // Interrupt request accepted (one-hot signal) -output [15:0] mab; // Frontend Memory address bus -output mb_en; // Frontend Memory bus enable -output mclk_enable; // Main System Clock enable -output mclk_wkup; // Main System Clock wake-up (asynchronous) -output nmi_acc; // Non-Maskable interrupt request accepted -output [15:0] pc; // Program counter -output [15:0] pc_nxt; // Next PC value (for CALL & IRQ) - -// INPUTs -//========= -input cpu_en_s; // Enable CPU code execution (synchronous) -input cpuoff; // Turns off the CPU -input dbg_halt_cmd; // Halt CPU command -input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access -input fe_pmem_wait; // Frontend wait for Instruction fetch -input gie; // General interrupt enable -input [13:0] irq; // Maskable interrupts -input mclk; // Main system clock -input [15:0] mdb_in; // Frontend Memory data bus input -input nmi_pnd; // Non-maskable interrupt pending -input nmi_wkup; // NMI Wakeup -input [15:0] pc_sw; // Program counter software value -input pc_sw_wr; // Program counter software write -input puc_rst; // Main system reset -input scan_enable; // Scan enable (active during scan shifting) -input wdt_irq; // Watchdog-timer interrupt -input wdt_wkup; // Watchdog Wakeup -input wkup; // System Wake-up (asynchronous) - - -//============================================================================= -// 1) UTILITY FUNCTIONS -//============================================================================= - -// 16 bits one-hot decoder -function [15:0] one_hot16; - input [3:0] binary; - begin - one_hot16 = 16'h0000; - one_hot16[binary] = 1'b1; - end -endfunction - -// 8 bits one-hot decoder -function [7:0] one_hot8; - input [2:0] binary; - begin - one_hot8 = 8'h00; - one_hot8[binary] = 1'b1; - end -endfunction - - -//============================================================================= -// 2) PARAMETER DEFINITIONS -//============================================================================= - -// -// 2.1) Instruction State machine definitons -//------------------------------------------- - -parameter I_IRQ_FETCH = `I_IRQ_FETCH; -parameter I_IRQ_DONE = `I_IRQ_DONE; -parameter I_DEC = `I_DEC; // New instruction ready for decode -parameter I_EXT1 = `I_EXT1; // 1st Extension word -parameter I_EXT2 = `I_EXT2; // 2nd Extension word -parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode - -// -// 2.2) Execution State machine definitons -//------------------------------------------- - -parameter E_IRQ_0 = `E_IRQ_0; -parameter E_IRQ_1 = `E_IRQ_1; -parameter E_IRQ_2 = `E_IRQ_2; -parameter E_IRQ_3 = `E_IRQ_3; -parameter E_IRQ_4 = `E_IRQ_4; -parameter E_SRC_AD = `E_SRC_AD; -parameter E_SRC_RD = `E_SRC_RD; -parameter E_SRC_WR = `E_SRC_WR; -parameter E_DST_AD = `E_DST_AD; -parameter E_DST_RD = `E_DST_RD; -parameter E_DST_WR = `E_DST_WR; -parameter E_EXEC = `E_EXEC; -parameter E_JUMP = `E_JUMP; -parameter E_IDLE = `E_IDLE; - - -//============================================================================= -// 3) FRONTEND STATE MACHINE -//============================================================================= - -// The wire "conv" is used as state bits to calculate the next response -reg [2:0] i_state; -reg [2:0] i_state_nxt; - -reg [1:0] inst_sz; -wire [1:0] inst_sz_nxt; -wire irq_detect; -wire [2:0] inst_type_nxt; -wire is_const; -reg [15:0] sconst_nxt; -reg [3:0] e_state_nxt; - -// CPU on/off through the debug interface or cpu_en port -wire cpu_halt_cmd = dbg_halt_cmd | ~cpu_en_s; - -// States Transitions -always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or - irq_detect or cpuoff or cpu_halt_cmd or e_state) - case(i_state) - I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_cmd) ? I_IRQ_FETCH : - (~cpuoff & ~cpu_halt_cmd) ? I_DEC : I_IDLE; - I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE; - I_IRQ_DONE : i_state_nxt = I_DEC; - I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH : - (cpuoff | cpu_halt_cmd) & exec_done ? I_IDLE : - cpu_halt_cmd & (e_state==E_IDLE) ? I_IDLE : - pc_sw_wr ? I_DEC : - ~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state - (inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed - I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC : - (inst_sz!=2'b01) ? I_EXT2 : I_DEC; - I_EXT2 : i_state_nxt = I_DEC; - // pragma coverage off - default : i_state_nxt = I_IRQ_FETCH; - // pragma coverage on - endcase - -// State machine -always @(posedge mclk or posedge puc_rst) - if (puc_rst) i_state <= I_IRQ_FETCH; - else i_state <= i_state_nxt; - -// Utility signals -wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE))); -wire decode = decode_noirq | irq_detect; -wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE); - -// Debug interface cpu status -reg dbg_halt_st; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) dbg_halt_st <= 1'b0; - else dbg_halt_st <= cpu_halt_cmd & (i_state_nxt==I_IDLE); - - -//============================================================================= -// 4) INTERRUPT HANDLING & SYSTEM WAKEUP -//============================================================================= - -// -// 4.1) INTERRUPT HANDLING -//----------------------------------------- - -// Detect reset interrupt -reg inst_irq_rst; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) inst_irq_rst <= 1'b1; - else if (exec_done) inst_irq_rst <= 1'b0; - -// Detect other interrupts -assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_cmd & ~dbg_halt_st & (exec_done | (i_state==I_IDLE)); - -`ifdef CLOCK_GATING -wire mclk_irq_num; -omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num), - .clk (mclk), .enable(irq_detect), .scan_enable(scan_enable)); -`else -wire mclk_irq_num = mclk; -`endif - -// Select interrupt vector -reg [3:0] irq_num; -always @(posedge mclk_irq_num or posedge puc_rst) - if (puc_rst) irq_num <= 4'hf; -`ifdef CLOCK_GATING - else irq_num <= nmi_pnd ? 4'he : -`else - else if (irq_detect) irq_num <= nmi_pnd ? 4'he : -`endif - irq[13] ? 4'hd : - irq[12] ? 4'hc : - irq[11] ? 4'hb : - (irq[10] | wdt_irq) ? 4'ha : - irq[9] ? 4'h9 : - irq[8] ? 4'h8 : - irq[7] ? 4'h7 : - irq[6] ? 4'h6 : - irq[5] ? 4'h5 : - irq[4] ? 4'h4 : - irq[3] ? 4'h3 : - irq[2] ? 4'h2 : - irq[1] ? 4'h1 : - irq[0] ? 4'h0 : 4'hf; - -wire [15:0] irq_addr = {11'h7ff, irq_num, 1'b0}; - -// Interrupt request accepted -wire [15:0] irq_acc_all = one_hot16(irq_num) & {16{(i_state==I_IRQ_FETCH)}}; -wire [13:0] irq_acc = irq_acc_all[13:0]; -wire nmi_acc = irq_acc_all[14]; - -// -// 4.2) SYSTEM WAKEUP -//----------------------------------------- -`ifdef CPUOFF_EN - -// Generate the main system clock enable signal - // Keep the clock running if: -wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing - // and if the CPU is enabled - // otherwise if: - ~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction - (i_state==I_IDLE) & // and execution state machines are all two - (e_state==E_IDLE)); // not idle. - - -// Wakeup condition from maskable interrupts -wire mirq_wkup; -omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie)); - -// Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled) -omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s)); - -`else - -// In the CPUOFF feature is disabled, the wake-up and enable signals are always 1 -assign mclk_wkup = 1'b1; -assign mclk_enable = 1'b1; -`endif - -//============================================================================= -// 5) FETCH INSTRUCTION -//============================================================================= - -// -// 5.1) PROGRAM COUNTER & MEMORY INTERFACE -//----------------------------------------- - -// Program counter -reg [15:0] pc; - -// Compute next PC value -wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0}; -wire [15:0] pc_nxt = pc_sw_wr ? pc_sw : - (i_state==I_IRQ_FETCH) ? irq_addr : - (i_state==I_IRQ_DONE) ? mdb_in : pc_incr; - -`ifdef CLOCK_GATING -wire pc_en = fetch | - pc_sw_wr | - (i_state==I_IRQ_FETCH) | - (i_state==I_IRQ_DONE); -wire mclk_pc; -omsp_clock_gate clock_gate_pc (.gclk(mclk_pc), - .clk (mclk), .enable(pc_en), .scan_enable(scan_enable)); -`else -wire mclk_pc = mclk; -`endif - -always @(posedge mclk_pc or posedge puc_rst) - if (puc_rst) pc <= 16'h0000; - else pc <= pc_nxt; - -// Check if ROM has been busy in order to retry ROM access -reg pmem_busy; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) pmem_busy <= 1'b0; - else pmem_busy <= fe_pmem_wait; - -// Memory interface -wire [15:0] mab = pc_nxt; -wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (dbg_halt_st & ~cpu_halt_cmd); - - -// -// 5.2) INSTRUCTION REGISTER -//-------------------------------- - -// Instruction register -wire [15:0] ir = mdb_in; - -// Detect if source extension word is required -wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]); - -// For the Symbolic addressing mode, add -2 to the extension word in order -// to make up for the PC address -wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) | - ((i_state==I_EXT2) & inst_ad[`SYMB]) | - ((i_state==I_EXT1) & ~inst_as[`SYMB] & - ~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000; - -wire [15:0] ext_nxt = ir + ext_incr; - -// Store source extension word -reg [15:0] inst_sext; - -`ifdef CLOCK_GATING -wire inst_sext_en = (decode & is_const) | - (decode & inst_type_nxt[`INST_JMP]) | - ((i_state==I_EXT1) & is_sext); -wire mclk_inst_sext; -omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext), - .clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable)); -`else -wire mclk_inst_sext = mclk; -`endif - -always @(posedge mclk_inst_sext or posedge puc_rst) - if (puc_rst) inst_sext <= 16'h0000; - else if (decode & is_const) inst_sext <= sconst_nxt; - else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0}; -`ifdef CLOCK_GATING - else inst_sext <= ext_nxt; -`else - else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt; -`endif - -// Source extension word is ready -wire inst_sext_rdy = (i_state==I_EXT1) & is_sext; - - -// Store destination extension word -reg [15:0] inst_dext; - -`ifdef CLOCK_GATING -wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) | - (i_state==I_EXT2); -wire mclk_inst_dext; -omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext), - .clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable)); -`else -wire mclk_inst_dext = mclk; -`endif - -always @(posedge mclk_inst_dext or posedge puc_rst) - if (puc_rst) inst_dext <= 16'h0000; - else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt; -`ifdef CLOCK_GATING - else inst_dext <= ext_nxt; -`else - else if (i_state==I_EXT2) inst_dext <= ext_nxt; -`endif - -// Destination extension word is ready -wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2)); - - -//============================================================================= -// 6) DECODE INSTRUCTION -//============================================================================= - -`ifdef CLOCK_GATING -wire mclk_decode; -omsp_clock_gate clock_gate_decode (.gclk(mclk_decode), - .clk (mclk), .enable(decode), .scan_enable(scan_enable)); -`else -wire mclk_decode = mclk; -`endif - -// -// 6.1) OPCODE: INSTRUCTION TYPE -//---------------------------------------- -// Instructions type is encoded in a one hot fashion as following: -// -// 3'b001: Single-operand arithmetic -// 3'b010: Conditional jump -// 3'b100: Two-operand arithmetic - -reg [2:0] inst_type; -assign inst_type_nxt = {(ir[15:14]!=2'b00), - (ir[15:13]==3'b001), - (ir[15:13]==3'b000)} & {3{~irq_detect}}; - -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_type <= 3'b000; -`ifdef CLOCK_GATING - else inst_type <= inst_type_nxt; -`else - else if (decode) inst_type <= inst_type_nxt; -`endif - -// -// 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC -//---------------------------------------- -// Instructions are encoded in a one hot fashion as following: -// -// 8'b00000001: RRC -// 8'b00000010: SWPB -// 8'b00000100: RRA -// 8'b00001000: SXT -// 8'b00010000: PUSH -// 8'b00100000: CALL -// 8'b01000000: RETI -// 8'b10000000: IRQ - -reg [7:0] inst_so; -wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}}); - -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_so <= 8'h00; -`ifdef CLOCK_GATING - else inst_so <= inst_so_nxt; -`else - else if (decode) inst_so <= inst_so_nxt; -`endif - -// -// 6.3) OPCODE: CONDITIONAL JUMP -//-------------------------------- -// Instructions are encoded in a one hot fashion as following: -// -// 8'b00000001: JNE/JNZ -// 8'b00000010: JEQ/JZ -// 8'b00000100: JNC/JLO -// 8'b00001000: JC/JHS -// 8'b00010000: JN -// 8'b00100000: JGE -// 8'b01000000: JL -// 8'b10000000: JMP - -reg [2:0] inst_jmp_bin; -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_jmp_bin <= 3'h0; -`ifdef CLOCK_GATING - else inst_jmp_bin <= ir[12:10]; -`else - else if (decode) inst_jmp_bin <= ir[12:10]; -`endif - -wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}}; - - -// -// 6.4) OPCODE: TWO-OPERAND ARITHMETIC -//------------------------------------- -// Instructions are encoded in a one hot fashion as following: -// -// 12'b000000000001: MOV -// 12'b000000000010: ADD -// 12'b000000000100: ADDC -// 12'b000000001000: SUBC -// 12'b000000010000: SUB -// 12'b000000100000: CMP -// 12'b000001000000: DADD -// 12'b000010000000: BIT -// 12'b000100000000: BIC -// 12'b001000000000: BIS -// 12'b010000000000: XOR -// 12'b100000000000: AND - -wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}}; -wire [11:0] inst_to_nxt = inst_to_1hot[15:4]; - -reg inst_mov; -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_mov <= 1'b0; -`ifdef CLOCK_GATING - else inst_mov <= inst_to_nxt[`MOV]; -`else - else if (decode) inst_mov <= inst_to_nxt[`MOV]; -`endif - - -// -// 6.5) SOURCE AND DESTINATION REGISTERS -//--------------------------------------- - -// Destination register -reg [3:0] inst_dest_bin; -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_dest_bin <= 4'h0; -`ifdef CLOCK_GATING - else inst_dest_bin <= ir[3:0]; -`else - else if (decode) inst_dest_bin <= ir[3:0]; -`endif - -wire [15:0] inst_dest = dbg_halt_st ? one_hot16(dbg_reg_sel) : - inst_type[`INST_JMP] ? 16'h0001 : - inst_so[`IRQ] | - inst_so[`PUSH] | - inst_so[`CALL] ? 16'h0002 : - one_hot16(inst_dest_bin); - - -// Source register -reg [3:0] inst_src_bin; -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_src_bin <= 4'h0; -`ifdef CLOCK_GATING - else inst_src_bin <= ir[11:8]; -`else - else if (decode) inst_src_bin <= ir[11:8]; -`endif - -wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) : - inst_so[`RETI] ? 16'h0002 : - inst_so[`IRQ] ? 16'h0001 : - inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000; - - -// -// 6.6) SOURCE ADDRESSING MODES -//-------------------------------- -// Source addressing modes are encoded in a one hot fashion as following: -// -// 13'b0000000000001: Register direct. -// 13'b0000000000010: Register indexed. -// 13'b0000000000100: Register indirect. -// 13'b0000000001000: Register indirect autoincrement. -// 13'b0000000010000: Symbolic (operand is in memory at address PC+x). -// 13'b0000000100000: Immediate (operand is next word in the instruction stream). -// 13'b0000001000000: Absolute (operand is in memory at address x). -// 13'b0000010000000: Constant 4. -// 13'b0000100000000: Constant 8. -// 13'b0001000000000: Constant 0. -// 13'b0010000000000: Constant 1. -// 13'b0100000000000: Constant 2. -// 13'b1000000000000: Constant -1. - -reg [12:0] inst_as_nxt; - -wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8]; - -always @(src_reg or ir or inst_type_nxt) - begin - if (inst_type_nxt[`INST_JMP]) - inst_as_nxt = 13'b0000000000001; - else if (src_reg==4'h3) // Addressing mode using R3 - case (ir[5:4]) - 2'b11 : inst_as_nxt = 13'b1000000000000; - 2'b10 : inst_as_nxt = 13'b0100000000000; - 2'b01 : inst_as_nxt = 13'b0010000000000; - default: inst_as_nxt = 13'b0001000000000; - endcase - else if (src_reg==4'h2) // Addressing mode using R2 - case (ir[5:4]) - 2'b11 : inst_as_nxt = 13'b0000100000000; - 2'b10 : inst_as_nxt = 13'b0000010000000; - 2'b01 : inst_as_nxt = 13'b0000001000000; - default: inst_as_nxt = 13'b0000000000001; - endcase - else if (src_reg==4'h0) // Addressing mode using R0 - case (ir[5:4]) - 2'b11 : inst_as_nxt = 13'b0000000100000; - 2'b10 : inst_as_nxt = 13'b0000000000100; - 2'b01 : inst_as_nxt = 13'b0000000010000; - default: inst_as_nxt = 13'b0000000000001; - endcase - else // General Addressing mode - case (ir[5:4]) - 2'b11 : inst_as_nxt = 13'b0000000001000; - 2'b10 : inst_as_nxt = 13'b0000000000100; - 2'b01 : inst_as_nxt = 13'b0000000000010; - default: inst_as_nxt = 13'b0000000000001; - endcase - end -assign is_const = |inst_as_nxt[12:7]; - -reg [7:0] inst_as; -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_as <= 8'h00; -`ifdef CLOCK_GATING - else inst_as <= {is_const, inst_as_nxt[6:0]}; -`else - else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]}; -`endif - - -// 13'b0000010000000: Constant 4. -// 13'b0000100000000: Constant 8. -// 13'b0001000000000: Constant 0. -// 13'b0010000000000: Constant 1. -// 13'b0100000000000: Constant 2. -// 13'b1000000000000: Constant -1. -always @(inst_as_nxt) - begin - if (inst_as_nxt[7]) sconst_nxt = 16'h0004; - else if (inst_as_nxt[8]) sconst_nxt = 16'h0008; - else if (inst_as_nxt[9]) sconst_nxt = 16'h0000; - else if (inst_as_nxt[10]) sconst_nxt = 16'h0001; - else if (inst_as_nxt[11]) sconst_nxt = 16'h0002; - else if (inst_as_nxt[12]) sconst_nxt = 16'hffff; - else sconst_nxt = 16'h0000; - end - - -// -// 6.7) DESTINATION ADDRESSING MODES -//----------------------------------- -// Destination addressing modes are encoded in a one hot fashion as following: -// -// 8'b00000001: Register direct. -// 8'b00000010: Register indexed. -// 8'b00010000: Symbolic (operand is in memory at address PC+x). -// 8'b01000000: Absolute (operand is in memory at address x). - -reg [7:0] inst_ad_nxt; - -wire [3:0] dest_reg = ir[3:0]; - -always @(dest_reg or ir or inst_type_nxt) - begin - if (~inst_type_nxt[`INST_TO]) - inst_ad_nxt = 8'b00000000; - else if (dest_reg==4'h2) // Addressing mode using R2 - case (ir[7]) - 1'b1 : inst_ad_nxt = 8'b01000000; - default: inst_ad_nxt = 8'b00000001; - endcase - else if (dest_reg==4'h0) // Addressing mode using R0 - case (ir[7]) - 1'b1 : inst_ad_nxt = 8'b00010000; - default: inst_ad_nxt = 8'b00000001; - endcase - else // General Addressing mode - case (ir[7]) - 1'b1 : inst_ad_nxt = 8'b00000010; - default: inst_ad_nxt = 8'b00000001; - endcase - end - -reg [7:0] inst_ad; -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_ad <= 8'h00; -`ifdef CLOCK_GATING - else inst_ad <= inst_ad_nxt; -`else - else if (decode) inst_ad <= inst_ad_nxt; -`endif - - -// -// 6.8) REMAINING INSTRUCTION DECODING -//------------------------------------- - -// Operation size -reg inst_bw; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) inst_bw <= 1'b0; - else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_cmd; - -// Extended instruction size -assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} + - {1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])}; -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_sz <= 2'b00; -`ifdef CLOCK_GATING - else inst_sz <= inst_sz_nxt; -`else - else if (decode) inst_sz <= inst_sz_nxt; -`endif - - -//============================================================================= -// 7) EXECUTION-UNIT STATE MACHINE -//============================================================================= - -// State machine registers -reg [3:0] e_state; - - -// State machine control signals -//-------------------------------- - -wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS]; -wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI]; -wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]; -wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS]; -wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI]; -wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI]; - -wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI]; - -reg exec_jmp; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) exec_jmp <= 1'b0; - else if (inst_branch & decode) exec_jmp <= 1'b1; - else if (e_state==E_JUMP) exec_jmp <= 1'b0; - -reg exec_dst_wr; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) exec_dst_wr <= 1'b0; - else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1; - else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0; - -reg exec_src_wr; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) exec_src_wr <= 1'b0; - else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1; - else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0; - -reg exec_dext_rdy; -always @(posedge mclk or posedge puc_rst) - if (puc_rst) exec_dext_rdy <= 1'b0; - else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0; - else if (inst_dext_rdy) exec_dext_rdy <= 1'b1; - -// Execution first state -wire [3:0] e_first_state = ~dbg_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 : - cpu_halt_cmd | (i_state==I_IDLE) ? E_IDLE : - cpuoff ? E_IDLE : - src_acalc_pre ? E_SRC_AD : - src_rd_pre ? E_SRC_RD : - dst_acalc_pre ? E_DST_AD : - dst_rd_pre ? E_DST_RD : E_EXEC; - - -// State machine -//-------------------------------- - -// States Transitions -always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or - inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or - e_first_state or exec_src_wr) - case(e_state) - E_IDLE : e_state_nxt = e_first_state; - E_IRQ_0 : e_state_nxt = E_IRQ_1; - E_IRQ_1 : e_state_nxt = E_IRQ_2; - E_IRQ_2 : e_state_nxt = E_IRQ_3; - E_IRQ_3 : e_state_nxt = E_IRQ_4; - E_IRQ_4 : e_state_nxt = E_EXEC; - - E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD; - - E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD : - dst_rd ? E_DST_RD : E_EXEC; - - E_DST_AD : e_state_nxt = (inst_dext_rdy | - exec_dext_rdy) ? E_DST_RD : E_DST_AD; - - E_DST_RD : e_state_nxt = E_EXEC; - - E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR : - exec_jmp ? E_JUMP : - exec_src_wr ? E_SRC_WR : e_first_state; - - E_JUMP : e_state_nxt = e_first_state; - E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state; - E_SRC_WR : e_state_nxt = e_first_state; - // pragma coverage off - default : e_state_nxt = E_IRQ_0; - // pragma coverage on - endcase - -// State machine -always @(posedge mclk or posedge puc_rst) - if (puc_rst) e_state <= E_IRQ_1; - else e_state <= e_state_nxt; - - -// Frontend State machine control signals -//---------------------------------------- - -wire exec_done = exec_jmp ? (e_state==E_JUMP) : - exec_dst_wr ? (e_state==E_DST_WR) : - exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC); - - -//============================================================================= -// 8) EXECUTION-UNIT STATE CONTROL -//============================================================================= - -// -// 8.1) ALU CONTROL SIGNALS -//------------------------------------- -// -// 12'b000000000001: Enable ALU source inverter -// 12'b000000000010: Enable Incrementer -// 12'b000000000100: Enable Incrementer on carry bit -// 12'b000000001000: Select Adder -// 12'b000000010000: Select AND -// 12'b000000100000: Select OR -// 12'b000001000000: Select XOR -// 12'b000010000000: Select DADD -// 12'b000100000000: Update N, Z & C (C=~Z) -// 12'b001000000000: Update all status bits -// 12'b010000000000: Update status bit for XOR instruction -// 12'b100000000000: Don't write to destination - -reg [11:0] inst_alu; - -wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | - inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ; - -wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP]; - -wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] | - inst_to_nxt[`SUBC]; - -wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] | - inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | - inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] | - inst_so_nxt[`RETI]; - - -wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] | - inst_to_nxt[`BIT]; - -wire alu_or = inst_to_nxt[`BIS]; - -wire alu_xor = inst_to_nxt[`XOR]; - -wire alu_dadd = inst_to_nxt[`DADD]; - -wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] | - inst_so_nxt[`SXT]; - -wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] | - inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] | - inst_to_nxt[`CMP] | inst_to_nxt[`DADD] | - inst_to_nxt[`BIT] | inst_to_nxt[`XOR] | - inst_to_nxt[`AND] | - inst_so_nxt[`RRC] | inst_so_nxt[`RRA] | - inst_so_nxt[`SXT]; - -wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA]; - -wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT]; - -wire [11:0] inst_alu_nxt = {exec_no_wr, - alu_shift, - alu_stat_f, - alu_stat_7, - alu_dadd, - alu_xor, - alu_or, - alu_and, - alu_add, - alu_inc_c, - alu_inc, - alu_src_inv}; - -always @(posedge mclk_decode or posedge puc_rst) - if (puc_rst) inst_alu <= 12'h000; -`ifdef CLOCK_GATING - else inst_alu <= inst_alu_nxt; -`else - else if (decode) inst_alu <= inst_alu_nxt; -`endif - - -endmodule // omsp_frontend - -`ifdef OMSP_NO_INCLUDE -`else -`include "openMSP430_undefines.v" -`endif |