aboutsummaryrefslogtreecommitdiffstats
path: root/tests/openmsp430/rtl/omsp_frontend.v
diff options
context:
space:
mode:
Diffstat (limited to 'tests/openmsp430/rtl/omsp_frontend.v')
-rw-r--r--tests/openmsp430/rtl/omsp_frontend.v966
1 files changed, 0 insertions, 966 deletions
diff --git a/tests/openmsp430/rtl/omsp_frontend.v b/tests/openmsp430/rtl/omsp_frontend.v
deleted file mode 100644
index 343944bd2..000000000
--- a/tests/openmsp430/rtl/omsp_frontend.v
+++ /dev/null
@@ -1,966 +0,0 @@
-//----------------------------------------------------------------------------
-// Copyright (C) 2009 , Olivier Girard
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions
-// are met:
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-// * Neither the name of the authors nor the names of its contributors
-// may be used to endorse or promote products derived from this software
-// without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
-// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
-// THE POSSIBILITY OF SUCH DAMAGE
-//
-//----------------------------------------------------------------------------
-//
-// *File Name: omsp_frontend.v
-//
-// *Module Description:
-// openMSP430 Instruction fetch and decode unit
-//
-// *Author(s):
-// - Olivier Girard, olgirard@gmail.com
-//
-//----------------------------------------------------------------------------
-// $Rev: 134 $
-// $LastChangedBy: olivier.girard $
-// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
-//----------------------------------------------------------------------------
-`ifdef OMSP_NO_INCLUDE
-`else
-`include "openMSP430_defines.v"
-`endif
-
-module omsp_frontend (
-
-// OUTPUTs
- dbg_halt_st, // Halt/Run status from CPU
- decode_noirq, // Frontend decode instruction
- e_state, // Execution state
- exec_done, // Execution completed
- inst_ad, // Decoded Inst: destination addressing mode
- inst_as, // Decoded Inst: source addressing mode
- inst_alu, // ALU control signals
- inst_bw, // Decoded Inst: byte width
- inst_dest, // Decoded Inst: destination (one hot)
- inst_dext, // Decoded Inst: destination extended instruction word
- inst_irq_rst, // Decoded Inst: Reset interrupt
- inst_jmp, // Decoded Inst: Conditional jump
- inst_mov, // Decoded Inst: mov instruction
- inst_sext, // Decoded Inst: source extended instruction word
- inst_so, // Decoded Inst: Single-operand arithmetic
- inst_src, // Decoded Inst: source (one hot)
- inst_type, // Decoded Instruction type
- irq_acc, // Interrupt request accepted (one-hot signal)
- mab, // Frontend Memory address bus
- mb_en, // Frontend Memory bus enable
- mclk_enable, // Main System Clock enable
- mclk_wkup, // Main System Clock wake-up (asynchronous)
- nmi_acc, // Non-Maskable interrupt request accepted
- pc, // Program counter
- pc_nxt, // Next PC value (for CALL & IRQ)
-
-// INPUTs
- cpu_en_s, // Enable CPU code execution (synchronous)
- cpuoff, // Turns off the CPU
- dbg_halt_cmd, // Halt CPU command
- dbg_reg_sel, // Debug selected register for rd/wr access
- fe_pmem_wait, // Frontend wait for Instruction fetch
- gie, // General interrupt enable
- irq, // Maskable interrupts
- mclk, // Main system clock
- mdb_in, // Frontend Memory data bus input
- nmi_pnd, // Non-maskable interrupt pending
- nmi_wkup, // NMI Wakeup
- pc_sw, // Program counter software value
- pc_sw_wr, // Program counter software write
- puc_rst, // Main system reset
- scan_enable, // Scan enable (active during scan shifting)
- wdt_irq, // Watchdog-timer interrupt
- wdt_wkup, // Watchdog Wakeup
- wkup // System Wake-up (asynchronous)
-);
-
-// OUTPUTs
-//=========
-output dbg_halt_st; // Halt/Run status from CPU
-output decode_noirq; // Frontend decode instruction
-output [3:0] e_state; // Execution state
-output exec_done; // Execution completed
-output [7:0] inst_ad; // Decoded Inst: destination addressing mode
-output [7:0] inst_as; // Decoded Inst: source addressing mode
-output [11:0] inst_alu; // ALU control signals
-output inst_bw; // Decoded Inst: byte width
-output [15:0] inst_dest; // Decoded Inst: destination (one hot)
-output [15:0] inst_dext; // Decoded Inst: destination extended instruction word
-output inst_irq_rst; // Decoded Inst: Reset interrupt
-output [7:0] inst_jmp; // Decoded Inst: Conditional jump
-output inst_mov; // Decoded Inst: mov instruction
-output [15:0] inst_sext; // Decoded Inst: source extended instruction word
-output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
-output [15:0] inst_src; // Decoded Inst: source (one hot)
-output [2:0] inst_type; // Decoded Instruction type
-output [13:0] irq_acc; // Interrupt request accepted (one-hot signal)
-output [15:0] mab; // Frontend Memory address bus
-output mb_en; // Frontend Memory bus enable
-output mclk_enable; // Main System Clock enable
-output mclk_wkup; // Main System Clock wake-up (asynchronous)
-output nmi_acc; // Non-Maskable interrupt request accepted
-output [15:0] pc; // Program counter
-output [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
-
-// INPUTs
-//=========
-input cpu_en_s; // Enable CPU code execution (synchronous)
-input cpuoff; // Turns off the CPU
-input dbg_halt_cmd; // Halt CPU command
-input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access
-input fe_pmem_wait; // Frontend wait for Instruction fetch
-input gie; // General interrupt enable
-input [13:0] irq; // Maskable interrupts
-input mclk; // Main system clock
-input [15:0] mdb_in; // Frontend Memory data bus input
-input nmi_pnd; // Non-maskable interrupt pending
-input nmi_wkup; // NMI Wakeup
-input [15:0] pc_sw; // Program counter software value
-input pc_sw_wr; // Program counter software write
-input puc_rst; // Main system reset
-input scan_enable; // Scan enable (active during scan shifting)
-input wdt_irq; // Watchdog-timer interrupt
-input wdt_wkup; // Watchdog Wakeup
-input wkup; // System Wake-up (asynchronous)
-
-
-//=============================================================================
-// 1) UTILITY FUNCTIONS
-//=============================================================================
-
-// 16 bits one-hot decoder
-function [15:0] one_hot16;
- input [3:0] binary;
- begin
- one_hot16 = 16'h0000;
- one_hot16[binary] = 1'b1;
- end
-endfunction
-
-// 8 bits one-hot decoder
-function [7:0] one_hot8;
- input [2:0] binary;
- begin
- one_hot8 = 8'h00;
- one_hot8[binary] = 1'b1;
- end
-endfunction
-
-
-//=============================================================================
-// 2) PARAMETER DEFINITIONS
-//=============================================================================
-
-//
-// 2.1) Instruction State machine definitons
-//-------------------------------------------
-
-parameter I_IRQ_FETCH = `I_IRQ_FETCH;
-parameter I_IRQ_DONE = `I_IRQ_DONE;
-parameter I_DEC = `I_DEC; // New instruction ready for decode
-parameter I_EXT1 = `I_EXT1; // 1st Extension word
-parameter I_EXT2 = `I_EXT2; // 2nd Extension word
-parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode
-
-//
-// 2.2) Execution State machine definitons
-//-------------------------------------------
-
-parameter E_IRQ_0 = `E_IRQ_0;
-parameter E_IRQ_1 = `E_IRQ_1;
-parameter E_IRQ_2 = `E_IRQ_2;
-parameter E_IRQ_3 = `E_IRQ_3;
-parameter E_IRQ_4 = `E_IRQ_4;
-parameter E_SRC_AD = `E_SRC_AD;
-parameter E_SRC_RD = `E_SRC_RD;
-parameter E_SRC_WR = `E_SRC_WR;
-parameter E_DST_AD = `E_DST_AD;
-parameter E_DST_RD = `E_DST_RD;
-parameter E_DST_WR = `E_DST_WR;
-parameter E_EXEC = `E_EXEC;
-parameter E_JUMP = `E_JUMP;
-parameter E_IDLE = `E_IDLE;
-
-
-//=============================================================================
-// 3) FRONTEND STATE MACHINE
-//=============================================================================
-
-// The wire "conv" is used as state bits to calculate the next response
-reg [2:0] i_state;
-reg [2:0] i_state_nxt;
-
-reg [1:0] inst_sz;
-wire [1:0] inst_sz_nxt;
-wire irq_detect;
-wire [2:0] inst_type_nxt;
-wire is_const;
-reg [15:0] sconst_nxt;
-reg [3:0] e_state_nxt;
-
-// CPU on/off through the debug interface or cpu_en port
-wire cpu_halt_cmd = dbg_halt_cmd | ~cpu_en_s;
-
-// States Transitions
-always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or
- irq_detect or cpuoff or cpu_halt_cmd or e_state)
- case(i_state)
- I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_cmd) ? I_IRQ_FETCH :
- (~cpuoff & ~cpu_halt_cmd) ? I_DEC : I_IDLE;
- I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE;
- I_IRQ_DONE : i_state_nxt = I_DEC;
- I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH :
- (cpuoff | cpu_halt_cmd) & exec_done ? I_IDLE :
- cpu_halt_cmd & (e_state==E_IDLE) ? I_IDLE :
- pc_sw_wr ? I_DEC :
- ~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state
- (inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed
- I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC :
- (inst_sz!=2'b01) ? I_EXT2 : I_DEC;
- I_EXT2 : i_state_nxt = I_DEC;
- // pragma coverage off
- default : i_state_nxt = I_IRQ_FETCH;
- // pragma coverage on
- endcase
-
-// State machine
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) i_state <= I_IRQ_FETCH;
- else i_state <= i_state_nxt;
-
-// Utility signals
-wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE)));
-wire decode = decode_noirq | irq_detect;
-wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE);
-
-// Debug interface cpu status
-reg dbg_halt_st;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) dbg_halt_st <= 1'b0;
- else dbg_halt_st <= cpu_halt_cmd & (i_state_nxt==I_IDLE);
-
-
-//=============================================================================
-// 4) INTERRUPT HANDLING & SYSTEM WAKEUP
-//=============================================================================
-
-//
-// 4.1) INTERRUPT HANDLING
-//-----------------------------------------
-
-// Detect reset interrupt
-reg inst_irq_rst;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) inst_irq_rst <= 1'b1;
- else if (exec_done) inst_irq_rst <= 1'b0;
-
-// Detect other interrupts
-assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_cmd & ~dbg_halt_st & (exec_done | (i_state==I_IDLE));
-
-`ifdef CLOCK_GATING
-wire mclk_irq_num;
-omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num),
- .clk (mclk), .enable(irq_detect), .scan_enable(scan_enable));
-`else
-wire mclk_irq_num = mclk;
-`endif
-
-// Select interrupt vector
-reg [3:0] irq_num;
-always @(posedge mclk_irq_num or posedge puc_rst)
- if (puc_rst) irq_num <= 4'hf;
-`ifdef CLOCK_GATING
- else irq_num <= nmi_pnd ? 4'he :
-`else
- else if (irq_detect) irq_num <= nmi_pnd ? 4'he :
-`endif
- irq[13] ? 4'hd :
- irq[12] ? 4'hc :
- irq[11] ? 4'hb :
- (irq[10] | wdt_irq) ? 4'ha :
- irq[9] ? 4'h9 :
- irq[8] ? 4'h8 :
- irq[7] ? 4'h7 :
- irq[6] ? 4'h6 :
- irq[5] ? 4'h5 :
- irq[4] ? 4'h4 :
- irq[3] ? 4'h3 :
- irq[2] ? 4'h2 :
- irq[1] ? 4'h1 :
- irq[0] ? 4'h0 : 4'hf;
-
-wire [15:0] irq_addr = {11'h7ff, irq_num, 1'b0};
-
-// Interrupt request accepted
-wire [15:0] irq_acc_all = one_hot16(irq_num) & {16{(i_state==I_IRQ_FETCH)}};
-wire [13:0] irq_acc = irq_acc_all[13:0];
-wire nmi_acc = irq_acc_all[14];
-
-//
-// 4.2) SYSTEM WAKEUP
-//-----------------------------------------
-`ifdef CPUOFF_EN
-
-// Generate the main system clock enable signal
- // Keep the clock running if:
-wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing
- // and if the CPU is enabled
- // otherwise if:
- ~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction
- (i_state==I_IDLE) & // and execution state machines are all two
- (e_state==E_IDLE)); // not idle.
-
-
-// Wakeup condition from maskable interrupts
-wire mirq_wkup;
-omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie));
-
-// Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled)
-omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s));
-
-`else
-
-// In the CPUOFF feature is disabled, the wake-up and enable signals are always 1
-assign mclk_wkup = 1'b1;
-assign mclk_enable = 1'b1;
-`endif
-
-//=============================================================================
-// 5) FETCH INSTRUCTION
-//=============================================================================
-
-//
-// 5.1) PROGRAM COUNTER & MEMORY INTERFACE
-//-----------------------------------------
-
-// Program counter
-reg [15:0] pc;
-
-// Compute next PC value
-wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0};
-wire [15:0] pc_nxt = pc_sw_wr ? pc_sw :
- (i_state==I_IRQ_FETCH) ? irq_addr :
- (i_state==I_IRQ_DONE) ? mdb_in : pc_incr;
-
-`ifdef CLOCK_GATING
-wire pc_en = fetch |
- pc_sw_wr |
- (i_state==I_IRQ_FETCH) |
- (i_state==I_IRQ_DONE);
-wire mclk_pc;
-omsp_clock_gate clock_gate_pc (.gclk(mclk_pc),
- .clk (mclk), .enable(pc_en), .scan_enable(scan_enable));
-`else
-wire mclk_pc = mclk;
-`endif
-
-always @(posedge mclk_pc or posedge puc_rst)
- if (puc_rst) pc <= 16'h0000;
- else pc <= pc_nxt;
-
-// Check if ROM has been busy in order to retry ROM access
-reg pmem_busy;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) pmem_busy <= 1'b0;
- else pmem_busy <= fe_pmem_wait;
-
-// Memory interface
-wire [15:0] mab = pc_nxt;
-wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (dbg_halt_st & ~cpu_halt_cmd);
-
-
-//
-// 5.2) INSTRUCTION REGISTER
-//--------------------------------
-
-// Instruction register
-wire [15:0] ir = mdb_in;
-
-// Detect if source extension word is required
-wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]);
-
-// For the Symbolic addressing mode, add -2 to the extension word in order
-// to make up for the PC address
-wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) |
- ((i_state==I_EXT2) & inst_ad[`SYMB]) |
- ((i_state==I_EXT1) & ~inst_as[`SYMB] &
- ~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000;
-
-wire [15:0] ext_nxt = ir + ext_incr;
-
-// Store source extension word
-reg [15:0] inst_sext;
-
-`ifdef CLOCK_GATING
-wire inst_sext_en = (decode & is_const) |
- (decode & inst_type_nxt[`INST_JMP]) |
- ((i_state==I_EXT1) & is_sext);
-wire mclk_inst_sext;
-omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext),
- .clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable));
-`else
-wire mclk_inst_sext = mclk;
-`endif
-
-always @(posedge mclk_inst_sext or posedge puc_rst)
- if (puc_rst) inst_sext <= 16'h0000;
- else if (decode & is_const) inst_sext <= sconst_nxt;
- else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0};
-`ifdef CLOCK_GATING
- else inst_sext <= ext_nxt;
-`else
- else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt;
-`endif
-
-// Source extension word is ready
-wire inst_sext_rdy = (i_state==I_EXT1) & is_sext;
-
-
-// Store destination extension word
-reg [15:0] inst_dext;
-
-`ifdef CLOCK_GATING
-wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) |
- (i_state==I_EXT2);
-wire mclk_inst_dext;
-omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext),
- .clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable));
-`else
-wire mclk_inst_dext = mclk;
-`endif
-
-always @(posedge mclk_inst_dext or posedge puc_rst)
- if (puc_rst) inst_dext <= 16'h0000;
- else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt;
-`ifdef CLOCK_GATING
- else inst_dext <= ext_nxt;
-`else
- else if (i_state==I_EXT2) inst_dext <= ext_nxt;
-`endif
-
-// Destination extension word is ready
-wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2));
-
-
-//=============================================================================
-// 6) DECODE INSTRUCTION
-//=============================================================================
-
-`ifdef CLOCK_GATING
-wire mclk_decode;
-omsp_clock_gate clock_gate_decode (.gclk(mclk_decode),
- .clk (mclk), .enable(decode), .scan_enable(scan_enable));
-`else
-wire mclk_decode = mclk;
-`endif
-
-//
-// 6.1) OPCODE: INSTRUCTION TYPE
-//----------------------------------------
-// Instructions type is encoded in a one hot fashion as following:
-//
-// 3'b001: Single-operand arithmetic
-// 3'b010: Conditional jump
-// 3'b100: Two-operand arithmetic
-
-reg [2:0] inst_type;
-assign inst_type_nxt = {(ir[15:14]!=2'b00),
- (ir[15:13]==3'b001),
- (ir[15:13]==3'b000)} & {3{~irq_detect}};
-
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_type <= 3'b000;
-`ifdef CLOCK_GATING
- else inst_type <= inst_type_nxt;
-`else
- else if (decode) inst_type <= inst_type_nxt;
-`endif
-
-//
-// 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC
-//----------------------------------------
-// Instructions are encoded in a one hot fashion as following:
-//
-// 8'b00000001: RRC
-// 8'b00000010: SWPB
-// 8'b00000100: RRA
-// 8'b00001000: SXT
-// 8'b00010000: PUSH
-// 8'b00100000: CALL
-// 8'b01000000: RETI
-// 8'b10000000: IRQ
-
-reg [7:0] inst_so;
-wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}});
-
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_so <= 8'h00;
-`ifdef CLOCK_GATING
- else inst_so <= inst_so_nxt;
-`else
- else if (decode) inst_so <= inst_so_nxt;
-`endif
-
-//
-// 6.3) OPCODE: CONDITIONAL JUMP
-//--------------------------------
-// Instructions are encoded in a one hot fashion as following:
-//
-// 8'b00000001: JNE/JNZ
-// 8'b00000010: JEQ/JZ
-// 8'b00000100: JNC/JLO
-// 8'b00001000: JC/JHS
-// 8'b00010000: JN
-// 8'b00100000: JGE
-// 8'b01000000: JL
-// 8'b10000000: JMP
-
-reg [2:0] inst_jmp_bin;
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_jmp_bin <= 3'h0;
-`ifdef CLOCK_GATING
- else inst_jmp_bin <= ir[12:10];
-`else
- else if (decode) inst_jmp_bin <= ir[12:10];
-`endif
-
-wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}};
-
-
-//
-// 6.4) OPCODE: TWO-OPERAND ARITHMETIC
-//-------------------------------------
-// Instructions are encoded in a one hot fashion as following:
-//
-// 12'b000000000001: MOV
-// 12'b000000000010: ADD
-// 12'b000000000100: ADDC
-// 12'b000000001000: SUBC
-// 12'b000000010000: SUB
-// 12'b000000100000: CMP
-// 12'b000001000000: DADD
-// 12'b000010000000: BIT
-// 12'b000100000000: BIC
-// 12'b001000000000: BIS
-// 12'b010000000000: XOR
-// 12'b100000000000: AND
-
-wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}};
-wire [11:0] inst_to_nxt = inst_to_1hot[15:4];
-
-reg inst_mov;
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_mov <= 1'b0;
-`ifdef CLOCK_GATING
- else inst_mov <= inst_to_nxt[`MOV];
-`else
- else if (decode) inst_mov <= inst_to_nxt[`MOV];
-`endif
-
-
-//
-// 6.5) SOURCE AND DESTINATION REGISTERS
-//---------------------------------------
-
-// Destination register
-reg [3:0] inst_dest_bin;
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_dest_bin <= 4'h0;
-`ifdef CLOCK_GATING
- else inst_dest_bin <= ir[3:0];
-`else
- else if (decode) inst_dest_bin <= ir[3:0];
-`endif
-
-wire [15:0] inst_dest = dbg_halt_st ? one_hot16(dbg_reg_sel) :
- inst_type[`INST_JMP] ? 16'h0001 :
- inst_so[`IRQ] |
- inst_so[`PUSH] |
- inst_so[`CALL] ? 16'h0002 :
- one_hot16(inst_dest_bin);
-
-
-// Source register
-reg [3:0] inst_src_bin;
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_src_bin <= 4'h0;
-`ifdef CLOCK_GATING
- else inst_src_bin <= ir[11:8];
-`else
- else if (decode) inst_src_bin <= ir[11:8];
-`endif
-
-wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) :
- inst_so[`RETI] ? 16'h0002 :
- inst_so[`IRQ] ? 16'h0001 :
- inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000;
-
-
-//
-// 6.6) SOURCE ADDRESSING MODES
-//--------------------------------
-// Source addressing modes are encoded in a one hot fashion as following:
-//
-// 13'b0000000000001: Register direct.
-// 13'b0000000000010: Register indexed.
-// 13'b0000000000100: Register indirect.
-// 13'b0000000001000: Register indirect autoincrement.
-// 13'b0000000010000: Symbolic (operand is in memory at address PC+x).
-// 13'b0000000100000: Immediate (operand is next word in the instruction stream).
-// 13'b0000001000000: Absolute (operand is in memory at address x).
-// 13'b0000010000000: Constant 4.
-// 13'b0000100000000: Constant 8.
-// 13'b0001000000000: Constant 0.
-// 13'b0010000000000: Constant 1.
-// 13'b0100000000000: Constant 2.
-// 13'b1000000000000: Constant -1.
-
-reg [12:0] inst_as_nxt;
-
-wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8];
-
-always @(src_reg or ir or inst_type_nxt)
- begin
- if (inst_type_nxt[`INST_JMP])
- inst_as_nxt = 13'b0000000000001;
- else if (src_reg==4'h3) // Addressing mode using R3
- case (ir[5:4])
- 2'b11 : inst_as_nxt = 13'b1000000000000;
- 2'b10 : inst_as_nxt = 13'b0100000000000;
- 2'b01 : inst_as_nxt = 13'b0010000000000;
- default: inst_as_nxt = 13'b0001000000000;
- endcase
- else if (src_reg==4'h2) // Addressing mode using R2
- case (ir[5:4])
- 2'b11 : inst_as_nxt = 13'b0000100000000;
- 2'b10 : inst_as_nxt = 13'b0000010000000;
- 2'b01 : inst_as_nxt = 13'b0000001000000;
- default: inst_as_nxt = 13'b0000000000001;
- endcase
- else if (src_reg==4'h0) // Addressing mode using R0
- case (ir[5:4])
- 2'b11 : inst_as_nxt = 13'b0000000100000;
- 2'b10 : inst_as_nxt = 13'b0000000000100;
- 2'b01 : inst_as_nxt = 13'b0000000010000;
- default: inst_as_nxt = 13'b0000000000001;
- endcase
- else // General Addressing mode
- case (ir[5:4])
- 2'b11 : inst_as_nxt = 13'b0000000001000;
- 2'b10 : inst_as_nxt = 13'b0000000000100;
- 2'b01 : inst_as_nxt = 13'b0000000000010;
- default: inst_as_nxt = 13'b0000000000001;
- endcase
- end
-assign is_const = |inst_as_nxt[12:7];
-
-reg [7:0] inst_as;
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_as <= 8'h00;
-`ifdef CLOCK_GATING
- else inst_as <= {is_const, inst_as_nxt[6:0]};
-`else
- else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]};
-`endif
-
-
-// 13'b0000010000000: Constant 4.
-// 13'b0000100000000: Constant 8.
-// 13'b0001000000000: Constant 0.
-// 13'b0010000000000: Constant 1.
-// 13'b0100000000000: Constant 2.
-// 13'b1000000000000: Constant -1.
-always @(inst_as_nxt)
- begin
- if (inst_as_nxt[7]) sconst_nxt = 16'h0004;
- else if (inst_as_nxt[8]) sconst_nxt = 16'h0008;
- else if (inst_as_nxt[9]) sconst_nxt = 16'h0000;
- else if (inst_as_nxt[10]) sconst_nxt = 16'h0001;
- else if (inst_as_nxt[11]) sconst_nxt = 16'h0002;
- else if (inst_as_nxt[12]) sconst_nxt = 16'hffff;
- else sconst_nxt = 16'h0000;
- end
-
-
-//
-// 6.7) DESTINATION ADDRESSING MODES
-//-----------------------------------
-// Destination addressing modes are encoded in a one hot fashion as following:
-//
-// 8'b00000001: Register direct.
-// 8'b00000010: Register indexed.
-// 8'b00010000: Symbolic (operand is in memory at address PC+x).
-// 8'b01000000: Absolute (operand is in memory at address x).
-
-reg [7:0] inst_ad_nxt;
-
-wire [3:0] dest_reg = ir[3:0];
-
-always @(dest_reg or ir or inst_type_nxt)
- begin
- if (~inst_type_nxt[`INST_TO])
- inst_ad_nxt = 8'b00000000;
- else if (dest_reg==4'h2) // Addressing mode using R2
- case (ir[7])
- 1'b1 : inst_ad_nxt = 8'b01000000;
- default: inst_ad_nxt = 8'b00000001;
- endcase
- else if (dest_reg==4'h0) // Addressing mode using R0
- case (ir[7])
- 1'b1 : inst_ad_nxt = 8'b00010000;
- default: inst_ad_nxt = 8'b00000001;
- endcase
- else // General Addressing mode
- case (ir[7])
- 1'b1 : inst_ad_nxt = 8'b00000010;
- default: inst_ad_nxt = 8'b00000001;
- endcase
- end
-
-reg [7:0] inst_ad;
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_ad <= 8'h00;
-`ifdef CLOCK_GATING
- else inst_ad <= inst_ad_nxt;
-`else
- else if (decode) inst_ad <= inst_ad_nxt;
-`endif
-
-
-//
-// 6.8) REMAINING INSTRUCTION DECODING
-//-------------------------------------
-
-// Operation size
-reg inst_bw;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) inst_bw <= 1'b0;
- else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_cmd;
-
-// Extended instruction size
-assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} +
- {1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])};
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_sz <= 2'b00;
-`ifdef CLOCK_GATING
- else inst_sz <= inst_sz_nxt;
-`else
- else if (decode) inst_sz <= inst_sz_nxt;
-`endif
-
-
-//=============================================================================
-// 7) EXECUTION-UNIT STATE MACHINE
-//=============================================================================
-
-// State machine registers
-reg [3:0] e_state;
-
-
-// State machine control signals
-//--------------------------------
-
-wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS];
-wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI];
-wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS];
-wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS];
-wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI];
-wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI];
-
-wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI];
-
-reg exec_jmp;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) exec_jmp <= 1'b0;
- else if (inst_branch & decode) exec_jmp <= 1'b1;
- else if (e_state==E_JUMP) exec_jmp <= 1'b0;
-
-reg exec_dst_wr;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) exec_dst_wr <= 1'b0;
- else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1;
- else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0;
-
-reg exec_src_wr;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) exec_src_wr <= 1'b0;
- else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1;
- else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0;
-
-reg exec_dext_rdy;
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) exec_dext_rdy <= 1'b0;
- else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0;
- else if (inst_dext_rdy) exec_dext_rdy <= 1'b1;
-
-// Execution first state
-wire [3:0] e_first_state = ~dbg_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 :
- cpu_halt_cmd | (i_state==I_IDLE) ? E_IDLE :
- cpuoff ? E_IDLE :
- src_acalc_pre ? E_SRC_AD :
- src_rd_pre ? E_SRC_RD :
- dst_acalc_pre ? E_DST_AD :
- dst_rd_pre ? E_DST_RD : E_EXEC;
-
-
-// State machine
-//--------------------------------
-
-// States Transitions
-always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or
- inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or
- e_first_state or exec_src_wr)
- case(e_state)
- E_IDLE : e_state_nxt = e_first_state;
- E_IRQ_0 : e_state_nxt = E_IRQ_1;
- E_IRQ_1 : e_state_nxt = E_IRQ_2;
- E_IRQ_2 : e_state_nxt = E_IRQ_3;
- E_IRQ_3 : e_state_nxt = E_IRQ_4;
- E_IRQ_4 : e_state_nxt = E_EXEC;
-
- E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD;
-
- E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD :
- dst_rd ? E_DST_RD : E_EXEC;
-
- E_DST_AD : e_state_nxt = (inst_dext_rdy |
- exec_dext_rdy) ? E_DST_RD : E_DST_AD;
-
- E_DST_RD : e_state_nxt = E_EXEC;
-
- E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR :
- exec_jmp ? E_JUMP :
- exec_src_wr ? E_SRC_WR : e_first_state;
-
- E_JUMP : e_state_nxt = e_first_state;
- E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state;
- E_SRC_WR : e_state_nxt = e_first_state;
- // pragma coverage off
- default : e_state_nxt = E_IRQ_0;
- // pragma coverage on
- endcase
-
-// State machine
-always @(posedge mclk or posedge puc_rst)
- if (puc_rst) e_state <= E_IRQ_1;
- else e_state <= e_state_nxt;
-
-
-// Frontend State machine control signals
-//----------------------------------------
-
-wire exec_done = exec_jmp ? (e_state==E_JUMP) :
- exec_dst_wr ? (e_state==E_DST_WR) :
- exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC);
-
-
-//=============================================================================
-// 8) EXECUTION-UNIT STATE CONTROL
-//=============================================================================
-
-//
-// 8.1) ALU CONTROL SIGNALS
-//-------------------------------------
-//
-// 12'b000000000001: Enable ALU source inverter
-// 12'b000000000010: Enable Incrementer
-// 12'b000000000100: Enable Incrementer on carry bit
-// 12'b000000001000: Select Adder
-// 12'b000000010000: Select AND
-// 12'b000000100000: Select OR
-// 12'b000001000000: Select XOR
-// 12'b000010000000: Select DADD
-// 12'b000100000000: Update N, Z & C (C=~Z)
-// 12'b001000000000: Update all status bits
-// 12'b010000000000: Update status bit for XOR instruction
-// 12'b100000000000: Don't write to destination
-
-reg [11:0] inst_alu;
-
-wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
- inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ;
-
-wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP];
-
-wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] |
- inst_to_nxt[`SUBC];
-
-wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
- inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
- inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] |
- inst_so_nxt[`RETI];
-
-
-wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] |
- inst_to_nxt[`BIT];
-
-wire alu_or = inst_to_nxt[`BIS];
-
-wire alu_xor = inst_to_nxt[`XOR];
-
-wire alu_dadd = inst_to_nxt[`DADD];
-
-wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] |
- inst_so_nxt[`SXT];
-
-wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
- inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
- inst_to_nxt[`CMP] | inst_to_nxt[`DADD] |
- inst_to_nxt[`BIT] | inst_to_nxt[`XOR] |
- inst_to_nxt[`AND] |
- inst_so_nxt[`RRC] | inst_so_nxt[`RRA] |
- inst_so_nxt[`SXT];
-
-wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA];
-
-wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT];
-
-wire [11:0] inst_alu_nxt = {exec_no_wr,
- alu_shift,
- alu_stat_f,
- alu_stat_7,
- alu_dadd,
- alu_xor,
- alu_or,
- alu_and,
- alu_add,
- alu_inc_c,
- alu_inc,
- alu_src_inv};
-
-always @(posedge mclk_decode or posedge puc_rst)
- if (puc_rst) inst_alu <= 12'h000;
-`ifdef CLOCK_GATING
- else inst_alu <= inst_alu_nxt;
-`else
- else if (decode) inst_alu <= inst_alu_nxt;
-`endif
-
-
-endmodule // omsp_frontend
-
-`ifdef OMSP_NO_INCLUDE
-`else
-`include "openMSP430_undefines.v"
-`endif