aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/cells_sim.v
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs/xilinx/cells_sim.v')
-rw-r--r--techlibs/xilinx/cells_sim.v2792
1 files changed, 2783 insertions, 9 deletions
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v
index 1f114a22c..eb145593e 100644
--- a/techlibs/xilinx/cells_sim.v
+++ b/techlibs/xilinx/cells_sim.v
@@ -1,3 +1,21 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
// See Xilinx UG953 and UG474 for a description of the cell types below.
// http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
@@ -11,18 +29,123 @@ module GND(output G);
assign G = 0;
endmodule
-module IBUF(output O, input I);
+module IBUF(
+ output O,
+ (* iopad_external_pin *)
+ input I);
+ parameter IOSTANDARD = "default";
+ parameter IBUF_LOW_PWR = 0;
assign O = I;
endmodule
-module OBUF(output O, input I);
+module IBUFG(
+ output O,
+ (* iopad_external_pin *)
+ input I);
+ parameter CAPACITANCE = "DONT_CARE";
+ parameter IBUF_DELAY_VALUE = "0";
+ parameter IBUF_LOW_PWR = "TRUE";
+ parameter IOSTANDARD = "DEFAULT";
assign O = I;
endmodule
-module BUFG(output O, input I);
+module OBUF(
+ (* iopad_external_pin *)
+ output O,
+ input I);
+ parameter IOSTANDARD = "default";
+ parameter DRIVE = 12;
+ parameter SLEW = "SLOW";
assign O = I;
endmodule
+module IOBUF (
+ (* iopad_external_pin *)
+ inout IO,
+ output O,
+ input I,
+ input T
+);
+ parameter integer DRIVE = 12;
+ parameter IBUF_LOW_PWR = "TRUE";
+ parameter IOSTANDARD = "DEFAULT";
+ parameter SLEW = "SLOW";
+ assign IO = T ? 1'bz : I;
+ assign O = IO;
+endmodule
+
+module OBUFT (
+ (* iopad_external_pin *)
+ output O,
+ input I,
+ input T
+);
+ parameter CAPACITANCE = "DONT_CARE";
+ parameter integer DRIVE = 12;
+ parameter IOSTANDARD = "DEFAULT";
+ parameter SLEW = "SLOW";
+ assign O = T ? 1'bz : I;
+endmodule
+
+module BUFG(
+ (* clkbuf_driver *)
+ output O,
+ input I);
+
+ assign O = I;
+endmodule
+
+module BUFGCTRL(
+ (* clkbuf_driver *)
+ output O,
+ input I0, input I1,
+ (* invertible_pin = "IS_S0_INVERTED" *)
+ input S0,
+ (* invertible_pin = "IS_S1_INVERTED" *)
+ input S1,
+ (* invertible_pin = "IS_CE0_INVERTED" *)
+ input CE0,
+ (* invertible_pin = "IS_CE1_INVERTED" *)
+ input CE1,
+ (* invertible_pin = "IS_IGNORE0_INVERTED" *)
+ input IGNORE0,
+ (* invertible_pin = "IS_IGNORE1_INVERTED" *)
+ input IGNORE1);
+
+parameter [0:0] INIT_OUT = 1'b0;
+parameter PRESELECT_I0 = "FALSE";
+parameter PRESELECT_I1 = "FALSE";
+parameter [0:0] IS_CE0_INVERTED = 1'b0;
+parameter [0:0] IS_CE1_INVERTED = 1'b0;
+parameter [0:0] IS_S0_INVERTED = 1'b0;
+parameter [0:0] IS_S1_INVERTED = 1'b0;
+parameter [0:0] IS_IGNORE0_INVERTED = 1'b0;
+parameter [0:0] IS_IGNORE1_INVERTED = 1'b0;
+
+wire I0_internal = ((CE0 ^ IS_CE0_INVERTED) ? I0 : INIT_OUT);
+wire I1_internal = ((CE1 ^ IS_CE1_INVERTED) ? I1 : INIT_OUT);
+wire S0_true = (S0 ^ IS_S0_INVERTED);
+wire S1_true = (S1 ^ IS_S1_INVERTED);
+
+assign O = S0_true ? I0_internal : (S1_true ? I1_internal : INIT_OUT);
+
+endmodule
+
+module BUFHCE(
+ (* clkbuf_driver *)
+ output O,
+ input I,
+ (* invertible_pin = "IS_CE_INVERTED" *)
+ input CE);
+
+parameter [0:0] INIT_OUT = 1'b0;
+parameter CE_TYPE = "SYNC";
+parameter [0:0] IS_CE_INVERTED = 1'b0;
+
+assign O = ((CE ^ IS_CE_INVERTED) ? I : INIT_OUT);
+
+endmodule
+
// module OBUFT(output O, input I, T);
// assign O = T ? 1'bz : I;
// endmodule
@@ -31,7 +154,11 @@ endmodule
// assign O = IO, IO = T ? 1'bz : I;
// endmodule
-module INV(output O, input I);
+module INV(
+ (* clkbuf_inv = "I" *)
+ output O,
+ input I
+);
assign O = !I;
endmodule
@@ -80,23 +207,62 @@ module LUT6(output O, input I0, I1, I2, I3, I4, I5);
assign O = I0 ? s1[1] : s1[0];
endmodule
+module LUT6_2(output O6, output O5, input I0, I1, I2, I3, I4, I5);
+ parameter [63:0] INIT = 0;
+ wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
+ wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0];
+ wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0];
+ wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
+ wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
+ assign O6 = I0 ? s1[1] : s1[0];
+
+ wire [15: 0] s5_4 = I4 ? INIT[31:16] : INIT[15: 0];
+ wire [ 7: 0] s5_3 = I3 ? s5_4[15: 8] : s5_4[ 7: 0];
+ wire [ 3: 0] s5_2 = I2 ? s5_3[ 7: 4] : s5_3[ 3: 0];
+ wire [ 1: 0] s5_1 = I1 ? s5_2[ 3: 2] : s5_2[ 1: 0];
+ assign O5 = I0 ? s5_1[1] : s5_1[0];
+endmodule
+
module MUXCY(output O, input CI, DI, S);
assign O = S ? CI : DI;
endmodule
+module MUXF5(output O, input I0, I1, S);
+ assign O = S ? I1 : I0;
+endmodule
+
+module MUXF6(output O, input I0, I1, S);
+ assign O = S ? I1 : I0;
+endmodule
+
+(* abc9_box_id = 1, lib_whitebox *)
module MUXF7(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
+(* abc9_box_id = 2, lib_whitebox *)
module MUXF8(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
+module MUXF9(output O, input I0, I1, S);
+ assign O = S ? I1 : I0;
+endmodule
+
module XORCY(output O, input CI, LI);
assign O = CI ^ LI;
endmodule
-module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S);
+(* abc9_box_id = 4, lib_whitebox *)
+module CARRY4(
+ (* abc9_carry *)
+ output [3:0] CO,
+ output [3:0] O,
+ (* abc9_carry *)
+ input CI,
+ input CYINIT,
+ input [3:0] DI, S
+);
assign O = S ^ {CO[2:0], CI | CYINIT};
assign CO[0] = S[0] ? CI | CYINIT : DI[0];
assign CO[1] = S[1] ? CO[0] : DI[1];
@@ -104,7 +270,74 @@ module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S);
assign CO[3] = S[3] ? CO[2] : DI[3];
endmodule
-module FDRE (output reg Q, input C, CE, D, R);
+module CARRY8(
+ output [7:0] CO,
+ output [7:0] O,
+ input CI,
+ input CI_TOP,
+ input [7:0] DI, S
+);
+ parameter CARRY_TYPE = "SINGLE_CY8";
+ wire CI4 = (CARRY_TYPE == "DUAL_CY4" ? CI_TOP : CO[3]);
+ assign O = S ^ {CO[6:4], CI4, CO[2:0], CI};
+ assign CO[0] = S[0] ? CI : DI[0];
+ assign CO[1] = S[1] ? CO[0] : DI[1];
+ assign CO[2] = S[2] ? CO[1] : DI[2];
+ assign CO[3] = S[3] ? CO[2] : DI[3];
+ assign CO[4] = S[4] ? CI4 : DI[4];
+ assign CO[5] = S[5] ? CO[4] : DI[5];
+ assign CO[6] = S[6] ? CO[5] : DI[6];
+ assign CO[7] = S[7] ? CO[6] : DI[7];
+endmodule
+
+`ifdef _EXPLICIT_CARRY
+
+module CARRY0(output CO_CHAIN, CO_FABRIC, O, input CI, CI_INIT, DI, S);
+ parameter CYINIT_FABRIC = 0;
+ wire CI_COMBINE;
+ if(CYINIT_FABRIC) begin
+ assign CI_COMBINE = CI_INIT;
+ end else begin
+ assign CI_COMBINE = CI;
+ end
+ assign CO_CHAIN = S ? CI_COMBINE : DI;
+ assign CO_FABRIC = S ? CI_COMBINE : DI;
+ assign O = S ^ CI_COMBINE;
+endmodule
+
+module CARRY(output CO_CHAIN, CO_FABRIC, O, input CI, DI, S);
+ assign CO_CHAIN = S ? CI : DI;
+ assign CO_FABRIC = S ? CI : DI;
+ assign O = S ^ CI;
+endmodule
+
+`endif
+
+module ORCY (output O, input CI, I);
+ assign O = CI | I;
+endmodule
+
+module MULT_AND (output LO, input I0, I1);
+ assign LO = I0 & I1;
+endmodule
+
+// Flip-flops and latches.
+
+// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
+
+(* abc9_box_id=1100, lib_whitebox, abc9_flop *)
+module FDRE (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
+ input C,
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_R_INVERTED" *)
+ input R
+);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@@ -116,8 +349,33 @@ module FDRE (output reg Q, input C, CE, D, R);
endcase endgenerate
endmodule
-module FDSE (output reg Q, input C, CE, D, S);
+(* abc9_box_id=1101, lib_whitebox, abc9_flop *)
+module FDRE_1 (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ input C,
+ input CE, D, R
+);
parameter [0:0] INIT = 1'b0;
+ initial Q <= INIT;
+ always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D;
+endmodule
+
+(* abc9_box_id=1102, lib_whitebox, abc9_flop *)
+module FDSE (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
+ input C,
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_S_INVERTED" *)
+ input S
+);
+ parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
@@ -128,7 +386,67 @@ module FDSE (output reg Q, input C, CE, D, S);
endcase endgenerate
endmodule
-module FDCE (output reg Q, input C, CE, D, CLR);
+(* abc9_box_id=1103, lib_whitebox, abc9_flop *)
+module FDSE_1 (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ input C,
+ input CE, D, S
+);
+ parameter [0:0] INIT = 1'b1;
+ initial Q <= INIT;
+ always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D;
+endmodule
+
+module FDRSE (
+ output reg Q,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
+ input C,
+ (* invertible_pin = "IS_CE_INVERTED" *)
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_R_INVERTED" *)
+ input R,
+ (* invertible_pin = "IS_S_INVERTED" *)
+ input S
+);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_CE_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
+ initial Q <= INIT;
+ wire c = C ^ IS_C_INVERTED;
+ wire ce = CE ^ IS_CE_INVERTED;
+ wire d = D ^ IS_D_INVERTED;
+ wire r = R ^ IS_R_INVERTED;
+ wire s = S ^ IS_S_INVERTED;
+ always @(posedge c)
+ if (r)
+ Q <= 0;
+ else if (s)
+ Q <= 1;
+ else if (ce)
+ Q <= d;
+endmodule
+
+(* abc9_box_id=1104, lib_whitebox, abc9_flop *)
+module FDCE (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
+ input C,
+ input CE,
+ (* invertible_pin = "IS_CLR_INVERTED" *)
+ input CLR,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D
+);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@@ -142,8 +460,33 @@ module FDCE (output reg Q, input C, CE, D, CLR);
endcase endgenerate
endmodule
-module FDPE (output reg Q, input C, CE, D, PRE);
+(* abc9_box_id=1105, lib_whitebox, abc9_flop *)
+module FDCE_1 (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ input C,
+ input CE, D, CLR
+);
parameter [0:0] INIT = 1'b0;
+ initial Q <= INIT;
+ always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
+endmodule
+
+(* abc9_box_id=1106, lib_whitebox, abc9_flop *)
+module FDPE (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
+ input C,
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_PRE_INVERTED" *)
+ input PRE
+);
+ parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
@@ -156,3 +499,2434 @@ module FDPE (output reg Q, input C, CE, D, PRE);
endcase endgenerate
endmodule
+(* abc9_box_id=1107, lib_whitebox, abc9_flop *)
+module FDPE_1 (
+ (* abc9_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ input C,
+ input CE, D, PRE
+);
+ parameter [0:0] INIT = 1'b1;
+ initial Q <= INIT;
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
+endmodule
+
+module FDCPE (
+ output wire Q,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
+ input C,
+ input CE,
+ (* invertible_pin = "IS_CLR_INVERTED" *)
+ input CLR,
+ input D,
+ (* invertible_pin = "IS_PRE_INVERTED" *)
+ input PRE
+);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ wire c = C ^ IS_C_INVERTED;
+ wire clr = CLR ^ IS_CLR_INVERTED;
+ wire pre = PRE ^ IS_PRE_INVERTED;
+ // Hacky model to avoid simulation-synthesis mismatches.
+ reg qc, qp, qs;
+ initial qc = INIT;
+ initial qp = INIT;
+ initial qs = 0;
+ always @(posedge c, posedge clr) begin
+ if (clr)
+ qc <= 0;
+ else if (CE)
+ qc <= D;
+ end
+ always @(posedge c, posedge pre) begin
+ if (pre)
+ qp <= 1;
+ else if (CE)
+ qp <= D;
+ end
+ always @* begin
+ if (clr)
+ qs <= 0;
+ else if (pre)
+ qs <= 1;
+ end
+ assign Q = qs ? qp : qc;
+endmodule
+
+module LDCE (
+ output reg Q,
+ (* invertible_pin = "IS_CLR_INVERTED" *)
+ input CLR,
+ input D,
+ (* invertible_pin = "IS_G_INVERTED" *)
+ input G,
+ input GE
+);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ parameter [0:0] IS_G_INVERTED = 1'b0;
+ parameter MSGON = "TRUE";
+ parameter XON = "TRUE";
+ initial Q = INIT;
+ wire clr = CLR ^ IS_CLR_INVERTED;
+ wire g = G ^ IS_G_INVERTED;
+ always @*
+ if (clr) Q <= 1'b0;
+ else if (GE && g) Q <= D;
+endmodule
+
+module LDPE (
+ output reg Q,
+ input D,
+ (* invertible_pin = "IS_G_INVERTED" *)
+ input G,
+ input GE,
+ (* invertible_pin = "IS_PRE_INVERTED" *)
+ input PRE
+);
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_G_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ parameter MSGON = "TRUE";
+ parameter XON = "TRUE";
+ initial Q = INIT;
+ wire g = G ^ IS_G_INVERTED;
+ wire pre = PRE ^ IS_PRE_INVERTED;
+ always @*
+ if (pre) Q <= 1'b1;
+ else if (GE && g) Q <= D;
+endmodule
+
+module LDCPE (
+ output reg Q,
+ (* invertible_pin = "IS_CLR_INVERTED" *)
+ input CLR,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_G_INVERTED" *)
+ input G,
+ (* invertible_pin = "IS_GE_INVERTED" *)
+ input GE,
+ (* invertible_pin = "IS_PRE_INVERTED" *)
+ input PRE
+);
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_G_INVERTED = 1'b0;
+ parameter [0:0] IS_GE_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ initial Q = INIT;
+ wire d = D ^ IS_D_INVERTED;
+ wire g = G ^ IS_G_INVERTED;
+ wire ge = GE ^ IS_GE_INVERTED;
+ wire clr = CLR ^ IS_CLR_INVERTED;
+ wire pre = PRE ^ IS_PRE_INVERTED;
+ always @*
+ if (clr) Q <= 1'b0;
+ else if (pre) Q <= 1'b1;
+ else if (ge && g) Q <= d;
+endmodule
+
+module AND2B1L (
+ output O,
+ input DI,
+ (* invertible_pin = "IS_SRI_INVERTED" *)
+ input SRI
+);
+ parameter [0:0] IS_SRI_INVERTED = 1'b0;
+ assign O = DI & ~(SRI ^ IS_SRI_INVERTED);
+endmodule
+
+module OR2L (
+ output O,
+ input DI,
+ (* invertible_pin = "IS_SRI_INVERTED" *)
+ input SRI
+);
+ parameter [0:0] IS_SRI_INVERTED = 1'b0;
+ assign O = DI | (SRI ^ IS_SRI_INVERTED);
+endmodule
+
+// LUTRAM.
+
+// Single port.
+
+module RAM16X1S (
+ output O,
+ input A0, A1, A2, A3,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [15:0] INIT = 16'h0000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [3:0] a = {A3, A2, A1, A0};
+ reg [15:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM16X1S_1 (
+ output O,
+ input A0, A1, A2, A3,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [15:0] INIT = 16'h0000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [3:0] a = {A3, A2, A1, A0};
+ reg [15:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(negedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM32X1S (
+ output O,
+ input A0, A1, A2, A3, A4,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [31:0] INIT = 32'h00000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [4:0] a = {A4, A3, A2, A1, A0};
+ reg [31:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM32X1S_1 (
+ output O,
+ input A0, A1, A2, A3, A4,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [31:0] INIT = 32'h00000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [4:0] a = {A4, A3, A2, A1, A0};
+ reg [31:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(negedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM64X1S (
+ output O,
+ input A0, A1, A2, A3, A4, A5,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [63:0] INIT = 64'h0000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [5:0] a = {A5, A4, A3, A2, A1, A0};
+ reg [63:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM64X1S_1 (
+ output O,
+ input A0, A1, A2, A3, A4, A5,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [63:0] INIT = 64'h0000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [5:0] a = {A5, A4, A3, A2, A1, A0};
+ reg [63:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(negedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM128X1S (
+ output O,
+ input A0, A1, A2, A3, A4, A5, A6,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [127:0] INIT = 128'h00000000000000000000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0};
+ reg [127:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM128X1S_1 (
+ output O,
+ input A0, A1, A2, A3, A4, A5, A6,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [127:0] INIT = 128'h00000000000000000000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0};
+ reg [127:0] mem = INIT;
+ assign O = mem[a];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(negedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM256X1S (
+ output O,
+ input [7:0] A,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [255:0] INIT = 256'h0;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ reg [255:0] mem = INIT;
+ assign O = mem[A];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[A] <= D;
+endmodule
+
+module RAM512X1S (
+ output O,
+ input [8:0] A,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [511:0] INIT = 512'h0;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ reg [511:0] mem = INIT;
+ assign O = mem[A];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[A] <= D;
+endmodule
+
+// Single port, wide.
+
+module RAM16X2S (
+ output O0, O1,
+ input A0, A1, A2, A3,
+ input D0, D1,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [15:0] INIT_00 = 16'h0000;
+ parameter [15:0] INIT_01 = 16'h0000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [3:0] a = {A3, A2, A1, A0};
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ reg [15:0] mem0 = INIT_00;
+ reg [15:0] mem1 = INIT_01;
+ assign O0 = mem0[a];
+ assign O1 = mem1[a];
+ always @(posedge clk)
+ if (WE) begin
+ mem0[a] <= D0;
+ mem1[a] <= D1;
+ end
+endmodule
+
+module RAM32X2S (
+ output O0, O1,
+ input A0, A1, A2, A3, A4,
+ input D0, D1,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [31:0] INIT_00 = 32'h00000000;
+ parameter [31:0] INIT_01 = 32'h00000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [4:0] a = {A4, A3, A2, A1, A0};
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ reg [31:0] mem0 = INIT_00;
+ reg [31:0] mem1 = INIT_01;
+ assign O0 = mem0[a];
+ assign O1 = mem1[a];
+ always @(posedge clk)
+ if (WE) begin
+ mem0[a] <= D0;
+ mem1[a] <= D1;
+ end
+endmodule
+
+module RAM64X2S (
+ output O0, O1,
+ input A0, A1, A2, A3, A4, A5,
+ input D0, D1,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [63:0] INIT_00 = 64'h0000000000000000;
+ parameter [63:0] INIT_01 = 64'h0000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [5:0] a = {A5, A3, A2, A1, A0};
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ reg [63:0] mem0 = INIT_00;
+ reg [63:0] mem1 = INIT_01;
+ assign O0 = mem0[a];
+ assign O1 = mem1[a];
+ always @(posedge clk)
+ if (WE) begin
+ mem0[a] <= D0;
+ mem1[a] <= D1;
+ end
+endmodule
+
+module RAM16X4S (
+ output O0, O1, O2, O3,
+ input A0, A1, A2, A3,
+ input D0, D1, D2, D3,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [15:0] INIT_00 = 16'h0000;
+ parameter [15:0] INIT_01 = 16'h0000;
+ parameter [15:0] INIT_02 = 16'h0000;
+ parameter [15:0] INIT_03 = 16'h0000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [3:0] a = {A3, A2, A1, A0};
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ reg [15:0] mem0 = INIT_00;
+ reg [15:0] mem1 = INIT_01;
+ reg [15:0] mem2 = INIT_02;
+ reg [15:0] mem3 = INIT_03;
+ assign O0 = mem0[a];
+ assign O1 = mem1[a];
+ assign O2 = mem2[a];
+ assign O3 = mem3[a];
+ always @(posedge clk)
+ if (WE) begin
+ mem0[a] <= D0;
+ mem1[a] <= D1;
+ mem2[a] <= D2;
+ mem3[a] <= D3;
+ end
+endmodule
+
+module RAM32X4S (
+ output O0, O1, O2, O3,
+ input A0, A1, A2, A3, A4,
+ input D0, D1, D2, D3,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [31:0] INIT_00 = 32'h00000000;
+ parameter [31:0] INIT_01 = 32'h00000000;
+ parameter [31:0] INIT_02 = 32'h00000000;
+ parameter [31:0] INIT_03 = 32'h00000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [4:0] a = {A4, A3, A2, A1, A0};
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ reg [31:0] mem0 = INIT_00;
+ reg [31:0] mem1 = INIT_01;
+ reg [31:0] mem2 = INIT_02;
+ reg [31:0] mem3 = INIT_03;
+ assign O0 = mem0[a];
+ assign O1 = mem1[a];
+ assign O2 = mem2[a];
+ assign O3 = mem3[a];
+ always @(posedge clk)
+ if (WE) begin
+ mem0[a] <= D0;
+ mem1[a] <= D1;
+ mem2[a] <= D2;
+ mem3[a] <= D3;
+ end
+endmodule
+
+module RAM16X8S (
+ output [7:0] O,
+ input A0, A1, A2, A3,
+ input [7:0] D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [15:0] INIT_00 = 16'h0000;
+ parameter [15:0] INIT_01 = 16'h0000;
+ parameter [15:0] INIT_02 = 16'h0000;
+ parameter [15:0] INIT_03 = 16'h0000;
+ parameter [15:0] INIT_04 = 16'h0000;
+ parameter [15:0] INIT_05 = 16'h0000;
+ parameter [15:0] INIT_06 = 16'h0000;
+ parameter [15:0] INIT_07 = 16'h0000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [3:0] a = {A3, A2, A1, A0};
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ reg [15:0] mem0 = INIT_00;
+ reg [15:0] mem1 = INIT_01;
+ reg [15:0] mem2 = INIT_02;
+ reg [15:0] mem3 = INIT_03;
+ reg [15:0] mem4 = INIT_04;
+ reg [15:0] mem5 = INIT_05;
+ reg [15:0] mem6 = INIT_06;
+ reg [15:0] mem7 = INIT_07;
+ assign O[0] = mem0[a];
+ assign O[1] = mem1[a];
+ assign O[2] = mem2[a];
+ assign O[3] = mem3[a];
+ assign O[4] = mem4[a];
+ assign O[5] = mem5[a];
+ assign O[6] = mem6[a];
+ assign O[7] = mem7[a];
+ always @(posedge clk)
+ if (WE) begin
+ mem0[a] <= D[0];
+ mem1[a] <= D[1];
+ mem2[a] <= D[2];
+ mem3[a] <= D[3];
+ mem4[a] <= D[4];
+ mem5[a] <= D[5];
+ mem6[a] <= D[6];
+ mem7[a] <= D[7];
+ end
+endmodule
+
+module RAM32X8S (
+ output [7:0] O,
+ input A0, A1, A2, A3, A4,
+ input [7:0] D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [31:0] INIT_00 = 32'h00000000;
+ parameter [31:0] INIT_01 = 32'h00000000;
+ parameter [31:0] INIT_02 = 32'h00000000;
+ parameter [31:0] INIT_03 = 32'h00000000;
+ parameter [31:0] INIT_04 = 32'h00000000;
+ parameter [31:0] INIT_05 = 32'h00000000;
+ parameter [31:0] INIT_06 = 32'h00000000;
+ parameter [31:0] INIT_07 = 32'h00000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ wire [4:0] a = {A4, A3, A2, A1, A0};
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ reg [31:0] mem0 = INIT_00;
+ reg [31:0] mem1 = INIT_01;
+ reg [31:0] mem2 = INIT_02;
+ reg [31:0] mem3 = INIT_03;
+ reg [31:0] mem4 = INIT_04;
+ reg [31:0] mem5 = INIT_05;
+ reg [31:0] mem6 = INIT_06;
+ reg [31:0] mem7 = INIT_07;
+ assign O[0] = mem0[a];
+ assign O[1] = mem1[a];
+ assign O[2] = mem2[a];
+ assign O[3] = mem3[a];
+ assign O[4] = mem4[a];
+ assign O[5] = mem5[a];
+ assign O[6] = mem6[a];
+ assign O[7] = mem7[a];
+ always @(posedge clk)
+ if (WE) begin
+ mem0[a] <= D[0];
+ mem1[a] <= D[1];
+ mem2[a] <= D[2];
+ mem3[a] <= D[3];
+ mem4[a] <= D[4];
+ mem5[a] <= D[5];
+ mem6[a] <= D[6];
+ mem7[a] <= D[7];
+ end
+endmodule
+
+// Dual port.
+
+module RAM16X1D (
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input A0, A1, A2, A3,
+ input DPRA0, DPRA1, DPRA2, DPRA3
+);
+ parameter INIT = 16'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ wire [3:0] a = {A3, A2, A1, A0};
+ wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0};
+ reg [15:0] mem = INIT;
+ assign SPO = mem[a];
+ assign DPO = mem[dpra];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM16X1D_1 (
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input A0, A1, A2, A3,
+ input DPRA0, DPRA1, DPRA2, DPRA3
+);
+ parameter INIT = 16'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ wire [3:0] a = {A3, A2, A1, A0};
+ wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0};
+ reg [15:0] mem = INIT;
+ assign SPO = mem[a];
+ assign DPO = mem[dpra];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(negedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM32X1D (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857
+ (* abc9_arrival=1188 *)
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input A0, A1, A2, A3, A4,
+ input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
+);
+ parameter INIT = 32'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ wire [4:0] a = {A4, A3, A2, A1, A0};
+ wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
+ reg [31:0] mem = INIT;
+ assign SPO = mem[a];
+ assign DPO = mem[dpra];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM32X1D_1 (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857
+ (* abc9_arrival=1188 *)
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input A0, A1, A2, A3, A4,
+ input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
+);
+ parameter INIT = 32'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ wire [4:0] a = {A4, A3, A2, A1, A0};
+ wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
+ reg [31:0] mem = INIT;
+ assign SPO = mem[a];
+ assign DPO = mem[dpra];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(negedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM64X1D (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
+ (* abc9_arrival=1153 *)
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input A0, A1, A2, A3, A4, A5,
+ input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
+);
+ parameter INIT = 64'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ wire [5:0] a = {A5, A4, A3, A2, A1, A0};
+ wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
+ reg [63:0] mem = INIT;
+ assign SPO = mem[a];
+ assign DPO = mem[dpra];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM64X1D_1 (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
+ (* abc9_arrival=1153 *)
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input A0, A1, A2, A3, A4, A5,
+ input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
+);
+ parameter INIT = 64'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ wire [5:0] a = {A5, A4, A3, A2, A1, A0};
+ wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
+ reg [63:0] mem = INIT;
+ assign SPO = mem[a];
+ assign DPO = mem[dpra];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(negedge clk) if (WE) mem[a] <= D;
+endmodule
+
+module RAM128X1D (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
+ // plus 204ps to cross MUXF7
+ (* abc9_arrival=1357 *)
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input [6:0] A, DPRA
+);
+ parameter INIT = 128'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ reg [127:0] mem = INIT;
+ assign SPO = mem[A];
+ assign DPO = mem[DPRA];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[A] <= D;
+endmodule
+
+module RAM256X1D (
+ output DPO, SPO,
+ input D,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE,
+ input [7:0] A, DPRA
+);
+ parameter INIT = 256'h0;
+ parameter IS_WCLK_INVERTED = 1'b0;
+ reg [255:0] mem = INIT;
+ assign SPO = mem[A];
+ assign DPO = mem[DPRA];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk) if (WE) mem[A] <= D;
+endmodule
+
+// Multi port.
+
+module RAM32M (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857
+ (* abc9_arrival=1188 *)
+ output [1:0] DOA,
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L925
+ (* abc9_arrival=1187 *)
+ output [1:0] DOB,
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L993
+ (* abc9_arrival=1180 *)
+ output [1:0] DOC,
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1061
+ (* abc9_arrival=1190 *)
+ output [1:0] DOD,
+ input [4:0] ADDRA, ADDRB, ADDRC, ADDRD,
+ input [1:0] DIA, DIB, DIC, DID,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [63:0] INIT_A = 64'h0000000000000000;
+ parameter [63:0] INIT_B = 64'h0000000000000000;
+ parameter [63:0] INIT_C = 64'h0000000000000000;
+ parameter [63:0] INIT_D = 64'h0000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ reg [63:0] mem_a = INIT_A;
+ reg [63:0] mem_b = INIT_B;
+ reg [63:0] mem_c = INIT_C;
+ reg [63:0] mem_d = INIT_D;
+ assign DOA = mem_a[2*ADDRA+:2];
+ assign DOB = mem_b[2*ADDRB+:2];
+ assign DOC = mem_c[2*ADDRC+:2];
+ assign DOD = mem_d[2*ADDRD+:2];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk)
+ if (WE) begin
+ mem_a[2*ADDRD+:2] <= DIA;
+ mem_b[2*ADDRD+:2] <= DIB;
+ mem_c[2*ADDRD+:2] <= DIC;
+ mem_d[2*ADDRD+:2] <= DID;
+ end
+endmodule
+
+module RAM32M16 (
+ output [1:0] DOA,
+ output [1:0] DOB,
+ output [1:0] DOC,
+ output [1:0] DOD,
+ output [1:0] DOE,
+ output [1:0] DOF,
+ output [1:0] DOG,
+ output [1:0] DOH,
+ input [4:0] ADDRA,
+ input [4:0] ADDRB,
+ input [4:0] ADDRC,
+ input [4:0] ADDRD,
+ input [4:0] ADDRE,
+ input [4:0] ADDRF,
+ input [4:0] ADDRG,
+ input [4:0] ADDRH,
+ input [1:0] DIA,
+ input [1:0] DIB,
+ input [1:0] DIC,
+ input [1:0] DID,
+ input [1:0] DIE,
+ input [1:0] DIF,
+ input [1:0] DIG,
+ input [1:0] DIH,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [63:0] INIT_A = 64'h0000000000000000;
+ parameter [63:0] INIT_B = 64'h0000000000000000;
+ parameter [63:0] INIT_C = 64'h0000000000000000;
+ parameter [63:0] INIT_D = 64'h0000000000000000;
+ parameter [63:0] INIT_E = 64'h0000000000000000;
+ parameter [63:0] INIT_F = 64'h0000000000000000;
+ parameter [63:0] INIT_G = 64'h0000000000000000;
+ parameter [63:0] INIT_H = 64'h0000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ reg [63:0] mem_a = INIT_A;
+ reg [63:0] mem_b = INIT_B;
+ reg [63:0] mem_c = INIT_C;
+ reg [63:0] mem_d = INIT_D;
+ reg [63:0] mem_e = INIT_E;
+ reg [63:0] mem_f = INIT_F;
+ reg [63:0] mem_g = INIT_G;
+ reg [63:0] mem_h = INIT_H;
+ assign DOA = mem_a[2*ADDRA+:2];
+ assign DOB = mem_b[2*ADDRB+:2];
+ assign DOC = mem_c[2*ADDRC+:2];
+ assign DOD = mem_d[2*ADDRD+:2];
+ assign DOE = mem_e[2*ADDRE+:2];
+ assign DOF = mem_f[2*ADDRF+:2];
+ assign DOG = mem_g[2*ADDRG+:2];
+ assign DOH = mem_h[2*ADDRH+:2];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk)
+ if (WE) begin
+ mem_a[2*ADDRH+:2] <= DIA;
+ mem_b[2*ADDRH+:2] <= DIB;
+ mem_c[2*ADDRH+:2] <= DIC;
+ mem_d[2*ADDRH+:2] <= DID;
+ mem_e[2*ADDRH+:2] <= DIE;
+ mem_f[2*ADDRH+:2] <= DIF;
+ mem_g[2*ADDRH+:2] <= DIG;
+ mem_h[2*ADDRH+:2] <= DIH;
+ end
+endmodule
+
+module RAM64M (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
+ (* abc9_arrival=1153 *)
+ output DOA,
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
+ (* abc9_arrival=1161 *)
+ output DOB,
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1025
+ (* abc9_arrival=1158 *)
+ output DOC,
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1093
+ (* abc9_arrival=1163 *)
+ output DOD,
+ input [5:0] ADDRA, ADDRB, ADDRC, ADDRD,
+ input DIA, DIB, DIC, DID,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [63:0] INIT_A = 64'h0000000000000000;
+ parameter [63:0] INIT_B = 64'h0000000000000000;
+ parameter [63:0] INIT_C = 64'h0000000000000000;
+ parameter [63:0] INIT_D = 64'h0000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ reg [63:0] mem_a = INIT_A;
+ reg [63:0] mem_b = INIT_B;
+ reg [63:0] mem_c = INIT_C;
+ reg [63:0] mem_d = INIT_D;
+ assign DOA = mem_a[ADDRA];
+ assign DOB = mem_b[ADDRB];
+ assign DOC = mem_c[ADDRC];
+ assign DOD = mem_d[ADDRD];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk)
+ if (WE) begin
+ mem_a[ADDRD] <= DIA;
+ mem_b[ADDRD] <= DIB;
+ mem_c[ADDRD] <= DIC;
+ mem_d[ADDRD] <= DID;
+ end
+endmodule
+
+module RAM64M8 (
+ output DOA,
+ output DOB,
+ output DOC,
+ output DOD,
+ output DOE,
+ output DOF,
+ output DOG,
+ output DOH,
+ input [5:0] ADDRA,
+ input [5:0] ADDRB,
+ input [5:0] ADDRC,
+ input [5:0] ADDRD,
+ input [5:0] ADDRE,
+ input [5:0] ADDRF,
+ input [5:0] ADDRG,
+ input [5:0] ADDRH,
+ input DIA,
+ input DIB,
+ input DIC,
+ input DID,
+ input DIE,
+ input DIF,
+ input DIG,
+ input DIH,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_WCLK_INVERTED" *)
+ input WCLK,
+ input WE
+);
+ parameter [63:0] INIT_A = 64'h0000000000000000;
+ parameter [63:0] INIT_B = 64'h0000000000000000;
+ parameter [63:0] INIT_C = 64'h0000000000000000;
+ parameter [63:0] INIT_D = 64'h0000000000000000;
+ parameter [63:0] INIT_E = 64'h0000000000000000;
+ parameter [63:0] INIT_F = 64'h0000000000000000;
+ parameter [63:0] INIT_G = 64'h0000000000000000;
+ parameter [63:0] INIT_H = 64'h0000000000000000;
+ parameter [0:0] IS_WCLK_INVERTED = 1'b0;
+ reg [63:0] mem_a = INIT_A;
+ reg [63:0] mem_b = INIT_B;
+ reg [63:0] mem_c = INIT_C;
+ reg [63:0] mem_d = INIT_D;
+ reg [63:0] mem_e = INIT_E;
+ reg [63:0] mem_f = INIT_F;
+ reg [63:0] mem_g = INIT_G;
+ reg [63:0] mem_h = INIT_H;
+ assign DOA = mem_a[ADDRA];
+ assign DOB = mem_b[ADDRB];
+ assign DOC = mem_c[ADDRC];
+ assign DOD = mem_d[ADDRD];
+ assign DOE = mem_e[ADDRE];
+ assign DOF = mem_f[ADDRF];
+ assign DOG = mem_g[ADDRG];
+ assign DOH = mem_h[ADDRH];
+ wire clk = WCLK ^ IS_WCLK_INVERTED;
+ always @(posedge clk)
+ if (WE) begin
+ mem_a[ADDRH] <= DIA;
+ mem_b[ADDRH] <= DIB;
+ mem_c[ADDRH] <= DIC;
+ mem_d[ADDRH] <= DID;
+ mem_e[ADDRH] <= DIE;
+ mem_f[ADDRH] <= DIF;
+ mem_g[ADDRH] <= DIG;
+ mem_h[ADDRH] <= DIH;
+ end
+endmodule
+
+// ROM.
+
+module ROM16X1 (
+ output O,
+ input A0, A1, A2, A3
+);
+ parameter [15:0] INIT = 16'h0;
+ assign O = INIT[{A3, A2, A1, A0}];
+endmodule
+
+module ROM32X1 (
+ output O,
+ input A0, A1, A2, A3, A4
+);
+ parameter [31:0] INIT = 32'h0;
+ assign O = INIT[{A4, A3, A2, A1, A0}];
+endmodule
+
+module ROM64X1 (
+ output O,
+ input A0, A1, A2, A3, A4, A5
+);
+ parameter [63:0] INIT = 64'h0;
+ assign O = INIT[{A5, A4, A3, A2, A1, A0}];
+endmodule
+
+module ROM128X1 (
+ output O,
+ input A0, A1, A2, A3, A4, A5, A6
+);
+ parameter [127:0] INIT = 128'h0;
+ assign O = INIT[{A6, A5, A4, A3, A2, A1, A0}];
+endmodule
+
+module ROM256X1 (
+ output O,
+ input A0, A1, A2, A3, A4, A5, A6, A7
+);
+ parameter [255:0] INIT = 256'h0;
+ assign O = INIT[{A7, A6, A5, A4, A3, A2, A1, A0}];
+endmodule
+
+// Shift registers.
+
+module SRL16 (
+ output Q,
+ input A0, A1, A2, A3,
+ (* clkbuf_sink *)
+ input CLK,
+ input D
+);
+ parameter [15:0] INIT = 16'h0000;
+
+ reg [15:0] r = INIT;
+ assign Q = r[{A3,A2,A1,A0}];
+ always @(posedge CLK) r <= { r[14:0], D };
+endmodule
+
+module SRL16E (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905
+ (* abc9_arrival=1472 *)
+ output Q,
+ input A0, A1, A2, A3, CE,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_CLK_INVERTED" *)
+ input CLK,
+ input D
+);
+ parameter [15:0] INIT = 16'h0000;
+ parameter [0:0] IS_CLK_INVERTED = 1'b0;
+
+ reg [15:0] r = INIT;
+ assign Q = r[{A3,A2,A1,A0}];
+ generate
+ if (IS_CLK_INVERTED) begin
+ always @(negedge CLK) if (CE) r <= { r[14:0], D };
+ end
+ else
+ always @(posedge CLK) if (CE) r <= { r[14:0], D };
+ endgenerate
+endmodule
+
+module SRLC16 (
+ output Q,
+ output Q15,
+ input A0, A1, A2, A3,
+ (* clkbuf_sink *)
+ input CLK,
+ input D
+);
+ parameter [15:0] INIT = 16'h0000;
+
+ reg [15:0] r = INIT;
+ assign Q15 = r[15];
+ assign Q = r[{A3,A2,A1,A0}];
+ always @(posedge CLK) r <= { r[14:0], D };
+endmodule
+
+module SRLC16E (
+ output Q,
+ output Q15,
+ input A0, A1, A2, A3, CE,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_CLK_INVERTED" *)
+ input CLK,
+ input D
+);
+ parameter [15:0] INIT = 16'h0000;
+ parameter [0:0] IS_CLK_INVERTED = 1'b0;
+
+ reg [15:0] r = INIT;
+ assign Q15 = r[15];
+ assign Q = r[{A3,A2,A1,A0}];
+ generate
+ if (IS_CLK_INVERTED) begin
+ always @(negedge CLK) if (CE) r <= { r[14:0], D };
+ end
+ else
+ always @(posedge CLK) if (CE) r <= { r[14:0], D };
+ endgenerate
+endmodule
+
+module SRLC32E (
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905
+ (* abc9_arrival=1472 *)
+ output Q,
+ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904
+ (* abc9_arrival=1114 *)
+ output Q31,
+ input [4:0] A,
+ input CE,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_CLK_INVERTED" *)
+ input CLK,
+ input D
+);
+ parameter [31:0] INIT = 32'h00000000;
+ parameter [0:0] IS_CLK_INVERTED = 1'b0;
+
+ reg [31:0] r = INIT;
+ assign Q31 = r[31];
+ assign Q = r[A];
+ generate
+ if (IS_CLK_INVERTED) begin
+ always @(negedge CLK) if (CE) r <= { r[30:0], D };
+ end
+ else
+ always @(posedge CLK) if (CE) r <= { r[30:0], D };
+ endgenerate
+endmodule
+
+module CFGLUT5 (
+ output CDO,
+ output O5,
+ output O6,
+ input I4,
+ input I3,
+ input I2,
+ input I1,
+ input I0,
+ input CDI,
+ input CE,
+ (* clkbuf_sink *)
+ (* invertible_pin = "IS_CLK_INVERTED" *)
+ input CLK
+);
+ parameter [31:0] INIT = 32'h00000000;
+ parameter [0:0] IS_CLK_INVERTED = 1'b0;
+ wire clk = CLK ^ IS_CLK_INVERTED;
+ reg [31:0] r = INIT;
+ assign CDO = r[31];
+ assign O5 = r[{1'b0, I3, I2, I1, I0}];
+ assign O6 = r[{I4, I3, I2, I1, I0}];
+ always @(posedge clk) if (CE) r <= {r[30:0], CDI};
+endmodule
+
+// DSP
+
+// Virtex 2, Virtex 2 Pro, Spartan 3.
+
+// Asynchronous mode.
+
+module MULT18X18 (
+ input signed [17:0] A,
+ input signed [17:0] B,
+ output signed [35:0] P
+);
+
+assign P = A * B;
+
+endmodule
+
+// Synchronous mode.
+
+module MULT18X18S (
+ input signed [17:0] A,
+ input signed [17:0] B,
+ output reg signed [35:0] P,
+ (* clkbuf_sink *)
+ input C,
+ input CE,
+ input R
+);
+
+always @(posedge C)
+ if (R)
+ P <= 0;
+ else if (CE)
+ P <= A * B;
+
+endmodule
+
+// Spartan 3E, Spartan 3A.
+
+module MULT18X18SIO (
+ input signed [17:0] A,
+ input signed [17:0] B,
+ output signed [35:0] P,
+ (* clkbuf_sink *)
+ input CLK,
+ input CEA,
+ input CEB,
+ input CEP,
+ input RSTA,
+ input RSTB,
+ input RSTP,
+ input signed [17:0] BCIN,
+ output signed [17:0] BCOUT
+);
+
+parameter integer AREG = 1;
+parameter integer BREG = 1;
+parameter B_INPUT = "DIRECT";
+parameter integer PREG = 1;
+
+// The multiplier.
+wire signed [35:0] P_MULT;
+assign P_MULT = A_MULT * B_MULT;
+
+// The cascade output.
+assign BCOUT = B_MULT;
+
+// The B input multiplexer.
+wire signed [17:0] B_MUX;
+assign B_MUX = (B_INPUT == "DIRECT") ? B : BCIN;
+
+// The registers.
+reg signed [17:0] A_REG;
+reg signed [17:0] B_REG;
+reg signed [35:0] P_REG;
+
+initial begin
+ A_REG = 0;
+ B_REG = 0;
+ P_REG = 0;
+end
+
+always @(posedge CLK) begin
+ if (RSTA)
+ A_REG <= 0;
+ else if (CEA)
+ A_REG <= A;
+
+ if (RSTB)
+ B_REG <= 0;
+ else if (CEB)
+ B_REG <= B_MUX;
+
+ if (RSTP)
+ P_REG <= 0;
+ else if (CEP)
+ P_REG <= P_MULT;
+end
+
+// The register enables.
+wire signed [17:0] A_MULT;
+wire signed [17:0] B_MULT;
+assign A_MULT = (AREG == 1) ? A_REG : A;
+assign B_MULT = (BREG == 1) ? B_REG : B_MUX;
+assign P = (PREG == 1) ? P_REG : P_MULT;
+
+endmodule
+
+// Spartan 3A DSP.
+
+module DSP48A (
+ input signed [17:0] A,
+ input signed [17:0] B,
+ input signed [47:0] C,
+ input signed [17:0] D,
+ input signed [47:0] PCIN,
+ input CARRYIN,
+ input [7:0] OPMODE,
+ output signed [47:0] P,
+ output signed [17:0] BCOUT,
+ output signed [47:0] PCOUT,
+ output CARRYOUT,
+ (* clkbuf_sink *)
+ input CLK,
+ input CEA,
+ input CEB,
+ input CEC,
+ input CED,
+ input CEM,
+ input CECARRYIN,
+ input CEOPMODE,
+ input CEP,
+ input RSTA,
+ input RSTB,
+ input RSTC,
+ input RSTD,
+ input RSTM,
+ input RSTCARRYIN,
+ input RSTOPMODE,
+ input RSTP
+);
+
+parameter integer A0REG = 0;
+parameter integer A1REG = 1;
+parameter integer B0REG = 0;
+parameter integer B1REG = 1;
+parameter integer CREG = 1;
+parameter integer DREG = 1;
+parameter integer MREG = 1;
+parameter integer CARRYINREG = 1;
+parameter integer OPMODEREG = 1;
+parameter integer PREG = 1;
+parameter CARRYINSEL = "CARRYIN";
+parameter RSTTYPE = "SYNC";
+
+// This is a strict subset of Spartan 6 -- reuse its model.
+
+DSP48A1 #(
+ .A0REG(A0REG),
+ .A1REG(A1REG),
+ .B0REG(B0REG),
+ .B1REG(B1REG),
+ .CREG(CREG),
+ .DREG(DREG),
+ .MREG(MREG),
+ .CARRYINREG(CARRYINREG),
+ .CARRYOUTREG(0),
+ .OPMODEREG(OPMODEREG),
+ .PREG(PREG),
+ .CARRYINSEL(CARRYINSEL),
+ .RSTTYPE(RSTTYPE)
+) upgrade (
+ .A(A),
+ .B(B),
+ .C(C),
+ .D(D),
+ .PCIN(PCIN),
+ .CARRYIN(CARRYIN),
+ .OPMODE(OPMODE),
+ // M unconnected
+ .P(P),
+ .BCOUT(BCOUT),
+ .PCOUT(PCOUT),
+ .CARRYOUT(CARRYOUT),
+ // CARRYOUTF unconnected
+ .CLK(CLK),
+ .CEA(CEA),
+ .CEB(CEB),
+ .CEC(CEC),
+ .CED(CED),
+ .CEM(CEM),
+ .CECARRYIN(CECARRYIN),
+ .CEOPMODE(CEOPMODE),
+ .CEP(CEP),
+ .RSTA(RSTA),
+ .RSTB(RSTB),
+ .RSTC(RSTC),
+ .RSTD(RSTD),
+ .RSTM(RSTM),
+ .RSTCARRYIN(RSTCARRYIN),
+ .RSTOPMODE(RSTOPMODE),
+ .RSTP(RSTP)
+);
+
+endmodule
+
+// Spartan 6.
+
+module DSP48A1 (
+ input signed [17:0] A,
+ input signed [17:0] B,
+ input signed [47:0] C,
+ input signed [17:0] D,
+ input signed [47:0] PCIN,
+ input CARRYIN,
+ input [7:0] OPMODE,
+ output signed [35:0] M,
+ output signed [47:0] P,
+ output signed [17:0] BCOUT,
+ output signed [47:0] PCOUT,
+ output CARRYOUT,
+ output CARRYOUTF,
+ (* clkbuf_sink *)
+ input CLK,
+ input CEA,
+ input CEB,
+ input CEC,
+ input CED,
+ input CEM,
+ input CECARRYIN,
+ input CEOPMODE,
+ input CEP,
+ input RSTA,
+ input RSTB,
+ input RSTC,
+ input RSTD,
+ input RSTM,
+ input RSTCARRYIN,
+ input RSTOPMODE,
+ input RSTP
+);
+
+parameter integer A0REG = 0;
+parameter integer A1REG = 1;
+parameter integer B0REG = 0;
+parameter integer B1REG = 1;
+parameter integer CREG = 1;
+parameter integer DREG = 1;
+parameter integer MREG = 1;
+parameter integer CARRYINREG = 1;
+parameter integer CARRYOUTREG = 1;
+parameter integer OPMODEREG = 1;
+parameter integer PREG = 1;
+parameter CARRYINSEL = "OPMODE5";
+parameter RSTTYPE = "SYNC";
+
+wire signed [35:0] M_MULT;
+wire signed [47:0] P_IN;
+wire signed [17:0] A0_OUT;
+wire signed [17:0] B0_OUT;
+wire signed [17:0] A1_OUT;
+wire signed [17:0] B1_OUT;
+wire signed [17:0] B1_IN;
+wire signed [47:0] C_OUT;
+wire signed [17:0] D_OUT;
+wire signed [7:0] OPMODE_OUT;
+wire CARRYIN_OUT;
+wire CARRYOUT_IN;
+wire CARRYIN_IN;
+reg signed [47:0] XMUX;
+reg signed [47:0] ZMUX;
+
+// The registers.
+reg signed [17:0] A0_REG;
+reg signed [17:0] A1_REG;
+reg signed [17:0] B0_REG;
+reg signed [17:0] B1_REG;
+reg signed [47:0] C_REG;
+reg signed [17:0] D_REG;
+reg signed [35:0] M_REG;
+reg signed [47:0] P_REG;
+reg [7:0] OPMODE_REG;
+reg CARRYIN_REG;
+reg CARRYOUT_REG;
+
+initial begin
+ A0_REG = 0;
+ A1_REG = 0;
+ B0_REG = 0;
+ B1_REG = 0;
+ C_REG = 0;
+ D_REG = 0;
+ M_REG = 0;
+ P_REG = 0;
+ OPMODE_REG = 0;
+ CARRYIN_REG = 0;
+ CARRYOUT_REG = 0;
+end
+
+generate
+
+if (RSTTYPE == "SYNC") begin
+ always @(posedge CLK) begin
+ if (RSTA) begin
+ A0_REG <= 0;
+ A1_REG <= 0;
+ end else if (CEA) begin
+ A0_REG <= A;
+ A1_REG <= A0_OUT;
+ end
+ end
+
+ always @(posedge CLK) begin
+ if (RSTB) begin
+ B0_REG <= 0;
+ B1_REG <= 0;
+ end else if (CEB) begin
+ B0_REG <= B;
+ B1_REG <= B1_IN;
+ end
+ end
+
+ always @(posedge CLK) begin
+ if (RSTC) begin
+ C_REG <= 0;
+ end else if (CEC) begin
+ C_REG <= C;
+ end
+ end
+
+ always @(posedge CLK) begin
+ if (RSTD) begin
+ D_REG <= 0;
+ end else if (CED) begin
+ D_REG <= D;
+ end
+ end
+
+ always @(posedge CLK) begin
+ if (RSTM) begin
+ M_REG <= 0;
+ end else if (CEM) begin
+ M_REG <= M_MULT;
+ end
+ end
+
+ always @(posedge CLK) begin
+ if (RSTP) begin
+ P_REG <= 0;
+ end else if (CEP) begin
+ P_REG <= P_IN;
+ end
+ end
+
+ always @(posedge CLK) begin
+ if (RSTOPMODE) begin
+ OPMODE_REG <= 0;
+ end else if (CEOPMODE) begin
+ OPMODE_REG <= OPMODE;
+ end
+ end
+
+ always @(posedge CLK) begin
+ if (RSTCARRYIN) begin
+ CARRYIN_REG <= 0;
+ CARRYOUT_REG <= 0;
+ end else if (CECARRYIN) begin
+ CARRYIN_REG <= CARRYIN_IN;
+ CARRYOUT_REG <= CARRYOUT_IN;
+ end
+ end
+end else begin
+ always @(posedge CLK, posedge RSTA) begin
+ if (RSTA) begin
+ A0_REG <= 0;
+ A1_REG <= 0;
+ end else if (CEA) begin
+ A0_REG <= A;
+ A1_REG <= A0_OUT;
+ end
+ end
+
+ always @(posedge CLK, posedge RSTB) begin
+ if (RSTB) begin
+ B0_REG <= 0;
+ B1_REG <= 0;
+ end else if (CEB) begin
+ B0_REG <= B;
+ B1_REG <= B1_IN;
+ end
+ end
+
+ always @(posedge CLK, posedge RSTC) begin
+ if (RSTC) begin
+ C_REG <= 0;
+ end else if (CEC) begin
+ C_REG <= C;
+ end
+ end
+
+ always @(posedge CLK, posedge RSTD) begin
+ if (RSTD) begin
+ D_REG <= 0;
+ end else if (CED) begin
+ D_REG <= D;
+ end
+ end
+
+ always @(posedge CLK, posedge RSTM) begin
+ if (RSTM) begin
+ M_REG <= 0;
+ end else if (CEM) begin
+ M_REG <= M_MULT;
+ end
+ end
+
+ always @(posedge CLK, posedge RSTP) begin
+ if (RSTP) begin
+ P_REG <= 0;
+ end else if (CEP) begin
+ P_REG <= P_IN;
+ end
+ end
+
+ always @(posedge CLK, posedge RSTOPMODE) begin
+ if (RSTOPMODE) begin
+ OPMODE_REG <= 0;
+ end else if (CEOPMODE) begin
+ OPMODE_REG <= OPMODE;
+ end
+ end
+
+ always @(posedge CLK, posedge RSTCARRYIN) begin
+ if (RSTCARRYIN) begin
+ CARRYIN_REG <= 0;
+ CARRYOUT_REG <= 0;
+ end else if (CECARRYIN) begin
+ CARRYIN_REG <= CARRYIN_IN;
+ CARRYOUT_REG <= CARRYOUT_IN;
+ end
+ end
+end
+
+endgenerate
+
+// The register enables.
+assign A0_OUT = (A0REG == 1) ? A0_REG : A;
+assign A1_OUT = (A1REG == 1) ? A1_REG : A0_OUT;
+assign B0_OUT = (B0REG == 1) ? B0_REG : B;
+assign B1_OUT = (B1REG == 1) ? B1_REG : B1_IN;
+assign C_OUT = (CREG == 1) ? C_REG : C;
+assign D_OUT = (DREG == 1) ? D_REG : D;
+assign M = (MREG == 1) ? M_REG : M_MULT;
+assign P = (PREG == 1) ? P_REG : P_IN;
+assign OPMODE_OUT = (OPMODEREG == 1) ? OPMODE_REG : OPMODE;
+assign CARRYIN_OUT = (CARRYINREG == 1) ? CARRYIN_REG : CARRYIN_IN;
+assign CARRYOUT = (CARRYOUTREG == 1) ? CARRYOUT_REG : CARRYOUT_IN;
+assign CARRYOUTF = CARRYOUT;
+
+// The pre-adder.
+wire signed [17:0] PREADDER;
+assign B1_IN = OPMODE_OUT[4] ? PREADDER : B0_OUT;
+assign PREADDER = OPMODE_OUT[6] ? D_OUT - B0_OUT : D_OUT + B0_OUT;
+
+// The multiplier.
+assign M_MULT = A1_OUT * B1_OUT;
+
+// The carry in selection.
+assign CARRYIN_IN = (CARRYINSEL == "OPMODE5") ? OPMODE_OUT[5] : CARRYIN;
+
+// The post-adder inputs.
+always @* begin
+ case (OPMODE_OUT[1:0])
+ 2'b00: XMUX <= 0;
+ 2'b01: XMUX <= M;
+ 2'b10: XMUX <= P;
+ 2'b11: XMUX <= {D_OUT[11:0], A1_OUT, B1_OUT};
+ default: XMUX <= 48'hxxxxxxxxxxxx;
+ endcase
+end
+
+always @* begin
+ case (OPMODE_OUT[3:2])
+ 2'b00: ZMUX <= 0;
+ 2'b01: ZMUX <= PCIN;
+ 2'b10: ZMUX <= P;
+ 2'b11: ZMUX <= C_OUT;
+ default: ZMUX <= 48'hxxxxxxxxxxxx;
+ endcase
+end
+
+// The post-adder.
+wire signed [48:0] X_EXT;
+wire signed [48:0] Z_EXT;
+assign X_EXT = {1'b0, XMUX};
+assign Z_EXT = {1'b0, ZMUX};
+assign {CARRYOUT_IN, P_IN} = OPMODE_OUT[7] ? (Z_EXT - (X_EXT + CARRYIN_OUT)) : (Z_EXT + X_EXT + CARRYIN_OUT);
+
+// Cascade outputs.
+assign BCOUT = B1_OUT;
+assign PCOUT = P;
+
+endmodule
+
+module DSP48 (
+ input signed [17:0] A,
+ input signed [17:0] B,
+ input signed [47:0] C,
+ input signed [17:0] BCIN,
+ input signed [47:0] PCIN,
+ input CARRYIN,
+ input [6:0] OPMODE,
+ input SUBTRACT,
+ input [1:0] CARRYINSEL,
+ output signed [47:0] P,
+ output signed [17:0] BCOUT,
+ output signed [47:0] PCOUT,
+ (* clkbuf_sink *)
+ input CLK,
+ input CEA,
+ input CEB,
+ input CEC,
+ input CEM,
+ input CECARRYIN,
+ input CECINSUB,
+ input CECTRL,
+ input CEP,
+ input RSTA,
+ input RSTB,
+ input RSTC,
+ input RSTM,
+ input RSTCARRYIN,
+ input RSTCTRL,
+ input RSTP
+);
+
+parameter integer AREG = 1;
+parameter integer BREG = 1;
+parameter integer CREG = 1;
+parameter integer MREG = 1;
+parameter integer PREG = 1;
+parameter integer CARRYINREG = 1;
+parameter integer CARRYINSELREG = 1;
+parameter integer OPMODEREG = 1;
+parameter integer SUBTRACTREG = 1;
+parameter B_INPUT = "DIRECT";
+parameter LEGACY_MODE = "MULT18X18S";
+
+wire signed [17:0] A_OUT;
+wire signed [17:0] B_OUT;
+wire signed [47:0] C_OUT;
+wire signed [35:0] M_MULT;
+wire signed [35:0] M_OUT;
+wire signed [47:0] P_IN;
+wire [6:0] OPMODE_OUT;
+wire [1:0] CARRYINSEL_OUT;
+wire CARRYIN_OUT;
+wire SUBTRACT_OUT;
+reg INT_CARRYIN_XY;
+reg INT_CARRYIN_Z;
+reg signed [47:0] XMUX;
+reg signed [47:0] YMUX;
+wire signed [47:0] XYMUX;
+reg signed [47:0] ZMUX;
+reg CIN;
+
+// The B input multiplexer.
+wire signed [17:0] B_MUX;
+assign B_MUX = (B_INPUT == "DIRECT") ? B : BCIN;
+
+// The cascade output.
+assign BCOUT = B_OUT;
+assign PCOUT = P;
+
+// The registers.
+reg signed [17:0] A0_REG;
+reg signed [17:0] A1_REG;
+reg signed [17:0] B0_REG;
+reg signed [17:0] B1_REG;
+reg signed [47:0] C_REG;
+reg signed [35:0] M_REG;
+reg signed [47:0] P_REG;
+reg [6:0] OPMODE_REG;
+reg [1:0] CARRYINSEL_REG;
+reg SUBTRACT_REG;
+reg CARRYIN_REG;
+reg INT_CARRYIN_XY_REG;
+
+initial begin
+ A0_REG = 0;
+ A1_REG = 0;
+ B0_REG = 0;
+ B1_REG = 0;
+ C_REG = 0;
+ M_REG = 0;
+ P_REG = 0;
+ OPMODE_REG = 0;
+ CARRYINSEL_REG = 0;
+ SUBTRACT_REG = 0;
+ CARRYIN_REG = 0;
+ INT_CARRYIN_XY_REG = 0;
+end
+
+always @(posedge CLK) begin
+ if (RSTA) begin
+ A0_REG <= 0;
+ A1_REG <= 0;
+ end else if (CEA) begin
+ A0_REG <= A;
+ A1_REG <= A0_REG;
+ end
+ if (RSTB) begin
+ B0_REG <= 0;
+ B1_REG <= 0;
+ end else if (CEB) begin
+ B0_REG <= B_MUX;
+ B1_REG <= B0_REG;
+ end
+ if (RSTC) begin
+ C_REG <= 0;
+ end else if (CEC) begin
+ C_REG <= C;
+ end
+ if (RSTM) begin
+ M_REG <= 0;
+ end else if (CEM) begin
+ M_REG <= M_MULT;
+ end
+ if (RSTP) begin
+ P_REG <= 0;
+ end else if (CEP) begin
+ P_REG <= P_IN;
+ end
+ if (RSTCTRL) begin
+ OPMODE_REG <= 0;
+ CARRYINSEL_REG <= 0;
+ SUBTRACT_REG <= 0;
+ end else begin
+ if (CECTRL) begin
+ OPMODE_REG <= OPMODE;
+ CARRYINSEL_REG <= CARRYINSEL;
+ end
+ if (CECINSUB)
+ SUBTRACT_REG <= SUBTRACT;
+ end
+ if (RSTCARRYIN) begin
+ CARRYIN_REG <= 0;
+ INT_CARRYIN_XY_REG <= 0;
+ end else begin
+ if (CECINSUB)
+ CARRYIN_REG <= CARRYIN;
+ if (CECARRYIN)
+ INT_CARRYIN_XY_REG <= INT_CARRYIN_XY;
+ end
+end
+
+// The register enables.
+assign A_OUT = (AREG == 2) ? A1_REG : (AREG == 1) ? A0_REG : A;
+assign B_OUT = (BREG == 2) ? B1_REG : (BREG == 1) ? B0_REG : B_MUX;
+assign C_OUT = (CREG == 1) ? C_REG : C;
+assign M_OUT = (MREG == 1) ? M_REG : M_MULT;
+assign P = (PREG == 1) ? P_REG : P_IN;
+assign OPMODE_OUT = (OPMODEREG == 1) ? OPMODE_REG : OPMODE;
+assign SUBTRACT_OUT = (SUBTRACTREG == 1) ? SUBTRACT_REG : SUBTRACT;
+assign CARRYINSEL_OUT = (CARRYINSELREG == 1) ? CARRYINSEL_REG : CARRYINSEL;
+assign CARRYIN_OUT = (CARRYINREG == 1) ? CARRYIN_REG : CARRYIN;
+
+// The multiplier.
+assign M_MULT = A_OUT * B_OUT;
+
+// The post-adder inputs.
+always @* begin
+ case (OPMODE_OUT[1:0])
+ 2'b00: XMUX <= 0;
+ 2'b10: XMUX <= P;
+ 2'b11: XMUX <= {{12{A_OUT[17]}}, A_OUT, B_OUT};
+ default: XMUX <= 48'hxxxxxxxxxxxx;
+ endcase
+ case (OPMODE_OUT[1:0])
+ 2'b01: INT_CARRYIN_XY <= A_OUT[17] ~^ B_OUT[17];
+ 2'b11: INT_CARRYIN_XY <= ~A_OUT[17];
+ // TODO: not tested in hardware.
+ default: INT_CARRYIN_XY <= A_OUT[17] ~^ B_OUT[17];
+ endcase
+end
+
+always @* begin
+ case (OPMODE_OUT[3:2])
+ 2'b00: YMUX <= 0;
+ 2'b11: YMUX <= C_OUT;
+ default: YMUX <= 48'hxxxxxxxxxxxx;
+ endcase
+end
+
+assign XYMUX = (OPMODE_OUT[3:0] == 4'b0101) ? M_OUT : (XMUX + YMUX);
+
+always @* begin
+ case (OPMODE_OUT[6:4])
+ 3'b000: ZMUX <= 0;
+ 3'b001: ZMUX <= PCIN;
+ 3'b010: ZMUX <= P;
+ 3'b011: ZMUX <= C_OUT;
+ 3'b101: ZMUX <= {{17{PCIN[47]}}, PCIN[47:17]};
+ 3'b110: ZMUX <= {{17{P[47]}}, P[47:17]};
+ default: ZMUX <= 48'hxxxxxxxxxxxx;
+ endcase
+ // TODO: check how all this works on actual hw.
+ if (OPMODE_OUT[1:0] == 2'b10)
+ INT_CARRYIN_Z <= ~P[47];
+ else
+ case (OPMODE_OUT[6:4])
+ 3'b001: INT_CARRYIN_Z <= ~PCIN[47];
+ 3'b010: INT_CARRYIN_Z <= ~P[47];
+ 3'b101: INT_CARRYIN_Z <= ~PCIN[47];
+ 3'b110: INT_CARRYIN_Z <= ~P[47];
+ default: INT_CARRYIN_Z <= 1'bx;
+ endcase
+end
+
+always @* begin
+ case (CARRYINSEL_OUT)
+ 2'b00: CIN <= CARRYIN_OUT;
+ 2'b01: CIN <= INT_CARRYIN_Z;
+ 2'b10: CIN <= INT_CARRYIN_XY;
+ 2'b11: CIN <= INT_CARRYIN_XY_REG;
+ default: CIN <= 1'bx;
+ endcase
+end
+
+// The post-adder.
+assign P_IN = SUBTRACT_OUT ? (ZMUX - (XYMUX + CIN)) : (ZMUX + XYMUX + CIN);
+
+endmodule
+
+// TODO: DSP48E (Virtex 5).
+
+// Virtex 6, Series 7.
+
+module DSP48E1 (
+ output [29:0] ACOUT,
+ output [17:0] BCOUT,
+ output reg CARRYCASCOUT,
+ output reg [3:0] CARRYOUT,
+ output reg MULTSIGNOUT,
+ output OVERFLOW,
+`ifdef YOSYS
+ (* abc9_arrival = \DSP48E1.P_arrival () *)
+`endif
+ output reg signed [47:0] P,
+ output reg PATTERNBDETECT,
+ output reg PATTERNDETECT,
+`ifdef YOSYS
+ (* abc9_arrival = \DSP48E1.PCOUT_arrival () *)
+`endif
+ output [47:0] PCOUT,
+ output UNDERFLOW,
+ input signed [29:0] A,
+ input [29:0] ACIN,
+ input [3:0] ALUMODE,
+ input signed [17:0] B,
+ input [17:0] BCIN,
+ input [47:0] C,
+ input CARRYCASCIN,
+ input CARRYIN,
+ input [2:0] CARRYINSEL,
+ input CEA1,
+ input CEA2,
+ input CEAD,
+ input CEALUMODE,
+ input CEB1,
+ input CEB2,
+ input CEC,
+ input CECARRYIN,
+ input CECTRL,
+ input CED,
+ input CEINMODE,
+ input CEM,
+ input CEP,
+ (* clkbuf_sink *) input CLK,
+ input [24:0] D,
+ input [4:0] INMODE,
+ input MULTSIGNIN,
+ input [6:0] OPMODE,
+ input [47:0] PCIN,
+ input RSTA,
+ input RSTALLCARRYIN,
+ input RSTALUMODE,
+ input RSTB,
+ input RSTC,
+ input RSTCTRL,
+ input RSTD,
+ input RSTINMODE,
+ input RSTM,
+ input RSTP
+);
+ parameter integer ACASCREG = 1;
+ parameter integer ADREG = 1;
+ parameter integer ALUMODEREG = 1;
+ parameter integer AREG = 1;
+ parameter AUTORESET_PATDET = "NO_RESET";
+ parameter A_INPUT = "DIRECT";
+ parameter integer BCASCREG = 1;
+ parameter integer BREG = 1;
+ parameter B_INPUT = "DIRECT";
+ parameter integer CARRYINREG = 1;
+ parameter integer CARRYINSELREG = 1;
+ parameter integer CREG = 1;
+ parameter integer DREG = 1;
+ parameter integer INMODEREG = 1;
+ parameter integer MREG = 1;
+ parameter integer OPMODEREG = 1;
+ parameter integer PREG = 1;
+ parameter SEL_MASK = "MASK";
+ parameter SEL_PATTERN = "PATTERN";
+ parameter USE_DPORT = "FALSE";
+ parameter USE_MULT = "MULTIPLY";
+ parameter USE_PATTERN_DETECT = "NO_PATDET";
+ parameter USE_SIMD = "ONE48";
+ parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
+ parameter [47:0] PATTERN = 48'h000000000000;
+ parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
+ parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
+ parameter [0:0] IS_CLK_INVERTED = 1'b0;
+ parameter [4:0] IS_INMODE_INVERTED = 5'b0;
+ parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
+
+`ifdef YOSYS
+ function integer \DSP48E1.P_arrival ;
+ begin
+ \DSP48E1.P_arrival = 0;
+ if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
+ if (PREG != 0) \DSP48E1.P_arrival = 329;
+ // Worst-case from CREG and MREG
+ else if (CREG != 0) \DSP48E1.P_arrival = 1687;
+ else if (MREG != 0) \DSP48E1.P_arrival = 1671;
+ // Worst-case from AREG and BREG
+ else if (AREG != 0) \DSP48E1.P_arrival = 2952;
+ else if (BREG != 0) \DSP48E1.P_arrival = 2813;
+ end
+ else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
+ if (PREG != 0) \DSP48E1.P_arrival = 329;
+ // Worst-case from CREG and MREG
+ else if (CREG != 0) \DSP48E1.P_arrival = 1687;
+ else if (MREG != 0) \DSP48E1.P_arrival = 1671;
+ // Worst-case from AREG, ADREG, BREG, DREG
+ else if (AREG != 0) \DSP48E1.P_arrival = 3935;
+ else if (DREG != 0) \DSP48E1.P_arrival = 3908;
+ else if (ADREG != 0) \DSP48E1.P_arrival = 2958;
+ else if (BREG != 0) \DSP48E1.P_arrival = 2813;
+ end
+ else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
+ if (PREG != 0) \DSP48E1.P_arrival = 329;
+ // Worst-case from AREG, BREG, CREG
+ else if (CREG != 0) \DSP48E1.P_arrival = 1687;
+ else if (AREG != 0) \DSP48E1.P_arrival = 1632;
+ else if (BREG != 0) \DSP48E1.P_arrival = 1616;
+ end
+ //else
+ // $error("Invalid DSP48E1 configuration");
+ end
+ endfunction
+ function integer \DSP48E1.PCOUT_arrival ;
+ begin
+ \DSP48E1.PCOUT_arrival = 0;
+ if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
+ if (PREG != 0) \DSP48E1.PCOUT_arrival = 435;
+ // Worst-case from CREG and MREG
+ else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835;
+ else if (MREG != 0) \DSP48E1.PCOUT_arrival = 1819;
+ // Worst-case from AREG and BREG
+ else if (AREG != 0) \DSP48E1.PCOUT_arrival = 3098;
+ else if (BREG != 0) \DSP48E1.PCOUT_arrival = 2960;
+ end
+ else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
+ if (PREG != 0) \DSP48E1.PCOUT_arrival = 435;
+ // Worst-case from CREG and MREG
+ else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835;
+ else if (MREG != 0) \DSP48E1.PCOUT_arrival = 1819;
+ // Worst-case from AREG, ADREG, BREG, DREG
+ else if (AREG != 0) \DSP48E1.PCOUT_arrival = 4083;
+ else if (DREG != 0) \DSP48E1.PCOUT_arrival = 4056;
+ else if (BREG != 0) \DSP48E1.PCOUT_arrival = 2960;
+ else if (ADREG != 0) \DSP48E1.PCOUT_arrival = 2859;
+ end
+ else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
+ if (PREG != 0) \DSP48E1.PCOUT_arrival = 435;
+ // Worst-case from AREG, BREG, CREG
+ else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835;
+ else if (AREG != 0) \DSP48E1.PCOUT_arrival = 1780;
+ else if (BREG != 0) \DSP48E1.PCOUT_arrival = 1765;
+ end
+ //else
+ // $error("Invalid DSP48E1 configuration");
+ end
+ endfunction
+`endif
+
+ initial begin
+`ifndef YOSYS
+ if (AUTORESET_PATDET != "NO_RESET") $fatal(1, "Unsupported AUTORESET_PATDET value");
+ if (SEL_MASK != "MASK") $fatal(1, "Unsupported SEL_MASK value");
+ if (SEL_PATTERN != "PATTERN") $fatal(1, "Unsupported SEL_PATTERN value");
+ if (USE_SIMD != "ONE48" && USE_SIMD != "TWO24" && USE_SIMD != "FOUR12") $fatal(1, "Unsupported USE_SIMD value");
+ if (IS_ALUMODE_INVERTED != 4'b0) $fatal(1, "Unsupported IS_ALUMODE_INVERTED value");
+ if (IS_CARRYIN_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CARRYIN_INVERTED value");
+ if (IS_CLK_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CLK_INVERTED value");
+ if (IS_INMODE_INVERTED != 5'b0) $fatal(1, "Unsupported IS_INMODE_INVERTED value");
+ if (IS_OPMODE_INVERTED != 7'b0) $fatal(1, "Unsupported IS_OPMODE_INVERTED value");
+`endif
+ end
+
+ wire signed [29:0] A_muxed;
+ wire signed [17:0] B_muxed;
+
+ generate
+ if (A_INPUT == "CASCADE") assign A_muxed = ACIN;
+ else assign A_muxed = A;
+
+ if (B_INPUT == "CASCADE") assign B_muxed = BCIN;
+ else assign B_muxed = B;
+ endgenerate
+
+ reg signed [29:0] Ar1, Ar2;
+ reg signed [24:0] Dr;
+ reg signed [17:0] Br1, Br2;
+ reg signed [47:0] Cr;
+ reg [4:0] INMODEr = 5'b0;
+ reg [6:0] OPMODEr = 7'b0;
+ reg [3:0] ALUMODEr = 4'b0;
+ reg [2:0] CARRYINSELr = 3'b0;
+
+ generate
+ // Configurable A register
+ if (AREG == 2) begin
+ initial Ar1 = 30'b0;
+ initial Ar2 = 30'b0;
+ always @(posedge CLK)
+ if (RSTA) begin
+ Ar1 <= 30'b0;
+ Ar2 <= 30'b0;
+ end else begin
+ if (CEA1) Ar1 <= A_muxed;
+ if (CEA2) Ar2 <= Ar1;
+ end
+ end else if (AREG == 1) begin
+ //initial Ar1 = 30'b0;
+ initial Ar2 = 30'b0;
+ always @(posedge CLK)
+ if (RSTA) begin
+ Ar1 <= 30'b0;
+ Ar2 <= 30'b0;
+ end else begin
+ if (CEA1) Ar1 <= A_muxed;
+ if (CEA2) Ar2 <= A_muxed;
+ end
+ end else begin
+ always @* Ar1 <= A_muxed;
+ always @* Ar2 <= A_muxed;
+ end
+
+ // Configurable B register
+ if (BREG == 2) begin
+ initial Br1 = 25'b0;
+ initial Br2 = 25'b0;
+ always @(posedge CLK)
+ if (RSTB) begin
+ Br1 <= 18'b0;
+ Br2 <= 18'b0;
+ end else begin
+ if (CEB1) Br1 <= B_muxed;
+ if (CEB2) Br2 <= Br1;
+ end
+ end else if (BREG == 1) begin
+ //initial Br1 = 18'b0;
+ initial Br2 = 18'b0;
+ always @(posedge CLK)
+ if (RSTB) begin
+ Br1 <= 18'b0;
+ Br2 <= 18'b0;
+ end else begin
+ if (CEB1) Br1 <= B_muxed;
+ if (CEB2) Br2 <= B_muxed;
+ end
+ end else begin
+ always @* Br1 <= B_muxed;
+ always @* Br2 <= B_muxed;
+ end
+
+ // C and D registers
+ if (CREG == 1) initial Cr = 48'b0;
+ if (CREG == 1) begin always @(posedge CLK) if (RSTC) Cr <= 48'b0; else if (CEC) Cr <= C; end
+ else always @* Cr <= C;
+
+ if (CREG == 1) initial Dr = 25'b0;
+ if (DREG == 1) begin always @(posedge CLK) if (RSTD) Dr <= 25'b0; else if (CED) Dr <= D; end
+ else always @* Dr <= D;
+
+ // Control registers
+ if (INMODEREG == 1) initial INMODEr = 5'b0;
+ if (INMODEREG == 1) begin always @(posedge CLK) if (RSTINMODE) INMODEr <= 5'b0; else if (CEINMODE) INMODEr <= INMODE; end
+ else always @* INMODEr <= INMODE;
+ if (OPMODEREG == 1) initial OPMODEr = 7'b0;
+ if (OPMODEREG == 1) begin always @(posedge CLK) if (RSTCTRL) OPMODEr <= 7'b0; else if (CECTRL) OPMODEr <= OPMODE; end
+ else always @* OPMODEr <= OPMODE;
+ if (ALUMODEREG == 1) initial ALUMODEr = 4'b0;
+ if (ALUMODEREG == 1) begin always @(posedge CLK) if (RSTALUMODE) ALUMODEr <= 4'b0; else if (CEALUMODE) ALUMODEr <= ALUMODE; end
+ else always @* ALUMODEr <= ALUMODE;
+ if (CARRYINSELREG == 1) initial CARRYINSELr = 3'b0;
+ if (CARRYINSELREG == 1) begin always @(posedge CLK) if (RSTCTRL) CARRYINSELr <= 3'b0; else if (CECTRL) CARRYINSELr <= CARRYINSEL; end
+ else always @* CARRYINSELr <= CARRYINSEL;
+ endgenerate
+
+ // A and B cascade
+ generate
+ if (ACASCREG == 1 && AREG == 2) assign ACOUT = Ar1;
+ else assign ACOUT = Ar2;
+ if (BCASCREG == 1 && BREG == 2) assign BCOUT = Br1;
+ else assign BCOUT = Br2;
+ endgenerate
+
+ // A/D input selection and pre-adder
+ wire signed [24:0] Ar12_muxed = INMODEr[0] ? Ar1 : Ar2;
+ wire signed [24:0] Ar12_gated = INMODEr[1] ? 25'b0 : Ar12_muxed;
+ wire signed [24:0] Dr_gated = INMODEr[2] ? Dr : 25'b0;
+ wire signed [24:0] AD_result = INMODEr[3] ? (Dr_gated - Ar12_gated) : (Dr_gated + Ar12_gated);
+ reg signed [24:0] ADr;
+
+ generate
+ if (ADREG == 1) initial ADr = 25'b0;
+ if (ADREG == 1) begin always @(posedge CLK) if (RSTD) ADr <= 25'b0; else if (CEAD) ADr <= AD_result; end
+ else always @* ADr <= AD_result;
+ endgenerate
+
+ // 25x18 multiplier
+ wire signed [24:0] A_MULT;
+ wire signed [17:0] B_MULT = INMODEr[4] ? Br1 : Br2;
+ generate
+ if (USE_DPORT == "TRUE") assign A_MULT = ADr;
+ else assign A_MULT = Ar12_gated;
+ endgenerate
+
+ wire signed [42:0] M = A_MULT * B_MULT;
+ wire signed [42:0] Mx = (CARRYINSEL == 3'b010) ? 43'bx : M;
+ reg signed [42:0] Mr = 43'b0;
+
+ // Multiplier result register
+ generate
+ if (MREG == 1) begin always @(posedge CLK) if (RSTM) Mr <= 43'b0; else if (CEM) Mr <= Mx; end
+ else always @* Mr <= Mx;
+ endgenerate
+
+ wire signed [42:0] Mrx = (CARRYINSELr == 3'b010) ? 43'bx : Mr;
+
+ // X, Y and Z ALU inputs
+ reg signed [47:0] X, Y, Z;
+
+ always @* begin
+ // X multiplexer
+ case (OPMODEr[1:0])
+ 2'b00: X = 48'b0;
+ 2'b01: begin X = $signed(Mrx);
+`ifndef YOSYS
+ if (OPMODEr[3:2] != 2'b01) $fatal(1, "OPMODEr[3:2] must be 2'b01 when OPMODEr[1:0] is 2'b01");
+`endif
+ end
+ 2'b10: begin X = P;
+`ifndef YOSYS
+ if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[1:0] is 2'b10");
+`endif
+ end
+ 2'b11: X = $signed({Ar2, Br2});
+ default: X = 48'bx;
+ endcase
+
+ // Y multiplexer
+ case (OPMODEr[3:2])
+ 2'b00: Y = 48'b0;
+ 2'b01: begin Y = 48'b0; // FIXME: more accurate partial product modelling?
+`ifndef YOSYS
+ if (OPMODEr[1:0] != 2'b01) $fatal(1, "OPMODEr[1:0] must be 2'b01 when OPMODEr[3:2] is 2'b01");
+`endif
+ end
+ 2'b10: Y = {48{1'b1}};
+ 2'b11: Y = Cr;
+ default: Y = 48'bx;
+ endcase
+
+ // Z multiplexer
+ case (OPMODEr[6:4])
+ 3'b000: Z = 48'b0;
+ 3'b001: Z = PCIN;
+ 3'b010: begin Z = P;
+`ifndef YOSYS
+ if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] i0s 3'b010");
+`endif
+ end
+ 3'b011: Z = Cr;
+ 3'b100: begin Z = P;
+`ifndef YOSYS
+ if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] is 3'b100");
+ if (OPMODEr[3:0] != 4'b1000) $fatal(1, "OPMODEr[3:0] must be 4'b1000 when OPMODEr[6:4] i0s 3'b100");
+`endif
+ end
+ 3'b101: Z = $signed(PCIN[47:17]);
+ 3'b110: Z = $signed(P[47:17]);
+ default: Z = 48'bx;
+ endcase
+ end
+
+ // Carry in
+ wire A24_xnor_B17d = A_MULT[24] ~^ B_MULT[17];
+ reg CARRYINr = 1'b0, A24_xnor_B17 = 1'b0;
+ generate
+ if (CARRYINREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) CARRYINr <= 1'b0; else if (CECARRYIN) CARRYINr <= CARRYIN; end
+ else always @* CARRYINr = CARRYIN;
+
+ if (MREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) A24_xnor_B17 <= 1'b0; else if (CEM) A24_xnor_B17 <= A24_xnor_B17d; end
+ else always @* A24_xnor_B17 = A24_xnor_B17d;
+ endgenerate
+
+ reg cin_muxed;
+
+ always @(*) begin
+ case (CARRYINSELr)
+ 3'b000: cin_muxed = CARRYINr;
+ 3'b001: cin_muxed = ~PCIN[47];
+ 3'b010: cin_muxed = CARRYCASCIN;
+ 3'b011: cin_muxed = PCIN[47];
+ 3'b100: cin_muxed = CARRYCASCOUT;
+ 3'b101: cin_muxed = ~P[47];
+ 3'b110: cin_muxed = A24_xnor_B17;
+ 3'b111: cin_muxed = P[47];
+ default: cin_muxed = 1'bx;
+ endcase
+ end
+
+ wire alu_cin = (ALUMODEr[3] || ALUMODEr[2]) ? 1'b0 : cin_muxed;
+
+ // ALU core
+ wire [47:0] Z_muxinv = ALUMODEr[0] ? ~Z : Z;
+ wire [47:0] xor_xyz = X ^ Y ^ Z_muxinv;
+ wire [47:0] maj_xyz = (X & Y) | (X & Z_muxinv) | (Y & Z_muxinv);
+
+ wire [47:0] xor_xyz_muxed = ALUMODEr[3] ? maj_xyz : xor_xyz;
+ wire [47:0] maj_xyz_gated = ALUMODEr[2] ? 48'b0 : maj_xyz;
+
+ wire [48:0] maj_xyz_simd_gated;
+ wire [3:0] int_carry_in, int_carry_out, ext_carry_out;
+ wire [47:0] alu_sum;
+ assign int_carry_in[0] = 1'b0;
+ wire [3:0] carryout_reset;
+
+ generate
+ if (USE_SIMD == "FOUR12") begin
+ assign maj_xyz_simd_gated = {
+ maj_xyz_gated[47:36],
+ 1'b0, maj_xyz_gated[34:24],
+ 1'b0, maj_xyz_gated[22:12],
+ 1'b0, maj_xyz_gated[10:0],
+ alu_cin
+ };
+ assign int_carry_in[3:1] = 3'b000;
+ assign ext_carry_out = {
+ int_carry_out[3],
+ maj_xyz_gated[35] ^ int_carry_out[2],
+ maj_xyz_gated[23] ^ int_carry_out[1],
+ maj_xyz_gated[11] ^ int_carry_out[0]
+ };
+ assign carryout_reset = 4'b0000;
+ end else if (USE_SIMD == "TWO24") begin
+ assign maj_xyz_simd_gated = {
+ maj_xyz_gated[47:24],
+ 1'b0, maj_xyz_gated[22:0],
+ alu_cin
+ };
+ assign int_carry_in[3:1] = {int_carry_out[2], 1'b0, int_carry_out[0]};
+ assign ext_carry_out = {
+ int_carry_out[3],
+ 1'bx,
+ maj_xyz_gated[23] ^ int_carry_out[1],
+ 1'bx
+ };
+ assign carryout_reset = 4'b0x0x;
+ end else begin
+ assign maj_xyz_simd_gated = {maj_xyz_gated, alu_cin};
+ assign int_carry_in[3:1] = int_carry_out[2:0];
+ assign ext_carry_out = {
+ int_carry_out[3],
+ 3'bxxx
+ };
+ assign carryout_reset = 4'b0xxx;
+ end
+
+ genvar i;
+ for (i = 0; i < 4; i = i + 1)
+ assign {int_carry_out[i], alu_sum[i*12 +: 12]} = {1'b0, maj_xyz_simd_gated[i*12 +: ((i == 3) ? 13 : 12)]}
+ + xor_xyz_muxed[i*12 +: 12] + int_carry_in[i];
+ endgenerate
+
+ wire signed [47:0] Pd = ALUMODEr[1] ? ~alu_sum : alu_sum;
+ wire [3:0] CARRYOUTd = (OPMODEr[3:0] == 4'b0101 || ALUMODEr[3:2] != 2'b00) ? 4'bxxxx :
+ ((ALUMODEr[0] & ALUMODEr[1]) ? ~ext_carry_out : ext_carry_out);
+ wire CARRYCASCOUTd = ext_carry_out[3];
+ wire MULTSIGNOUTd = Mrx[42];
+
+ generate
+ if (PREG == 1) begin
+ initial P = 48'b0;
+ initial CARRYOUT = carryout_reset;
+ initial CARRYCASCOUT = 1'b0;
+ initial MULTSIGNOUT = 1'b0;
+ always @(posedge CLK)
+ if (RSTP) begin
+ P <= 48'b0;
+ CARRYOUT <= carryout_reset;
+ CARRYCASCOUT <= 1'b0;
+ MULTSIGNOUT <= 1'b0;
+ end else if (CEP) begin
+ P <= Pd;
+ CARRYOUT <= CARRYOUTd;
+ CARRYCASCOUT <= CARRYCASCOUTd;
+ MULTSIGNOUT <= MULTSIGNOUTd;
+ end
+ end else begin
+ always @* begin
+ P = Pd;
+ CARRYOUT = CARRYOUTd;
+ CARRYCASCOUT = CARRYCASCOUTd;
+ MULTSIGNOUT = MULTSIGNOUTd;
+ end
+ end
+ endgenerate
+
+ assign PCOUT = P;
+
+ generate
+ wire PATTERNDETECTd, PATTERNBDETECTd;
+
+ if (USE_PATTERN_DETECT == "PATDET") begin
+ // TODO: Support SEL_PATTERN != "PATTERN" and SEL_MASK != "MASK
+ assign PATTERNDETECTd = &(~(Pd ^ PATTERN) | MASK);
+ assign PATTERNBDETECTd = &((Pd ^ PATTERN) | MASK);
+ end else begin
+ assign PATTERNDETECTd = 1'b1;
+ assign PATTERNBDETECTd = 1'b1;
+ end
+
+ if (PREG == 1) begin
+ reg PATTERNDETECTPAST, PATTERNBDETECTPAST;
+ initial PATTERNDETECT = 1'b0;
+ initial PATTERNBDETECT = 1'b0;
+ initial PATTERNDETECTPAST = 1'b0;
+ initial PATTERNBDETECTPAST = 1'b0;
+ always @(posedge CLK)
+ if (RSTP) begin
+ PATTERNDETECT <= 1'b0;
+ PATTERNBDETECT <= 1'b0;
+ PATTERNDETECTPAST <= 1'b0;
+ PATTERNBDETECTPAST <= 1'b0;
+ end else if (CEP) begin
+ PATTERNDETECT <= PATTERNDETECTd;
+ PATTERNBDETECT <= PATTERNBDETECTd;
+ PATTERNDETECTPAST <= PATTERNDETECT;
+ PATTERNBDETECTPAST <= PATTERNBDETECT;
+ end
+ assign OVERFLOW = &{PATTERNDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT};
+ assign UNDERFLOW = &{PATTERNBDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT};
+ end else begin
+ always @* begin
+ PATTERNDETECT = PATTERNDETECTd;
+ PATTERNBDETECT = PATTERNBDETECTd;
+ end
+ assign OVERFLOW = 1'bx, UNDERFLOW = 1'bx;
+ end
+ endgenerate
+
+endmodule
+
+// TODO: DSP48E2 (Ultrascale).