diff options
Diffstat (limited to 'techlibs/xilinx/cells_sim.v')
-rw-r--r-- | techlibs/xilinx/cells_sim.v | 2792 |
1 files changed, 2783 insertions, 9 deletions
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v index 1f114a22c..eb145593e 100644 --- a/techlibs/xilinx/cells_sim.v +++ b/techlibs/xilinx/cells_sim.v @@ -1,3 +1,21 @@ +/* + * yosys -- Yosys Open SYnthesis Suite + * + * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ // See Xilinx UG953 and UG474 for a description of the cell types below. // http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf @@ -11,18 +29,123 @@ module GND(output G); assign G = 0; endmodule -module IBUF(output O, input I); +module IBUF( + output O, + (* iopad_external_pin *) + input I); + parameter IOSTANDARD = "default"; + parameter IBUF_LOW_PWR = 0; assign O = I; endmodule -module OBUF(output O, input I); +module IBUFG( + output O, + (* iopad_external_pin *) + input I); + parameter CAPACITANCE = "DONT_CARE"; + parameter IBUF_DELAY_VALUE = "0"; + parameter IBUF_LOW_PWR = "TRUE"; + parameter IOSTANDARD = "DEFAULT"; assign O = I; endmodule -module BUFG(output O, input I); +module OBUF( + (* iopad_external_pin *) + output O, + input I); + parameter IOSTANDARD = "default"; + parameter DRIVE = 12; + parameter SLEW = "SLOW"; assign O = I; endmodule +module IOBUF ( + (* iopad_external_pin *) + inout IO, + output O, + input I, + input T +); + parameter integer DRIVE = 12; + parameter IBUF_LOW_PWR = "TRUE"; + parameter IOSTANDARD = "DEFAULT"; + parameter SLEW = "SLOW"; + assign IO = T ? 1'bz : I; + assign O = IO; +endmodule + +module OBUFT ( + (* iopad_external_pin *) + output O, + input I, + input T +); + parameter CAPACITANCE = "DONT_CARE"; + parameter integer DRIVE = 12; + parameter IOSTANDARD = "DEFAULT"; + parameter SLEW = "SLOW"; + assign O = T ? 1'bz : I; +endmodule + +module BUFG( + (* clkbuf_driver *) + output O, + input I); + + assign O = I; +endmodule + +module BUFGCTRL( + (* clkbuf_driver *) + output O, + input I0, input I1, + (* invertible_pin = "IS_S0_INVERTED" *) + input S0, + (* invertible_pin = "IS_S1_INVERTED" *) + input S1, + (* invertible_pin = "IS_CE0_INVERTED" *) + input CE0, + (* invertible_pin = "IS_CE1_INVERTED" *) + input CE1, + (* invertible_pin = "IS_IGNORE0_INVERTED" *) + input IGNORE0, + (* invertible_pin = "IS_IGNORE1_INVERTED" *) + input IGNORE1); + +parameter [0:0] INIT_OUT = 1'b0; +parameter PRESELECT_I0 = "FALSE"; +parameter PRESELECT_I1 = "FALSE"; +parameter [0:0] IS_CE0_INVERTED = 1'b0; +parameter [0:0] IS_CE1_INVERTED = 1'b0; +parameter [0:0] IS_S0_INVERTED = 1'b0; +parameter [0:0] IS_S1_INVERTED = 1'b0; +parameter [0:0] IS_IGNORE0_INVERTED = 1'b0; +parameter [0:0] IS_IGNORE1_INVERTED = 1'b0; + +wire I0_internal = ((CE0 ^ IS_CE0_INVERTED) ? I0 : INIT_OUT); +wire I1_internal = ((CE1 ^ IS_CE1_INVERTED) ? I1 : INIT_OUT); +wire S0_true = (S0 ^ IS_S0_INVERTED); +wire S1_true = (S1 ^ IS_S1_INVERTED); + +assign O = S0_true ? I0_internal : (S1_true ? I1_internal : INIT_OUT); + +endmodule + +module BUFHCE( + (* clkbuf_driver *) + output O, + input I, + (* invertible_pin = "IS_CE_INVERTED" *) + input CE); + +parameter [0:0] INIT_OUT = 1'b0; +parameter CE_TYPE = "SYNC"; +parameter [0:0] IS_CE_INVERTED = 1'b0; + +assign O = ((CE ^ IS_CE_INVERTED) ? I : INIT_OUT); + +endmodule + // module OBUFT(output O, input I, T); // assign O = T ? 1'bz : I; // endmodule @@ -31,7 +154,11 @@ endmodule // assign O = IO, IO = T ? 1'bz : I; // endmodule -module INV(output O, input I); +module INV( + (* clkbuf_inv = "I" *) + output O, + input I +); assign O = !I; endmodule @@ -80,23 +207,62 @@ module LUT6(output O, input I0, I1, I2, I3, I4, I5); assign O = I0 ? s1[1] : s1[0]; endmodule +module LUT6_2(output O6, output O5, input I0, I1, I2, I3, I4, I5); + parameter [63:0] INIT = 0; + wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0]; + wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0]; + wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; + wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; + wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; + assign O6 = I0 ? s1[1] : s1[0]; + + wire [15: 0] s5_4 = I4 ? INIT[31:16] : INIT[15: 0]; + wire [ 7: 0] s5_3 = I3 ? s5_4[15: 8] : s5_4[ 7: 0]; + wire [ 3: 0] s5_2 = I2 ? s5_3[ 7: 4] : s5_3[ 3: 0]; + wire [ 1: 0] s5_1 = I1 ? s5_2[ 3: 2] : s5_2[ 1: 0]; + assign O5 = I0 ? s5_1[1] : s5_1[0]; +endmodule + module MUXCY(output O, input CI, DI, S); assign O = S ? CI : DI; endmodule +module MUXF5(output O, input I0, I1, S); + assign O = S ? I1 : I0; +endmodule + +module MUXF6(output O, input I0, I1, S); + assign O = S ? I1 : I0; +endmodule + +(* abc9_box_id = 1, lib_whitebox *) module MUXF7(output O, input I0, I1, S); assign O = S ? I1 : I0; endmodule +(* abc9_box_id = 2, lib_whitebox *) module MUXF8(output O, input I0, I1, S); assign O = S ? I1 : I0; endmodule +module MUXF9(output O, input I0, I1, S); + assign O = S ? I1 : I0; +endmodule + module XORCY(output O, input CI, LI); assign O = CI ^ LI; endmodule -module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S); +(* abc9_box_id = 4, lib_whitebox *) +module CARRY4( + (* abc9_carry *) + output [3:0] CO, + output [3:0] O, + (* abc9_carry *) + input CI, + input CYINIT, + input [3:0] DI, S +); assign O = S ^ {CO[2:0], CI | CYINIT}; assign CO[0] = S[0] ? CI | CYINIT : DI[0]; assign CO[1] = S[1] ? CO[0] : DI[1]; @@ -104,7 +270,74 @@ module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S); assign CO[3] = S[3] ? CO[2] : DI[3]; endmodule -module FDRE (output reg Q, input C, CE, D, R); +module CARRY8( + output [7:0] CO, + output [7:0] O, + input CI, + input CI_TOP, + input [7:0] DI, S +); + parameter CARRY_TYPE = "SINGLE_CY8"; + wire CI4 = (CARRY_TYPE == "DUAL_CY4" ? CI_TOP : CO[3]); + assign O = S ^ {CO[6:4], CI4, CO[2:0], CI}; + assign CO[0] = S[0] ? CI : DI[0]; + assign CO[1] = S[1] ? CO[0] : DI[1]; + assign CO[2] = S[2] ? CO[1] : DI[2]; + assign CO[3] = S[3] ? CO[2] : DI[3]; + assign CO[4] = S[4] ? CI4 : DI[4]; + assign CO[5] = S[5] ? CO[4] : DI[5]; + assign CO[6] = S[6] ? CO[5] : DI[6]; + assign CO[7] = S[7] ? CO[6] : DI[7]; +endmodule + +`ifdef _EXPLICIT_CARRY + +module CARRY0(output CO_CHAIN, CO_FABRIC, O, input CI, CI_INIT, DI, S); + parameter CYINIT_FABRIC = 0; + wire CI_COMBINE; + if(CYINIT_FABRIC) begin + assign CI_COMBINE = CI_INIT; + end else begin + assign CI_COMBINE = CI; + end + assign CO_CHAIN = S ? CI_COMBINE : DI; + assign CO_FABRIC = S ? CI_COMBINE : DI; + assign O = S ^ CI_COMBINE; +endmodule + +module CARRY(output CO_CHAIN, CO_FABRIC, O, input CI, DI, S); + assign CO_CHAIN = S ? CI : DI; + assign CO_FABRIC = S ? CI : DI; + assign O = S ^ CI; +endmodule + +`endif + +module ORCY (output O, input CI, I); + assign O = CI | I; +endmodule + +module MULT_AND (output LO, input I0, I1); + assign LO = I0 & I1; +endmodule + +// Flip-flops and latches. + +// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250 + +(* abc9_box_id=1100, lib_whitebox, abc9_flop *) +module FDRE ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) + input C, + input CE, + (* invertible_pin = "IS_D_INVERTED" *) + input D, + (* invertible_pin = "IS_R_INVERTED" *) + input R +); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; @@ -116,8 +349,33 @@ module FDRE (output reg Q, input C, CE, D, R); endcase endgenerate endmodule -module FDSE (output reg Q, input C, CE, D, S); +(* abc9_box_id=1101, lib_whitebox, abc9_flop *) +module FDRE_1 ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + input C, + input CE, D, R +); parameter [0:0] INIT = 1'b0; + initial Q <= INIT; + always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D; +endmodule + +(* abc9_box_id=1102, lib_whitebox, abc9_flop *) +module FDSE ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) + input C, + input CE, + (* invertible_pin = "IS_D_INVERTED" *) + input D, + (* invertible_pin = "IS_S_INVERTED" *) + input S +); + parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; @@ -128,7 +386,67 @@ module FDSE (output reg Q, input C, CE, D, S); endcase endgenerate endmodule -module FDCE (output reg Q, input C, CE, D, CLR); +(* abc9_box_id=1103, lib_whitebox, abc9_flop *) +module FDSE_1 ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + input C, + input CE, D, S +); + parameter [0:0] INIT = 1'b1; + initial Q <= INIT; + always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D; +endmodule + +module FDRSE ( + output reg Q, + (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) + input C, + (* invertible_pin = "IS_CE_INVERTED" *) + input CE, + (* invertible_pin = "IS_D_INVERTED" *) + input D, + (* invertible_pin = "IS_R_INVERTED" *) + input R, + (* invertible_pin = "IS_S_INVERTED" *) + input S +); + parameter [0:0] INIT = 1'b0; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_CE_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_R_INVERTED = 1'b0; + parameter [0:0] IS_S_INVERTED = 1'b0; + initial Q <= INIT; + wire c = C ^ IS_C_INVERTED; + wire ce = CE ^ IS_CE_INVERTED; + wire d = D ^ IS_D_INVERTED; + wire r = R ^ IS_R_INVERTED; + wire s = S ^ IS_S_INVERTED; + always @(posedge c) + if (r) + Q <= 0; + else if (s) + Q <= 1; + else if (ce) + Q <= d; +endmodule + +(* abc9_box_id=1104, lib_whitebox, abc9_flop *) +module FDCE ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) + input C, + input CE, + (* invertible_pin = "IS_CLR_INVERTED" *) + input CLR, + (* invertible_pin = "IS_D_INVERTED" *) + input D +); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; @@ -142,8 +460,33 @@ module FDCE (output reg Q, input C, CE, D, CLR); endcase endgenerate endmodule -module FDPE (output reg Q, input C, CE, D, PRE); +(* abc9_box_id=1105, lib_whitebox, abc9_flop *) +module FDCE_1 ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + input C, + input CE, D, CLR +); parameter [0:0] INIT = 1'b0; + initial Q <= INIT; + always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; +endmodule + +(* abc9_box_id=1106, lib_whitebox, abc9_flop *) +module FDPE ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) + input C, + input CE, + (* invertible_pin = "IS_D_INVERTED" *) + input D, + (* invertible_pin = "IS_PRE_INVERTED" *) + input PRE +); + parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; @@ -156,3 +499,2434 @@ module FDPE (output reg Q, input C, CE, D, PRE); endcase endgenerate endmodule +(* abc9_box_id=1107, lib_whitebox, abc9_flop *) +module FDPE_1 ( + (* abc9_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + input C, + input CE, D, PRE +); + parameter [0:0] INIT = 1'b1; + initial Q <= INIT; + always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; +endmodule + +module FDCPE ( + output wire Q, + (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) + input C, + input CE, + (* invertible_pin = "IS_CLR_INVERTED" *) + input CLR, + input D, + (* invertible_pin = "IS_PRE_INVERTED" *) + input PRE +); + parameter [0:0] INIT = 1'b0; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_CLR_INVERTED = 1'b0; + parameter [0:0] IS_PRE_INVERTED = 1'b0; + wire c = C ^ IS_C_INVERTED; + wire clr = CLR ^ IS_CLR_INVERTED; + wire pre = PRE ^ IS_PRE_INVERTED; + // Hacky model to avoid simulation-synthesis mismatches. + reg qc, qp, qs; + initial qc = INIT; + initial qp = INIT; + initial qs = 0; + always @(posedge c, posedge clr) begin + if (clr) + qc <= 0; + else if (CE) + qc <= D; + end + always @(posedge c, posedge pre) begin + if (pre) + qp <= 1; + else if (CE) + qp <= D; + end + always @* begin + if (clr) + qs <= 0; + else if (pre) + qs <= 1; + end + assign Q = qs ? qp : qc; +endmodule + +module LDCE ( + output reg Q, + (* invertible_pin = "IS_CLR_INVERTED" *) + input CLR, + input D, + (* invertible_pin = "IS_G_INVERTED" *) + input G, + input GE +); + parameter [0:0] INIT = 1'b0; + parameter [0:0] IS_CLR_INVERTED = 1'b0; + parameter [0:0] IS_G_INVERTED = 1'b0; + parameter MSGON = "TRUE"; + parameter XON = "TRUE"; + initial Q = INIT; + wire clr = CLR ^ IS_CLR_INVERTED; + wire g = G ^ IS_G_INVERTED; + always @* + if (clr) Q <= 1'b0; + else if (GE && g) Q <= D; +endmodule + +module LDPE ( + output reg Q, + input D, + (* invertible_pin = "IS_G_INVERTED" *) + input G, + input GE, + (* invertible_pin = "IS_PRE_INVERTED" *) + input PRE +); + parameter [0:0] INIT = 1'b1; + parameter [0:0] IS_G_INVERTED = 1'b0; + parameter [0:0] IS_PRE_INVERTED = 1'b0; + parameter MSGON = "TRUE"; + parameter XON = "TRUE"; + initial Q = INIT; + wire g = G ^ IS_G_INVERTED; + wire pre = PRE ^ IS_PRE_INVERTED; + always @* + if (pre) Q <= 1'b1; + else if (GE && g) Q <= D; +endmodule + +module LDCPE ( + output reg Q, + (* invertible_pin = "IS_CLR_INVERTED" *) + input CLR, + (* invertible_pin = "IS_D_INVERTED" *) + input D, + (* invertible_pin = "IS_G_INVERTED" *) + input G, + (* invertible_pin = "IS_GE_INVERTED" *) + input GE, + (* invertible_pin = "IS_PRE_INVERTED" *) + input PRE +); + parameter [0:0] INIT = 1'b1; + parameter [0:0] IS_CLR_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_G_INVERTED = 1'b0; + parameter [0:0] IS_GE_INVERTED = 1'b0; + parameter [0:0] IS_PRE_INVERTED = 1'b0; + initial Q = INIT; + wire d = D ^ IS_D_INVERTED; + wire g = G ^ IS_G_INVERTED; + wire ge = GE ^ IS_GE_INVERTED; + wire clr = CLR ^ IS_CLR_INVERTED; + wire pre = PRE ^ IS_PRE_INVERTED; + always @* + if (clr) Q <= 1'b0; + else if (pre) Q <= 1'b1; + else if (ge && g) Q <= d; +endmodule + +module AND2B1L ( + output O, + input DI, + (* invertible_pin = "IS_SRI_INVERTED" *) + input SRI +); + parameter [0:0] IS_SRI_INVERTED = 1'b0; + assign O = DI & ~(SRI ^ IS_SRI_INVERTED); +endmodule + +module OR2L ( + output O, + input DI, + (* invertible_pin = "IS_SRI_INVERTED" *) + input SRI +); + parameter [0:0] IS_SRI_INVERTED = 1'b0; + assign O = DI | (SRI ^ IS_SRI_INVERTED); +endmodule + +// LUTRAM. + +// Single port. + +module RAM16X1S ( + output O, + input A0, A1, A2, A3, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [15:0] INIT = 16'h0000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [3:0] a = {A3, A2, A1, A0}; + reg [15:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM16X1S_1 ( + output O, + input A0, A1, A2, A3, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [15:0] INIT = 16'h0000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [3:0] a = {A3, A2, A1, A0}; + reg [15:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(negedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM32X1S ( + output O, + input A0, A1, A2, A3, A4, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [31:0] INIT = 32'h00000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [4:0] a = {A4, A3, A2, A1, A0}; + reg [31:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM32X1S_1 ( + output O, + input A0, A1, A2, A3, A4, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [31:0] INIT = 32'h00000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [4:0] a = {A4, A3, A2, A1, A0}; + reg [31:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(negedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM64X1S ( + output O, + input A0, A1, A2, A3, A4, A5, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [63:0] INIT = 64'h0000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [5:0] a = {A5, A4, A3, A2, A1, A0}; + reg [63:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM64X1S_1 ( + output O, + input A0, A1, A2, A3, A4, A5, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [63:0] INIT = 64'h0000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [5:0] a = {A5, A4, A3, A2, A1, A0}; + reg [63:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(negedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM128X1S ( + output O, + input A0, A1, A2, A3, A4, A5, A6, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [127:0] INIT = 128'h00000000000000000000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0}; + reg [127:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM128X1S_1 ( + output O, + input A0, A1, A2, A3, A4, A5, A6, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [127:0] INIT = 128'h00000000000000000000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0}; + reg [127:0] mem = INIT; + assign O = mem[a]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(negedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM256X1S ( + output O, + input [7:0] A, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [255:0] INIT = 256'h0; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + reg [255:0] mem = INIT; + assign O = mem[A]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[A] <= D; +endmodule + +module RAM512X1S ( + output O, + input [8:0] A, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [511:0] INIT = 512'h0; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + reg [511:0] mem = INIT; + assign O = mem[A]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[A] <= D; +endmodule + +// Single port, wide. + +module RAM16X2S ( + output O0, O1, + input A0, A1, A2, A3, + input D0, D1, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [15:0] INIT_00 = 16'h0000; + parameter [15:0] INIT_01 = 16'h0000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [3:0] a = {A3, A2, A1, A0}; + wire clk = WCLK ^ IS_WCLK_INVERTED; + reg [15:0] mem0 = INIT_00; + reg [15:0] mem1 = INIT_01; + assign O0 = mem0[a]; + assign O1 = mem1[a]; + always @(posedge clk) + if (WE) begin + mem0[a] <= D0; + mem1[a] <= D1; + end +endmodule + +module RAM32X2S ( + output O0, O1, + input A0, A1, A2, A3, A4, + input D0, D1, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [31:0] INIT_00 = 32'h00000000; + parameter [31:0] INIT_01 = 32'h00000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [4:0] a = {A4, A3, A2, A1, A0}; + wire clk = WCLK ^ IS_WCLK_INVERTED; + reg [31:0] mem0 = INIT_00; + reg [31:0] mem1 = INIT_01; + assign O0 = mem0[a]; + assign O1 = mem1[a]; + always @(posedge clk) + if (WE) begin + mem0[a] <= D0; + mem1[a] <= D1; + end +endmodule + +module RAM64X2S ( + output O0, O1, + input A0, A1, A2, A3, A4, A5, + input D0, D1, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [63:0] INIT_00 = 64'h0000000000000000; + parameter [63:0] INIT_01 = 64'h0000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [5:0] a = {A5, A3, A2, A1, A0}; + wire clk = WCLK ^ IS_WCLK_INVERTED; + reg [63:0] mem0 = INIT_00; + reg [63:0] mem1 = INIT_01; + assign O0 = mem0[a]; + assign O1 = mem1[a]; + always @(posedge clk) + if (WE) begin + mem0[a] <= D0; + mem1[a] <= D1; + end +endmodule + +module RAM16X4S ( + output O0, O1, O2, O3, + input A0, A1, A2, A3, + input D0, D1, D2, D3, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [15:0] INIT_00 = 16'h0000; + parameter [15:0] INIT_01 = 16'h0000; + parameter [15:0] INIT_02 = 16'h0000; + parameter [15:0] INIT_03 = 16'h0000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [3:0] a = {A3, A2, A1, A0}; + wire clk = WCLK ^ IS_WCLK_INVERTED; + reg [15:0] mem0 = INIT_00; + reg [15:0] mem1 = INIT_01; + reg [15:0] mem2 = INIT_02; + reg [15:0] mem3 = INIT_03; + assign O0 = mem0[a]; + assign O1 = mem1[a]; + assign O2 = mem2[a]; + assign O3 = mem3[a]; + always @(posedge clk) + if (WE) begin + mem0[a] <= D0; + mem1[a] <= D1; + mem2[a] <= D2; + mem3[a] <= D3; + end +endmodule + +module RAM32X4S ( + output O0, O1, O2, O3, + input A0, A1, A2, A3, A4, + input D0, D1, D2, D3, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [31:0] INIT_00 = 32'h00000000; + parameter [31:0] INIT_01 = 32'h00000000; + parameter [31:0] INIT_02 = 32'h00000000; + parameter [31:0] INIT_03 = 32'h00000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [4:0] a = {A4, A3, A2, A1, A0}; + wire clk = WCLK ^ IS_WCLK_INVERTED; + reg [31:0] mem0 = INIT_00; + reg [31:0] mem1 = INIT_01; + reg [31:0] mem2 = INIT_02; + reg [31:0] mem3 = INIT_03; + assign O0 = mem0[a]; + assign O1 = mem1[a]; + assign O2 = mem2[a]; + assign O3 = mem3[a]; + always @(posedge clk) + if (WE) begin + mem0[a] <= D0; + mem1[a] <= D1; + mem2[a] <= D2; + mem3[a] <= D3; + end +endmodule + +module RAM16X8S ( + output [7:0] O, + input A0, A1, A2, A3, + input [7:0] D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [15:0] INIT_00 = 16'h0000; + parameter [15:0] INIT_01 = 16'h0000; + parameter [15:0] INIT_02 = 16'h0000; + parameter [15:0] INIT_03 = 16'h0000; + parameter [15:0] INIT_04 = 16'h0000; + parameter [15:0] INIT_05 = 16'h0000; + parameter [15:0] INIT_06 = 16'h0000; + parameter [15:0] INIT_07 = 16'h0000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [3:0] a = {A3, A2, A1, A0}; + wire clk = WCLK ^ IS_WCLK_INVERTED; + reg [15:0] mem0 = INIT_00; + reg [15:0] mem1 = INIT_01; + reg [15:0] mem2 = INIT_02; + reg [15:0] mem3 = INIT_03; + reg [15:0] mem4 = INIT_04; + reg [15:0] mem5 = INIT_05; + reg [15:0] mem6 = INIT_06; + reg [15:0] mem7 = INIT_07; + assign O[0] = mem0[a]; + assign O[1] = mem1[a]; + assign O[2] = mem2[a]; + assign O[3] = mem3[a]; + assign O[4] = mem4[a]; + assign O[5] = mem5[a]; + assign O[6] = mem6[a]; + assign O[7] = mem7[a]; + always @(posedge clk) + if (WE) begin + mem0[a] <= D[0]; + mem1[a] <= D[1]; + mem2[a] <= D[2]; + mem3[a] <= D[3]; + mem4[a] <= D[4]; + mem5[a] <= D[5]; + mem6[a] <= D[6]; + mem7[a] <= D[7]; + end +endmodule + +module RAM32X8S ( + output [7:0] O, + input A0, A1, A2, A3, A4, + input [7:0] D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [31:0] INIT_00 = 32'h00000000; + parameter [31:0] INIT_01 = 32'h00000000; + parameter [31:0] INIT_02 = 32'h00000000; + parameter [31:0] INIT_03 = 32'h00000000; + parameter [31:0] INIT_04 = 32'h00000000; + parameter [31:0] INIT_05 = 32'h00000000; + parameter [31:0] INIT_06 = 32'h00000000; + parameter [31:0] INIT_07 = 32'h00000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + wire [4:0] a = {A4, A3, A2, A1, A0}; + wire clk = WCLK ^ IS_WCLK_INVERTED; + reg [31:0] mem0 = INIT_00; + reg [31:0] mem1 = INIT_01; + reg [31:0] mem2 = INIT_02; + reg [31:0] mem3 = INIT_03; + reg [31:0] mem4 = INIT_04; + reg [31:0] mem5 = INIT_05; + reg [31:0] mem6 = INIT_06; + reg [31:0] mem7 = INIT_07; + assign O[0] = mem0[a]; + assign O[1] = mem1[a]; + assign O[2] = mem2[a]; + assign O[3] = mem3[a]; + assign O[4] = mem4[a]; + assign O[5] = mem5[a]; + assign O[6] = mem6[a]; + assign O[7] = mem7[a]; + always @(posedge clk) + if (WE) begin + mem0[a] <= D[0]; + mem1[a] <= D[1]; + mem2[a] <= D[2]; + mem3[a] <= D[3]; + mem4[a] <= D[4]; + mem5[a] <= D[5]; + mem6[a] <= D[6]; + mem7[a] <= D[7]; + end +endmodule + +// Dual port. + +module RAM16X1D ( + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input A0, A1, A2, A3, + input DPRA0, DPRA1, DPRA2, DPRA3 +); + parameter INIT = 16'h0; + parameter IS_WCLK_INVERTED = 1'b0; + wire [3:0] a = {A3, A2, A1, A0}; + wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0}; + reg [15:0] mem = INIT; + assign SPO = mem[a]; + assign DPO = mem[dpra]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM16X1D_1 ( + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input A0, A1, A2, A3, + input DPRA0, DPRA1, DPRA2, DPRA3 +); + parameter INIT = 16'h0; + parameter IS_WCLK_INVERTED = 1'b0; + wire [3:0] a = {A3, A2, A1, A0}; + wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0}; + reg [15:0] mem = INIT; + assign SPO = mem[a]; + assign DPO = mem[dpra]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(negedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM32X1D ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857 + (* abc9_arrival=1188 *) + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input A0, A1, A2, A3, A4, + input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 +); + parameter INIT = 32'h0; + parameter IS_WCLK_INVERTED = 1'b0; + wire [4:0] a = {A4, A3, A2, A1, A0}; + wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; + reg [31:0] mem = INIT; + assign SPO = mem[a]; + assign DPO = mem[dpra]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM32X1D_1 ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857 + (* abc9_arrival=1188 *) + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input A0, A1, A2, A3, A4, + input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 +); + parameter INIT = 32'h0; + parameter IS_WCLK_INVERTED = 1'b0; + wire [4:0] a = {A4, A3, A2, A1, A0}; + wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; + reg [31:0] mem = INIT; + assign SPO = mem[a]; + assign DPO = mem[dpra]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(negedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM64X1D ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889 + (* abc9_arrival=1153 *) + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input A0, A1, A2, A3, A4, A5, + input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 +); + parameter INIT = 64'h0; + parameter IS_WCLK_INVERTED = 1'b0; + wire [5:0] a = {A5, A4, A3, A2, A1, A0}; + wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; + reg [63:0] mem = INIT; + assign SPO = mem[a]; + assign DPO = mem[dpra]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM64X1D_1 ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889 + (* abc9_arrival=1153 *) + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input A0, A1, A2, A3, A4, A5, + input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 +); + parameter INIT = 64'h0; + parameter IS_WCLK_INVERTED = 1'b0; + wire [5:0] a = {A5, A4, A3, A2, A1, A0}; + wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; + reg [63:0] mem = INIT; + assign SPO = mem[a]; + assign DPO = mem[dpra]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(negedge clk) if (WE) mem[a] <= D; +endmodule + +module RAM128X1D ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889 + // plus 204ps to cross MUXF7 + (* abc9_arrival=1357 *) + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input [6:0] A, DPRA +); + parameter INIT = 128'h0; + parameter IS_WCLK_INVERTED = 1'b0; + reg [127:0] mem = INIT; + assign SPO = mem[A]; + assign DPO = mem[DPRA]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[A] <= D; +endmodule + +module RAM256X1D ( + output DPO, SPO, + input D, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE, + input [7:0] A, DPRA +); + parameter INIT = 256'h0; + parameter IS_WCLK_INVERTED = 1'b0; + reg [255:0] mem = INIT; + assign SPO = mem[A]; + assign DPO = mem[DPRA]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) if (WE) mem[A] <= D; +endmodule + +// Multi port. + +module RAM32M ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857 + (* abc9_arrival=1188 *) + output [1:0] DOA, + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L925 + (* abc9_arrival=1187 *) + output [1:0] DOB, + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L993 + (* abc9_arrival=1180 *) + output [1:0] DOC, + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1061 + (* abc9_arrival=1190 *) + output [1:0] DOD, + input [4:0] ADDRA, ADDRB, ADDRC, ADDRD, + input [1:0] DIA, DIB, DIC, DID, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [63:0] INIT_A = 64'h0000000000000000; + parameter [63:0] INIT_B = 64'h0000000000000000; + parameter [63:0] INIT_C = 64'h0000000000000000; + parameter [63:0] INIT_D = 64'h0000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + reg [63:0] mem_a = INIT_A; + reg [63:0] mem_b = INIT_B; + reg [63:0] mem_c = INIT_C; + reg [63:0] mem_d = INIT_D; + assign DOA = mem_a[2*ADDRA+:2]; + assign DOB = mem_b[2*ADDRB+:2]; + assign DOC = mem_c[2*ADDRC+:2]; + assign DOD = mem_d[2*ADDRD+:2]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) + if (WE) begin + mem_a[2*ADDRD+:2] <= DIA; + mem_b[2*ADDRD+:2] <= DIB; + mem_c[2*ADDRD+:2] <= DIC; + mem_d[2*ADDRD+:2] <= DID; + end +endmodule + +module RAM32M16 ( + output [1:0] DOA, + output [1:0] DOB, + output [1:0] DOC, + output [1:0] DOD, + output [1:0] DOE, + output [1:0] DOF, + output [1:0] DOG, + output [1:0] DOH, + input [4:0] ADDRA, + input [4:0] ADDRB, + input [4:0] ADDRC, + input [4:0] ADDRD, + input [4:0] ADDRE, + input [4:0] ADDRF, + input [4:0] ADDRG, + input [4:0] ADDRH, + input [1:0] DIA, + input [1:0] DIB, + input [1:0] DIC, + input [1:0] DID, + input [1:0] DIE, + input [1:0] DIF, + input [1:0] DIG, + input [1:0] DIH, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [63:0] INIT_A = 64'h0000000000000000; + parameter [63:0] INIT_B = 64'h0000000000000000; + parameter [63:0] INIT_C = 64'h0000000000000000; + parameter [63:0] INIT_D = 64'h0000000000000000; + parameter [63:0] INIT_E = 64'h0000000000000000; + parameter [63:0] INIT_F = 64'h0000000000000000; + parameter [63:0] INIT_G = 64'h0000000000000000; + parameter [63:0] INIT_H = 64'h0000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + reg [63:0] mem_a = INIT_A; + reg [63:0] mem_b = INIT_B; + reg [63:0] mem_c = INIT_C; + reg [63:0] mem_d = INIT_D; + reg [63:0] mem_e = INIT_E; + reg [63:0] mem_f = INIT_F; + reg [63:0] mem_g = INIT_G; + reg [63:0] mem_h = INIT_H; + assign DOA = mem_a[2*ADDRA+:2]; + assign DOB = mem_b[2*ADDRB+:2]; + assign DOC = mem_c[2*ADDRC+:2]; + assign DOD = mem_d[2*ADDRD+:2]; + assign DOE = mem_e[2*ADDRE+:2]; + assign DOF = mem_f[2*ADDRF+:2]; + assign DOG = mem_g[2*ADDRG+:2]; + assign DOH = mem_h[2*ADDRH+:2]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) + if (WE) begin + mem_a[2*ADDRH+:2] <= DIA; + mem_b[2*ADDRH+:2] <= DIB; + mem_c[2*ADDRH+:2] <= DIC; + mem_d[2*ADDRH+:2] <= DID; + mem_e[2*ADDRH+:2] <= DIE; + mem_f[2*ADDRH+:2] <= DIF; + mem_g[2*ADDRH+:2] <= DIG; + mem_h[2*ADDRH+:2] <= DIH; + end +endmodule + +module RAM64M ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889 + (* abc9_arrival=1153 *) + output DOA, + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957 + (* abc9_arrival=1161 *) + output DOB, + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1025 + (* abc9_arrival=1158 *) + output DOC, + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1093 + (* abc9_arrival=1163 *) + output DOD, + input [5:0] ADDRA, ADDRB, ADDRC, ADDRD, + input DIA, DIB, DIC, DID, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [63:0] INIT_A = 64'h0000000000000000; + parameter [63:0] INIT_B = 64'h0000000000000000; + parameter [63:0] INIT_C = 64'h0000000000000000; + parameter [63:0] INIT_D = 64'h0000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + reg [63:0] mem_a = INIT_A; + reg [63:0] mem_b = INIT_B; + reg [63:0] mem_c = INIT_C; + reg [63:0] mem_d = INIT_D; + assign DOA = mem_a[ADDRA]; + assign DOB = mem_b[ADDRB]; + assign DOC = mem_c[ADDRC]; + assign DOD = mem_d[ADDRD]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) + if (WE) begin + mem_a[ADDRD] <= DIA; + mem_b[ADDRD] <= DIB; + mem_c[ADDRD] <= DIC; + mem_d[ADDRD] <= DID; + end +endmodule + +module RAM64M8 ( + output DOA, + output DOB, + output DOC, + output DOD, + output DOE, + output DOF, + output DOG, + output DOH, + input [5:0] ADDRA, + input [5:0] ADDRB, + input [5:0] ADDRC, + input [5:0] ADDRD, + input [5:0] ADDRE, + input [5:0] ADDRF, + input [5:0] ADDRG, + input [5:0] ADDRH, + input DIA, + input DIB, + input DIC, + input DID, + input DIE, + input DIF, + input DIG, + input DIH, + (* clkbuf_sink *) + (* invertible_pin = "IS_WCLK_INVERTED" *) + input WCLK, + input WE +); + parameter [63:0] INIT_A = 64'h0000000000000000; + parameter [63:0] INIT_B = 64'h0000000000000000; + parameter [63:0] INIT_C = 64'h0000000000000000; + parameter [63:0] INIT_D = 64'h0000000000000000; + parameter [63:0] INIT_E = 64'h0000000000000000; + parameter [63:0] INIT_F = 64'h0000000000000000; + parameter [63:0] INIT_G = 64'h0000000000000000; + parameter [63:0] INIT_H = 64'h0000000000000000; + parameter [0:0] IS_WCLK_INVERTED = 1'b0; + reg [63:0] mem_a = INIT_A; + reg [63:0] mem_b = INIT_B; + reg [63:0] mem_c = INIT_C; + reg [63:0] mem_d = INIT_D; + reg [63:0] mem_e = INIT_E; + reg [63:0] mem_f = INIT_F; + reg [63:0] mem_g = INIT_G; + reg [63:0] mem_h = INIT_H; + assign DOA = mem_a[ADDRA]; + assign DOB = mem_b[ADDRB]; + assign DOC = mem_c[ADDRC]; + assign DOD = mem_d[ADDRD]; + assign DOE = mem_e[ADDRE]; + assign DOF = mem_f[ADDRF]; + assign DOG = mem_g[ADDRG]; + assign DOH = mem_h[ADDRH]; + wire clk = WCLK ^ IS_WCLK_INVERTED; + always @(posedge clk) + if (WE) begin + mem_a[ADDRH] <= DIA; + mem_b[ADDRH] <= DIB; + mem_c[ADDRH] <= DIC; + mem_d[ADDRH] <= DID; + mem_e[ADDRH] <= DIE; + mem_f[ADDRH] <= DIF; + mem_g[ADDRH] <= DIG; + mem_h[ADDRH] <= DIH; + end +endmodule + +// ROM. + +module ROM16X1 ( + output O, + input A0, A1, A2, A3 +); + parameter [15:0] INIT = 16'h0; + assign O = INIT[{A3, A2, A1, A0}]; +endmodule + +module ROM32X1 ( + output O, + input A0, A1, A2, A3, A4 +); + parameter [31:0] INIT = 32'h0; + assign O = INIT[{A4, A3, A2, A1, A0}]; +endmodule + +module ROM64X1 ( + output O, + input A0, A1, A2, A3, A4, A5 +); + parameter [63:0] INIT = 64'h0; + assign O = INIT[{A5, A4, A3, A2, A1, A0}]; +endmodule + +module ROM128X1 ( + output O, + input A0, A1, A2, A3, A4, A5, A6 +); + parameter [127:0] INIT = 128'h0; + assign O = INIT[{A6, A5, A4, A3, A2, A1, A0}]; +endmodule + +module ROM256X1 ( + output O, + input A0, A1, A2, A3, A4, A5, A6, A7 +); + parameter [255:0] INIT = 256'h0; + assign O = INIT[{A7, A6, A5, A4, A3, A2, A1, A0}]; +endmodule + +// Shift registers. + +module SRL16 ( + output Q, + input A0, A1, A2, A3, + (* clkbuf_sink *) + input CLK, + input D +); + parameter [15:0] INIT = 16'h0000; + + reg [15:0] r = INIT; + assign Q = r[{A3,A2,A1,A0}]; + always @(posedge CLK) r <= { r[14:0], D }; +endmodule + +module SRL16E ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 + (* abc9_arrival=1472 *) + output Q, + input A0, A1, A2, A3, CE, + (* clkbuf_sink *) + (* invertible_pin = "IS_CLK_INVERTED" *) + input CLK, + input D +); + parameter [15:0] INIT = 16'h0000; + parameter [0:0] IS_CLK_INVERTED = 1'b0; + + reg [15:0] r = INIT; + assign Q = r[{A3,A2,A1,A0}]; + generate + if (IS_CLK_INVERTED) begin + always @(negedge CLK) if (CE) r <= { r[14:0], D }; + end + else + always @(posedge CLK) if (CE) r <= { r[14:0], D }; + endgenerate +endmodule + +module SRLC16 ( + output Q, + output Q15, + input A0, A1, A2, A3, + (* clkbuf_sink *) + input CLK, + input D +); + parameter [15:0] INIT = 16'h0000; + + reg [15:0] r = INIT; + assign Q15 = r[15]; + assign Q = r[{A3,A2,A1,A0}]; + always @(posedge CLK) r <= { r[14:0], D }; +endmodule + +module SRLC16E ( + output Q, + output Q15, + input A0, A1, A2, A3, CE, + (* clkbuf_sink *) + (* invertible_pin = "IS_CLK_INVERTED" *) + input CLK, + input D +); + parameter [15:0] INIT = 16'h0000; + parameter [0:0] IS_CLK_INVERTED = 1'b0; + + reg [15:0] r = INIT; + assign Q15 = r[15]; + assign Q = r[{A3,A2,A1,A0}]; + generate + if (IS_CLK_INVERTED) begin + always @(negedge CLK) if (CE) r <= { r[14:0], D }; + end + else + always @(posedge CLK) if (CE) r <= { r[14:0], D }; + endgenerate +endmodule + +module SRLC32E ( + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 + (* abc9_arrival=1472 *) + output Q, + // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904 + (* abc9_arrival=1114 *) + output Q31, + input [4:0] A, + input CE, + (* clkbuf_sink *) + (* invertible_pin = "IS_CLK_INVERTED" *) + input CLK, + input D +); + parameter [31:0] INIT = 32'h00000000; + parameter [0:0] IS_CLK_INVERTED = 1'b0; + + reg [31:0] r = INIT; + assign Q31 = r[31]; + assign Q = r[A]; + generate + if (IS_CLK_INVERTED) begin + always @(negedge CLK) if (CE) r <= { r[30:0], D }; + end + else + always @(posedge CLK) if (CE) r <= { r[30:0], D }; + endgenerate +endmodule + +module CFGLUT5 ( + output CDO, + output O5, + output O6, + input I4, + input I3, + input I2, + input I1, + input I0, + input CDI, + input CE, + (* clkbuf_sink *) + (* invertible_pin = "IS_CLK_INVERTED" *) + input CLK +); + parameter [31:0] INIT = 32'h00000000; + parameter [0:0] IS_CLK_INVERTED = 1'b0; + wire clk = CLK ^ IS_CLK_INVERTED; + reg [31:0] r = INIT; + assign CDO = r[31]; + assign O5 = r[{1'b0, I3, I2, I1, I0}]; + assign O6 = r[{I4, I3, I2, I1, I0}]; + always @(posedge clk) if (CE) r <= {r[30:0], CDI}; +endmodule + +// DSP + +// Virtex 2, Virtex 2 Pro, Spartan 3. + +// Asynchronous mode. + +module MULT18X18 ( + input signed [17:0] A, + input signed [17:0] B, + output signed [35:0] P +); + +assign P = A * B; + +endmodule + +// Synchronous mode. + +module MULT18X18S ( + input signed [17:0] A, + input signed [17:0] B, + output reg signed [35:0] P, + (* clkbuf_sink *) + input C, + input CE, + input R +); + +always @(posedge C) + if (R) + P <= 0; + else if (CE) + P <= A * B; + +endmodule + +// Spartan 3E, Spartan 3A. + +module MULT18X18SIO ( + input signed [17:0] A, + input signed [17:0] B, + output signed [35:0] P, + (* clkbuf_sink *) + input CLK, + input CEA, + input CEB, + input CEP, + input RSTA, + input RSTB, + input RSTP, + input signed [17:0] BCIN, + output signed [17:0] BCOUT +); + +parameter integer AREG = 1; +parameter integer BREG = 1; +parameter B_INPUT = "DIRECT"; +parameter integer PREG = 1; + +// The multiplier. +wire signed [35:0] P_MULT; +assign P_MULT = A_MULT * B_MULT; + +// The cascade output. +assign BCOUT = B_MULT; + +// The B input multiplexer. +wire signed [17:0] B_MUX; +assign B_MUX = (B_INPUT == "DIRECT") ? B : BCIN; + +// The registers. +reg signed [17:0] A_REG; +reg signed [17:0] B_REG; +reg signed [35:0] P_REG; + +initial begin + A_REG = 0; + B_REG = 0; + P_REG = 0; +end + +always @(posedge CLK) begin + if (RSTA) + A_REG <= 0; + else if (CEA) + A_REG <= A; + + if (RSTB) + B_REG <= 0; + else if (CEB) + B_REG <= B_MUX; + + if (RSTP) + P_REG <= 0; + else if (CEP) + P_REG <= P_MULT; +end + +// The register enables. +wire signed [17:0] A_MULT; +wire signed [17:0] B_MULT; +assign A_MULT = (AREG == 1) ? A_REG : A; +assign B_MULT = (BREG == 1) ? B_REG : B_MUX; +assign P = (PREG == 1) ? P_REG : P_MULT; + +endmodule + +// Spartan 3A DSP. + +module DSP48A ( + input signed [17:0] A, + input signed [17:0] B, + input signed [47:0] C, + input signed [17:0] D, + input signed [47:0] PCIN, + input CARRYIN, + input [7:0] OPMODE, + output signed [47:0] P, + output signed [17:0] BCOUT, + output signed [47:0] PCOUT, + output CARRYOUT, + (* clkbuf_sink *) + input CLK, + input CEA, + input CEB, + input CEC, + input CED, + input CEM, + input CECARRYIN, + input CEOPMODE, + input CEP, + input RSTA, + input RSTB, + input RSTC, + input RSTD, + input RSTM, + input RSTCARRYIN, + input RSTOPMODE, + input RSTP +); + +parameter integer A0REG = 0; +parameter integer A1REG = 1; +parameter integer B0REG = 0; +parameter integer B1REG = 1; +parameter integer CREG = 1; +parameter integer DREG = 1; +parameter integer MREG = 1; +parameter integer CARRYINREG = 1; +parameter integer OPMODEREG = 1; +parameter integer PREG = 1; +parameter CARRYINSEL = "CARRYIN"; +parameter RSTTYPE = "SYNC"; + +// This is a strict subset of Spartan 6 -- reuse its model. + +DSP48A1 #( + .A0REG(A0REG), + .A1REG(A1REG), + .B0REG(B0REG), + .B1REG(B1REG), + .CREG(CREG), + .DREG(DREG), + .MREG(MREG), + .CARRYINREG(CARRYINREG), + .CARRYOUTREG(0), + .OPMODEREG(OPMODEREG), + .PREG(PREG), + .CARRYINSEL(CARRYINSEL), + .RSTTYPE(RSTTYPE) +) upgrade ( + .A(A), + .B(B), + .C(C), + .D(D), + .PCIN(PCIN), + .CARRYIN(CARRYIN), + .OPMODE(OPMODE), + // M unconnected + .P(P), + .BCOUT(BCOUT), + .PCOUT(PCOUT), + .CARRYOUT(CARRYOUT), + // CARRYOUTF unconnected + .CLK(CLK), + .CEA(CEA), + .CEB(CEB), + .CEC(CEC), + .CED(CED), + .CEM(CEM), + .CECARRYIN(CECARRYIN), + .CEOPMODE(CEOPMODE), + .CEP(CEP), + .RSTA(RSTA), + .RSTB(RSTB), + .RSTC(RSTC), + .RSTD(RSTD), + .RSTM(RSTM), + .RSTCARRYIN(RSTCARRYIN), + .RSTOPMODE(RSTOPMODE), + .RSTP(RSTP) +); + +endmodule + +// Spartan 6. + +module DSP48A1 ( + input signed [17:0] A, + input signed [17:0] B, + input signed [47:0] C, + input signed [17:0] D, + input signed [47:0] PCIN, + input CARRYIN, + input [7:0] OPMODE, + output signed [35:0] M, + output signed [47:0] P, + output signed [17:0] BCOUT, + output signed [47:0] PCOUT, + output CARRYOUT, + output CARRYOUTF, + (* clkbuf_sink *) + input CLK, + input CEA, + input CEB, + input CEC, + input CED, + input CEM, + input CECARRYIN, + input CEOPMODE, + input CEP, + input RSTA, + input RSTB, + input RSTC, + input RSTD, + input RSTM, + input RSTCARRYIN, + input RSTOPMODE, + input RSTP +); + +parameter integer A0REG = 0; +parameter integer A1REG = 1; +parameter integer B0REG = 0; +parameter integer B1REG = 1; +parameter integer CREG = 1; +parameter integer DREG = 1; +parameter integer MREG = 1; +parameter integer CARRYINREG = 1; +parameter integer CARRYOUTREG = 1; +parameter integer OPMODEREG = 1; +parameter integer PREG = 1; +parameter CARRYINSEL = "OPMODE5"; +parameter RSTTYPE = "SYNC"; + +wire signed [35:0] M_MULT; +wire signed [47:0] P_IN; +wire signed [17:0] A0_OUT; +wire signed [17:0] B0_OUT; +wire signed [17:0] A1_OUT; +wire signed [17:0] B1_OUT; +wire signed [17:0] B1_IN; +wire signed [47:0] C_OUT; +wire signed [17:0] D_OUT; +wire signed [7:0] OPMODE_OUT; +wire CARRYIN_OUT; +wire CARRYOUT_IN; +wire CARRYIN_IN; +reg signed [47:0] XMUX; +reg signed [47:0] ZMUX; + +// The registers. +reg signed [17:0] A0_REG; +reg signed [17:0] A1_REG; +reg signed [17:0] B0_REG; +reg signed [17:0] B1_REG; +reg signed [47:0] C_REG; +reg signed [17:0] D_REG; +reg signed [35:0] M_REG; +reg signed [47:0] P_REG; +reg [7:0] OPMODE_REG; +reg CARRYIN_REG; +reg CARRYOUT_REG; + +initial begin + A0_REG = 0; + A1_REG = 0; + B0_REG = 0; + B1_REG = 0; + C_REG = 0; + D_REG = 0; + M_REG = 0; + P_REG = 0; + OPMODE_REG = 0; + CARRYIN_REG = 0; + CARRYOUT_REG = 0; +end + +generate + +if (RSTTYPE == "SYNC") begin + always @(posedge CLK) begin + if (RSTA) begin + A0_REG <= 0; + A1_REG <= 0; + end else if (CEA) begin + A0_REG <= A; + A1_REG <= A0_OUT; + end + end + + always @(posedge CLK) begin + if (RSTB) begin + B0_REG <= 0; + B1_REG <= 0; + end else if (CEB) begin + B0_REG <= B; + B1_REG <= B1_IN; + end + end + + always @(posedge CLK) begin + if (RSTC) begin + C_REG <= 0; + end else if (CEC) begin + C_REG <= C; + end + end + + always @(posedge CLK) begin + if (RSTD) begin + D_REG <= 0; + end else if (CED) begin + D_REG <= D; + end + end + + always @(posedge CLK) begin + if (RSTM) begin + M_REG <= 0; + end else if (CEM) begin + M_REG <= M_MULT; + end + end + + always @(posedge CLK) begin + if (RSTP) begin + P_REG <= 0; + end else if (CEP) begin + P_REG <= P_IN; + end + end + + always @(posedge CLK) begin + if (RSTOPMODE) begin + OPMODE_REG <= 0; + end else if (CEOPMODE) begin + OPMODE_REG <= OPMODE; + end + end + + always @(posedge CLK) begin + if (RSTCARRYIN) begin + CARRYIN_REG <= 0; + CARRYOUT_REG <= 0; + end else if (CECARRYIN) begin + CARRYIN_REG <= CARRYIN_IN; + CARRYOUT_REG <= CARRYOUT_IN; + end + end +end else begin + always @(posedge CLK, posedge RSTA) begin + if (RSTA) begin + A0_REG <= 0; + A1_REG <= 0; + end else if (CEA) begin + A0_REG <= A; + A1_REG <= A0_OUT; + end + end + + always @(posedge CLK, posedge RSTB) begin + if (RSTB) begin + B0_REG <= 0; + B1_REG <= 0; + end else if (CEB) begin + B0_REG <= B; + B1_REG <= B1_IN; + end + end + + always @(posedge CLK, posedge RSTC) begin + if (RSTC) begin + C_REG <= 0; + end else if (CEC) begin + C_REG <= C; + end + end + + always @(posedge CLK, posedge RSTD) begin + if (RSTD) begin + D_REG <= 0; + end else if (CED) begin + D_REG <= D; + end + end + + always @(posedge CLK, posedge RSTM) begin + if (RSTM) begin + M_REG <= 0; + end else if (CEM) begin + M_REG <= M_MULT; + end + end + + always @(posedge CLK, posedge RSTP) begin + if (RSTP) begin + P_REG <= 0; + end else if (CEP) begin + P_REG <= P_IN; + end + end + + always @(posedge CLK, posedge RSTOPMODE) begin + if (RSTOPMODE) begin + OPMODE_REG <= 0; + end else if (CEOPMODE) begin + OPMODE_REG <= OPMODE; + end + end + + always @(posedge CLK, posedge RSTCARRYIN) begin + if (RSTCARRYIN) begin + CARRYIN_REG <= 0; + CARRYOUT_REG <= 0; + end else if (CECARRYIN) begin + CARRYIN_REG <= CARRYIN_IN; + CARRYOUT_REG <= CARRYOUT_IN; + end + end +end + +endgenerate + +// The register enables. +assign A0_OUT = (A0REG == 1) ? A0_REG : A; +assign A1_OUT = (A1REG == 1) ? A1_REG : A0_OUT; +assign B0_OUT = (B0REG == 1) ? B0_REG : B; +assign B1_OUT = (B1REG == 1) ? B1_REG : B1_IN; +assign C_OUT = (CREG == 1) ? C_REG : C; +assign D_OUT = (DREG == 1) ? D_REG : D; +assign M = (MREG == 1) ? M_REG : M_MULT; +assign P = (PREG == 1) ? P_REG : P_IN; +assign OPMODE_OUT = (OPMODEREG == 1) ? OPMODE_REG : OPMODE; +assign CARRYIN_OUT = (CARRYINREG == 1) ? CARRYIN_REG : CARRYIN_IN; +assign CARRYOUT = (CARRYOUTREG == 1) ? CARRYOUT_REG : CARRYOUT_IN; +assign CARRYOUTF = CARRYOUT; + +// The pre-adder. +wire signed [17:0] PREADDER; +assign B1_IN = OPMODE_OUT[4] ? PREADDER : B0_OUT; +assign PREADDER = OPMODE_OUT[6] ? D_OUT - B0_OUT : D_OUT + B0_OUT; + +// The multiplier. +assign M_MULT = A1_OUT * B1_OUT; + +// The carry in selection. +assign CARRYIN_IN = (CARRYINSEL == "OPMODE5") ? OPMODE_OUT[5] : CARRYIN; + +// The post-adder inputs. +always @* begin + case (OPMODE_OUT[1:0]) + 2'b00: XMUX <= 0; + 2'b01: XMUX <= M; + 2'b10: XMUX <= P; + 2'b11: XMUX <= {D_OUT[11:0], A1_OUT, B1_OUT}; + default: XMUX <= 48'hxxxxxxxxxxxx; + endcase +end + +always @* begin + case (OPMODE_OUT[3:2]) + 2'b00: ZMUX <= 0; + 2'b01: ZMUX <= PCIN; + 2'b10: ZMUX <= P; + 2'b11: ZMUX <= C_OUT; + default: ZMUX <= 48'hxxxxxxxxxxxx; + endcase +end + +// The post-adder. +wire signed [48:0] X_EXT; +wire signed [48:0] Z_EXT; +assign X_EXT = {1'b0, XMUX}; +assign Z_EXT = {1'b0, ZMUX}; +assign {CARRYOUT_IN, P_IN} = OPMODE_OUT[7] ? (Z_EXT - (X_EXT + CARRYIN_OUT)) : (Z_EXT + X_EXT + CARRYIN_OUT); + +// Cascade outputs. +assign BCOUT = B1_OUT; +assign PCOUT = P; + +endmodule + +module DSP48 ( + input signed [17:0] A, + input signed [17:0] B, + input signed [47:0] C, + input signed [17:0] BCIN, + input signed [47:0] PCIN, + input CARRYIN, + input [6:0] OPMODE, + input SUBTRACT, + input [1:0] CARRYINSEL, + output signed [47:0] P, + output signed [17:0] BCOUT, + output signed [47:0] PCOUT, + (* clkbuf_sink *) + input CLK, + input CEA, + input CEB, + input CEC, + input CEM, + input CECARRYIN, + input CECINSUB, + input CECTRL, + input CEP, + input RSTA, + input RSTB, + input RSTC, + input RSTM, + input RSTCARRYIN, + input RSTCTRL, + input RSTP +); + +parameter integer AREG = 1; +parameter integer BREG = 1; +parameter integer CREG = 1; +parameter integer MREG = 1; +parameter integer PREG = 1; +parameter integer CARRYINREG = 1; +parameter integer CARRYINSELREG = 1; +parameter integer OPMODEREG = 1; +parameter integer SUBTRACTREG = 1; +parameter B_INPUT = "DIRECT"; +parameter LEGACY_MODE = "MULT18X18S"; + +wire signed [17:0] A_OUT; +wire signed [17:0] B_OUT; +wire signed [47:0] C_OUT; +wire signed [35:0] M_MULT; +wire signed [35:0] M_OUT; +wire signed [47:0] P_IN; +wire [6:0] OPMODE_OUT; +wire [1:0] CARRYINSEL_OUT; +wire CARRYIN_OUT; +wire SUBTRACT_OUT; +reg INT_CARRYIN_XY; +reg INT_CARRYIN_Z; +reg signed [47:0] XMUX; +reg signed [47:0] YMUX; +wire signed [47:0] XYMUX; +reg signed [47:0] ZMUX; +reg CIN; + +// The B input multiplexer. +wire signed [17:0] B_MUX; +assign B_MUX = (B_INPUT == "DIRECT") ? B : BCIN; + +// The cascade output. +assign BCOUT = B_OUT; +assign PCOUT = P; + +// The registers. +reg signed [17:0] A0_REG; +reg signed [17:0] A1_REG; +reg signed [17:0] B0_REG; +reg signed [17:0] B1_REG; +reg signed [47:0] C_REG; +reg signed [35:0] M_REG; +reg signed [47:0] P_REG; +reg [6:0] OPMODE_REG; +reg [1:0] CARRYINSEL_REG; +reg SUBTRACT_REG; +reg CARRYIN_REG; +reg INT_CARRYIN_XY_REG; + +initial begin + A0_REG = 0; + A1_REG = 0; + B0_REG = 0; + B1_REG = 0; + C_REG = 0; + M_REG = 0; + P_REG = 0; + OPMODE_REG = 0; + CARRYINSEL_REG = 0; + SUBTRACT_REG = 0; + CARRYIN_REG = 0; + INT_CARRYIN_XY_REG = 0; +end + +always @(posedge CLK) begin + if (RSTA) begin + A0_REG <= 0; + A1_REG <= 0; + end else if (CEA) begin + A0_REG <= A; + A1_REG <= A0_REG; + end + if (RSTB) begin + B0_REG <= 0; + B1_REG <= 0; + end else if (CEB) begin + B0_REG <= B_MUX; + B1_REG <= B0_REG; + end + if (RSTC) begin + C_REG <= 0; + end else if (CEC) begin + C_REG <= C; + end + if (RSTM) begin + M_REG <= 0; + end else if (CEM) begin + M_REG <= M_MULT; + end + if (RSTP) begin + P_REG <= 0; + end else if (CEP) begin + P_REG <= P_IN; + end + if (RSTCTRL) begin + OPMODE_REG <= 0; + CARRYINSEL_REG <= 0; + SUBTRACT_REG <= 0; + end else begin + if (CECTRL) begin + OPMODE_REG <= OPMODE; + CARRYINSEL_REG <= CARRYINSEL; + end + if (CECINSUB) + SUBTRACT_REG <= SUBTRACT; + end + if (RSTCARRYIN) begin + CARRYIN_REG <= 0; + INT_CARRYIN_XY_REG <= 0; + end else begin + if (CECINSUB) + CARRYIN_REG <= CARRYIN; + if (CECARRYIN) + INT_CARRYIN_XY_REG <= INT_CARRYIN_XY; + end +end + +// The register enables. +assign A_OUT = (AREG == 2) ? A1_REG : (AREG == 1) ? A0_REG : A; +assign B_OUT = (BREG == 2) ? B1_REG : (BREG == 1) ? B0_REG : B_MUX; +assign C_OUT = (CREG == 1) ? C_REG : C; +assign M_OUT = (MREG == 1) ? M_REG : M_MULT; +assign P = (PREG == 1) ? P_REG : P_IN; +assign OPMODE_OUT = (OPMODEREG == 1) ? OPMODE_REG : OPMODE; +assign SUBTRACT_OUT = (SUBTRACTREG == 1) ? SUBTRACT_REG : SUBTRACT; +assign CARRYINSEL_OUT = (CARRYINSELREG == 1) ? CARRYINSEL_REG : CARRYINSEL; +assign CARRYIN_OUT = (CARRYINREG == 1) ? CARRYIN_REG : CARRYIN; + +// The multiplier. +assign M_MULT = A_OUT * B_OUT; + +// The post-adder inputs. +always @* begin + case (OPMODE_OUT[1:0]) + 2'b00: XMUX <= 0; + 2'b10: XMUX <= P; + 2'b11: XMUX <= {{12{A_OUT[17]}}, A_OUT, B_OUT}; + default: XMUX <= 48'hxxxxxxxxxxxx; + endcase + case (OPMODE_OUT[1:0]) + 2'b01: INT_CARRYIN_XY <= A_OUT[17] ~^ B_OUT[17]; + 2'b11: INT_CARRYIN_XY <= ~A_OUT[17]; + // TODO: not tested in hardware. + default: INT_CARRYIN_XY <= A_OUT[17] ~^ B_OUT[17]; + endcase +end + +always @* begin + case (OPMODE_OUT[3:2]) + 2'b00: YMUX <= 0; + 2'b11: YMUX <= C_OUT; + default: YMUX <= 48'hxxxxxxxxxxxx; + endcase +end + +assign XYMUX = (OPMODE_OUT[3:0] == 4'b0101) ? M_OUT : (XMUX + YMUX); + +always @* begin + case (OPMODE_OUT[6:4]) + 3'b000: ZMUX <= 0; + 3'b001: ZMUX <= PCIN; + 3'b010: ZMUX <= P; + 3'b011: ZMUX <= C_OUT; + 3'b101: ZMUX <= {{17{PCIN[47]}}, PCIN[47:17]}; + 3'b110: ZMUX <= {{17{P[47]}}, P[47:17]}; + default: ZMUX <= 48'hxxxxxxxxxxxx; + endcase + // TODO: check how all this works on actual hw. + if (OPMODE_OUT[1:0] == 2'b10) + INT_CARRYIN_Z <= ~P[47]; + else + case (OPMODE_OUT[6:4]) + 3'b001: INT_CARRYIN_Z <= ~PCIN[47]; + 3'b010: INT_CARRYIN_Z <= ~P[47]; + 3'b101: INT_CARRYIN_Z <= ~PCIN[47]; + 3'b110: INT_CARRYIN_Z <= ~P[47]; + default: INT_CARRYIN_Z <= 1'bx; + endcase +end + +always @* begin + case (CARRYINSEL_OUT) + 2'b00: CIN <= CARRYIN_OUT; + 2'b01: CIN <= INT_CARRYIN_Z; + 2'b10: CIN <= INT_CARRYIN_XY; + 2'b11: CIN <= INT_CARRYIN_XY_REG; + default: CIN <= 1'bx; + endcase +end + +// The post-adder. +assign P_IN = SUBTRACT_OUT ? (ZMUX - (XYMUX + CIN)) : (ZMUX + XYMUX + CIN); + +endmodule + +// TODO: DSP48E (Virtex 5). + +// Virtex 6, Series 7. + +module DSP48E1 ( + output [29:0] ACOUT, + output [17:0] BCOUT, + output reg CARRYCASCOUT, + output reg [3:0] CARRYOUT, + output reg MULTSIGNOUT, + output OVERFLOW, +`ifdef YOSYS + (* abc9_arrival = \DSP48E1.P_arrival () *) +`endif + output reg signed [47:0] P, + output reg PATTERNBDETECT, + output reg PATTERNDETECT, +`ifdef YOSYS + (* abc9_arrival = \DSP48E1.PCOUT_arrival () *) +`endif + output [47:0] PCOUT, + output UNDERFLOW, + input signed [29:0] A, + input [29:0] ACIN, + input [3:0] ALUMODE, + input signed [17:0] B, + input [17:0] BCIN, + input [47:0] C, + input CARRYCASCIN, + input CARRYIN, + input [2:0] CARRYINSEL, + input CEA1, + input CEA2, + input CEAD, + input CEALUMODE, + input CEB1, + input CEB2, + input CEC, + input CECARRYIN, + input CECTRL, + input CED, + input CEINMODE, + input CEM, + input CEP, + (* clkbuf_sink *) input CLK, + input [24:0] D, + input [4:0] INMODE, + input MULTSIGNIN, + input [6:0] OPMODE, + input [47:0] PCIN, + input RSTA, + input RSTALLCARRYIN, + input RSTALUMODE, + input RSTB, + input RSTC, + input RSTCTRL, + input RSTD, + input RSTINMODE, + input RSTM, + input RSTP +); + parameter integer ACASCREG = 1; + parameter integer ADREG = 1; + parameter integer ALUMODEREG = 1; + parameter integer AREG = 1; + parameter AUTORESET_PATDET = "NO_RESET"; + parameter A_INPUT = "DIRECT"; + parameter integer BCASCREG = 1; + parameter integer BREG = 1; + parameter B_INPUT = "DIRECT"; + parameter integer CARRYINREG = 1; + parameter integer CARRYINSELREG = 1; + parameter integer CREG = 1; + parameter integer DREG = 1; + parameter integer INMODEREG = 1; + parameter integer MREG = 1; + parameter integer OPMODEREG = 1; + parameter integer PREG = 1; + parameter SEL_MASK = "MASK"; + parameter SEL_PATTERN = "PATTERN"; + parameter USE_DPORT = "FALSE"; + parameter USE_MULT = "MULTIPLY"; + parameter USE_PATTERN_DETECT = "NO_PATDET"; + parameter USE_SIMD = "ONE48"; + parameter [47:0] MASK = 48'h3FFFFFFFFFFF; + parameter [47:0] PATTERN = 48'h000000000000; + parameter [3:0] IS_ALUMODE_INVERTED = 4'b0; + parameter [0:0] IS_CARRYIN_INVERTED = 1'b0; + parameter [0:0] IS_CLK_INVERTED = 1'b0; + parameter [4:0] IS_INMODE_INVERTED = 5'b0; + parameter [6:0] IS_OPMODE_INVERTED = 7'b0; + +`ifdef YOSYS + function integer \DSP48E1.P_arrival ; + begin + \DSP48E1.P_arrival = 0; + if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin + if (PREG != 0) \DSP48E1.P_arrival = 329; + // Worst-case from CREG and MREG + else if (CREG != 0) \DSP48E1.P_arrival = 1687; + else if (MREG != 0) \DSP48E1.P_arrival = 1671; + // Worst-case from AREG and BREG + else if (AREG != 0) \DSP48E1.P_arrival = 2952; + else if (BREG != 0) \DSP48E1.P_arrival = 2813; + end + else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin + if (PREG != 0) \DSP48E1.P_arrival = 329; + // Worst-case from CREG and MREG + else if (CREG != 0) \DSP48E1.P_arrival = 1687; + else if (MREG != 0) \DSP48E1.P_arrival = 1671; + // Worst-case from AREG, ADREG, BREG, DREG + else if (AREG != 0) \DSP48E1.P_arrival = 3935; + else if (DREG != 0) \DSP48E1.P_arrival = 3908; + else if (ADREG != 0) \DSP48E1.P_arrival = 2958; + else if (BREG != 0) \DSP48E1.P_arrival = 2813; + end + else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin + if (PREG != 0) \DSP48E1.P_arrival = 329; + // Worst-case from AREG, BREG, CREG + else if (CREG != 0) \DSP48E1.P_arrival = 1687; + else if (AREG != 0) \DSP48E1.P_arrival = 1632; + else if (BREG != 0) \DSP48E1.P_arrival = 1616; + end + //else + // $error("Invalid DSP48E1 configuration"); + end + endfunction + function integer \DSP48E1.PCOUT_arrival ; + begin + \DSP48E1.PCOUT_arrival = 0; + if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin + if (PREG != 0) \DSP48E1.PCOUT_arrival = 435; + // Worst-case from CREG and MREG + else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835; + else if (MREG != 0) \DSP48E1.PCOUT_arrival = 1819; + // Worst-case from AREG and BREG + else if (AREG != 0) \DSP48E1.PCOUT_arrival = 3098; + else if (BREG != 0) \DSP48E1.PCOUT_arrival = 2960; + end + else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin + if (PREG != 0) \DSP48E1.PCOUT_arrival = 435; + // Worst-case from CREG and MREG + else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835; + else if (MREG != 0) \DSP48E1.PCOUT_arrival = 1819; + // Worst-case from AREG, ADREG, BREG, DREG + else if (AREG != 0) \DSP48E1.PCOUT_arrival = 4083; + else if (DREG != 0) \DSP48E1.PCOUT_arrival = 4056; + else if (BREG != 0) \DSP48E1.PCOUT_arrival = 2960; + else if (ADREG != 0) \DSP48E1.PCOUT_arrival = 2859; + end + else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin + if (PREG != 0) \DSP48E1.PCOUT_arrival = 435; + // Worst-case from AREG, BREG, CREG + else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835; + else if (AREG != 0) \DSP48E1.PCOUT_arrival = 1780; + else if (BREG != 0) \DSP48E1.PCOUT_arrival = 1765; + end + //else + // $error("Invalid DSP48E1 configuration"); + end + endfunction +`endif + + initial begin +`ifndef YOSYS + if (AUTORESET_PATDET != "NO_RESET") $fatal(1, "Unsupported AUTORESET_PATDET value"); + if (SEL_MASK != "MASK") $fatal(1, "Unsupported SEL_MASK value"); + if (SEL_PATTERN != "PATTERN") $fatal(1, "Unsupported SEL_PATTERN value"); + if (USE_SIMD != "ONE48" && USE_SIMD != "TWO24" && USE_SIMD != "FOUR12") $fatal(1, "Unsupported USE_SIMD value"); + if (IS_ALUMODE_INVERTED != 4'b0) $fatal(1, "Unsupported IS_ALUMODE_INVERTED value"); + if (IS_CARRYIN_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CARRYIN_INVERTED value"); + if (IS_CLK_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CLK_INVERTED value"); + if (IS_INMODE_INVERTED != 5'b0) $fatal(1, "Unsupported IS_INMODE_INVERTED value"); + if (IS_OPMODE_INVERTED != 7'b0) $fatal(1, "Unsupported IS_OPMODE_INVERTED value"); +`endif + end + + wire signed [29:0] A_muxed; + wire signed [17:0] B_muxed; + + generate + if (A_INPUT == "CASCADE") assign A_muxed = ACIN; + else assign A_muxed = A; + + if (B_INPUT == "CASCADE") assign B_muxed = BCIN; + else assign B_muxed = B; + endgenerate + + reg signed [29:0] Ar1, Ar2; + reg signed [24:0] Dr; + reg signed [17:0] Br1, Br2; + reg signed [47:0] Cr; + reg [4:0] INMODEr = 5'b0; + reg [6:0] OPMODEr = 7'b0; + reg [3:0] ALUMODEr = 4'b0; + reg [2:0] CARRYINSELr = 3'b0; + + generate + // Configurable A register + if (AREG == 2) begin + initial Ar1 = 30'b0; + initial Ar2 = 30'b0; + always @(posedge CLK) + if (RSTA) begin + Ar1 <= 30'b0; + Ar2 <= 30'b0; + end else begin + if (CEA1) Ar1 <= A_muxed; + if (CEA2) Ar2 <= Ar1; + end + end else if (AREG == 1) begin + //initial Ar1 = 30'b0; + initial Ar2 = 30'b0; + always @(posedge CLK) + if (RSTA) begin + Ar1 <= 30'b0; + Ar2 <= 30'b0; + end else begin + if (CEA1) Ar1 <= A_muxed; + if (CEA2) Ar2 <= A_muxed; + end + end else begin + always @* Ar1 <= A_muxed; + always @* Ar2 <= A_muxed; + end + + // Configurable B register + if (BREG == 2) begin + initial Br1 = 25'b0; + initial Br2 = 25'b0; + always @(posedge CLK) + if (RSTB) begin + Br1 <= 18'b0; + Br2 <= 18'b0; + end else begin + if (CEB1) Br1 <= B_muxed; + if (CEB2) Br2 <= Br1; + end + end else if (BREG == 1) begin + //initial Br1 = 18'b0; + initial Br2 = 18'b0; + always @(posedge CLK) + if (RSTB) begin + Br1 <= 18'b0; + Br2 <= 18'b0; + end else begin + if (CEB1) Br1 <= B_muxed; + if (CEB2) Br2 <= B_muxed; + end + end else begin + always @* Br1 <= B_muxed; + always @* Br2 <= B_muxed; + end + + // C and D registers + if (CREG == 1) initial Cr = 48'b0; + if (CREG == 1) begin always @(posedge CLK) if (RSTC) Cr <= 48'b0; else if (CEC) Cr <= C; end + else always @* Cr <= C; + + if (CREG == 1) initial Dr = 25'b0; + if (DREG == 1) begin always @(posedge CLK) if (RSTD) Dr <= 25'b0; else if (CED) Dr <= D; end + else always @* Dr <= D; + + // Control registers + if (INMODEREG == 1) initial INMODEr = 5'b0; + if (INMODEREG == 1) begin always @(posedge CLK) if (RSTINMODE) INMODEr <= 5'b0; else if (CEINMODE) INMODEr <= INMODE; end + else always @* INMODEr <= INMODE; + if (OPMODEREG == 1) initial OPMODEr = 7'b0; + if (OPMODEREG == 1) begin always @(posedge CLK) if (RSTCTRL) OPMODEr <= 7'b0; else if (CECTRL) OPMODEr <= OPMODE; end + else always @* OPMODEr <= OPMODE; + if (ALUMODEREG == 1) initial ALUMODEr = 4'b0; + if (ALUMODEREG == 1) begin always @(posedge CLK) if (RSTALUMODE) ALUMODEr <= 4'b0; else if (CEALUMODE) ALUMODEr <= ALUMODE; end + else always @* ALUMODEr <= ALUMODE; + if (CARRYINSELREG == 1) initial CARRYINSELr = 3'b0; + if (CARRYINSELREG == 1) begin always @(posedge CLK) if (RSTCTRL) CARRYINSELr <= 3'b0; else if (CECTRL) CARRYINSELr <= CARRYINSEL; end + else always @* CARRYINSELr <= CARRYINSEL; + endgenerate + + // A and B cascade + generate + if (ACASCREG == 1 && AREG == 2) assign ACOUT = Ar1; + else assign ACOUT = Ar2; + if (BCASCREG == 1 && BREG == 2) assign BCOUT = Br1; + else assign BCOUT = Br2; + endgenerate + + // A/D input selection and pre-adder + wire signed [24:0] Ar12_muxed = INMODEr[0] ? Ar1 : Ar2; + wire signed [24:0] Ar12_gated = INMODEr[1] ? 25'b0 : Ar12_muxed; + wire signed [24:0] Dr_gated = INMODEr[2] ? Dr : 25'b0; + wire signed [24:0] AD_result = INMODEr[3] ? (Dr_gated - Ar12_gated) : (Dr_gated + Ar12_gated); + reg signed [24:0] ADr; + + generate + if (ADREG == 1) initial ADr = 25'b0; + if (ADREG == 1) begin always @(posedge CLK) if (RSTD) ADr <= 25'b0; else if (CEAD) ADr <= AD_result; end + else always @* ADr <= AD_result; + endgenerate + + // 25x18 multiplier + wire signed [24:0] A_MULT; + wire signed [17:0] B_MULT = INMODEr[4] ? Br1 : Br2; + generate + if (USE_DPORT == "TRUE") assign A_MULT = ADr; + else assign A_MULT = Ar12_gated; + endgenerate + + wire signed [42:0] M = A_MULT * B_MULT; + wire signed [42:0] Mx = (CARRYINSEL == 3'b010) ? 43'bx : M; + reg signed [42:0] Mr = 43'b0; + + // Multiplier result register + generate + if (MREG == 1) begin always @(posedge CLK) if (RSTM) Mr <= 43'b0; else if (CEM) Mr <= Mx; end + else always @* Mr <= Mx; + endgenerate + + wire signed [42:0] Mrx = (CARRYINSELr == 3'b010) ? 43'bx : Mr; + + // X, Y and Z ALU inputs + reg signed [47:0] X, Y, Z; + + always @* begin + // X multiplexer + case (OPMODEr[1:0]) + 2'b00: X = 48'b0; + 2'b01: begin X = $signed(Mrx); +`ifndef YOSYS + if (OPMODEr[3:2] != 2'b01) $fatal(1, "OPMODEr[3:2] must be 2'b01 when OPMODEr[1:0] is 2'b01"); +`endif + end + 2'b10: begin X = P; +`ifndef YOSYS + if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[1:0] is 2'b10"); +`endif + end + 2'b11: X = $signed({Ar2, Br2}); + default: X = 48'bx; + endcase + + // Y multiplexer + case (OPMODEr[3:2]) + 2'b00: Y = 48'b0; + 2'b01: begin Y = 48'b0; // FIXME: more accurate partial product modelling? +`ifndef YOSYS + if (OPMODEr[1:0] != 2'b01) $fatal(1, "OPMODEr[1:0] must be 2'b01 when OPMODEr[3:2] is 2'b01"); +`endif + end + 2'b10: Y = {48{1'b1}}; + 2'b11: Y = Cr; + default: Y = 48'bx; + endcase + + // Z multiplexer + case (OPMODEr[6:4]) + 3'b000: Z = 48'b0; + 3'b001: Z = PCIN; + 3'b010: begin Z = P; +`ifndef YOSYS + if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] i0s 3'b010"); +`endif + end + 3'b011: Z = Cr; + 3'b100: begin Z = P; +`ifndef YOSYS + if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] is 3'b100"); + if (OPMODEr[3:0] != 4'b1000) $fatal(1, "OPMODEr[3:0] must be 4'b1000 when OPMODEr[6:4] i0s 3'b100"); +`endif + end + 3'b101: Z = $signed(PCIN[47:17]); + 3'b110: Z = $signed(P[47:17]); + default: Z = 48'bx; + endcase + end + + // Carry in + wire A24_xnor_B17d = A_MULT[24] ~^ B_MULT[17]; + reg CARRYINr = 1'b0, A24_xnor_B17 = 1'b0; + generate + if (CARRYINREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) CARRYINr <= 1'b0; else if (CECARRYIN) CARRYINr <= CARRYIN; end + else always @* CARRYINr = CARRYIN; + + if (MREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) A24_xnor_B17 <= 1'b0; else if (CEM) A24_xnor_B17 <= A24_xnor_B17d; end + else always @* A24_xnor_B17 = A24_xnor_B17d; + endgenerate + + reg cin_muxed; + + always @(*) begin + case (CARRYINSELr) + 3'b000: cin_muxed = CARRYINr; + 3'b001: cin_muxed = ~PCIN[47]; + 3'b010: cin_muxed = CARRYCASCIN; + 3'b011: cin_muxed = PCIN[47]; + 3'b100: cin_muxed = CARRYCASCOUT; + 3'b101: cin_muxed = ~P[47]; + 3'b110: cin_muxed = A24_xnor_B17; + 3'b111: cin_muxed = P[47]; + default: cin_muxed = 1'bx; + endcase + end + + wire alu_cin = (ALUMODEr[3] || ALUMODEr[2]) ? 1'b0 : cin_muxed; + + // ALU core + wire [47:0] Z_muxinv = ALUMODEr[0] ? ~Z : Z; + wire [47:0] xor_xyz = X ^ Y ^ Z_muxinv; + wire [47:0] maj_xyz = (X & Y) | (X & Z_muxinv) | (Y & Z_muxinv); + + wire [47:0] xor_xyz_muxed = ALUMODEr[3] ? maj_xyz : xor_xyz; + wire [47:0] maj_xyz_gated = ALUMODEr[2] ? 48'b0 : maj_xyz; + + wire [48:0] maj_xyz_simd_gated; + wire [3:0] int_carry_in, int_carry_out, ext_carry_out; + wire [47:0] alu_sum; + assign int_carry_in[0] = 1'b0; + wire [3:0] carryout_reset; + + generate + if (USE_SIMD == "FOUR12") begin + assign maj_xyz_simd_gated = { + maj_xyz_gated[47:36], + 1'b0, maj_xyz_gated[34:24], + 1'b0, maj_xyz_gated[22:12], + 1'b0, maj_xyz_gated[10:0], + alu_cin + }; + assign int_carry_in[3:1] = 3'b000; + assign ext_carry_out = { + int_carry_out[3], + maj_xyz_gated[35] ^ int_carry_out[2], + maj_xyz_gated[23] ^ int_carry_out[1], + maj_xyz_gated[11] ^ int_carry_out[0] + }; + assign carryout_reset = 4'b0000; + end else if (USE_SIMD == "TWO24") begin + assign maj_xyz_simd_gated = { + maj_xyz_gated[47:24], + 1'b0, maj_xyz_gated[22:0], + alu_cin + }; + assign int_carry_in[3:1] = {int_carry_out[2], 1'b0, int_carry_out[0]}; + assign ext_carry_out = { + int_carry_out[3], + 1'bx, + maj_xyz_gated[23] ^ int_carry_out[1], + 1'bx + }; + assign carryout_reset = 4'b0x0x; + end else begin + assign maj_xyz_simd_gated = {maj_xyz_gated, alu_cin}; + assign int_carry_in[3:1] = int_carry_out[2:0]; + assign ext_carry_out = { + int_carry_out[3], + 3'bxxx + }; + assign carryout_reset = 4'b0xxx; + end + + genvar i; + for (i = 0; i < 4; i = i + 1) + assign {int_carry_out[i], alu_sum[i*12 +: 12]} = {1'b0, maj_xyz_simd_gated[i*12 +: ((i == 3) ? 13 : 12)]} + + xor_xyz_muxed[i*12 +: 12] + int_carry_in[i]; + endgenerate + + wire signed [47:0] Pd = ALUMODEr[1] ? ~alu_sum : alu_sum; + wire [3:0] CARRYOUTd = (OPMODEr[3:0] == 4'b0101 || ALUMODEr[3:2] != 2'b00) ? 4'bxxxx : + ((ALUMODEr[0] & ALUMODEr[1]) ? ~ext_carry_out : ext_carry_out); + wire CARRYCASCOUTd = ext_carry_out[3]; + wire MULTSIGNOUTd = Mrx[42]; + + generate + if (PREG == 1) begin + initial P = 48'b0; + initial CARRYOUT = carryout_reset; + initial CARRYCASCOUT = 1'b0; + initial MULTSIGNOUT = 1'b0; + always @(posedge CLK) + if (RSTP) begin + P <= 48'b0; + CARRYOUT <= carryout_reset; + CARRYCASCOUT <= 1'b0; + MULTSIGNOUT <= 1'b0; + end else if (CEP) begin + P <= Pd; + CARRYOUT <= CARRYOUTd; + CARRYCASCOUT <= CARRYCASCOUTd; + MULTSIGNOUT <= MULTSIGNOUTd; + end + end else begin + always @* begin + P = Pd; + CARRYOUT = CARRYOUTd; + CARRYCASCOUT = CARRYCASCOUTd; + MULTSIGNOUT = MULTSIGNOUTd; + end + end + endgenerate + + assign PCOUT = P; + + generate + wire PATTERNDETECTd, PATTERNBDETECTd; + + if (USE_PATTERN_DETECT == "PATDET") begin + // TODO: Support SEL_PATTERN != "PATTERN" and SEL_MASK != "MASK + assign PATTERNDETECTd = &(~(Pd ^ PATTERN) | MASK); + assign PATTERNBDETECTd = &((Pd ^ PATTERN) | MASK); + end else begin + assign PATTERNDETECTd = 1'b1; + assign PATTERNBDETECTd = 1'b1; + end + + if (PREG == 1) begin + reg PATTERNDETECTPAST, PATTERNBDETECTPAST; + initial PATTERNDETECT = 1'b0; + initial PATTERNBDETECT = 1'b0; + initial PATTERNDETECTPAST = 1'b0; + initial PATTERNBDETECTPAST = 1'b0; + always @(posedge CLK) + if (RSTP) begin + PATTERNDETECT <= 1'b0; + PATTERNBDETECT <= 1'b0; + PATTERNDETECTPAST <= 1'b0; + PATTERNBDETECTPAST <= 1'b0; + end else if (CEP) begin + PATTERNDETECT <= PATTERNDETECTd; + PATTERNBDETECT <= PATTERNBDETECTd; + PATTERNDETECTPAST <= PATTERNDETECT; + PATTERNBDETECTPAST <= PATTERNBDETECT; + end + assign OVERFLOW = &{PATTERNDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT}; + assign UNDERFLOW = &{PATTERNBDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT}; + end else begin + always @* begin + PATTERNDETECT = PATTERNDETECTd; + PATTERNBDETECT = PATTERNBDETECTd; + end + assign OVERFLOW = 1'bx, UNDERFLOW = 1'bx; + end + endgenerate + +endmodule + +// TODO: DSP48E2 (Ultrascale). |