aboutsummaryrefslogtreecommitdiffstats
path: root/tools/qemu
ModeNameSize
-rw-r--r--Makefile1077logstatsplain
n45'>45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2019  gatecat <gatecat@ds0.me>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

/*
 * Generic Frontend Framework
 *
 * This is designed to make it possible to build frontends for parsing any format isomorphic to Yosys JSON [1]
 * with maximal inlining and minimal need for overhead such as runtime polymorphism or extra wrapper types.
 *
 * [1] https://yosyshq.net/yosys/cmd_write_json.html
 *
 * The frontend should implement a class referred to as FrontendType that defines the following type(def)s and
 * functions:
 *
 * Types:
 *   ModuleDataType: corresponds to a single entry in "modules"
 *   ModulePortDataType: corresponds to a single entry in "ports" of a module
 *   CellDataType: corresponds to a single entry in "cells"
 *   NetnameDataType: corresponds to a single entry in "netnames"
 *   BitVectorDataType: corresponds to a signal/constant bit vector (e.g. a "connections" field)
 *
 * Functions:
 *
 *   void foreach_module(Func) const;
 *       calls Func(const std::string &name, const ModuleDataType &mod);
 *       for each module in the netlist
 *
 *   void foreach_port(const ModuleDataType &mod, Func) const;
 *       calls Func(const std::string &name, const ModulePortDataType &port);
 *       for each port of mod
 *
 *   void foreach_cell(const ModuleDataType &mod, Func) const;
 *       calls Func(const std::string &name, const CellDataType &cell)
 *       for each cell of mod
 *
 *   void foreach_netname(const ModuleDataType &mod, Func) const;
 *       calls Func(const std::string &name, const NetnameDataType &cell);
 *       for each netname entry of mod
 *
 *   PortType get_port_dir(const ModulePortDataType &port) const;
 *       gets the PortType direction of a module port
 *
 *   int get_array_offset(const ModulePortDataType &port) const;
 *       gets the start bit number of a port or netname entry
 *
 *   bool is_array_upto(const ModulePortDataType &port) const;
 *       returns true if a port/net is an "upto" type port or netname entry
 *
 *   const BitVectorDataType &get_port_bits(const ModulePortDataType &port) const;
 *       gets the bit vector of a module port
 *
 *   const std::string& get_cell_type(const CellDataType &cell) const;
 *       gets the type of a cell
 *
 *   void foreach_attr(const {ModuleDataType|CellDataType|ModulePortDataType|NetnameDataType} &obj, Func) const;
 *       calls Func(const std::string &name, const Property &value);
 *       for each attribute on a module, cell, module port or net
 *
 *   void foreach_param(const CellDataType &obj, Func) const;
 *       calls Func(const std::string &name, const Property &value);
 *       for each parameter of a cell
 *
 *   void foreach_setting(const ModuleDataType &obj, Func) const;
 *       calls Func(const std::string &name, const Property &value);
 *       for each module-level setting
 *
 *   void foreach_port_dir(const CellDataType &cell, Func) const;
 *       calls Func(const std::string &name, PortType dir);
 *       for each port direction of a cell
 *
 *   void foreach_port_conn(const CellDataType &cell, Func) const;
 *       calls Func(const std::string &name, const BitVectorDataType &conn);
 *       for each port connection of a cell
 *
 *   const BitVectorDataType &get_net_bits(const NetnameDataType &net) const;
 *       gets the BitVector corresponding to the bits entry of a netname field
 *
 *   int get_vector_length(const BitVectorDataType &bits) const;
 *       gets the length of a BitVector
 *
 *   bool is_vector_bit_constant(const BitVectorDataType &bits, int i) const;
 *       returns true if bit <i> of bits is constant
 *
 *   char get_vector_bit_constval(const BitVectorDataType &bits, int i) const;
 *       returns a char [01xz] corresponding to the constant value of bit <i>
 *
 *   int get_vector_bit_signal(const BitVectorDataType &bits, int i) const;
 *       returns the signal number of vector bit <i>
 *
 */

#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN

namespace {

// Used for hierarchy resolution
struct ModuleInfo
{
    bool is_top = false, is_blackbox = false, is_whitebox = false;
    inline bool is_box() const { return is_blackbox || is_whitebox; }
    pool<IdString> instantiated_celltypes;
};

template <typename FrontendType> struct GenericFrontend
{
    GenericFrontend(Context *ctx, const FrontendType &impl, bool split_io) : ctx(ctx), impl(impl), split_io(split_io) {}
    void operator()()
    {
        // Find which module is top
        find_top_module();
        HierModuleState m;
        m.is_toplevel = true;
        m.prefix = "";
        m.path = top;
        ctx->top_module = top;
        // Do the actual import, starting from the top level module
        import_module(m, top.str(ctx), top.str(ctx), mod_refs.at(top.str(ctx)));

        ctx->design_loaded = true;
    }

    Context *ctx;
    const FrontendType &impl;
    const bool split_io;
    using mod_dat_t = typename FrontendType::ModuleDataType;
    using mod_port_dat_t = typename FrontendType::ModulePortDataType;
    using cell_dat_t = typename FrontendType::CellDataType;
    using netname_dat_t = typename FrontendType::NetnameDataType;
    using bitvector_t = typename FrontendType::BitVectorDataType;

    dict<IdString, ModuleInfo> mods;
    std::unordered_map<std::string, const mod_dat_t> mod_refs;
    IdString top;

    // Process the list of modules and determine
    // the top module
    void find_top_module()
    {
        impl.foreach_module([&](const std::string &name, const mod_dat_t &mod) {
            IdString mod_id = ctx->id(name);
            auto &mi = mods[mod_id];
            mod_refs.emplace(name, mod);
            impl.foreach_attr(mod, [&](const std::string &name, const Property &value) {
                if (name == "top")
                    mi.is_top = (value.intval != 0);
                else if (name == "blackbox")
                    mi.is_blackbox = (value.intval != 0);
                else if (name == "whitebox")
                    mi.is_whitebox = (value.intval != 0);
            });
            impl.foreach_cell(mod, [&](const std::string &name, const cell_dat_t &cell) {
                mi.instantiated_celltypes.insert(ctx->id(impl.get_cell_type(cell)));
            });
        });
        // First of all, see if a top module has been manually specified
        if (ctx->settings.count(ctx->id("frontend/top"))) {
            IdString user_top = ctx->id(ctx->settings.at(ctx->id("frontend/top")).as_string());
            if (!mods.count(user_top))
                log_error("Top module '%s' not found!\n", ctx->nameOf(user_top));
            top = user_top;
            return;
        }
        // If not, look for a module with the top attribute set
        IdString top_by_attr;
        for (auto &mod : mods) {
            if (mod.second.is_top && !mod.second.is_box()) {
                if (top_by_attr != IdString())
                    log_error("Found multiple modules with (* top *) set (including %s and %s).\n",
                              ctx->nameOf(top_by_attr), ctx->nameOf(mod.first));
                top_by_attr = mod.first;
            }
        }
        if (top_by_attr != IdString()) {
            top = top_by_attr;
            return;
        }
        // Finally, attempt to autodetect the top module using hierarchy
        // (a module that is not a box and is not used as a cell by any other module)
        pool<IdString> candidate_top;
        for (auto &mod : mods)
            if (!mod.second.is_box())
                candidate_top.insert(mod.first);
        for (auto &mod : mods)
            for (auto &c : mod.second.instantiated_celltypes)
                candidate_top.erase(c);
        if (candidate_top.size() != 1) {
            if (candidate_top.size() == 0)
                log_info("No candidate top level modules.\n");
            else
                for (auto ctp : candidate_top)
                    log_info("Candidate top module: '%s'\n", ctx->nameOf(ctp));
            log_error("Failed to autodetect top module, please specify using --top.\n");
        }
        top = *(candidate_top.begin());
    }

    // Create a unique name (guaranteed collision free) for a net or a cell; based on
    // a base name and suffix. __unique__i will be be appended with increasing i
    // if a collision is found until no collision
    IdString unique_name(const std::string &base, const std::string &suffix, bool is_net)
    {
        IdString name;
        int incr = 0;
        do {
            std::string comb = base + suffix;
            if (incr > 0) {
                comb += "__unique__";
                comb += std::to_string(incr);
            }
            name = ctx->id(comb);
            incr++;
        } while (is_net ? ctx->nets.count(name) : ctx->cells.count(name));
        return name;
    }

    // A flat index of map; designed to cope with merging nets where pointers to nets would go stale
    // A net's udata points into this index
    std::vector<NetInfo *> net_flatindex;
    std::vector<std::vector<int>> net_old_indices; // the other indices of a net in net_flatindex for merging

    // This structure contains some structures specific to the import of a module at
    // a certain point in the hierarchy
    struct HierModuleState
    {
        bool is_toplevel;
        std::string prefix;
        IdString parent_path, path;
        // Map from index in module to "flat" index of nets
        std::vector<int> index_to_net_flatindex;
        // Get a reference to index_to_net; resizing if
        // appropriate
        int &net_by_idx(int idx)
        {
            NPNR_ASSERT(idx >= 0);
            if (idx >= int(index_to_net_flatindex.size()))
                index_to_net_flatindex.resize(idx + 1, -1);
            return index_to_net_flatindex.at(idx);
        }
        dict<IdString, std::vector<int>> port_to_bus;
        // All of the names given to a net
        std::vector<std::vector<std::string>> net_names;
    };

    void import_module(HierModuleState &m, const std::string &name, const std::string &type, const mod_dat_t &data)
    {
        NPNR_ASSERT(!ctx->hierarchy.count(m.path));
        ctx->hierarchy[m.path].name = ctx->id(name);
        ctx->hierarchy[m.path].type = ctx->id(type);
        ctx->hierarchy[m.path].parent = m.parent_path;
        ctx->hierarchy[m.path].fullpath = m.path;

        std::vector<NetInfo *> index_to_net;
        if (!m.is_toplevel) {
            // Import port connections; for submodules only
            import_port_connections(m, data);
        } else {
            // Just create a list of ports for netname resolution
            impl.foreach_port(data,
                              [&](const std::string &name, const mod_port_dat_t &) { m.port_to_bus[ctx->id(name)]; });
            // Import module-level attributes
            impl.foreach_attr(
                    data, [&](const std::string &name, const Property &value) { ctx->attrs[ctx->id(name)] = value; });
            // Import settings
            impl.foreach_setting(data, [&](const std::string &name, const Property &value) {
                ctx->settings[ctx->id(name)] = value;
            });
        }
        import_module_netnames(m, data);
        import_module_cells(m, data);
        import_net_attrs(m, data);
        if (m.is_toplevel) {
            import_toplevel_ports(m, data);
            // Mark design as loaded through nextpnr
            ctx->settings[ctx->id("synth")] = 1;
            // Process nextpnr-specific attributes
            ctx->attributesToArchInfo();
        }
    }

    // Multiple labels might refer to the same net. Resolve conflicts for the primary name thus:
    //  - (toplevel) ports are always preferred
    //  - names with fewer $ are always prefered
    //  - between equal $ counts, fewer .s are prefered
    //  - ties are resolved alphabetically
    bool prefer_netlabel(HierModuleState &m, const std::string &a, const std::string &b)
    {
        if (m.port_to_bus.count(ctx->id(a)))
            return true;
        if (m.port_to_bus.count(ctx->id(b)))
            return false;

        if (b.empty())
            return true;
        long a_dollars = std::count(a.begin(), a.end(), '$'), b_dollars = std::count(b.begin(), b.end(), '$');
        if (a_dollars < b_dollars)
            return true;
        else if (a_dollars > b_dollars)
            return false;
        long a_dots = std::count(a.begin(), a.end(), '.'), b_dots = std::count(b.begin(), b.end(), '.');
        if (a_dots < b_dots)
            return true;
        else if (a_dots > b_dots)
            return false;
        return a < b;
    };

    // Get a net by index in modulestate (not flatindex); creating it if it doesn't already exist
    NetInfo *create_or_get_net(HierModuleState &m, int idx)
    {
        auto &midx = m.net_by_idx(idx);
        if (midx != -1) {
            return net_flatindex.at(midx);
        } else {
            std::string name;
            if (idx < int(m.net_names.size()) && !m.net_names.at(idx).empty()) {
                // Use the rule above to find the preferred name for a net
                name = m.net_names.at(idx).at(0);
                for (size_t j = 1; j < m.net_names.at(idx).size(); j++)
                    if (prefer_netlabel(m, m.net_names.at(idx).at(j), name))
                        name = m.net_names.at(idx).at(j);
            } else {
                name = "$frontend$" + std::to_string(idx);
            }
            NetInfo *net = ctx->createNet(unique_name(m.prefix, name, true));
            // Add to the flat index of nets
            net->udata = int(net_flatindex.size());
            net_flatindex.push_back(net);
            net_old_indices.emplace_back();
            // Add to the module-level index of netsd
            midx = net->udata;
            // Create aliases for all possible names
            if (idx < int(m.net_names.size()) && !m.net_names.at(idx).empty()) {
                for (const auto &name : m.net_names.at(idx)) {
                    IdString name_id = ctx->id(name);
                    net->aliases.push_back(name_id);
                    ctx->net_aliases[name_id] = net->name;
                }
            } else {
                net->aliases.push_back(net->name);
                ctx->net_aliases[net->name] = net->name;
            }
            return net;
        }
    }

    // Get the name of a vector bit given basename; settings and index
    std::string get_bit_name(const std::string &base, int index, int length, int offset = 0, bool upto = false)
    {
        std::string port = base;
        if (length == 1 && offset == 0)
            return port;
        int real_index;
        if (upto)
            real_index = offset + length - index - 1; // reversed ports like [0:7]
        else
            real_index = offset + index; // normal 'downto' ports like [7:0]
        port += '[';
        port += std::to_string(real_index);
        port += ']';
        return port;
    }

    // Import the netnames section of a module
    void import_module_netnames(HierModuleState &m, const mod_dat_t &data)
    {
        impl.foreach_netname(data, [&](const std::string &basename, const netname_dat_t &nn) {
            bool upto = impl.is_array_upto(nn);
            int offset = impl.get_array_offset(nn);
            const auto &bits = impl.get_net_bits(nn);
            int width = impl.get_vector_length(bits);
            for (int i = 0; i < width; i++) {
                if (impl.is_vector_bit_constant(bits, i))
                    continue;

                std::string bit_name = get_bit_name(basename, i, width, offset, upto);

                int net_bit = impl.get_vector_bit_signal(bits, i);
                int mapped_bit = m.net_by_idx(net_bit);
                if (mapped_bit == -1) {
                    // Net doesn't exist yet. Add the name here to the list of candidate names so we have that for when
                    // we create it later
                    if (net_bit >= int(m.net_names.size()))
                        m.net_names.resize(net_bit + 1);
                    m.net_names.at(net_bit).push_back(bit_name);
                } else {
                    // Net already exists; add this name as an alias
                    NetInfo *ni = net_flatindex.at(mapped_bit);
                    IdString alias_name = ctx->id(m.prefix + bit_name);
                    if (ctx->net_aliases.count(alias_name))
                        continue; // don't add duplicate aliases
                    ctx->net_aliases[alias_name] = ni->name;
                    ni->aliases.push_back(alias_name);
                }
            }
        });
    }

    void import_net_attrs(HierModuleState &m, const mod_dat_t &data)
    {
        impl.foreach_netname(data, [&](const std::string &basename, const netname_dat_t &nn) {
            const auto &bits = impl.get_net_bits(nn);
            int width = impl.get_vector_length(bits);
            for (int i = 0; i < width; i++) {
                if (impl.is_vector_bit_constant(bits, i))
                    continue;
                int net_bit = impl.get_vector_bit_signal(bits, i);
                int mapped_bit = m.net_by_idx(net_bit);
                if (mapped_bit != -1) {
                    NetInfo *ni = net_flatindex.at(mapped_bit);
                    impl.foreach_attr(nn, [&](const std::string &name, const Property &value) {
                        ni->attrs[ctx->id(name)] = value;
                    });
                }
            }
        });
    }

    // Create a new constant net; given a hint for what the name should be and its value
    NetInfo *create_constant_net(HierModuleState &m, const std::string &name_hint, char constval)
    {
        IdString name = unique_name(m.prefix, name_hint, true);
        NetInfo *ni = ctx->createNet(name);
        add_constant_driver(m, ni, constval);
        return ni;
    }

    // Import a leaf cell - (white|black)box
    void import_leaf_cell(HierModuleState &m, const std::string &name, const cell_dat_t &cd)
    {
        IdString inst_name = unique_name(m.prefix, name, false);
        ctx->hierarchy[m.path].leaf_cells_by_gname[inst_name] = ctx->id(name);
        ctx->hierarchy[m.path].leaf_cells[ctx->id(name)] = inst_name;
        CellInfo *ci = ctx->createCell(inst_name, ctx->id(impl.get_cell_type(cd)));
        ci->hierpath = m.path;
        // Import port directions
        dict<IdString, PortType> port_dirs;
        impl.foreach_port_dir(cd, [&](const std::string &port, PortType dir) { port_dirs[ctx->id(port)] = dir; });
        // Import port connectivity
        impl.foreach_port_conn(cd, [&](const std::string &name, const bitvector_t &bits) {
            if (!port_dirs.count(ctx->id(name)))
                log_error("Failed to get direction for port '%s' of cell '%s'\n", name.c_str(), inst_name.c_str(ctx));
            PortType dir = port_dirs.at(ctx->id(name));
            int width = impl.get_vector_length(bits);
            for (int i = 0; i < width; i++) {
                std::string port_bit_name = get_bit_name(name, i, width);
                IdString port_bit_ids = ctx->id(port_bit_name);
                // Create cell port
                ci->ports[port_bit_ids].name = port_bit_ids;
                ci->ports[port_bit_ids].type = dir;
                // Resolve connectivity
                NetInfo *net;
                if (impl.is_vector_bit_constant(bits, i)) {
                    // Create a constant driver if one is needed
                    net = create_constant_net(m, inst_name.str(ctx) + "." + port_bit_name + "$const",
                                              impl.get_vector_bit_constval(bits, i));
                } else {
                    // Otherwise, lookup (creating if needed) the net with this index
                    net = create_or_get_net(m, impl.get_vector_bit_signal(bits, i));
                }
                NPNR_ASSERT(net != nullptr);

                // Check for multiple drivers
                if (dir == PORT_OUT && net->driver.cell != nullptr)
                    log_error("Net '%s' is multiply driven by cell ports %s.%s and %s.%s\n", ctx->nameOf(net),
                              ctx->nameOf(net->driver.cell), ctx->nameOf(net->driver.port), ctx->nameOf(inst_name),
                              port_bit_name.c_str());
                connect_port(ctx, net, ci, port_bit_ids);
            }
        });
        // Import attributes and parameters
        impl.foreach_attr(cd,
                          [&](const std::string &name, const Property &value) { ci->attrs[ctx->id(name)] = value; });
        impl.foreach_param(cd,
                           [&](const std::string &name, const Property &value) { ci->params[ctx->id(name)] = value; });
    }

    // Import a submodule cell
    void import_submodule_cell(HierModuleState &m, const std::string &name, const cell_dat_t &cd)
    {
        HierModuleState submod;
        submod.is_toplevel = false;
        // Create mapping from submodule port to nets (referenced by index in flatindex)
        impl.foreach_port_conn(cd, [&](const std::string &name, const bitvector_t &bits) {
            int width = impl.get_vector_length(bits);
            for (int i = 0; i < width; i++) {
                // Index of port net in flatindex
                int net_ref = -1;
                if (impl.is_vector_bit_constant(bits, i)) {
                    // Create a constant driver if one is needed
                    std::string port_bit_name = get_bit_name(name, i, width);
                    NetInfo *cnet = create_constant_net(m, name + "." + port_bit_name + "$const",
                                                        impl.get_vector_bit_constval(bits, i));
                    cnet->udata = int(net_flatindex.size());
                    net_flatindex.push_back(cnet);
                    net_old_indices.emplace_back();
                    net_ref = cnet->udata;
                } else {
                    // Otherwise, lookup (creating if needed) the net with given in-module index
                    net_ref = create_or_get_net(m, impl.get_vector_bit_signal(bits, i))->udata;
                }
                NPNR_ASSERT(net_ref != -1);
                submod.port_to_bus[ctx->id(name)].push_back(net_ref);
            }
        });
        // Create prefix for submodule
        submod.prefix = m.prefix;
        submod.prefix += name;
        submod.prefix += '.';
        submod.parent_path = m.path;
        submod.path = ctx->id(m.path.str(ctx) + "/" + name);
        ctx->hierarchy[m.path].hier_cells[ctx->id(name)] = submod.path;
        // Do the submodule import
        auto type = impl.get_cell_type(cd);
        import_module(submod, name, type, mod_refs.at(type));
    }

    // Import the cells section of a module
    void import_module_cells(HierModuleState &m, const mod_dat_t &data)
    {
        impl.foreach_cell(data, [&](const std::string &cellname, const cell_dat_t &cd) {
            IdString type = ctx->id(impl.get_cell_type(cd));
            if (mods.count(type) && !mods.at(type).is_box()) {
                // Module type is known; and not boxed. Import as a submodule by flattening hierarchy
                import_submodule_cell(m, cellname, cd);
            } else {
                // Module type is unknown or boxes. Import as a leaf cell (nextpnr CellInfo)
                import_leaf_cell(m, cellname, cd);
            }
        });
    }

    // Create a top level input/output buffer
    CellInfo *create_iobuf(NetInfo *net, PortType dir, const std::string &name)
    {
        // Skip IOBUF insertion if this is a design checkpoint (where they will already exist)
        if (ctx->settings.count(ctx->id("synth")))
            return nullptr;
        IdString name_id = ctx->id(name);
        if (ctx->cells.count(name_id))
            log_error("Cell '%s' of type '%s' with the same name as a top-level IO is not allowed.\n", name.c_str(),
                      ctx->cells.at(name_id)->type.c_str(ctx));
        CellInfo *iobuf = ctx->createCell(name_id, ctx->id("unknown_iob"));
        // Copy attributes from net to IOB
        for (auto &attr : net->attrs)
            iobuf->attrs[attr.first] = attr.second;
        // What we do now depends on port type
        if (dir == PORT_IN) {
            iobuf->type = ctx->id("$nextpnr_ibuf");
            iobuf->addOutput(ctx->id("O"));
            if (net->driver.cell != nullptr) {
                CellInfo *drv = net->driver.cell;
                if (drv->type != ctx->id("$nextpnr_iobuf"))
                    log_error("Net '%s' is multiply driven by cell port %s.%s and top level input '%s'.\n",
                              ctx->nameOf(net), ctx->nameOf(drv), ctx->nameOf(net->driver.port), name.c_str());
                // Special case: input, etc, directly drives inout
                // Use the input net of the inout instead
                net = drv->ports.at(ctx->id("I")).net;
            }
            NPNR_ASSERT(net->driver.cell == nullptr);
            // Connect IBUF output and net
            connect_port(ctx, net, iobuf, ctx->id("O"));
        } else if (dir == PORT_OUT) {
            iobuf->type = ctx->id("$nextpnr_obuf");
            iobuf->addInput(ctx->id("I"));
            // Connect IBUF input and net
            connect_port(ctx, net, iobuf, ctx->id("I"));
        } else if (dir == PORT_INOUT) {
            iobuf->type = ctx->id("$nextpnr_iobuf");

            if (split_io) {
                iobuf->addInput(ctx->id("I"));
                iobuf->addOutput(ctx->id("O"));
                // Need to bifurcate the net to avoid multiple drivers and split
                // the input/output parts of an inout
                // Create a new net connecting only the current net's driver and the IOBUF input
                // Then use the IOBUF output to drive all of the current net's users
                NetInfo *split_iobuf_i = ctx->createNet(unique_name("", "$" + name + "$iobuf_i", true));
                auto drv = net->driver;
                if (drv.cell != nullptr) {
                    disconnect_port(ctx, drv.cell, drv.port);
                    drv.cell->ports[drv.port].net = nullptr;
                    connect_port(ctx, split_iobuf_i, drv.cell, drv.port);
                }
                connect_port(ctx, split_iobuf_i, iobuf, ctx->id("I"));
                NPNR_ASSERT(net->driver.cell == nullptr);
                connect_port(ctx, net, iobuf, ctx->id("O"));
            } else {
                iobuf->addInout(ctx->id("IO"));
                connect_port(ctx, net, iobuf, ctx->id("IO"));
            }
        }

        PortInfo pinfo;
        pinfo.name = name_id;
        pinfo.net = net;
        pinfo.type = dir;
        ctx->ports[pinfo.name] = pinfo;
        ctx->port_cells[pinfo.name] = iobuf;

        return iobuf;
    }

    // Import ports of the top level module
    void import_toplevel_ports(HierModuleState &m, const mod_dat_t &data)
    {
        // For correct handling of inout ports driving other ports
        // first import non-inouts then import inouts so that they bifurcate correctly
        for (bool inout : {false, true}) {
            impl.foreach_port(data, [&](const std::string &portname, const mod_port_dat_t &pd) {
                const auto &port_bv = impl.get_port_bits(pd);
                int offset = impl.get_array_offset(pd);
                bool is_upto = impl.is_array_upto(pd);
                int width = impl.get_vector_length(port_bv);
                PortType dir = impl.get_port_dir(pd);
                if ((dir == PORT_INOUT) != inout)
                    return;
                for (int i = 0; i < width; i++) {
                    std::string pbit_name = get_bit_name(portname, i, width, offset, is_upto);
                    NetInfo *port_net = nullptr;
                    if (impl.is_vector_bit_constant(port_bv, i)) {
                        // Port bit is constant. Need to create a new constant net.
                        port_net =
                                create_constant_net(m, pbit_name + "$const", impl.get_vector_bit_constval(port_bv, i));
                    } else {
                        // Port bit is a signal. Need to create/get the associated net
                        port_net = create_or_get_net(m, impl.get_vector_bit_signal(port_bv, i));
                    }
                    create_iobuf(port_net, dir, pbit_name);
                }
            });
        }
    }

    // Add a constant-driving VCC or GND cell to make a net constant
    // (constval can be [01xz], x and z or no-ops)
    int const_autoidx = 0;
    void add_constant_driver(HierModuleState &m, NetInfo *net, char constval)
    {

        if (constval == 'x' || constval == 'z')
            return; // 'x' or 'z' is the same as undriven
        NPNR_ASSERT(constval == '0' || constval == '1');
        IdString cell_name = unique_name(
                m.prefix, net->name.str(ctx) + (constval == '1' ? "$VCC$" : "$GND$") + std::to_string(const_autoidx++),
                false);
        CellInfo *cc = ctx->createCell(cell_name, ctx->id(constval == '1' ? "VCC" : "GND"));
        cc->ports[ctx->id("Y")].name = ctx->id("Y");
        cc->ports[ctx->id("Y")].type = PORT_OUT;
        if (net->driver.cell != nullptr)
            log_error("Net '%s' is multiply driven by port %s.%s and constant '%c'\n", ctx->nameOf(net),
                      ctx->nameOf(net->driver.cell), ctx->nameOf(net->driver.port), constval);
        connect_port(ctx, net, cc, ctx->id("Y"));
    }

    // Merge two nets - e.g. if one net in a submodule bifurcates to two output bits and therefore two different
    // parent nets
    void merge_nets(NetInfo *base, NetInfo *mergee)
    {
        // Resolve drivers
        if (mergee->driver.cell != nullptr) {
            if (base->driver.cell != nullptr)
                log_error("Attempting to merge nets '%s' and '%s' due to port connectivity; but this would result in a "
                          "multiply driven net\n",
                          ctx->nameOf(base), ctx->nameOf(mergee));
            else {
                mergee->driver.cell->ports[mergee->driver.port].net = base;
                base->driver = mergee->driver;
            }
        }
        // Combine users
        for (auto &usr : mergee->users) {
            usr.cell->ports[usr.port].net = base;
            base->users.push_back(usr);
        }
        // Point aliases to the new net
        for (IdString alias : mergee->aliases) {
            ctx->net_aliases[alias] = base->name;
            base->aliases.push_back(alias);
        }
        // Create a new alias from mergee's name to new base name
        ctx->net_aliases[mergee->name] = base->name;
        // Update flat index of nets
        for (auto old_idx : net_old_indices.at(mergee->udata)) {
            net_old_indices.at(base->udata).push_back(old_idx);
            net_flatindex.at(old_idx) = base;
        }
        net_old_indices.at(base->udata).push_back(mergee->udata);
        net_flatindex.at(mergee->udata) = base;
        net_old_indices.at(mergee->udata).clear();
        // Remove merged net from context
        ctx->nets.erase(mergee->name);
    }

    // Import connections between a submodule and its parent
    void import_port_connections(HierModuleState &m, const mod_dat_t &data)
    {
        impl.foreach_port(data, [&](const std::string &name, const mod_port_dat_t &port) {
            // CHECK: should disconnected module inputs really just be skipped; or is it better
            // to insert a ground driver?
            if (!m.port_to_bus.count(ctx->id(name)))
                return;
            auto &p2b = m.port_to_bus.at(ctx->id(name));
            // Get direction and vector of port bits
            PortType dir = impl.get_port_dir(port);
            const auto &bv = impl.get_port_bits(port);
            int bv_size = impl.get_vector_length(bv);
            // Iterate over bits of port; making connections
            for (int i = 0; i < std::min<int>(bv_size, p2b.size()); i++) {
                int conn_net = p2b.at(i);
                if (conn_net == -1)
                    continue;
                NetInfo *conn_ni = net_flatindex.at(conn_net);
                NPNR_ASSERT(conn_ni != nullptr);
                if (impl.is_vector_bit_constant(bv, i)) {
                    // It is a constant, we might need to insert a constant driver here to drive the corresponding
                    // net in the parent
                    char constval = impl.get_vector_bit_constval(bv, i);
                    // Inputs cannot be driving a constant back to the parent
                    if (dir == PORT_IN)
                        log_error("Input port %s%s[%d] cannot be driving a constant '%c'.\n", m.prefix.c_str(),
                                  name.c_str(), i, constval);
                    // Insert the constant driver
                    add_constant_driver(m, conn_ni, constval);
                } else {
                    // If not driving a constant; simply make the port bit net index in the submodule correspond
                    // to connected net in the parent module
                    int &submod_net = m.net_by_idx(impl.get_vector_bit_signal(bv, i));
                    if (submod_net == -1) {
                        // A net at this index doesn't yet exist
                        // We can simply set this index to point to the net in the parent
                        submod_net = conn_net;
                    } else {
                        // A net at this index already exists (this would usually be a submodule net
                        // connected to more than one I/O port)
                        merge_nets(net_flatindex.at(submod_net), net_flatindex.at(conn_net));
                    }
                }
            }
        });
    }
};
} // namespace

NEXTPNR_NAMESPACE_END