aboutsummaryrefslogtreecommitdiffstats
path: root/frontends/aiger/aigerparse.h
diff options
context:
space:
mode:
authorClaire Xen <claire@clairexen.net>2021-10-11 09:54:28 +0200
committerGitHub <noreply@github.com>2021-10-11 09:54:28 +0200
commitc15b99c0deea562dd7672b934567457a01836212 (patch)
tree1775fd2caeda1e86afd260ecf03a1b651c56cca3 /frontends/aiger/aigerparse.h
parentd8f6d7b18d23a588fc537f12aef3c4c8ddbe3418 (diff)
parent93fbc9fba4400814a859a9d9bfb05b3b92500e31 (diff)
downloadyosys-c15b99c0deea562dd7672b934567457a01836212.tar.gz
yosys-c15b99c0deea562dd7672b934567457a01836212.tar.bz2
yosys-c15b99c0deea562dd7672b934567457a01836212.zip
Merge pull request #3041 from YosysHQ/mmicko/module_attr
Import module attributes from Verific
Diffstat (limited to 'frontends/aiger/aigerparse.h')
0 files changed, 0 insertions, 0 deletions
/a> 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2021  Symbiflow Authors
 *
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "cost_map.h"

#include "context.h"
#include "log.h"

NEXTPNR_NAMESPACE_BEGIN

///@brief Factor to adjust the penalty calculation for deltas outside the segment bounding box:
//      factor < 1.0: penalty has less impact on the final returned delay
//      factor > 1.0: penalty has more impact on the final returned delay
static constexpr float PENALTY_FACTOR = 1.f;

///@brief Minimum penalty cost that is added when penalizing a delta outside the segment bounding box.
static constexpr delay_t PENALTY_MIN = 1;

// also known as the L1 norm
static int manhattan_distance(const std::pair<int32_t, int32_t> &a, const std::pair<int32_t, int32_t> &b)
{
    return std::abs(b.first - a.first) + std::abs(b.second - a.second);
}

static delay_t penalize(const delay_t &entry, int distance, delay_t penalty)
{
    penalty = std::max(penalty, PENALTY_MIN);
    return entry + distance * penalty * PENALTY_FACTOR;
}

delay_t CostMap::get_delay(const Context *ctx, WireId src_wire, WireId dst_wire) const
{
    TypeWirePair type_pair;
    type_pair.src = TypeWireId(ctx, src_wire);
    type_pair.dst = TypeWireId(ctx, dst_wire);

    int src_tile;
    if (src_wire.tile == -1) {
        src_tile = ctx->chip_info->nodes[src_wire.index].tile_wires[0].tile;
    } else {
        src_tile = src_wire.tile;
    }

    int32_t src_x, src_y;
    ctx->get_tile_x_y(src_tile, &src_x, &src_y);

    int dst_tile;
    if (dst_wire.tile == -1) {
        dst_tile = ctx->chip_info->nodes[dst_wire.index].tile_wires[0].tile;
    } else {
        dst_tile = dst_wire.tile;
    }

    int32_t dst_x, dst_y;
    ctx->get_tile_x_y(dst_tile, &dst_x, &dst_y);

    auto iter = cost_map_.find(type_pair);
    if (iter == cost_map_.end()) {
        auto &src_type = ctx->chip_info->tile_types[type_pair.src.type];
        IdString src_tile_type(src_type.name);
        IdString src_wire_name(src_type.wire_data[type_pair.src.index].name);

        auto &dst_type = ctx->chip_info->tile_types[type_pair.dst.type];
        IdString dst_tile_type(dst_type.name);
        IdString dst_wire_name(dst_type.wire_data[type_pair.dst.index].name);

#if 0
        log_warning("Delay matrix is missing %s/%s -> %s/%s\n",
                src_tile_type.c_str(ctx),
                src_wire_name.c_str(ctx),
                dst_tile_type.c_str(ctx),
                dst_wire_name.c_str(ctx));
#endif
        return std::numeric_limits<delay_t>::max();
    }

    const auto &delay_matrix = iter->second;

    int32_t off_x = delay_matrix.offset.first + (dst_x - src_x);
    int32_t off_y = delay_matrix.offset.second + (dst_y - src_y);

    int32_t x_dim = delay_matrix.data.shape()[0];
    int32_t y_dim = delay_matrix.data.shape()[1];
    NPNR_ASSERT(x_dim > 0);
    NPNR_ASSERT(y_dim > 0);

    // Bound closest_x/y to [0, dim)
    int32_t closest_x = std::min(std::max(off_x, 0), x_dim - 1);
    int32_t closest_y = std::min(std::max(off_y, 0), y_dim - 1);

    // Get the cost entry from the cost map at the deltas values
    auto cost = delay_matrix.data[closest_x][closest_y];
    NPNR_ASSERT(cost >= 0);

    // Get the base penalty corresponding to the current segment.
    auto penalty = delay_matrix.penalty;

    // Get the distance between the closest point in the bounding box and the original coordinates.
    // Note that if the original coordinates are within the bounding box, the distance will be equal to zero.
    auto distance = manhattan_distance(std::make_pair(off_x, off_y), std::make_pair(closest_x, closest_y));

    // Return the penalized cost (no penalty is added if the coordinates are within the bounding box).
    return penalize(cost, distance, penalty);
}

void CostMap::set_cost_map(const Context *ctx, const TypeWirePair &wire_pair,
                           const dict<std::pair<int32_t, int32_t>, delay_t> &delays)
{
    CostMapEntry delay_matrix;

    auto &offset = delay_matrix.offset;
    offset.first = 0;
    offset.second = 0;

    int32_t max_x_offset = 0;
    int32_t max_y_offset = 0;

    for (const auto &delay_pair : delays) {
        auto &dx_dy = delay_pair.first;
        offset.first = std::max(-dx_dy.first, offset.first);
        offset.second = std::max(-dx_dy.second, offset.second);
        max_x_offset = std::max(dx_dy.first, max_x_offset);
        max_y_offset = std::max(dx_dy.second, max_y_offset);
    }

    int32_t x_dim = offset.first + max_x_offset + 1;
    int32_t y_dim = offset.second + max_y_offset + 1;

    delay_matrix.data.resize(boost::extents[x_dim][y_dim]);

    // Fill matrix with sentinel of -1 to know where the holes in the matrix
    // are.
    std::fill_n(delay_matrix.data.data(), delay_matrix.data.num_elements(), -1);

    for (const auto &delay_pair : delays) {
        auto &dx_dy = delay_pair.first;
        int32_t off_x = dx_dy.first + offset.first;
        int32_t off_y = dx_dy.second + offset.second;
        NPNR_ASSERT(off_x >= 0);
        NPNR_ASSERT(off_x < x_dim);
        NPNR_ASSERT(off_y >= 0);
        NPNR_ASSERT(off_y < y_dim);

        delay_matrix.data[off_x][off_y] = delay_pair.second;
    }

    delay_matrix.penalty = get_penalty(delay_matrix.data);
    fill_holes(ctx, wire_pair, delay_matrix.data, delay_matrix.penalty);

    {
        cost_map_mutex_.lock();
        auto result = cost_map_.emplace(wire_pair, delay_matrix);
        NPNR_ASSERT(result.second);
        cost_map_mutex_.unlock();
    }
}

static void assign_min_entry(delay_t *dst, const delay_t &src)
{
    if (src >= 0) {
        if (*dst < 0) {
            *dst = src;
        } else if (src < *dst) {
            *dst = src;
        }
    }
}

std::pair<delay_t, int> CostMap::get_nearby_cost_entry(const boost::multi_array<delay_t, 2> &matrix, int cx, int cy,
                                                       const ArcBounds &bounds)
{
#ifdef DEBUG_FILL
    log_info("Filling %d, %d within (%d, %d, %d, %d)\n", cx, cy, bounds.x0, bounds.y0, bounds.x1, bounds.y1);
#endif

    // spiral around (cx, cy) looking for a nearby entry
    bool in_bounds = bounds.contains(cx, cy);
    if (!in_bounds) {
#ifdef DEBUG_FILL
        log_info("Already out of bounds, return!\n");
#endif
        return std::make_pair(-1, 0);
    }
    int n = 0;
    delay_t fill(matrix[cx][cy]);

    while (in_bounds && (fill < 0)) {
        n++;
#ifdef DEBUG_FILL
        log_info("At n = %d\n", n);
#endif
        in_bounds = false;
        delay_t min_entry = -1;
        for (int ox = -n; ox <= n; ox++) {
            int x = cx + ox;
            int oy = n - abs(ox);
            int yp = cy + oy;
            int yn = cy - oy;
#ifdef DEBUG_FILL
            log_info("Testing %d, %d\n", x, yp);
#endif
            if (bounds.contains(x, yp)) {
                assign_min_entry(&min_entry, matrix[x][yp]);
                in_bounds = true;
#ifdef DEBUG_FILL
                log_info("matrix[%d, %d] = %d, min_entry = %d\n", x, yp, matrix[x][yp], min_entry);
#endif
            }
#ifdef DEBUG_FILL
            log_info("Testing %d, %d\n", x, yn);
#endif
            if (bounds.contains(x, yn)) {
                assign_min_entry(&min_entry, matrix[x][yn]);
                in_bounds = true;
#ifdef DEBUG_FILL
                log_info("matrix[%d, %d] = %d, min_entry = %d\n", x, yn, matrix[x][yn], min_entry);
#endif
            }
        }

        if (fill < 0 && min_entry >= 0) {
            fill = min_entry;
        }
    }

    return std::make_pair(fill, n);
}

void CostMap::fill_holes(const Context *ctx, const TypeWirePair &type_pair, boost::multi_array<delay_t, 2> &matrix,
                         delay_t delay_penalty)
{
    // find missing cost entries and fill them in by copying a nearby cost entry
    std::vector<std::tuple<unsigned, unsigned, delay_t>> missing;
    bool couldnt_fill = false;
    auto shifted_bounds = ArcBounds(0, 0, matrix.shape()[0] - 1, matrix.shape()[1] - 1);
    int max_fill = 0;
    for (unsigned ix = 0; ix < matrix.shape()[0]; ix++) {
        for (unsigned iy = 0; iy < matrix.shape()[1]; iy++) {
            delay_t &cost_entry = matrix[ix][iy];
            if (cost_entry < 0) {
                // maximum search radius
                delay_t filler;
                int distance;
                std::tie(filler, distance) = get_nearby_cost_entry(matrix, ix, iy, shifted_bounds);
                if (filler >= 0) {
                    missing.push_back(std::make_tuple(ix, iy, penalize(filler, distance, delay_penalty)));
                    max_fill = std::max(max_fill, distance);
                } else {
                    couldnt_fill = true;
                }
            }
        }
        if (couldnt_fill) {
            // give up trying to fill an empty matrix
            break;
        }
    }

    if (!couldnt_fill && max_fill > 0) {
        if (ctx->verbose) {
            auto &src_type_data = ctx->chip_info->tile_types[type_pair.src.type];
            IdString src_type(src_type_data.name);
            IdString src_wire(src_type_data.wire_data[type_pair.src.index].name);

            auto &dst_type_data = ctx->chip_info->tile_types[type_pair.dst.type];
            IdString dst_type(dst_type_data.name);
            IdString dst_wire(dst_type_data.wire_data[type_pair.dst.index].name);

#ifdef DEBUG_FILL
            log_info("At %s/%s -> %s/%s: max_fill = %d, delay_penalty = %d\n", src_type.c_str(ctx), src_wire.c_str(ctx),
                     dst_type.c_str(ctx), dst_wire.c_str(ctx), max_fill, delay_penalty);
#endif
        }
    }

    // write back the missing entries
    for (auto &xy_entry : missing) {
        matrix[std::get<0>(xy_entry)][std::get<1>(xy_entry)] = std::get<2>(xy_entry);
    }

    if (couldnt_fill) {
        auto &src_type_data = ctx->chip_info->tile_types[type_pair.src.type];
        IdString src_type(src_type_data.name);
        IdString src_wire(src_type_data.wire_data[type_pair.src.index].name);

        auto &dst_type_data = ctx->chip_info->tile_types[type_pair.dst.type];
        IdString dst_type(dst_type_data.name);
        IdString dst_wire(dst_type_data.wire_data[type_pair.dst.index].name);

        log_warning("Couldn't fill holes in the cost matrix %s/%s -> %s/%s %d x %d bounding box\n", src_type.c_str(ctx),
                    src_wire.c_str(ctx), dst_type.c_str(ctx), dst_wire.c_str(ctx), shifted_bounds.x1,
                    shifted_bounds.y1);
        for (unsigned y = 0; y < matrix.shape()[1]; y++) {
            for (unsigned x = 0; x < matrix.shape()[0]; x++) {
                NPNR_ASSERT(matrix[x][y] >= 0);
            }
        }
    }
}

delay_t CostMap::get_penalty(const boost::multi_array<delay_t, 2> &matrix) const
{
    delay_t min_delay = std::numeric_limits<delay_t>::max();
    delay_t max_delay = std::numeric_limits<delay_t>::min();

    std::pair<int32_t, int32_t> min_location(0, 0), max_location(0, 0);
    for (unsigned ix = 0; ix < matrix.shape()[0]; ix++) {
        for (unsigned iy = 0; iy < matrix.shape()[1]; iy++) {
            const delay_t &cost_entry = matrix[ix][iy];
            if (cost_entry >= 0) {
                if (cost_entry < min_delay) {
                    min_delay = cost_entry;
                    min_location = std::make_pair(ix, iy);
                }
                if (cost_entry > max_delay) {
                    max_delay = cost_entry;
                    max_location = std::make_pair(ix, iy);
                }
            }
        }
    }

    delay_t delay_penalty =
            (max_delay - min_delay) / static_cast<float>(std::max(1, manhattan_distance(max_location, min_location)));

    return delay_penalty;
}

void CostMap::from_reader(lookahead_storage::CostMap::Reader reader)
{
    for (auto cost_entry : reader.getCostMap()) {
        TypeWirePair key(cost_entry.getKey());

        auto result = cost_map_.emplace(key, CostMapEntry());
        NPNR_ASSERT(result.second);

        CostMapEntry &entry = result.first->second;
        auto data = cost_entry.getData();
        auto in_iter = data.begin();

        entry.data.resize(boost::extents[cost_entry.getXDim()][cost_entry.getYDim()]);
        if (entry.data.num_elements() != data.size()) {
            log_error("entry.data.num_elements() %zu != data.size() %u", entry.data.num_elements(), data.size());
        }

        delay_t *out = entry.data.origin();
        for (; in_iter != data.end(); ++in_iter, ++out) {
            *out = *in_iter;
        }

        entry.penalty = cost_entry.getPenalty();

        entry.offset.first = cost_entry.getXOffset();
        entry.offset.second = cost_entry.getYOffset();
    }
}

void CostMap::to_builder(lookahead_storage::CostMap::Builder builder) const
{
    auto cost_map = builder.initCostMap(cost_map_.size());
    auto entry_iter = cost_map.begin();
    auto in = cost_map_.begin();
    for (; entry_iter != cost_map.end(); ++entry_iter, ++in) {
        NPNR_ASSERT(in != cost_map_.end());

        in->first.to_builder(entry_iter->getKey());
        const CostMapEntry &entry = in->second;

        auto data = entry_iter->initData(entry.data.num_elements());
        const delay_t *data_in = entry.data.origin();
        for (size_t i = 0; i < entry.data.num_elements(); ++i) {
            data.set(i, data_in[i]);
        }

        entry_iter->setXDim(entry.data.shape()[0]);
        entry_iter->setYDim(entry.data.shape()[1]);
        entry_iter->setXOffset(entry.offset.first);
        entry_iter->setYOffset(entry.offset.second);
        entry_iter->setPenalty(entry.penalty);
    }
}

NEXTPNR_NAMESPACE_END